1 // Copyright 2020 The Abseil Authors.
2 //
3 // Licensed under the Apache License, Version 2.0 (the "License");
4 // you may not use this file except in compliance with the License.
5 // You may obtain a copy of the License at
6 //
7 // https://www.apache.org/licenses/LICENSE-2.0
8 //
9 // Unless required by applicable law or agreed to in writing, software
10 // distributed under the License is distributed on an "AS IS" BASIS,
11 // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 // See the License for the specific language governing permissions and
13 // limitations under the License.
14
15 #include "absl/strings/internal/str_format/float_conversion.h"
16
17 #include <string.h>
18
19 #include <algorithm>
20 #include <cassert>
21 #include <cmath>
22 #include <limits>
23 #include <string>
24
25 #include "absl/base/attributes.h"
26 #include "absl/base/config.h"
27 #include "absl/base/optimization.h"
28 #include "absl/functional/function_ref.h"
29 #include "absl/meta/type_traits.h"
30 #include "absl/numeric/bits.h"
31 #include "absl/numeric/int128.h"
32 #include "absl/numeric/internal/representation.h"
33 #include "absl/strings/numbers.h"
34 #include "absl/types/optional.h"
35 #include "absl/types/span.h"
36
37 namespace absl {
38 ABSL_NAMESPACE_BEGIN
39 namespace str_format_internal {
40
41 namespace {
42
43 using ::absl::numeric_internal::IsDoubleDouble;
44
45 // The code below wants to avoid heap allocations.
46 // To do so it needs to allocate memory on the stack.
47 // `StackArray` will allocate memory on the stack in the form of a uint32_t
48 // array and call the provided callback with said memory.
49 // It will allocate memory in increments of 512 bytes. We could allocate the
50 // largest needed unconditionally, but that is more than we need in most of
51 // cases. This way we use less stack in the common cases.
52 class StackArray {
53 using Func = absl::FunctionRef<void(absl::Span<uint32_t>)>;
54 static constexpr size_t kStep = 512 / sizeof(uint32_t);
55 // 5 steps is 2560 bytes, which is enough to hold a long double with the
56 // largest/smallest exponents.
57 // The operations below will static_assert their particular maximum.
58 static constexpr size_t kNumSteps = 5;
59
60 // We do not want this function to be inlined.
61 // Otherwise the caller will allocate the stack space unnecessarily for all
62 // the variants even though it only calls one.
63 template <size_t steps>
RunWithCapacityImpl(Func f)64 ABSL_ATTRIBUTE_NOINLINE static void RunWithCapacityImpl(Func f) {
65 uint32_t values[steps * kStep]{};
66 f(absl::MakeSpan(values));
67 }
68
69 public:
70 static constexpr size_t kMaxCapacity = kStep * kNumSteps;
71
RunWithCapacity(size_t capacity,Func f)72 static void RunWithCapacity(size_t capacity, Func f) {
73 assert(capacity <= kMaxCapacity);
74 const size_t step = (capacity + kStep - 1) / kStep;
75 assert(step <= kNumSteps);
76 switch (step) {
77 case 1:
78 return RunWithCapacityImpl<1>(f);
79 case 2:
80 return RunWithCapacityImpl<2>(f);
81 case 3:
82 return RunWithCapacityImpl<3>(f);
83 case 4:
84 return RunWithCapacityImpl<4>(f);
85 case 5:
86 return RunWithCapacityImpl<5>(f);
87 }
88
89 assert(false && "Invalid capacity");
90 }
91 };
92
93 // Calculates `10 * (*v) + carry` and stores the result in `*v` and returns
94 // the carry.
95 template <typename Int>
MultiplyBy10WithCarry(Int * v,Int carry)96 inline Int MultiplyBy10WithCarry(Int *v, Int carry) {
97 using BiggerInt = absl::conditional_t<sizeof(Int) == 4, uint64_t, uint128>;
98 BiggerInt tmp = 10 * static_cast<BiggerInt>(*v) + carry;
99 *v = static_cast<Int>(tmp);
100 return static_cast<Int>(tmp >> (sizeof(Int) * 8));
101 }
102
103 // Calculates `(2^64 * carry + *v) / 10`.
104 // Stores the quotient in `*v` and returns the remainder.
105 // Requires: `0 <= carry <= 9`
DivideBy10WithCarry(uint64_t * v,uint64_t carry)106 inline uint64_t DivideBy10WithCarry(uint64_t *v, uint64_t carry) {
107 constexpr uint64_t divisor = 10;
108 // 2^64 / divisor = chunk_quotient + chunk_remainder / divisor
109 constexpr uint64_t chunk_quotient = (uint64_t{1} << 63) / (divisor / 2);
110 constexpr uint64_t chunk_remainder = uint64_t{} - chunk_quotient * divisor;
111
112 const uint64_t mod = *v % divisor;
113 const uint64_t next_carry = chunk_remainder * carry + mod;
114 *v = *v / divisor + carry * chunk_quotient + next_carry / divisor;
115 return next_carry % divisor;
116 }
117
118 using MaxFloatType =
119 typename std::conditional<IsDoubleDouble(), double, long double>::type;
120
121 // Generates the decimal representation for an integer of the form `v * 2^exp`,
122 // where `v` and `exp` are both positive integers.
123 // It generates the digits from the left (ie the most significant digit first)
124 // to allow for direct printing into the sink.
125 //
126 // Requires `0 <= exp` and `exp <= numeric_limits<MaxFloatType>::max_exponent`.
127 class BinaryToDecimal {
ChunksNeeded(int exp)128 static constexpr int ChunksNeeded(int exp) {
129 // We will left shift a uint128 by `exp` bits, so we need `128+exp` total
130 // bits. Round up to 32.
131 // See constructor for details about adding `10%` to the value.
132 return (128 + exp + 31) / 32 * 11 / 10;
133 }
134
135 public:
136 // Run the conversion for `v * 2^exp` and call `f(binary_to_decimal)`.
137 // This function will allocate enough stack space to perform the conversion.
RunConversion(uint128 v,int exp,absl::FunctionRef<void (BinaryToDecimal)> f)138 static void RunConversion(uint128 v, int exp,
139 absl::FunctionRef<void(BinaryToDecimal)> f) {
140 assert(exp > 0);
141 assert(exp <= std::numeric_limits<MaxFloatType>::max_exponent);
142 static_assert(
143 static_cast<int>(StackArray::kMaxCapacity) >=
144 ChunksNeeded(std::numeric_limits<MaxFloatType>::max_exponent),
145 "");
146
147 StackArray::RunWithCapacity(
148 ChunksNeeded(exp),
149 [=](absl::Span<uint32_t> input) { f(BinaryToDecimal(input, v, exp)); });
150 }
151
TotalDigits() const152 int TotalDigits() const {
153 return static_cast<int>((decimal_end_ - decimal_start_) * kDigitsPerChunk +
154 CurrentDigits().size());
155 }
156
157 // See the current block of digits.
CurrentDigits() const158 absl::string_view CurrentDigits() const {
159 return absl::string_view(digits_ + kDigitsPerChunk - size_, size_);
160 }
161
162 // Advance the current view of digits.
163 // Returns `false` when no more digits are available.
AdvanceDigits()164 bool AdvanceDigits() {
165 if (decimal_start_ >= decimal_end_) return false;
166
167 uint32_t w = data_[decimal_start_++];
168 for (size_ = 0; size_ < kDigitsPerChunk; w /= 10) {
169 digits_[kDigitsPerChunk - ++size_] = w % 10 + '0';
170 }
171 return true;
172 }
173
174 private:
BinaryToDecimal(absl::Span<uint32_t> data,uint128 v,int exp)175 BinaryToDecimal(absl::Span<uint32_t> data, uint128 v, int exp) : data_(data) {
176 // We need to print the digits directly into the sink object without
177 // buffering them all first. To do this we need two things:
178 // - to know the total number of digits to do padding when necessary
179 // - to generate the decimal digits from the left.
180 //
181 // In order to do this, we do a two pass conversion.
182 // On the first pass we convert the binary representation of the value into
183 // a decimal representation in which each uint32_t chunk holds up to 9
184 // decimal digits. In the second pass we take each decimal-holding-uint32_t
185 // value and generate the ascii decimal digits into `digits_`.
186 //
187 // The binary and decimal representations actually share the same memory
188 // region. As we go converting the chunks from binary to decimal we free
189 // them up and reuse them for the decimal representation. One caveat is that
190 // the decimal representation is around 7% less efficient in space than the
191 // binary one. We allocate an extra 10% memory to account for this. See
192 // ChunksNeeded for this calculation.
193 int chunk_index = exp / 32;
194 decimal_start_ = decimal_end_ = ChunksNeeded(exp);
195 const int offset = exp % 32;
196 // Left shift v by exp bits.
197 data_[chunk_index] = static_cast<uint32_t>(v << offset);
198 for (v >>= (32 - offset); v; v >>= 32)
199 data_[++chunk_index] = static_cast<uint32_t>(v);
200
201 while (chunk_index >= 0) {
202 // While we have more than one chunk available, go in steps of 1e9.
203 // `data_[chunk_index]` holds the highest non-zero binary chunk, so keep
204 // the variable updated.
205 uint32_t carry = 0;
206 for (int i = chunk_index; i >= 0; --i) {
207 uint64_t tmp = uint64_t{data_[i]} + (uint64_t{carry} << 32);
208 data_[i] = static_cast<uint32_t>(tmp / uint64_t{1000000000});
209 carry = static_cast<uint32_t>(tmp % uint64_t{1000000000});
210 }
211
212 // If the highest chunk is now empty, remove it from view.
213 if (data_[chunk_index] == 0) --chunk_index;
214
215 --decimal_start_;
216 assert(decimal_start_ != chunk_index);
217 data_[decimal_start_] = carry;
218 }
219
220 // Fill the first set of digits. The first chunk might not be complete, so
221 // handle differently.
222 for (uint32_t first = data_[decimal_start_++]; first != 0; first /= 10) {
223 digits_[kDigitsPerChunk - ++size_] = first % 10 + '0';
224 }
225 }
226
227 private:
228 static constexpr int kDigitsPerChunk = 9;
229
230 int decimal_start_;
231 int decimal_end_;
232
233 char digits_[kDigitsPerChunk];
234 int size_ = 0;
235
236 absl::Span<uint32_t> data_;
237 };
238
239 // Converts a value of the form `x * 2^-exp` into a sequence of decimal digits.
240 // Requires `-exp < 0` and
241 // `-exp >= limits<MaxFloatType>::min_exponent - limits<MaxFloatType>::digits`.
242 class FractionalDigitGenerator {
243 public:
244 // Run the conversion for `v * 2^exp` and call `f(generator)`.
245 // This function will allocate enough stack space to perform the conversion.
RunConversion(uint128 v,int exp,absl::FunctionRef<void (FractionalDigitGenerator)> f)246 static void RunConversion(
247 uint128 v, int exp, absl::FunctionRef<void(FractionalDigitGenerator)> f) {
248 using Limits = std::numeric_limits<MaxFloatType>;
249 assert(-exp < 0);
250 assert(-exp >= Limits::min_exponent - 128);
251 static_assert(StackArray::kMaxCapacity >=
252 (Limits::digits + 128 - Limits::min_exponent + 31) / 32,
253 "");
254 StackArray::RunWithCapacity((Limits::digits + exp + 31) / 32,
255 [=](absl::Span<uint32_t> input) {
256 f(FractionalDigitGenerator(input, v, exp));
257 });
258 }
259
260 // Returns true if there are any more non-zero digits left.
HasMoreDigits() const261 bool HasMoreDigits() const { return next_digit_ != 0 || chunk_index_ >= 0; }
262
263 // Returns true if the remainder digits are greater than 5000...
IsGreaterThanHalf() const264 bool IsGreaterThanHalf() const {
265 return next_digit_ > 5 || (next_digit_ == 5 && chunk_index_ >= 0);
266 }
267 // Returns true if the remainder digits are exactly 5000...
IsExactlyHalf() const268 bool IsExactlyHalf() const { return next_digit_ == 5 && chunk_index_ < 0; }
269
270 struct Digits {
271 int digit_before_nine;
272 int num_nines;
273 };
274
275 // Get the next set of digits.
276 // They are composed by a non-9 digit followed by a runs of zero or more 9s.
GetDigits()277 Digits GetDigits() {
278 Digits digits{next_digit_, 0};
279
280 next_digit_ = GetOneDigit();
281 while (next_digit_ == 9) {
282 ++digits.num_nines;
283 next_digit_ = GetOneDigit();
284 }
285
286 return digits;
287 }
288
289 private:
290 // Return the next digit.
GetOneDigit()291 int GetOneDigit() {
292 if (chunk_index_ < 0) return 0;
293
294 uint32_t carry = 0;
295 for (int i = chunk_index_; i >= 0; --i) {
296 carry = MultiplyBy10WithCarry(&data_[i], carry);
297 }
298 // If the lowest chunk is now empty, remove it from view.
299 if (data_[chunk_index_] == 0) --chunk_index_;
300 return carry;
301 }
302
FractionalDigitGenerator(absl::Span<uint32_t> data,uint128 v,int exp)303 FractionalDigitGenerator(absl::Span<uint32_t> data, uint128 v, int exp)
304 : chunk_index_(exp / 32), data_(data) {
305 const int offset = exp % 32;
306 // Right shift `v` by `exp` bits.
307 data_[chunk_index_] = static_cast<uint32_t>(v << (32 - offset));
308 v >>= offset;
309 // Make sure we don't overflow the data. We already calculated that
310 // non-zero bits fit, so we might not have space for leading zero bits.
311 for (int pos = chunk_index_; v; v >>= 32)
312 data_[--pos] = static_cast<uint32_t>(v);
313
314 // Fill next_digit_, as GetDigits expects it to be populated always.
315 next_digit_ = GetOneDigit();
316 }
317
318 int next_digit_;
319 int chunk_index_;
320 absl::Span<uint32_t> data_;
321 };
322
323 // Count the number of leading zero bits.
LeadingZeros(uint64_t v)324 int LeadingZeros(uint64_t v) { return countl_zero(v); }
LeadingZeros(uint128 v)325 int LeadingZeros(uint128 v) {
326 auto high = static_cast<uint64_t>(v >> 64);
327 auto low = static_cast<uint64_t>(v);
328 return high != 0 ? countl_zero(high) : 64 + countl_zero(low);
329 }
330
331 // Round up the text digits starting at `p`.
332 // The buffer must have an extra digit that is known to not need rounding.
333 // This is done below by having an extra '0' digit on the left.
RoundUp(char * p)334 void RoundUp(char *p) {
335 while (*p == '9' || *p == '.') {
336 if (*p == '9') *p = '0';
337 --p;
338 }
339 ++*p;
340 }
341
342 // Check the previous digit and round up or down to follow the round-to-even
343 // policy.
RoundToEven(char * p)344 void RoundToEven(char *p) {
345 if (*p == '.') --p;
346 if (*p % 2 == 1) RoundUp(p);
347 }
348
349 // Simple integral decimal digit printing for values that fit in 64-bits.
350 // Returns the pointer to the last written digit.
PrintIntegralDigitsFromRightFast(uint64_t v,char * p)351 char *PrintIntegralDigitsFromRightFast(uint64_t v, char *p) {
352 do {
353 *--p = DivideBy10WithCarry(&v, 0) + '0';
354 } while (v != 0);
355 return p;
356 }
357
358 // Simple integral decimal digit printing for values that fit in 128-bits.
359 // Returns the pointer to the last written digit.
PrintIntegralDigitsFromRightFast(uint128 v,char * p)360 char *PrintIntegralDigitsFromRightFast(uint128 v, char *p) {
361 auto high = static_cast<uint64_t>(v >> 64);
362 auto low = static_cast<uint64_t>(v);
363
364 while (high != 0) {
365 uint64_t carry = DivideBy10WithCarry(&high, 0);
366 carry = DivideBy10WithCarry(&low, carry);
367 *--p = carry + '0';
368 }
369 return PrintIntegralDigitsFromRightFast(low, p);
370 }
371
372 // Simple fractional decimal digit printing for values that fir in 64-bits after
373 // shifting.
374 // Performs rounding if necessary to fit within `precision`.
375 // Returns the pointer to one after the last character written.
PrintFractionalDigitsFast(uint64_t v,char * start,int exp,int precision)376 char *PrintFractionalDigitsFast(uint64_t v, char *start, int exp,
377 int precision) {
378 char *p = start;
379 v <<= (64 - exp);
380 while (precision > 0) {
381 if (!v) return p;
382 *p++ = MultiplyBy10WithCarry(&v, uint64_t{0}) + '0';
383 --precision;
384 }
385
386 // We need to round.
387 if (v < 0x8000000000000000) {
388 // We round down, so nothing to do.
389 } else if (v > 0x8000000000000000) {
390 // We round up.
391 RoundUp(p - 1);
392 } else {
393 RoundToEven(p - 1);
394 }
395
396 assert(precision == 0);
397 // Precision can only be zero here.
398 return p;
399 }
400
401 // Simple fractional decimal digit printing for values that fir in 128-bits
402 // after shifting.
403 // Performs rounding if necessary to fit within `precision`.
404 // Returns the pointer to one after the last character written.
PrintFractionalDigitsFast(uint128 v,char * start,int exp,int precision)405 char *PrintFractionalDigitsFast(uint128 v, char *start, int exp,
406 int precision) {
407 char *p = start;
408 v <<= (128 - exp);
409 auto high = static_cast<uint64_t>(v >> 64);
410 auto low = static_cast<uint64_t>(v);
411
412 // While we have digits to print and `low` is not empty, do the long
413 // multiplication.
414 while (precision > 0 && low != 0) {
415 uint64_t carry = MultiplyBy10WithCarry(&low, uint64_t{0});
416 carry = MultiplyBy10WithCarry(&high, carry);
417
418 *p++ = carry + '0';
419 --precision;
420 }
421
422 // Now `low` is empty, so use a faster approach for the rest of the digits.
423 // This block is pretty much the same as the main loop for the 64-bit case
424 // above.
425 while (precision > 0) {
426 if (!high) return p;
427 *p++ = MultiplyBy10WithCarry(&high, uint64_t{0}) + '0';
428 --precision;
429 }
430
431 // We need to round.
432 if (high < 0x8000000000000000) {
433 // We round down, so nothing to do.
434 } else if (high > 0x8000000000000000 || low != 0) {
435 // We round up.
436 RoundUp(p - 1);
437 } else {
438 RoundToEven(p - 1);
439 }
440
441 assert(precision == 0);
442 // Precision can only be zero here.
443 return p;
444 }
445
446 struct FormatState {
447 char sign_char;
448 int precision;
449 const FormatConversionSpecImpl &conv;
450 FormatSinkImpl *sink;
451
452 // In `alt` mode (flag #) we keep the `.` even if there are no fractional
453 // digits. In non-alt mode, we strip it.
ShouldPrintDotabsl::str_format_internal::__anon7b46425c0111::FormatState454 bool ShouldPrintDot() const { return precision != 0 || conv.has_alt_flag(); }
455 };
456
457 struct Padding {
458 int left_spaces;
459 int zeros;
460 int right_spaces;
461 };
462
ExtraWidthToPadding(size_t total_size,const FormatState & state)463 Padding ExtraWidthToPadding(size_t total_size, const FormatState &state) {
464 if (state.conv.width() < 0 ||
465 static_cast<size_t>(state.conv.width()) <= total_size) {
466 return {0, 0, 0};
467 }
468 int missing_chars = state.conv.width() - total_size;
469 if (state.conv.has_left_flag()) {
470 return {0, 0, missing_chars};
471 } else if (state.conv.has_zero_flag()) {
472 return {0, missing_chars, 0};
473 } else {
474 return {missing_chars, 0, 0};
475 }
476 }
477
FinalPrint(const FormatState & state,absl::string_view data,int padding_offset,int trailing_zeros,absl::string_view data_postfix)478 void FinalPrint(const FormatState &state, absl::string_view data,
479 int padding_offset, int trailing_zeros,
480 absl::string_view data_postfix) {
481 if (state.conv.width() < 0) {
482 // No width specified. Fast-path.
483 if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
484 state.sink->Append(data);
485 state.sink->Append(trailing_zeros, '0');
486 state.sink->Append(data_postfix);
487 return;
488 }
489
490 auto padding = ExtraWidthToPadding((state.sign_char != '\0' ? 1 : 0) +
491 data.size() + data_postfix.size() +
492 static_cast<size_t>(trailing_zeros),
493 state);
494
495 state.sink->Append(padding.left_spaces, ' ');
496 if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
497 // Padding in general needs to be inserted somewhere in the middle of `data`.
498 state.sink->Append(data.substr(0, padding_offset));
499 state.sink->Append(padding.zeros, '0');
500 state.sink->Append(data.substr(padding_offset));
501 state.sink->Append(trailing_zeros, '0');
502 state.sink->Append(data_postfix);
503 state.sink->Append(padding.right_spaces, ' ');
504 }
505
506 // Fastpath %f formatter for when the shifted value fits in a simple integral
507 // type.
508 // Prints `v*2^exp` with the options from `state`.
509 template <typename Int>
FormatFFast(Int v,int exp,const FormatState & state)510 void FormatFFast(Int v, int exp, const FormatState &state) {
511 constexpr int input_bits = sizeof(Int) * 8;
512
513 static constexpr size_t integral_size =
514 /* in case we need to round up an extra digit */ 1 +
515 /* decimal digits for uint128 */ 40 + 1;
516 char buffer[integral_size + /* . */ 1 + /* max digits uint128 */ 128];
517 buffer[integral_size] = '.';
518 char *const integral_digits_end = buffer + integral_size;
519 char *integral_digits_start;
520 char *const fractional_digits_start = buffer + integral_size + 1;
521 char *fractional_digits_end = fractional_digits_start;
522
523 if (exp >= 0) {
524 const int total_bits = input_bits - LeadingZeros(v) + exp;
525 integral_digits_start =
526 total_bits <= 64
527 ? PrintIntegralDigitsFromRightFast(static_cast<uint64_t>(v) << exp,
528 integral_digits_end)
529 : PrintIntegralDigitsFromRightFast(static_cast<uint128>(v) << exp,
530 integral_digits_end);
531 } else {
532 exp = -exp;
533
534 integral_digits_start = PrintIntegralDigitsFromRightFast(
535 exp < input_bits ? v >> exp : 0, integral_digits_end);
536 // PrintFractionalDigits may pull a carried 1 all the way up through the
537 // integral portion.
538 integral_digits_start[-1] = '0';
539
540 fractional_digits_end =
541 exp <= 64 ? PrintFractionalDigitsFast(v, fractional_digits_start, exp,
542 state.precision)
543 : PrintFractionalDigitsFast(static_cast<uint128>(v),
544 fractional_digits_start, exp,
545 state.precision);
546 // There was a carry, so include the first digit too.
547 if (integral_digits_start[-1] != '0') --integral_digits_start;
548 }
549
550 size_t size = fractional_digits_end - integral_digits_start;
551
552 // In `alt` mode (flag #) we keep the `.` even if there are no fractional
553 // digits. In non-alt mode, we strip it.
554 if (!state.ShouldPrintDot()) --size;
555 FinalPrint(state, absl::string_view(integral_digits_start, size),
556 /*padding_offset=*/0,
557 static_cast<int>(state.precision - (fractional_digits_end -
558 fractional_digits_start)),
559 /*data_postfix=*/"");
560 }
561
562 // Slow %f formatter for when the shifted value does not fit in a uint128, and
563 // `exp > 0`.
564 // Prints `v*2^exp` with the options from `state`.
565 // This one is guaranteed to not have fractional digits, so we don't have to
566 // worry about anything after the `.`.
FormatFPositiveExpSlow(uint128 v,int exp,const FormatState & state)567 void FormatFPositiveExpSlow(uint128 v, int exp, const FormatState &state) {
568 BinaryToDecimal::RunConversion(v, exp, [&](BinaryToDecimal btd) {
569 const size_t total_digits =
570 btd.TotalDigits() +
571 (state.ShouldPrintDot() ? static_cast<size_t>(state.precision) + 1 : 0);
572
573 const auto padding = ExtraWidthToPadding(
574 total_digits + (state.sign_char != '\0' ? 1 : 0), state);
575
576 state.sink->Append(padding.left_spaces, ' ');
577 if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
578 state.sink->Append(padding.zeros, '0');
579
580 do {
581 state.sink->Append(btd.CurrentDigits());
582 } while (btd.AdvanceDigits());
583
584 if (state.ShouldPrintDot()) state.sink->Append(1, '.');
585 state.sink->Append(state.precision, '0');
586 state.sink->Append(padding.right_spaces, ' ');
587 });
588 }
589
590 // Slow %f formatter for when the shifted value does not fit in a uint128, and
591 // `exp < 0`.
592 // Prints `v*2^exp` with the options from `state`.
593 // This one is guaranteed to be < 1.0, so we don't have to worry about integral
594 // digits.
FormatFNegativeExpSlow(uint128 v,int exp,const FormatState & state)595 void FormatFNegativeExpSlow(uint128 v, int exp, const FormatState &state) {
596 const size_t total_digits =
597 /* 0 */ 1 +
598 (state.ShouldPrintDot() ? static_cast<size_t>(state.precision) + 1 : 0);
599 auto padding =
600 ExtraWidthToPadding(total_digits + (state.sign_char ? 1 : 0), state);
601 padding.zeros += 1;
602 state.sink->Append(padding.left_spaces, ' ');
603 if (state.sign_char != '\0') state.sink->Append(1, state.sign_char);
604 state.sink->Append(padding.zeros, '0');
605
606 if (state.ShouldPrintDot()) state.sink->Append(1, '.');
607
608 // Print digits
609 int digits_to_go = state.precision;
610
611 FractionalDigitGenerator::RunConversion(
612 v, exp, [&](FractionalDigitGenerator digit_gen) {
613 // There are no digits to print here.
614 if (state.precision == 0) return;
615
616 // We go one digit at a time, while keeping track of runs of nines.
617 // The runs of nines are used to perform rounding when necessary.
618
619 while (digits_to_go > 0 && digit_gen.HasMoreDigits()) {
620 auto digits = digit_gen.GetDigits();
621
622 // Now we have a digit and a run of nines.
623 // See if we can print them all.
624 if (digits.num_nines + 1 < digits_to_go) {
625 // We don't have to round yet, so print them.
626 state.sink->Append(1, digits.digit_before_nine + '0');
627 state.sink->Append(digits.num_nines, '9');
628 digits_to_go -= digits.num_nines + 1;
629
630 } else {
631 // We can't print all the nines, see where we have to truncate.
632
633 bool round_up = false;
634 if (digits.num_nines + 1 > digits_to_go) {
635 // We round up at a nine. No need to print them.
636 round_up = true;
637 } else {
638 // We can fit all the nines, but truncate just after it.
639 if (digit_gen.IsGreaterThanHalf()) {
640 round_up = true;
641 } else if (digit_gen.IsExactlyHalf()) {
642 // Round to even
643 round_up =
644 digits.num_nines != 0 || digits.digit_before_nine % 2 == 1;
645 }
646 }
647
648 if (round_up) {
649 state.sink->Append(1, digits.digit_before_nine + '1');
650 --digits_to_go;
651 // The rest will be zeros.
652 } else {
653 state.sink->Append(1, digits.digit_before_nine + '0');
654 state.sink->Append(digits_to_go - 1, '9');
655 digits_to_go = 0;
656 }
657 return;
658 }
659 }
660 });
661
662 state.sink->Append(digits_to_go, '0');
663 state.sink->Append(padding.right_spaces, ' ');
664 }
665
666 template <typename Int>
FormatF(Int mantissa,int exp,const FormatState & state)667 void FormatF(Int mantissa, int exp, const FormatState &state) {
668 if (exp >= 0) {
669 const int total_bits = sizeof(Int) * 8 - LeadingZeros(mantissa) + exp;
670
671 // Fallback to the slow stack-based approach if we can't do it in a 64 or
672 // 128 bit state.
673 if (ABSL_PREDICT_FALSE(total_bits > 128)) {
674 return FormatFPositiveExpSlow(mantissa, exp, state);
675 }
676 } else {
677 // Fallback to the slow stack-based approach if we can't do it in a 64 or
678 // 128 bit state.
679 if (ABSL_PREDICT_FALSE(exp < -128)) {
680 return FormatFNegativeExpSlow(mantissa, -exp, state);
681 }
682 }
683 return FormatFFast(mantissa, exp, state);
684 }
685
686 // Grab the group of four bits (nibble) from `n`. E.g., nibble 1 corresponds to
687 // bits 4-7.
688 template <typename Int>
GetNibble(Int n,int nibble_index)689 uint8_t GetNibble(Int n, int nibble_index) {
690 constexpr Int mask_low_nibble = Int{0xf};
691 int shift = nibble_index * 4;
692 n &= mask_low_nibble << shift;
693 return static_cast<uint8_t>((n >> shift) & 0xf);
694 }
695
696 // Add one to the given nibble, applying carry to higher nibbles. Returns true
697 // if overflow, false otherwise.
698 template <typename Int>
IncrementNibble(int nibble_index,Int * n)699 bool IncrementNibble(int nibble_index, Int *n) {
700 constexpr int kShift = sizeof(Int) * 8 - 1;
701 constexpr int kNumNibbles = sizeof(Int) * 8 / 4;
702 Int before = *n >> kShift;
703 // Here we essentially want to take the number 1 and move it into the requsted
704 // nibble, then add it to *n to effectively increment the nibble. However,
705 // ASan will complain if we try to shift the 1 beyond the limits of the Int,
706 // i.e., if the nibble_index is out of range. So therefore we check for this
707 // and if we are out of range we just add 0 which leaves *n unchanged, which
708 // seems like the reasonable thing to do in that case.
709 *n += ((nibble_index >= kNumNibbles) ? 0 : (Int{1} << (nibble_index * 4)));
710 Int after = *n >> kShift;
711 return (before && !after) || (nibble_index >= kNumNibbles);
712 }
713
714 // Return a mask with 1's in the given nibble and all lower nibbles.
715 template <typename Int>
MaskUpToNibbleInclusive(int nibble_index)716 Int MaskUpToNibbleInclusive(int nibble_index) {
717 constexpr int kNumNibbles = sizeof(Int) * 8 / 4;
718 static const Int ones = ~Int{0};
719 return ones >> std::max(0, 4 * (kNumNibbles - nibble_index - 1));
720 }
721
722 // Return a mask with 1's below the given nibble.
723 template <typename Int>
MaskUpToNibbleExclusive(int nibble_index)724 Int MaskUpToNibbleExclusive(int nibble_index) {
725 return nibble_index <= 0 ? 0 : MaskUpToNibbleInclusive<Int>(nibble_index - 1);
726 }
727
728 template <typename Int>
MoveToNibble(uint8_t nibble,int nibble_index)729 Int MoveToNibble(uint8_t nibble, int nibble_index) {
730 return Int{nibble} << (4 * nibble_index);
731 }
732
733 // Given mantissa size, find optimal # of mantissa bits to put in initial digit.
734 //
735 // In the hex representation we keep a single hex digit to the left of the dot.
736 // However, the question as to how many bits of the mantissa should be put into
737 // that hex digit in theory is arbitrary, but in practice it is optimal to
738 // choose based on the size of the mantissa. E.g., for a `double`, there are 53
739 // mantissa bits, so that means that we should put 1 bit to the left of the dot,
740 // thereby leaving 52 bits to the right, which is evenly divisible by four and
741 // thus all fractional digits represent actual precision. For a `long double`,
742 // on the other hand, there are 64 bits of mantissa, thus we can use all four
743 // bits for the initial hex digit and still have a number left over (60) that is
744 // a multiple of four. Once again, the goal is to have all fractional digits
745 // represent real precision.
746 template <typename Float>
HexFloatLeadingDigitSizeInBits()747 constexpr int HexFloatLeadingDigitSizeInBits() {
748 return std::numeric_limits<Float>::digits % 4 > 0
749 ? std::numeric_limits<Float>::digits % 4
750 : 4;
751 }
752
753 // This function captures the rounding behavior of glibc for hex float
754 // representations. E.g. when rounding 0x1.ab800000 to a precision of .2
755 // ("%.2a") glibc will round up because it rounds toward the even number (since
756 // 0xb is an odd number, it will round up to 0xc). However, when rounding at a
757 // point that is not followed by 800000..., it disregards the parity and rounds
758 // up if > 8 and rounds down if < 8.
759 template <typename Int>
HexFloatNeedsRoundUp(Int mantissa,int final_nibble_displayed,uint8_t leading)760 bool HexFloatNeedsRoundUp(Int mantissa, int final_nibble_displayed,
761 uint8_t leading) {
762 // If the last nibble (hex digit) to be displayed is the lowest on in the
763 // mantissa then that means that we don't have any further nibbles to inform
764 // rounding, so don't round.
765 if (final_nibble_displayed <= 0) {
766 return false;
767 }
768 int rounding_nibble_idx = final_nibble_displayed - 1;
769 constexpr int kTotalNibbles = sizeof(Int) * 8 / 4;
770 assert(final_nibble_displayed <= kTotalNibbles);
771 Int mantissa_up_to_rounding_nibble_inclusive =
772 mantissa & MaskUpToNibbleInclusive<Int>(rounding_nibble_idx);
773 Int eight = MoveToNibble<Int>(8, rounding_nibble_idx);
774 if (mantissa_up_to_rounding_nibble_inclusive != eight) {
775 return mantissa_up_to_rounding_nibble_inclusive > eight;
776 }
777 // Nibble in question == 8.
778 uint8_t round_if_odd = (final_nibble_displayed == kTotalNibbles)
779 ? leading
780 : GetNibble(mantissa, final_nibble_displayed);
781 return round_if_odd % 2 == 1;
782 }
783
784 // Stores values associated with a Float type needed by the FormatA
785 // implementation in order to avoid templatizing that function by the Float
786 // type.
787 struct HexFloatTypeParams {
788 template <typename Float>
HexFloatTypeParamsabsl::str_format_internal::__anon7b46425c0111::HexFloatTypeParams789 explicit HexFloatTypeParams(Float)
790 : min_exponent(std::numeric_limits<Float>::min_exponent - 1),
791 leading_digit_size_bits(HexFloatLeadingDigitSizeInBits<Float>()) {
792 assert(leading_digit_size_bits >= 1 && leading_digit_size_bits <= 4);
793 }
794
795 int min_exponent;
796 int leading_digit_size_bits;
797 };
798
799 // Hex Float Rounding. First check if we need to round; if so, then we do that
800 // by manipulating (incrementing) the mantissa, that way we can later print the
801 // mantissa digits by iterating through them in the same way regardless of
802 // whether a rounding happened.
803 template <typename Int>
FormatARound(bool precision_specified,const FormatState & state,uint8_t * leading,Int * mantissa,int * exp)804 void FormatARound(bool precision_specified, const FormatState &state,
805 uint8_t *leading, Int *mantissa, int *exp) {
806 constexpr int kTotalNibbles = sizeof(Int) * 8 / 4;
807 // Index of the last nibble that we could display given precision.
808 int final_nibble_displayed =
809 precision_specified ? std::max(0, (kTotalNibbles - state.precision)) : 0;
810 if (HexFloatNeedsRoundUp(*mantissa, final_nibble_displayed, *leading)) {
811 // Need to round up.
812 bool overflow = IncrementNibble(final_nibble_displayed, mantissa);
813 *leading += (overflow ? 1 : 0);
814 if (ABSL_PREDICT_FALSE(*leading > 15)) {
815 // We have overflowed the leading digit. This would mean that we would
816 // need two hex digits to the left of the dot, which is not allowed. So
817 // adjust the mantissa and exponent so that the result is always 1.0eXXX.
818 *leading = 1;
819 *mantissa = 0;
820 *exp += 4;
821 }
822 }
823 // Now that we have handled a possible round-up we can go ahead and zero out
824 // all the nibbles of the mantissa that we won't need.
825 if (precision_specified) {
826 *mantissa &= ~MaskUpToNibbleExclusive<Int>(final_nibble_displayed);
827 }
828 }
829
830 template <typename Int>
FormatANormalize(const HexFloatTypeParams float_traits,uint8_t * leading,Int * mantissa,int * exp)831 void FormatANormalize(const HexFloatTypeParams float_traits, uint8_t *leading,
832 Int *mantissa, int *exp) {
833 constexpr int kIntBits = sizeof(Int) * 8;
834 static const Int kHighIntBit = Int{1} << (kIntBits - 1);
835 const int kLeadDigitBitsCount = float_traits.leading_digit_size_bits;
836 // Normalize mantissa so that highest bit set is in MSB position, unless we
837 // get interrupted by the exponent threshold.
838 while (*mantissa && !(*mantissa & kHighIntBit)) {
839 if (ABSL_PREDICT_FALSE(*exp - 1 < float_traits.min_exponent)) {
840 *mantissa >>= (float_traits.min_exponent - *exp);
841 *exp = float_traits.min_exponent;
842 return;
843 }
844 *mantissa <<= 1;
845 --*exp;
846 }
847 // Extract bits for leading digit then shift them away leaving the
848 // fractional part.
849 *leading =
850 static_cast<uint8_t>(*mantissa >> (kIntBits - kLeadDigitBitsCount));
851 *exp -= (*mantissa != 0) ? kLeadDigitBitsCount : *exp;
852 *mantissa <<= kLeadDigitBitsCount;
853 }
854
855 template <typename Int>
FormatA(const HexFloatTypeParams float_traits,Int mantissa,int exp,bool uppercase,const FormatState & state)856 void FormatA(const HexFloatTypeParams float_traits, Int mantissa, int exp,
857 bool uppercase, const FormatState &state) {
858 // Int properties.
859 constexpr int kIntBits = sizeof(Int) * 8;
860 constexpr int kTotalNibbles = sizeof(Int) * 8 / 4;
861 // Did the user specify a precision explicitly?
862 const bool precision_specified = state.conv.precision() >= 0;
863
864 // ========== Normalize/Denormalize ==========
865 exp += kIntBits; // make all digits fractional digits.
866 // This holds the (up to four) bits of leading digit, i.e., the '1' in the
867 // number 0x1.e6fp+2. It's always > 0 unless number is zero or denormal.
868 uint8_t leading = 0;
869 FormatANormalize(float_traits, &leading, &mantissa, &exp);
870
871 // =============== Rounding ==================
872 // Check if we need to round; if so, then we do that by manipulating
873 // (incrementing) the mantissa before beginning to print characters.
874 FormatARound(precision_specified, state, &leading, &mantissa, &exp);
875
876 // ============= Format Result ===============
877 // This buffer holds the "0x1.ab1de3" portion of "0x1.ab1de3pe+2". Compute the
878 // size with long double which is the largest of the floats.
879 constexpr size_t kBufSizeForHexFloatRepr =
880 2 // 0x
881 + std::numeric_limits<MaxFloatType>::digits / 4 // number of hex digits
882 + 1 // round up
883 + 1; // "." (dot)
884 char digits_buffer[kBufSizeForHexFloatRepr];
885 char *digits_iter = digits_buffer;
886 const char *const digits =
887 static_cast<const char *>("0123456789ABCDEF0123456789abcdef") +
888 (uppercase ? 0 : 16);
889
890 // =============== Hex Prefix ================
891 *digits_iter++ = '0';
892 *digits_iter++ = uppercase ? 'X' : 'x';
893
894 // ========== Non-Fractional Digit ===========
895 *digits_iter++ = digits[leading];
896
897 // ================== Dot ====================
898 // There are three reasons we might need a dot. Keep in mind that, at this
899 // point, the mantissa holds only the fractional part.
900 if ((precision_specified && state.precision > 0) ||
901 (!precision_specified && mantissa > 0) || state.conv.has_alt_flag()) {
902 *digits_iter++ = '.';
903 }
904
905 // ============ Fractional Digits ============
906 int digits_emitted = 0;
907 while (mantissa > 0) {
908 *digits_iter++ = digits[GetNibble(mantissa, kTotalNibbles - 1)];
909 mantissa <<= 4;
910 ++digits_emitted;
911 }
912 int trailing_zeros =
913 precision_specified ? state.precision - digits_emitted : 0;
914 assert(trailing_zeros >= 0);
915 auto digits_result = string_view(digits_buffer, digits_iter - digits_buffer);
916
917 // =============== Exponent ==================
918 constexpr size_t kBufSizeForExpDecRepr =
919 numbers_internal::kFastToBufferSize // requred for FastIntToBuffer
920 + 1 // 'p' or 'P'
921 + 1; // '+' or '-'
922 char exp_buffer[kBufSizeForExpDecRepr];
923 exp_buffer[0] = uppercase ? 'P' : 'p';
924 exp_buffer[1] = exp >= 0 ? '+' : '-';
925 numbers_internal::FastIntToBuffer(exp < 0 ? -exp : exp, exp_buffer + 2);
926
927 // ============ Assemble Result ==============
928 FinalPrint(state, //
929 digits_result, // 0xN.NNN...
930 2, // offset in `data` to start padding if needed.
931 trailing_zeros, // num remaining mantissa padding zeros
932 exp_buffer); // exponent
933 }
934
CopyStringTo(absl::string_view v,char * out)935 char *CopyStringTo(absl::string_view v, char *out) {
936 std::memcpy(out, v.data(), v.size());
937 return out + v.size();
938 }
939
940 template <typename Float>
FallbackToSnprintf(const Float v,const FormatConversionSpecImpl & conv,FormatSinkImpl * sink)941 bool FallbackToSnprintf(const Float v, const FormatConversionSpecImpl &conv,
942 FormatSinkImpl *sink) {
943 int w = conv.width() >= 0 ? conv.width() : 0;
944 int p = conv.precision() >= 0 ? conv.precision() : -1;
945 char fmt[32];
946 {
947 char *fp = fmt;
948 *fp++ = '%';
949 fp = CopyStringTo(FormatConversionSpecImplFriend::FlagsToString(conv), fp);
950 fp = CopyStringTo("*.*", fp);
951 if (std::is_same<long double, Float>()) {
952 *fp++ = 'L';
953 }
954 *fp++ = FormatConversionCharToChar(conv.conversion_char());
955 *fp = 0;
956 assert(fp < fmt + sizeof(fmt));
957 }
958 std::string space(512, '\0');
959 absl::string_view result;
960 while (true) {
961 int n = snprintf(&space[0], space.size(), fmt, w, p, v);
962 if (n < 0) return false;
963 if (static_cast<size_t>(n) < space.size()) {
964 result = absl::string_view(space.data(), n);
965 break;
966 }
967 space.resize(n + 1);
968 }
969 sink->Append(result);
970 return true;
971 }
972
973 // 128-bits in decimal: ceil(128*log(2)/log(10))
974 // or std::numeric_limits<__uint128_t>::digits10
975 constexpr int kMaxFixedPrecision = 39;
976
977 constexpr int kBufferLength = /*sign*/ 1 +
978 /*integer*/ kMaxFixedPrecision +
979 /*point*/ 1 +
980 /*fraction*/ kMaxFixedPrecision +
981 /*exponent e+123*/ 5;
982
983 struct Buffer {
push_frontabsl::str_format_internal::__anon7b46425c0111::Buffer984 void push_front(char c) {
985 assert(begin > data);
986 *--begin = c;
987 }
push_backabsl::str_format_internal::__anon7b46425c0111::Buffer988 void push_back(char c) {
989 assert(end < data + sizeof(data));
990 *end++ = c;
991 }
pop_backabsl::str_format_internal::__anon7b46425c0111::Buffer992 void pop_back() {
993 assert(begin < end);
994 --end;
995 }
996
backabsl::str_format_internal::__anon7b46425c0111::Buffer997 char &back() {
998 assert(begin < end);
999 return end[-1];
1000 }
1001
last_digitabsl::str_format_internal::__anon7b46425c0111::Buffer1002 char last_digit() const { return end[-1] == '.' ? end[-2] : end[-1]; }
1003
sizeabsl::str_format_internal::__anon7b46425c0111::Buffer1004 int size() const { return static_cast<int>(end - begin); }
1005
1006 char data[kBufferLength];
1007 char *begin;
1008 char *end;
1009 };
1010
1011 enum class FormatStyle { Fixed, Precision };
1012
1013 // If the value is Inf or Nan, print it and return true.
1014 // Otherwise, return false.
1015 template <typename Float>
ConvertNonNumericFloats(char sign_char,Float v,const FormatConversionSpecImpl & conv,FormatSinkImpl * sink)1016 bool ConvertNonNumericFloats(char sign_char, Float v,
1017 const FormatConversionSpecImpl &conv,
1018 FormatSinkImpl *sink) {
1019 char text[4], *ptr = text;
1020 if (sign_char != '\0') *ptr++ = sign_char;
1021 if (std::isnan(v)) {
1022 ptr = std::copy_n(
1023 FormatConversionCharIsUpper(conv.conversion_char()) ? "NAN" : "nan", 3,
1024 ptr);
1025 } else if (std::isinf(v)) {
1026 ptr = std::copy_n(
1027 FormatConversionCharIsUpper(conv.conversion_char()) ? "INF" : "inf", 3,
1028 ptr);
1029 } else {
1030 return false;
1031 }
1032
1033 return sink->PutPaddedString(string_view(text, ptr - text), conv.width(), -1,
1034 conv.has_left_flag());
1035 }
1036
1037 // Round up the last digit of the value.
1038 // It will carry over and potentially overflow. 'exp' will be adjusted in that
1039 // case.
1040 template <FormatStyle mode>
RoundUp(Buffer * buffer,int * exp)1041 void RoundUp(Buffer *buffer, int *exp) {
1042 char *p = &buffer->back();
1043 while (p >= buffer->begin && (*p == '9' || *p == '.')) {
1044 if (*p == '9') *p = '0';
1045 --p;
1046 }
1047
1048 if (p < buffer->begin) {
1049 *p = '1';
1050 buffer->begin = p;
1051 if (mode == FormatStyle::Precision) {
1052 std::swap(p[1], p[2]); // move the .
1053 ++*exp;
1054 buffer->pop_back();
1055 }
1056 } else {
1057 ++*p;
1058 }
1059 }
1060
PrintExponent(int exp,char e,Buffer * out)1061 void PrintExponent(int exp, char e, Buffer *out) {
1062 out->push_back(e);
1063 if (exp < 0) {
1064 out->push_back('-');
1065 exp = -exp;
1066 } else {
1067 out->push_back('+');
1068 }
1069 // Exponent digits.
1070 if (exp > 99) {
1071 out->push_back(exp / 100 + '0');
1072 out->push_back(exp / 10 % 10 + '0');
1073 out->push_back(exp % 10 + '0');
1074 } else {
1075 out->push_back(exp / 10 + '0');
1076 out->push_back(exp % 10 + '0');
1077 }
1078 }
1079
1080 template <typename Float, typename Int>
CanFitMantissa()1081 constexpr bool CanFitMantissa() {
1082 return
1083 #if defined(__clang__) && !defined(__SSE3__)
1084 // Workaround for clang bug: https://bugs.llvm.org/show_bug.cgi?id=38289
1085 // Casting from long double to uint64_t is miscompiled and drops bits.
1086 (!std::is_same<Float, long double>::value ||
1087 !std::is_same<Int, uint64_t>::value) &&
1088 #endif
1089 std::numeric_limits<Float>::digits <= std::numeric_limits<Int>::digits;
1090 }
1091
1092 template <typename Float>
1093 struct Decomposed {
1094 using MantissaType =
1095 absl::conditional_t<std::is_same<long double, Float>::value, uint128,
1096 uint64_t>;
1097 static_assert(std::numeric_limits<Float>::digits <= sizeof(MantissaType) * 8,
1098 "");
1099 MantissaType mantissa;
1100 int exponent;
1101 };
1102
1103 // Decompose the double into an integer mantissa and an exponent.
1104 template <typename Float>
Decompose(Float v)1105 Decomposed<Float> Decompose(Float v) {
1106 int exp;
1107 Float m = std::frexp(v, &exp);
1108 m = std::ldexp(m, std::numeric_limits<Float>::digits);
1109 exp -= std::numeric_limits<Float>::digits;
1110
1111 return {static_cast<typename Decomposed<Float>::MantissaType>(m), exp};
1112 }
1113
1114 // Print 'digits' as decimal.
1115 // In Fixed mode, we add a '.' at the end.
1116 // In Precision mode, we add a '.' after the first digit.
1117 template <FormatStyle mode, typename Int>
PrintIntegralDigits(Int digits,Buffer * out)1118 int PrintIntegralDigits(Int digits, Buffer *out) {
1119 int printed = 0;
1120 if (digits) {
1121 for (; digits; digits /= 10) out->push_front(digits % 10 + '0');
1122 printed = out->size();
1123 if (mode == FormatStyle::Precision) {
1124 out->push_front(*out->begin);
1125 out->begin[1] = '.';
1126 } else {
1127 out->push_back('.');
1128 }
1129 } else if (mode == FormatStyle::Fixed) {
1130 out->push_front('0');
1131 out->push_back('.');
1132 printed = 1;
1133 }
1134 return printed;
1135 }
1136
1137 // Back out 'extra_digits' digits and round up if necessary.
RemoveExtraPrecision(int extra_digits,bool has_leftover_value,Buffer * out,int * exp_out)1138 bool RemoveExtraPrecision(int extra_digits, bool has_leftover_value,
1139 Buffer *out, int *exp_out) {
1140 if (extra_digits <= 0) return false;
1141
1142 // Back out the extra digits
1143 out->end -= extra_digits;
1144
1145 bool needs_to_round_up = [&] {
1146 // We look at the digit just past the end.
1147 // There must be 'extra_digits' extra valid digits after end.
1148 if (*out->end > '5') return true;
1149 if (*out->end < '5') return false;
1150 if (has_leftover_value || std::any_of(out->end + 1, out->end + extra_digits,
1151 [](char c) { return c != '0'; }))
1152 return true;
1153
1154 // Ends in ...50*, round to even.
1155 return out->last_digit() % 2 == 1;
1156 }();
1157
1158 if (needs_to_round_up) {
1159 RoundUp<FormatStyle::Precision>(out, exp_out);
1160 }
1161 return true;
1162 }
1163
1164 // Print the value into the buffer.
1165 // This will not include the exponent, which will be returned in 'exp_out' for
1166 // Precision mode.
1167 template <typename Int, typename Float, FormatStyle mode>
FloatToBufferImpl(Int int_mantissa,int exp,int precision,Buffer * out,int * exp_out)1168 bool FloatToBufferImpl(Int int_mantissa, int exp, int precision, Buffer *out,
1169 int *exp_out) {
1170 assert((CanFitMantissa<Float, Int>()));
1171
1172 const int int_bits = std::numeric_limits<Int>::digits;
1173
1174 // In precision mode, we start printing one char to the right because it will
1175 // also include the '.'
1176 // In fixed mode we put the dot afterwards on the right.
1177 out->begin = out->end =
1178 out->data + 1 + kMaxFixedPrecision + (mode == FormatStyle::Precision);
1179
1180 if (exp >= 0) {
1181 if (std::numeric_limits<Float>::digits + exp > int_bits) {
1182 // The value will overflow the Int
1183 return false;
1184 }
1185 int digits_printed = PrintIntegralDigits<mode>(int_mantissa << exp, out);
1186 int digits_to_zero_pad = precision;
1187 if (mode == FormatStyle::Precision) {
1188 *exp_out = digits_printed - 1;
1189 digits_to_zero_pad -= digits_printed - 1;
1190 if (RemoveExtraPrecision(-digits_to_zero_pad, false, out, exp_out)) {
1191 return true;
1192 }
1193 }
1194 for (; digits_to_zero_pad-- > 0;) out->push_back('0');
1195 return true;
1196 }
1197
1198 exp = -exp;
1199 // We need at least 4 empty bits for the next decimal digit.
1200 // We will multiply by 10.
1201 if (exp > int_bits - 4) return false;
1202
1203 const Int mask = (Int{1} << exp) - 1;
1204
1205 // Print the integral part first.
1206 int digits_printed = PrintIntegralDigits<mode>(int_mantissa >> exp, out);
1207 int_mantissa &= mask;
1208
1209 int fractional_count = precision;
1210 if (mode == FormatStyle::Precision) {
1211 if (digits_printed == 0) {
1212 // Find the first non-zero digit, when in Precision mode.
1213 *exp_out = 0;
1214 if (int_mantissa) {
1215 while (int_mantissa <= mask) {
1216 int_mantissa *= 10;
1217 --*exp_out;
1218 }
1219 }
1220 out->push_front(static_cast<char>(int_mantissa >> exp) + '0');
1221 out->push_back('.');
1222 int_mantissa &= mask;
1223 } else {
1224 // We already have a digit, and a '.'
1225 *exp_out = digits_printed - 1;
1226 fractional_count -= *exp_out;
1227 if (RemoveExtraPrecision(-fractional_count, int_mantissa != 0, out,
1228 exp_out)) {
1229 // If we had enough digits, return right away.
1230 // The code below will try to round again otherwise.
1231 return true;
1232 }
1233 }
1234 }
1235
1236 auto get_next_digit = [&] {
1237 int_mantissa *= 10;
1238 int digit = static_cast<int>(int_mantissa >> exp);
1239 int_mantissa &= mask;
1240 return digit;
1241 };
1242
1243 // Print fractional_count more digits, if available.
1244 for (; fractional_count > 0; --fractional_count) {
1245 out->push_back(get_next_digit() + '0');
1246 }
1247
1248 int next_digit = get_next_digit();
1249 if (next_digit > 5 ||
1250 (next_digit == 5 && (int_mantissa || out->last_digit() % 2 == 1))) {
1251 RoundUp<mode>(out, exp_out);
1252 }
1253
1254 return true;
1255 }
1256
1257 template <FormatStyle mode, typename Float>
FloatToBuffer(Decomposed<Float> decomposed,int precision,Buffer * out,int * exp)1258 bool FloatToBuffer(Decomposed<Float> decomposed, int precision, Buffer *out,
1259 int *exp) {
1260 if (precision > kMaxFixedPrecision) return false;
1261
1262 // Try with uint64_t.
1263 if (CanFitMantissa<Float, std::uint64_t>() &&
1264 FloatToBufferImpl<std::uint64_t, Float, mode>(
1265 static_cast<std::uint64_t>(decomposed.mantissa),
1266 static_cast<std::uint64_t>(decomposed.exponent), precision, out, exp))
1267 return true;
1268
1269 #if defined(ABSL_HAVE_INTRINSIC_INT128)
1270 // If that is not enough, try with __uint128_t.
1271 return CanFitMantissa<Float, __uint128_t>() &&
1272 FloatToBufferImpl<__uint128_t, Float, mode>(
1273 static_cast<__uint128_t>(decomposed.mantissa),
1274 static_cast<__uint128_t>(decomposed.exponent), precision, out,
1275 exp);
1276 #endif
1277 return false;
1278 }
1279
WriteBufferToSink(char sign_char,absl::string_view str,const FormatConversionSpecImpl & conv,FormatSinkImpl * sink)1280 void WriteBufferToSink(char sign_char, absl::string_view str,
1281 const FormatConversionSpecImpl &conv,
1282 FormatSinkImpl *sink) {
1283 int left_spaces = 0, zeros = 0, right_spaces = 0;
1284 int missing_chars =
1285 conv.width() >= 0 ? std::max(conv.width() - static_cast<int>(str.size()) -
1286 static_cast<int>(sign_char != 0),
1287 0)
1288 : 0;
1289 if (conv.has_left_flag()) {
1290 right_spaces = missing_chars;
1291 } else if (conv.has_zero_flag()) {
1292 zeros = missing_chars;
1293 } else {
1294 left_spaces = missing_chars;
1295 }
1296
1297 sink->Append(left_spaces, ' ');
1298 if (sign_char != '\0') sink->Append(1, sign_char);
1299 sink->Append(zeros, '0');
1300 sink->Append(str);
1301 sink->Append(right_spaces, ' ');
1302 }
1303
1304 template <typename Float>
FloatToSink(const Float v,const FormatConversionSpecImpl & conv,FormatSinkImpl * sink)1305 bool FloatToSink(const Float v, const FormatConversionSpecImpl &conv,
1306 FormatSinkImpl *sink) {
1307 // Print the sign or the sign column.
1308 Float abs_v = v;
1309 char sign_char = 0;
1310 if (std::signbit(abs_v)) {
1311 sign_char = '-';
1312 abs_v = -abs_v;
1313 } else if (conv.has_show_pos_flag()) {
1314 sign_char = '+';
1315 } else if (conv.has_sign_col_flag()) {
1316 sign_char = ' ';
1317 }
1318
1319 // Print nan/inf.
1320 if (ConvertNonNumericFloats(sign_char, abs_v, conv, sink)) {
1321 return true;
1322 }
1323
1324 int precision = conv.precision() < 0 ? 6 : conv.precision();
1325
1326 int exp = 0;
1327
1328 auto decomposed = Decompose(abs_v);
1329
1330 Buffer buffer;
1331
1332 FormatConversionChar c = conv.conversion_char();
1333
1334 if (c == FormatConversionCharInternal::f ||
1335 c == FormatConversionCharInternal::F) {
1336 FormatF(decomposed.mantissa, decomposed.exponent,
1337 {sign_char, precision, conv, sink});
1338 return true;
1339 } else if (c == FormatConversionCharInternal::e ||
1340 c == FormatConversionCharInternal::E) {
1341 if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer,
1342 &exp)) {
1343 return FallbackToSnprintf(v, conv, sink);
1344 }
1345 if (!conv.has_alt_flag() && buffer.back() == '.') buffer.pop_back();
1346 PrintExponent(
1347 exp, FormatConversionCharIsUpper(conv.conversion_char()) ? 'E' : 'e',
1348 &buffer);
1349 } else if (c == FormatConversionCharInternal::g ||
1350 c == FormatConversionCharInternal::G) {
1351 precision = std::max(0, precision - 1);
1352 if (!FloatToBuffer<FormatStyle::Precision>(decomposed, precision, &buffer,
1353 &exp)) {
1354 return FallbackToSnprintf(v, conv, sink);
1355 }
1356 if (precision + 1 > exp && exp >= -4) {
1357 if (exp < 0) {
1358 // Have 1.23456, needs 0.00123456
1359 // Move the first digit
1360 buffer.begin[1] = *buffer.begin;
1361 // Add some zeros
1362 for (; exp < -1; ++exp) *buffer.begin-- = '0';
1363 *buffer.begin-- = '.';
1364 *buffer.begin = '0';
1365 } else if (exp > 0) {
1366 // Have 1.23456, needs 1234.56
1367 // Move the '.' exp positions to the right.
1368 std::rotate(buffer.begin + 1, buffer.begin + 2, buffer.begin + exp + 2);
1369 }
1370 exp = 0;
1371 }
1372 if (!conv.has_alt_flag()) {
1373 while (buffer.back() == '0') buffer.pop_back();
1374 if (buffer.back() == '.') buffer.pop_back();
1375 }
1376 if (exp) {
1377 PrintExponent(
1378 exp, FormatConversionCharIsUpper(conv.conversion_char()) ? 'E' : 'e',
1379 &buffer);
1380 }
1381 } else if (c == FormatConversionCharInternal::a ||
1382 c == FormatConversionCharInternal::A) {
1383 bool uppercase = (c == FormatConversionCharInternal::A);
1384 FormatA(HexFloatTypeParams(Float{}), decomposed.mantissa,
1385 decomposed.exponent, uppercase, {sign_char, precision, conv, sink});
1386 return true;
1387 } else {
1388 return false;
1389 }
1390
1391 WriteBufferToSink(sign_char,
1392 absl::string_view(buffer.begin, buffer.end - buffer.begin),
1393 conv, sink);
1394
1395 return true;
1396 }
1397
1398 } // namespace
1399
ConvertFloatImpl(long double v,const FormatConversionSpecImpl & conv,FormatSinkImpl * sink)1400 bool ConvertFloatImpl(long double v, const FormatConversionSpecImpl &conv,
1401 FormatSinkImpl *sink) {
1402 if (IsDoubleDouble()) {
1403 // This is the `double-double` representation of `long double`. We do not
1404 // handle it natively. Fallback to snprintf.
1405 return FallbackToSnprintf(v, conv, sink);
1406 }
1407
1408 return FloatToSink(v, conv, sink);
1409 }
1410
ConvertFloatImpl(float v,const FormatConversionSpecImpl & conv,FormatSinkImpl * sink)1411 bool ConvertFloatImpl(float v, const FormatConversionSpecImpl &conv,
1412 FormatSinkImpl *sink) {
1413 return FloatToSink(static_cast<double>(v), conv, sink);
1414 }
1415
ConvertFloatImpl(double v,const FormatConversionSpecImpl & conv,FormatSinkImpl * sink)1416 bool ConvertFloatImpl(double v, const FormatConversionSpecImpl &conv,
1417 FormatSinkImpl *sink) {
1418 return FloatToSink(v, conv, sink);
1419 }
1420
1421 } // namespace str_format_internal
1422 ABSL_NAMESPACE_END
1423 } // namespace absl
1424