• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1// Copyright 2018 The Abseil Authors.
2//
3// Licensed under the Apache License, Version 2.0 (the "License");
4// you may not use this file except in compliance with the License.
5// You may obtain a copy of the License at
6//
7//      https://www.apache.org/licenses/LICENSE-2.0
8//
9// Unless required by applicable law or agreed to in writing, software
10// distributed under the License is distributed on an "AS IS" BASIS,
11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12// See the License for the specific language governing permissions and
13// limitations under the License.
14
15// This library provides Symbolize() function that symbolizes program
16// counters to their corresponding symbol names on linux platforms.
17// This library has a minimal implementation of an ELF symbol table
18// reader (i.e. it doesn't depend on libelf, etc.).
19//
20// The algorithm used in Symbolize() is as follows.
21//
22//   1. Go through a list of maps in /proc/self/maps and find the map
23//   containing the program counter.
24//
25//   2. Open the mapped file and find a regular symbol table inside.
26//   Iterate over symbols in the symbol table and look for the symbol
27//   containing the program counter.  If such a symbol is found,
28//   obtain the symbol name, and demangle the symbol if possible.
29//   If the symbol isn't found in the regular symbol table (binary is
30//   stripped), try the same thing with a dynamic symbol table.
31//
32// Note that Symbolize() is originally implemented to be used in
33// signal handlers, hence it doesn't use malloc() and other unsafe
34// operations.  It should be both thread-safe and async-signal-safe.
35//
36// Implementation note:
37//
38// We don't use heaps but only use stacks.  We want to reduce the
39// stack consumption so that the symbolizer can run on small stacks.
40//
41// Here are some numbers collected with GCC 4.1.0 on x86:
42// - sizeof(Elf32_Sym)  = 16
43// - sizeof(Elf32_Shdr) = 40
44// - sizeof(Elf64_Sym)  = 24
45// - sizeof(Elf64_Shdr) = 64
46//
47// This implementation is intended to be async-signal-safe but uses some
48// functions which are not guaranteed to be so, such as memchr() and
49// memmove().  We assume they are async-signal-safe.
50
51#include <dlfcn.h>
52#include <elf.h>
53#include <fcntl.h>
54#include <link.h>  // For ElfW() macro.
55#include <sys/stat.h>
56#include <sys/types.h>
57#include <unistd.h>
58
59#include <algorithm>
60#include <array>
61#include <atomic>
62#include <cerrno>
63#include <cinttypes>
64#include <climits>
65#include <cstdint>
66#include <cstdio>
67#include <cstdlib>
68#include <cstring>
69
70#include "absl/base/casts.h"
71#include "absl/base/dynamic_annotations.h"
72#include "absl/base/internal/low_level_alloc.h"
73#include "absl/base/internal/raw_logging.h"
74#include "absl/base/internal/spinlock.h"
75#include "absl/base/port.h"
76#include "absl/debugging/internal/demangle.h"
77#include "absl/debugging/internal/vdso_support.h"
78#include "absl/strings/string_view.h"
79
80namespace absl {
81ABSL_NAMESPACE_BEGIN
82
83// Value of argv[0]. Used by MaybeInitializeObjFile().
84static char *argv0_value = nullptr;
85
86void InitializeSymbolizer(const char *argv0) {
87#ifdef ABSL_HAVE_VDSO_SUPPORT
88  // We need to make sure VDSOSupport::Init() is called before any setuid or
89  // chroot calls, so InitializeSymbolizer() should be called very early in the
90  // life of a program.
91  absl::debugging_internal::VDSOSupport::Init();
92#endif
93  if (argv0_value != nullptr) {
94    free(argv0_value);
95    argv0_value = nullptr;
96  }
97  if (argv0 != nullptr && argv0[0] != '\0') {
98    argv0_value = strdup(argv0);
99  }
100}
101
102namespace debugging_internal {
103namespace {
104
105// Re-runs fn until it doesn't cause EINTR.
106#define NO_INTR(fn) \
107  do {              \
108  } while ((fn) < 0 && errno == EINTR)
109
110// On Linux, ELF_ST_* are defined in <linux/elf.h>.  To make this portable
111// we define our own ELF_ST_BIND and ELF_ST_TYPE if not available.
112#ifndef ELF_ST_BIND
113#define ELF_ST_BIND(info) (((unsigned char)(info)) >> 4)
114#endif
115
116#ifndef ELF_ST_TYPE
117#define ELF_ST_TYPE(info) (((unsigned char)(info)) & 0xF)
118#endif
119
120// Some platforms use a special .opd section to store function pointers.
121const char kOpdSectionName[] = ".opd";
122
123#if (defined(__powerpc__) && !(_CALL_ELF > 1)) || defined(__ia64)
124// Use opd section for function descriptors on these platforms, the function
125// address is the first word of the descriptor.
126enum { kPlatformUsesOPDSections = 1 };
127#else  // not PPC or IA64
128enum { kPlatformUsesOPDSections = 0 };
129#endif
130
131// This works for PowerPC & IA64 only.  A function descriptor consist of two
132// pointers and the first one is the function's entry.
133const size_t kFunctionDescriptorSize = sizeof(void *) * 2;
134
135const int kMaxDecorators = 10;  // Seems like a reasonable upper limit.
136
137struct InstalledSymbolDecorator {
138  SymbolDecorator fn;
139  void *arg;
140  int ticket;
141};
142
143int g_num_decorators;
144InstalledSymbolDecorator g_decorators[kMaxDecorators];
145
146struct FileMappingHint {
147  const void *start;
148  const void *end;
149  uint64_t offset;
150  const char *filename;
151};
152
153// Protects g_decorators.
154// We are using SpinLock and not a Mutex here, because we may be called
155// from inside Mutex::Lock itself, and it prohibits recursive calls.
156// This happens in e.g. base/stacktrace_syscall_unittest.
157// Moreover, we are using only TryLock(), if the decorator list
158// is being modified (is busy), we skip all decorators, and possibly
159// loose some info. Sorry, that's the best we could do.
160ABSL_CONST_INIT absl::base_internal::SpinLock g_decorators_mu(
161    absl::kConstInit, absl::base_internal::SCHEDULE_KERNEL_ONLY);
162
163const int kMaxFileMappingHints = 8;
164int g_num_file_mapping_hints;
165FileMappingHint g_file_mapping_hints[kMaxFileMappingHints];
166// Protects g_file_mapping_hints.
167ABSL_CONST_INIT absl::base_internal::SpinLock g_file_mapping_mu(
168    absl::kConstInit, absl::base_internal::SCHEDULE_KERNEL_ONLY);
169
170// Async-signal-safe function to zero a buffer.
171// memset() is not guaranteed to be async-signal-safe.
172static void SafeMemZero(void* p, size_t size) {
173  unsigned char *c = static_cast<unsigned char *>(p);
174  while (size--) {
175    *c++ = 0;
176  }
177}
178
179struct ObjFile {
180  ObjFile()
181      : filename(nullptr),
182        start_addr(nullptr),
183        end_addr(nullptr),
184        offset(0),
185        fd(-1),
186        elf_type(-1) {
187    SafeMemZero(&elf_header, sizeof(elf_header));
188    SafeMemZero(&phdr[0], sizeof(phdr));
189  }
190
191  char *filename;
192  const void *start_addr;
193  const void *end_addr;
194  uint64_t offset;
195
196  // The following fields are initialized on the first access to the
197  // object file.
198  int fd;
199  int elf_type;
200  ElfW(Ehdr) elf_header;
201
202  // PT_LOAD program header describing executable code.
203  // Normally we expect just one, but SWIFT binaries have two.
204  std::array<ElfW(Phdr), 2> phdr;
205};
206
207// Build 4-way associative cache for symbols. Within each cache line, symbols
208// are replaced in LRU order.
209enum {
210  ASSOCIATIVITY = 4,
211};
212struct SymbolCacheLine {
213  const void *pc[ASSOCIATIVITY];
214  char *name[ASSOCIATIVITY];
215
216  // age[i] is incremented when a line is accessed. it's reset to zero if the
217  // i'th entry is read.
218  uint32_t age[ASSOCIATIVITY];
219};
220
221// ---------------------------------------------------------------
222// An async-signal-safe arena for LowLevelAlloc
223static std::atomic<base_internal::LowLevelAlloc::Arena *> g_sig_safe_arena;
224
225static base_internal::LowLevelAlloc::Arena *SigSafeArena() {
226  return g_sig_safe_arena.load(std::memory_order_acquire);
227}
228
229static void InitSigSafeArena() {
230  if (SigSafeArena() == nullptr) {
231    base_internal::LowLevelAlloc::Arena *new_arena =
232        base_internal::LowLevelAlloc::NewArena(
233            base_internal::LowLevelAlloc::kAsyncSignalSafe);
234    base_internal::LowLevelAlloc::Arena *old_value = nullptr;
235    if (!g_sig_safe_arena.compare_exchange_strong(old_value, new_arena,
236                                                  std::memory_order_release,
237                                                  std::memory_order_relaxed)) {
238      // We lost a race to allocate an arena; deallocate.
239      base_internal::LowLevelAlloc::DeleteArena(new_arena);
240    }
241  }
242}
243
244// ---------------------------------------------------------------
245// An AddrMap is a vector of ObjFile, using SigSafeArena() for allocation.
246
247class AddrMap {
248 public:
249  AddrMap() : size_(0), allocated_(0), obj_(nullptr) {}
250  ~AddrMap() { base_internal::LowLevelAlloc::Free(obj_); }
251  int Size() const { return size_; }
252  ObjFile *At(int i) { return &obj_[i]; }
253  ObjFile *Add();
254  void Clear();
255
256 private:
257  int size_;       // count of valid elements (<= allocated_)
258  int allocated_;  // count of allocated elements
259  ObjFile *obj_;   // array of allocated_ elements
260  AddrMap(const AddrMap &) = delete;
261  AddrMap &operator=(const AddrMap &) = delete;
262};
263
264void AddrMap::Clear() {
265  for (int i = 0; i != size_; i++) {
266    At(i)->~ObjFile();
267  }
268  size_ = 0;
269}
270
271ObjFile *AddrMap::Add() {
272  if (size_ == allocated_) {
273    int new_allocated = allocated_ * 2 + 50;
274    ObjFile *new_obj_ =
275        static_cast<ObjFile *>(base_internal::LowLevelAlloc::AllocWithArena(
276            new_allocated * sizeof(*new_obj_), SigSafeArena()));
277    if (obj_) {
278      memcpy(new_obj_, obj_, allocated_ * sizeof(*new_obj_));
279      base_internal::LowLevelAlloc::Free(obj_);
280    }
281    obj_ = new_obj_;
282    allocated_ = new_allocated;
283  }
284  return new (&obj_[size_++]) ObjFile;
285}
286
287// ---------------------------------------------------------------
288
289enum FindSymbolResult { SYMBOL_NOT_FOUND = 1, SYMBOL_TRUNCATED, SYMBOL_FOUND };
290
291class Symbolizer {
292 public:
293  Symbolizer();
294  ~Symbolizer();
295  const char *GetSymbol(const void *const pc);
296
297 private:
298  char *CopyString(const char *s) {
299    int len = strlen(s);
300    char *dst = static_cast<char *>(
301        base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena()));
302    ABSL_RAW_CHECK(dst != nullptr, "out of memory");
303    memcpy(dst, s, len + 1);
304    return dst;
305  }
306  ObjFile *FindObjFile(const void *const start,
307                       size_t size) ABSL_ATTRIBUTE_NOINLINE;
308  static bool RegisterObjFile(const char *filename,
309                              const void *const start_addr,
310                              const void *const end_addr, uint64_t offset,
311                              void *arg);
312  SymbolCacheLine *GetCacheLine(const void *const pc);
313  const char *FindSymbolInCache(const void *const pc);
314  const char *InsertSymbolInCache(const void *const pc, const char *name);
315  void AgeSymbols(SymbolCacheLine *line);
316  void ClearAddrMap();
317  FindSymbolResult GetSymbolFromObjectFile(const ObjFile &obj,
318                                           const void *const pc,
319                                           const ptrdiff_t relocation,
320                                           char *out, int out_size,
321                                           char *tmp_buf, int tmp_buf_size);
322
323  enum {
324    SYMBOL_BUF_SIZE = 3072,
325    TMP_BUF_SIZE = 1024,
326    SYMBOL_CACHE_LINES = 128,
327  };
328
329  AddrMap addr_map_;
330
331  bool ok_;
332  bool addr_map_read_;
333
334  char symbol_buf_[SYMBOL_BUF_SIZE];
335
336  // tmp_buf_ will be used to store arrays of ElfW(Shdr) and ElfW(Sym)
337  // so we ensure that tmp_buf_ is properly aligned to store either.
338  alignas(16) char tmp_buf_[TMP_BUF_SIZE];
339  static_assert(alignof(ElfW(Shdr)) <= 16,
340                "alignment of tmp buf too small for Shdr");
341  static_assert(alignof(ElfW(Sym)) <= 16,
342                "alignment of tmp buf too small for Sym");
343
344  SymbolCacheLine symbol_cache_[SYMBOL_CACHE_LINES];
345};
346
347static std::atomic<Symbolizer *> g_cached_symbolizer;
348
349}  // namespace
350
351static int SymbolizerSize() {
352#if defined(__wasm__) || defined(__asmjs__)
353  int pagesize = getpagesize();
354#else
355  int pagesize = sysconf(_SC_PAGESIZE);
356#endif
357  return ((sizeof(Symbolizer) - 1) / pagesize + 1) * pagesize;
358}
359
360// Return (and set null) g_cached_symbolized_state if it is not null.
361// Otherwise return a new symbolizer.
362static Symbolizer *AllocateSymbolizer() {
363  InitSigSafeArena();
364  Symbolizer *symbolizer =
365      g_cached_symbolizer.exchange(nullptr, std::memory_order_acquire);
366  if (symbolizer != nullptr) {
367    return symbolizer;
368  }
369  return new (base_internal::LowLevelAlloc::AllocWithArena(
370      SymbolizerSize(), SigSafeArena())) Symbolizer();
371}
372
373// Set g_cached_symbolize_state to s if it is null, otherwise
374// delete s.
375static void FreeSymbolizer(Symbolizer *s) {
376  Symbolizer *old_cached_symbolizer = nullptr;
377  if (!g_cached_symbolizer.compare_exchange_strong(old_cached_symbolizer, s,
378                                                   std::memory_order_release,
379                                                   std::memory_order_relaxed)) {
380    s->~Symbolizer();
381    base_internal::LowLevelAlloc::Free(s);
382  }
383}
384
385Symbolizer::Symbolizer() : ok_(true), addr_map_read_(false) {
386  for (SymbolCacheLine &symbol_cache_line : symbol_cache_) {
387    for (size_t j = 0; j < ABSL_ARRAYSIZE(symbol_cache_line.name); ++j) {
388      symbol_cache_line.pc[j] = nullptr;
389      symbol_cache_line.name[j] = nullptr;
390      symbol_cache_line.age[j] = 0;
391    }
392  }
393}
394
395Symbolizer::~Symbolizer() {
396  for (SymbolCacheLine &symbol_cache_line : symbol_cache_) {
397    for (char *s : symbol_cache_line.name) {
398      base_internal::LowLevelAlloc::Free(s);
399    }
400  }
401  ClearAddrMap();
402}
403
404// We don't use assert() since it's not guaranteed to be
405// async-signal-safe.  Instead we define a minimal assertion
406// macro. So far, we don't need pretty printing for __FILE__, etc.
407#define SAFE_ASSERT(expr) ((expr) ? static_cast<void>(0) : abort())
408
409// Read up to "count" bytes from file descriptor "fd" into the buffer
410// starting at "buf" while handling short reads and EINTR.  On
411// success, return the number of bytes read.  Otherwise, return -1.
412static ssize_t ReadPersistent(int fd, void *buf, size_t count) {
413  SAFE_ASSERT(fd >= 0);
414  SAFE_ASSERT(count <= SSIZE_MAX);
415  char *buf0 = reinterpret_cast<char *>(buf);
416  size_t num_bytes = 0;
417  while (num_bytes < count) {
418    ssize_t len;
419    NO_INTR(len = read(fd, buf0 + num_bytes, count - num_bytes));
420    if (len < 0) {  // There was an error other than EINTR.
421      ABSL_RAW_LOG(WARNING, "read failed: errno=%d", errno);
422      return -1;
423    }
424    if (len == 0) {  // Reached EOF.
425      break;
426    }
427    num_bytes += len;
428  }
429  SAFE_ASSERT(num_bytes <= count);
430  return static_cast<ssize_t>(num_bytes);
431}
432
433// Read up to "count" bytes from "offset" in the file pointed by file
434// descriptor "fd" into the buffer starting at "buf".  On success,
435// return the number of bytes read.  Otherwise, return -1.
436static ssize_t ReadFromOffset(const int fd, void *buf, const size_t count,
437                              const off_t offset) {
438  off_t off = lseek(fd, offset, SEEK_SET);
439  if (off == (off_t)-1) {
440    ABSL_RAW_LOG(WARNING, "lseek(%d, %ju, SEEK_SET) failed: errno=%d", fd,
441                 static_cast<uintmax_t>(offset), errno);
442    return -1;
443  }
444  return ReadPersistent(fd, buf, count);
445}
446
447// Try reading exactly "count" bytes from "offset" bytes in a file
448// pointed by "fd" into the buffer starting at "buf" while handling
449// short reads and EINTR.  On success, return true. Otherwise, return
450// false.
451static bool ReadFromOffsetExact(const int fd, void *buf, const size_t count,
452                                const off_t offset) {
453  ssize_t len = ReadFromOffset(fd, buf, count, offset);
454  return len >= 0 && static_cast<size_t>(len) == count;
455}
456
457// Returns elf_header.e_type if the file pointed by fd is an ELF binary.
458static int FileGetElfType(const int fd) {
459  ElfW(Ehdr) elf_header;
460  if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {
461    return -1;
462  }
463  if (memcmp(elf_header.e_ident, ELFMAG, SELFMAG) != 0) {
464    return -1;
465  }
466  return elf_header.e_type;
467}
468
469// Read the section headers in the given ELF binary, and if a section
470// of the specified type is found, set the output to this section header
471// and return true.  Otherwise, return false.
472// To keep stack consumption low, we would like this function to not get
473// inlined.
474static ABSL_ATTRIBUTE_NOINLINE bool GetSectionHeaderByType(
475    const int fd, ElfW(Half) sh_num, const off_t sh_offset, ElfW(Word) type,
476    ElfW(Shdr) * out, char *tmp_buf, int tmp_buf_size) {
477  ElfW(Shdr) *buf = reinterpret_cast<ElfW(Shdr) *>(tmp_buf);
478  const int buf_entries = tmp_buf_size / sizeof(buf[0]);
479  const int buf_bytes = buf_entries * sizeof(buf[0]);
480
481  for (int i = 0; i < sh_num;) {
482    const ssize_t num_bytes_left = (sh_num - i) * sizeof(buf[0]);
483    const ssize_t num_bytes_to_read =
484        (buf_bytes > num_bytes_left) ? num_bytes_left : buf_bytes;
485    const off_t offset = sh_offset + i * sizeof(buf[0]);
486    const ssize_t len = ReadFromOffset(fd, buf, num_bytes_to_read, offset);
487    if (len % sizeof(buf[0]) != 0) {
488      ABSL_RAW_LOG(
489          WARNING,
490          "Reading %zd bytes from offset %ju returned %zd which is not a "
491          "multiple of %zu.",
492          num_bytes_to_read, static_cast<uintmax_t>(offset), len,
493          sizeof(buf[0]));
494      return false;
495    }
496    const ssize_t num_headers_in_buf = len / sizeof(buf[0]);
497    SAFE_ASSERT(num_headers_in_buf <= buf_entries);
498    for (int j = 0; j < num_headers_in_buf; ++j) {
499      if (buf[j].sh_type == type) {
500        *out = buf[j];
501        return true;
502      }
503    }
504    i += num_headers_in_buf;
505  }
506  return false;
507}
508
509// There is no particular reason to limit section name to 63 characters,
510// but there has (as yet) been no need for anything longer either.
511const int kMaxSectionNameLen = 64;
512
513bool ForEachSection(int fd,
514                    const std::function<bool(absl::string_view name,
515                                             const ElfW(Shdr) &)> &callback) {
516  ElfW(Ehdr) elf_header;
517  if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {
518    return false;
519  }
520
521  ElfW(Shdr) shstrtab;
522  off_t shstrtab_offset =
523      (elf_header.e_shoff + elf_header.e_shentsize * elf_header.e_shstrndx);
524  if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) {
525    return false;
526  }
527
528  for (int i = 0; i < elf_header.e_shnum; ++i) {
529    ElfW(Shdr) out;
530    off_t section_header_offset =
531        (elf_header.e_shoff + elf_header.e_shentsize * i);
532    if (!ReadFromOffsetExact(fd, &out, sizeof(out), section_header_offset)) {
533      return false;
534    }
535    off_t name_offset = shstrtab.sh_offset + out.sh_name;
536    char header_name[kMaxSectionNameLen];
537    ssize_t n_read =
538        ReadFromOffset(fd, &header_name, kMaxSectionNameLen, name_offset);
539    if (n_read == -1) {
540      return false;
541    } else if (n_read > kMaxSectionNameLen) {
542      // Long read?
543      return false;
544    }
545
546    absl::string_view name(header_name, strnlen(header_name, n_read));
547    if (!callback(name, out)) {
548      break;
549    }
550  }
551  return true;
552}
553
554// name_len should include terminating '\0'.
555bool GetSectionHeaderByName(int fd, const char *name, size_t name_len,
556                            ElfW(Shdr) * out) {
557  char header_name[kMaxSectionNameLen];
558  if (sizeof(header_name) < name_len) {
559    ABSL_RAW_LOG(WARNING,
560                 "Section name '%s' is too long (%zu); "
561                 "section will not be found (even if present).",
562                 name, name_len);
563    // No point in even trying.
564    return false;
565  }
566
567  ElfW(Ehdr) elf_header;
568  if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) {
569    return false;
570  }
571
572  ElfW(Shdr) shstrtab;
573  off_t shstrtab_offset =
574      (elf_header.e_shoff + elf_header.e_shentsize * elf_header.e_shstrndx);
575  if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) {
576    return false;
577  }
578
579  for (int i = 0; i < elf_header.e_shnum; ++i) {
580    off_t section_header_offset =
581        (elf_header.e_shoff + elf_header.e_shentsize * i);
582    if (!ReadFromOffsetExact(fd, out, sizeof(*out), section_header_offset)) {
583      return false;
584    }
585    off_t name_offset = shstrtab.sh_offset + out->sh_name;
586    ssize_t n_read = ReadFromOffset(fd, &header_name, name_len, name_offset);
587    if (n_read < 0) {
588      return false;
589    } else if (static_cast<size_t>(n_read) != name_len) {
590      // Short read -- name could be at end of file.
591      continue;
592    }
593    if (memcmp(header_name, name, name_len) == 0) {
594      return true;
595    }
596  }
597  return false;
598}
599
600// Compare symbols at in the same address.
601// Return true if we should pick symbol1.
602static bool ShouldPickFirstSymbol(const ElfW(Sym) & symbol1,
603                                  const ElfW(Sym) & symbol2) {
604  // If one of the symbols is weak and the other is not, pick the one
605  // this is not a weak symbol.
606  char bind1 = ELF_ST_BIND(symbol1.st_info);
607  char bind2 = ELF_ST_BIND(symbol1.st_info);
608  if (bind1 == STB_WEAK && bind2 != STB_WEAK) return false;
609  if (bind2 == STB_WEAK && bind1 != STB_WEAK) return true;
610
611  // If one of the symbols has zero size and the other is not, pick the
612  // one that has non-zero size.
613  if (symbol1.st_size != 0 && symbol2.st_size == 0) {
614    return true;
615  }
616  if (symbol1.st_size == 0 && symbol2.st_size != 0) {
617    return false;
618  }
619
620  // If one of the symbols has no type and the other is not, pick the
621  // one that has a type.
622  char type1 = ELF_ST_TYPE(symbol1.st_info);
623  char type2 = ELF_ST_TYPE(symbol1.st_info);
624  if (type1 != STT_NOTYPE && type2 == STT_NOTYPE) {
625    return true;
626  }
627  if (type1 == STT_NOTYPE && type2 != STT_NOTYPE) {
628    return false;
629  }
630
631  // Pick the first one, if we still cannot decide.
632  return true;
633}
634
635// Return true if an address is inside a section.
636static bool InSection(const void *address, const ElfW(Shdr) * section) {
637  const char *start = reinterpret_cast<const char *>(section->sh_addr);
638  size_t size = static_cast<size_t>(section->sh_size);
639  return start <= address && address < (start + size);
640}
641
642static const char *ComputeOffset(const char *base, ptrdiff_t offset) {
643  // Note: cast to uintptr_t to avoid undefined behavior when base evaluates to
644  // zero and offset is non-zero.
645  return reinterpret_cast<const char *>(
646      reinterpret_cast<uintptr_t>(base) + offset);
647}
648
649// Read a symbol table and look for the symbol containing the
650// pc. Iterate over symbols in a symbol table and look for the symbol
651// containing "pc".  If the symbol is found, and its name fits in
652// out_size, the name is written into out and SYMBOL_FOUND is returned.
653// If the name does not fit, truncated name is written into out,
654// and SYMBOL_TRUNCATED is returned. Out is NUL-terminated.
655// If the symbol is not found, SYMBOL_NOT_FOUND is returned;
656// To keep stack consumption low, we would like this function to not get
657// inlined.
658static ABSL_ATTRIBUTE_NOINLINE FindSymbolResult FindSymbol(
659    const void *const pc, const int fd, char *out, int out_size,
660    ptrdiff_t relocation, const ElfW(Shdr) * strtab, const ElfW(Shdr) * symtab,
661    const ElfW(Shdr) * opd, char *tmp_buf, int tmp_buf_size) {
662  if (symtab == nullptr) {
663    return SYMBOL_NOT_FOUND;
664  }
665
666  // Read multiple symbols at once to save read() calls.
667  ElfW(Sym) *buf = reinterpret_cast<ElfW(Sym) *>(tmp_buf);
668  const int buf_entries = tmp_buf_size / sizeof(buf[0]);
669
670  const int num_symbols = symtab->sh_size / symtab->sh_entsize;
671
672  // On platforms using an .opd section (PowerPC & IA64), a function symbol
673  // has the address of a function descriptor, which contains the real
674  // starting address.  However, we do not always want to use the real
675  // starting address because we sometimes want to symbolize a function
676  // pointer into the .opd section, e.g. FindSymbol(&foo,...).
677  const bool pc_in_opd =
678      kPlatformUsesOPDSections && opd != nullptr && InSection(pc, opd);
679  const bool deref_function_descriptor_pointer =
680      kPlatformUsesOPDSections && opd != nullptr && !pc_in_opd;
681
682  ElfW(Sym) best_match;
683  SafeMemZero(&best_match, sizeof(best_match));
684  bool found_match = false;
685  for (int i = 0; i < num_symbols;) {
686    off_t offset = symtab->sh_offset + i * symtab->sh_entsize;
687    const int num_remaining_symbols = num_symbols - i;
688    const int entries_in_chunk = std::min(num_remaining_symbols, buf_entries);
689    const int bytes_in_chunk = entries_in_chunk * sizeof(buf[0]);
690    const ssize_t len = ReadFromOffset(fd, buf, bytes_in_chunk, offset);
691    SAFE_ASSERT(len % sizeof(buf[0]) == 0);
692    const ssize_t num_symbols_in_buf = len / sizeof(buf[0]);
693    SAFE_ASSERT(num_symbols_in_buf <= entries_in_chunk);
694    for (int j = 0; j < num_symbols_in_buf; ++j) {
695      const ElfW(Sym) &symbol = buf[j];
696
697      // For a DSO, a symbol address is relocated by the loading address.
698      // We keep the original address for opd redirection below.
699      const char *const original_start_address =
700          reinterpret_cast<const char *>(symbol.st_value);
701      const char *start_address =
702          ComputeOffset(original_start_address, relocation);
703
704#ifdef __arm__
705      // ARM functions are always aligned to multiples of two bytes; the
706      // lowest-order bit in start_address is ignored by the CPU and indicates
707      // whether the function contains ARM (0) or Thumb (1) code. We don't care
708      // about what encoding is being used; we just want the real start address
709      // of the function.
710      start_address = reinterpret_cast<const char *>(
711          reinterpret_cast<uintptr_t>(start_address) & ~1);
712#endif
713
714      if (deref_function_descriptor_pointer &&
715          InSection(original_start_address, opd)) {
716        // The opd section is mapped into memory.  Just dereference
717        // start_address to get the first double word, which points to the
718        // function entry.
719        start_address = *reinterpret_cast<const char *const *>(start_address);
720      }
721
722      // If pc is inside the .opd section, it points to a function descriptor.
723      const size_t size = pc_in_opd ? kFunctionDescriptorSize : symbol.st_size;
724      const void *const end_address = ComputeOffset(start_address, size);
725      if (symbol.st_value != 0 &&  // Skip null value symbols.
726          symbol.st_shndx != 0 &&  // Skip undefined symbols.
727#ifdef STT_TLS
728          ELF_ST_TYPE(symbol.st_info) != STT_TLS &&  // Skip thread-local data.
729#endif                                               // STT_TLS
730          ((start_address <= pc && pc < end_address) ||
731           (start_address == pc && pc == end_address))) {
732        if (!found_match || ShouldPickFirstSymbol(symbol, best_match)) {
733          found_match = true;
734          best_match = symbol;
735        }
736      }
737    }
738    i += num_symbols_in_buf;
739  }
740
741  if (found_match) {
742    const size_t off = strtab->sh_offset + best_match.st_name;
743    const ssize_t n_read = ReadFromOffset(fd, out, out_size, off);
744    if (n_read <= 0) {
745      // This should never happen.
746      ABSL_RAW_LOG(WARNING,
747                   "Unable to read from fd %d at offset %zu: n_read = %zd", fd,
748                   off, n_read);
749      return SYMBOL_NOT_FOUND;
750    }
751    ABSL_RAW_CHECK(n_read <= out_size, "ReadFromOffset read too much data.");
752
753    // strtab->sh_offset points into .strtab-like section that contains
754    // NUL-terminated strings: '\0foo\0barbaz\0...".
755    //
756    // sh_offset+st_name points to the start of symbol name, but we don't know
757    // how long the symbol is, so we try to read as much as we have space for,
758    // and usually over-read (i.e. there is a NUL somewhere before n_read).
759    if (memchr(out, '\0', n_read) == nullptr) {
760      // Either out_size was too small (n_read == out_size and no NUL), or
761      // we tried to read past the EOF (n_read < out_size) and .strtab is
762      // corrupt (missing terminating NUL; should never happen for valid ELF).
763      out[n_read - 1] = '\0';
764      return SYMBOL_TRUNCATED;
765    }
766    return SYMBOL_FOUND;
767  }
768
769  return SYMBOL_NOT_FOUND;
770}
771
772// Get the symbol name of "pc" from the file pointed by "fd".  Process
773// both regular and dynamic symbol tables if necessary.
774// See FindSymbol() comment for description of return value.
775FindSymbolResult Symbolizer::GetSymbolFromObjectFile(
776    const ObjFile &obj, const void *const pc, const ptrdiff_t relocation,
777    char *out, int out_size, char *tmp_buf, int tmp_buf_size) {
778  ElfW(Shdr) symtab;
779  ElfW(Shdr) strtab;
780  ElfW(Shdr) opd;
781  ElfW(Shdr) *opd_ptr = nullptr;
782
783  // On platforms using an .opd sections for function descriptor, read
784  // the section header.  The .opd section is in data segment and should be
785  // loaded but we check that it is mapped just to be extra careful.
786  if (kPlatformUsesOPDSections) {
787    if (GetSectionHeaderByName(obj.fd, kOpdSectionName,
788                               sizeof(kOpdSectionName) - 1, &opd) &&
789        FindObjFile(reinterpret_cast<const char *>(opd.sh_addr) + relocation,
790                    opd.sh_size) != nullptr) {
791      opd_ptr = &opd;
792    } else {
793      return SYMBOL_NOT_FOUND;
794    }
795  }
796
797  // Consult a regular symbol table, then fall back to the dynamic symbol table.
798  for (const auto symbol_table_type : {SHT_SYMTAB, SHT_DYNSYM}) {
799    if (!GetSectionHeaderByType(obj.fd, obj.elf_header.e_shnum,
800                                obj.elf_header.e_shoff, symbol_table_type,
801                                &symtab, tmp_buf, tmp_buf_size)) {
802      continue;
803    }
804    if (!ReadFromOffsetExact(
805            obj.fd, &strtab, sizeof(strtab),
806            obj.elf_header.e_shoff + symtab.sh_link * sizeof(symtab))) {
807      continue;
808    }
809    const FindSymbolResult rc =
810        FindSymbol(pc, obj.fd, out, out_size, relocation, &strtab, &symtab,
811                   opd_ptr, tmp_buf, tmp_buf_size);
812    if (rc != SYMBOL_NOT_FOUND) {
813      return rc;
814    }
815  }
816
817  return SYMBOL_NOT_FOUND;
818}
819
820namespace {
821// Thin wrapper around a file descriptor so that the file descriptor
822// gets closed for sure.
823class FileDescriptor {
824 public:
825  explicit FileDescriptor(int fd) : fd_(fd) {}
826  FileDescriptor(const FileDescriptor &) = delete;
827  FileDescriptor &operator=(const FileDescriptor &) = delete;
828
829  ~FileDescriptor() {
830    if (fd_ >= 0) {
831      NO_INTR(close(fd_));
832    }
833  }
834
835  int get() const { return fd_; }
836
837 private:
838  const int fd_;
839};
840
841// Helper class for reading lines from file.
842//
843// Note: we don't use ProcMapsIterator since the object is big (it has
844// a 5k array member) and uses async-unsafe functions such as sscanf()
845// and snprintf().
846class LineReader {
847 public:
848  explicit LineReader(int fd, char *buf, int buf_len)
849      : fd_(fd),
850        buf_len_(buf_len),
851        buf_(buf),
852        bol_(buf),
853        eol_(buf),
854        eod_(buf) {}
855
856  LineReader(const LineReader &) = delete;
857  LineReader &operator=(const LineReader &) = delete;
858
859  // Read '\n'-terminated line from file.  On success, modify "bol"
860  // and "eol", then return true.  Otherwise, return false.
861  //
862  // Note: if the last line doesn't end with '\n', the line will be
863  // dropped.  It's an intentional behavior to make the code simple.
864  bool ReadLine(const char **bol, const char **eol) {
865    if (BufferIsEmpty()) {  // First time.
866      const ssize_t num_bytes = ReadPersistent(fd_, buf_, buf_len_);
867      if (num_bytes <= 0) {  // EOF or error.
868        return false;
869      }
870      eod_ = buf_ + num_bytes;
871      bol_ = buf_;
872    } else {
873      bol_ = eol_ + 1;            // Advance to the next line in the buffer.
874      SAFE_ASSERT(bol_ <= eod_);  // "bol_" can point to "eod_".
875      if (!HasCompleteLine()) {
876        const int incomplete_line_length = eod_ - bol_;
877        // Move the trailing incomplete line to the beginning.
878        memmove(buf_, bol_, incomplete_line_length);
879        // Read text from file and append it.
880        char *const append_pos = buf_ + incomplete_line_length;
881        const int capacity_left = buf_len_ - incomplete_line_length;
882        const ssize_t num_bytes =
883            ReadPersistent(fd_, append_pos, capacity_left);
884        if (num_bytes <= 0) {  // EOF or error.
885          return false;
886        }
887        eod_ = append_pos + num_bytes;
888        bol_ = buf_;
889      }
890    }
891    eol_ = FindLineFeed();
892    if (eol_ == nullptr) {  // '\n' not found.  Malformed line.
893      return false;
894    }
895    *eol_ = '\0';  // Replace '\n' with '\0'.
896
897    *bol = bol_;
898    *eol = eol_;
899    return true;
900  }
901
902 private:
903  char *FindLineFeed() const {
904    return reinterpret_cast<char *>(memchr(bol_, '\n', eod_ - bol_));
905  }
906
907  bool BufferIsEmpty() const { return buf_ == eod_; }
908
909  bool HasCompleteLine() const {
910    return !BufferIsEmpty() && FindLineFeed() != nullptr;
911  }
912
913  const int fd_;
914  const int buf_len_;
915  char *const buf_;
916  char *bol_;
917  char *eol_;
918  const char *eod_;  // End of data in "buf_".
919};
920}  // namespace
921
922// Place the hex number read from "start" into "*hex".  The pointer to
923// the first non-hex character or "end" is returned.
924static const char *GetHex(const char *start, const char *end,
925                          uint64_t *const value) {
926  uint64_t hex = 0;
927  const char *p;
928  for (p = start; p < end; ++p) {
929    int ch = *p;
930    if ((ch >= '0' && ch <= '9') || (ch >= 'A' && ch <= 'F') ||
931        (ch >= 'a' && ch <= 'f')) {
932      hex = (hex << 4) | (ch < 'A' ? ch - '0' : (ch & 0xF) + 9);
933    } else {  // Encountered the first non-hex character.
934      break;
935    }
936  }
937  SAFE_ASSERT(p <= end);
938  *value = hex;
939  return p;
940}
941
942static const char *GetHex(const char *start, const char *end,
943                          const void **const addr) {
944  uint64_t hex = 0;
945  const char *p = GetHex(start, end, &hex);
946  *addr = reinterpret_cast<void *>(hex);
947  return p;
948}
949
950// Normally we are only interested in "r?x" maps.
951// On the PowerPC, function pointers point to descriptors in the .opd
952// section.  The descriptors themselves are not executable code, so
953// we need to relax the check below to "r??".
954static bool ShouldUseMapping(const char *const flags) {
955  return flags[0] == 'r' && (kPlatformUsesOPDSections || flags[2] == 'x');
956}
957
958// Read /proc/self/maps and run "callback" for each mmapped file found.  If
959// "callback" returns false, stop scanning and return true. Else continue
960// scanning /proc/self/maps. Return true if no parse error is found.
961static ABSL_ATTRIBUTE_NOINLINE bool ReadAddrMap(
962    bool (*callback)(const char *filename, const void *const start_addr,
963                     const void *const end_addr, uint64_t offset, void *arg),
964    void *arg, void *tmp_buf, int tmp_buf_size) {
965  // Use /proc/self/task/<pid>/maps instead of /proc/self/maps. The latter
966  // requires kernel to stop all threads, and is significantly slower when there
967  // are 1000s of threads.
968  char maps_path[80];
969  snprintf(maps_path, sizeof(maps_path), "/proc/self/task/%d/maps", getpid());
970
971  int maps_fd;
972  NO_INTR(maps_fd = open(maps_path, O_RDONLY));
973  FileDescriptor wrapped_maps_fd(maps_fd);
974  if (wrapped_maps_fd.get() < 0) {
975    ABSL_RAW_LOG(WARNING, "%s: errno=%d", maps_path, errno);
976    return false;
977  }
978
979  // Iterate over maps and look for the map containing the pc.  Then
980  // look into the symbol tables inside.
981  LineReader reader(wrapped_maps_fd.get(), static_cast<char *>(tmp_buf),
982                    tmp_buf_size);
983  while (true) {
984    const char *cursor;
985    const char *eol;
986    if (!reader.ReadLine(&cursor, &eol)) {  // EOF or malformed line.
987      break;
988    }
989
990    const char *line = cursor;
991    const void *start_address;
992    // Start parsing line in /proc/self/maps.  Here is an example:
993    //
994    // 08048000-0804c000 r-xp 00000000 08:01 2142121    /bin/cat
995    //
996    // We want start address (08048000), end address (0804c000), flags
997    // (r-xp) and file name (/bin/cat).
998
999    // Read start address.
1000    cursor = GetHex(cursor, eol, &start_address);
1001    if (cursor == eol || *cursor != '-') {
1002      ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line);
1003      return false;
1004    }
1005    ++cursor;  // Skip '-'.
1006
1007    // Read end address.
1008    const void *end_address;
1009    cursor = GetHex(cursor, eol, &end_address);
1010    if (cursor == eol || *cursor != ' ') {
1011      ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line);
1012      return false;
1013    }
1014    ++cursor;  // Skip ' '.
1015
1016    // Read flags.  Skip flags until we encounter a space or eol.
1017    const char *const flags_start = cursor;
1018    while (cursor < eol && *cursor != ' ') {
1019      ++cursor;
1020    }
1021    // We expect at least four letters for flags (ex. "r-xp").
1022    if (cursor == eol || cursor < flags_start + 4) {
1023      ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps: %s", line);
1024      return false;
1025    }
1026
1027    // Check flags.
1028    if (!ShouldUseMapping(flags_start)) {
1029      continue;  // We skip this map.
1030    }
1031    ++cursor;  // Skip ' '.
1032
1033    // Read file offset.
1034    uint64_t offset;
1035    cursor = GetHex(cursor, eol, &offset);
1036    ++cursor;  // Skip ' '.
1037
1038    // Skip to file name.  "cursor" now points to dev.  We need to skip at least
1039    // two spaces for dev and inode.
1040    int num_spaces = 0;
1041    while (cursor < eol) {
1042      if (*cursor == ' ') {
1043        ++num_spaces;
1044      } else if (num_spaces >= 2) {
1045        // The first non-space character after  skipping two spaces
1046        // is the beginning of the file name.
1047        break;
1048      }
1049      ++cursor;
1050    }
1051
1052    // Check whether this entry corresponds to our hint table for the true
1053    // filename.
1054    bool hinted =
1055        GetFileMappingHint(&start_address, &end_address, &offset, &cursor);
1056    if (!hinted && (cursor == eol || cursor[0] == '[')) {
1057      // not an object file, typically [vdso] or [vsyscall]
1058      continue;
1059    }
1060    if (!callback(cursor, start_address, end_address, offset, arg)) break;
1061  }
1062  return true;
1063}
1064
1065// Find the objfile mapped in address region containing [addr, addr + len).
1066ObjFile *Symbolizer::FindObjFile(const void *const addr, size_t len) {
1067  for (int i = 0; i < 2; ++i) {
1068    if (!ok_) return nullptr;
1069
1070    // Read /proc/self/maps if necessary
1071    if (!addr_map_read_) {
1072      addr_map_read_ = true;
1073      if (!ReadAddrMap(RegisterObjFile, this, tmp_buf_, TMP_BUF_SIZE)) {
1074        ok_ = false;
1075        return nullptr;
1076      }
1077    }
1078
1079    int lo = 0;
1080    int hi = addr_map_.Size();
1081    while (lo < hi) {
1082      int mid = (lo + hi) / 2;
1083      if (addr < addr_map_.At(mid)->end_addr) {
1084        hi = mid;
1085      } else {
1086        lo = mid + 1;
1087      }
1088    }
1089    if (lo != addr_map_.Size()) {
1090      ObjFile *obj = addr_map_.At(lo);
1091      SAFE_ASSERT(obj->end_addr > addr);
1092      if (addr >= obj->start_addr &&
1093          reinterpret_cast<const char *>(addr) + len <= obj->end_addr)
1094        return obj;
1095    }
1096
1097    // The address mapping may have changed since it was last read.  Retry.
1098    ClearAddrMap();
1099  }
1100  return nullptr;
1101}
1102
1103void Symbolizer::ClearAddrMap() {
1104  for (int i = 0; i != addr_map_.Size(); i++) {
1105    ObjFile *o = addr_map_.At(i);
1106    base_internal::LowLevelAlloc::Free(o->filename);
1107    if (o->fd >= 0) {
1108      NO_INTR(close(o->fd));
1109    }
1110  }
1111  addr_map_.Clear();
1112  addr_map_read_ = false;
1113}
1114
1115// Callback for ReadAddrMap to register objfiles in an in-memory table.
1116bool Symbolizer::RegisterObjFile(const char *filename,
1117                                 const void *const start_addr,
1118                                 const void *const end_addr, uint64_t offset,
1119                                 void *arg) {
1120  Symbolizer *impl = static_cast<Symbolizer *>(arg);
1121
1122  // Files are supposed to be added in the increasing address order.  Make
1123  // sure that's the case.
1124  int addr_map_size = impl->addr_map_.Size();
1125  if (addr_map_size != 0) {
1126    ObjFile *old = impl->addr_map_.At(addr_map_size - 1);
1127    if (old->end_addr > end_addr) {
1128      ABSL_RAW_LOG(ERROR,
1129                   "Unsorted addr map entry: 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR
1130                   ": %s",
1131                   reinterpret_cast<uintptr_t>(end_addr), filename,
1132                   reinterpret_cast<uintptr_t>(old->end_addr), old->filename);
1133      return true;
1134    } else if (old->end_addr == end_addr) {
1135      // The same entry appears twice. This sometimes happens for [vdso].
1136      if (old->start_addr != start_addr ||
1137          strcmp(old->filename, filename) != 0) {
1138        ABSL_RAW_LOG(ERROR,
1139                     "Duplicate addr 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR ": %s",
1140                     reinterpret_cast<uintptr_t>(end_addr), filename,
1141                     reinterpret_cast<uintptr_t>(old->end_addr), old->filename);
1142      }
1143      return true;
1144    }
1145  }
1146  ObjFile *obj = impl->addr_map_.Add();
1147  obj->filename = impl->CopyString(filename);
1148  obj->start_addr = start_addr;
1149  obj->end_addr = end_addr;
1150  obj->offset = offset;
1151  obj->elf_type = -1;  // filled on demand
1152  obj->fd = -1;        // opened on demand
1153  return true;
1154}
1155
1156// This function wraps the Demangle function to provide an interface
1157// where the input symbol is demangled in-place.
1158// To keep stack consumption low, we would like this function to not
1159// get inlined.
1160static ABSL_ATTRIBUTE_NOINLINE void DemangleInplace(char *out, int out_size,
1161                                                    char *tmp_buf,
1162                                                    int tmp_buf_size) {
1163  if (Demangle(out, tmp_buf, tmp_buf_size)) {
1164    // Demangling succeeded. Copy to out if the space allows.
1165    int len = strlen(tmp_buf);
1166    if (len + 1 <= out_size) {  // +1 for '\0'.
1167      SAFE_ASSERT(len < tmp_buf_size);
1168      memmove(out, tmp_buf, len + 1);
1169    }
1170  }
1171}
1172
1173SymbolCacheLine *Symbolizer::GetCacheLine(const void *const pc) {
1174  uintptr_t pc0 = reinterpret_cast<uintptr_t>(pc);
1175  pc0 >>= 3;  // drop the low 3 bits
1176
1177  // Shuffle bits.
1178  pc0 ^= (pc0 >> 6) ^ (pc0 >> 12) ^ (pc0 >> 18);
1179  return &symbol_cache_[pc0 % SYMBOL_CACHE_LINES];
1180}
1181
1182void Symbolizer::AgeSymbols(SymbolCacheLine *line) {
1183  for (uint32_t &age : line->age) {
1184    ++age;
1185  }
1186}
1187
1188const char *Symbolizer::FindSymbolInCache(const void *const pc) {
1189  if (pc == nullptr) return nullptr;
1190
1191  SymbolCacheLine *line = GetCacheLine(pc);
1192  for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) {
1193    if (line->pc[i] == pc) {
1194      AgeSymbols(line);
1195      line->age[i] = 0;
1196      return line->name[i];
1197    }
1198  }
1199  return nullptr;
1200}
1201
1202const char *Symbolizer::InsertSymbolInCache(const void *const pc,
1203                                            const char *name) {
1204  SAFE_ASSERT(pc != nullptr);
1205
1206  SymbolCacheLine *line = GetCacheLine(pc);
1207  uint32_t max_age = 0;
1208  int oldest_index = -1;
1209  for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) {
1210    if (line->pc[i] == nullptr) {
1211      AgeSymbols(line);
1212      line->pc[i] = pc;
1213      line->name[i] = CopyString(name);
1214      line->age[i] = 0;
1215      return line->name[i];
1216    }
1217    if (line->age[i] >= max_age) {
1218      max_age = line->age[i];
1219      oldest_index = i;
1220    }
1221  }
1222
1223  AgeSymbols(line);
1224  ABSL_RAW_CHECK(oldest_index >= 0, "Corrupt cache");
1225  base_internal::LowLevelAlloc::Free(line->name[oldest_index]);
1226  line->pc[oldest_index] = pc;
1227  line->name[oldest_index] = CopyString(name);
1228  line->age[oldest_index] = 0;
1229  return line->name[oldest_index];
1230}
1231
1232static void MaybeOpenFdFromSelfExe(ObjFile *obj) {
1233  if (memcmp(obj->start_addr, ELFMAG, SELFMAG) != 0) {
1234    return;
1235  }
1236  int fd = open("/proc/self/exe", O_RDONLY);
1237  if (fd == -1) {
1238    return;
1239  }
1240  // Verify that contents of /proc/self/exe matches in-memory image of
1241  // the binary. This can fail if the "deleted" binary is in fact not
1242  // the main executable, or for binaries that have the first PT_LOAD
1243  // segment smaller than 4K. We do it in four steps so that the
1244  // buffer is smaller and we don't consume too much stack space.
1245  const char *mem = reinterpret_cast<const char *>(obj->start_addr);
1246  for (int i = 0; i < 4; ++i) {
1247    char buf[1024];
1248    ssize_t n = read(fd, buf, sizeof(buf));
1249    if (n != sizeof(buf) || memcmp(buf, mem, sizeof(buf)) != 0) {
1250      close(fd);
1251      return;
1252    }
1253    mem += sizeof(buf);
1254  }
1255  obj->fd = fd;
1256}
1257
1258static bool MaybeInitializeObjFile(ObjFile *obj) {
1259  if (obj->fd < 0) {
1260    obj->fd = open(obj->filename, O_RDONLY);
1261
1262    if (obj->fd < 0) {
1263      // Getting /proc/self/exe here means that we were hinted.
1264      if (strcmp(obj->filename, "/proc/self/exe") == 0) {
1265        // /proc/self/exe may be inaccessible (due to setuid, etc.), so try
1266        // accessing the binary via argv0.
1267        if (argv0_value != nullptr) {
1268          obj->fd = open(argv0_value, O_RDONLY);
1269        }
1270      } else {
1271        MaybeOpenFdFromSelfExe(obj);
1272      }
1273    }
1274
1275    if (obj->fd < 0) {
1276      ABSL_RAW_LOG(WARNING, "%s: open failed: errno=%d", obj->filename, errno);
1277      return false;
1278    }
1279    obj->elf_type = FileGetElfType(obj->fd);
1280    if (obj->elf_type < 0) {
1281      ABSL_RAW_LOG(WARNING, "%s: wrong elf type: %d", obj->filename,
1282                   obj->elf_type);
1283      return false;
1284    }
1285
1286    if (!ReadFromOffsetExact(obj->fd, &obj->elf_header, sizeof(obj->elf_header),
1287                             0)) {
1288      ABSL_RAW_LOG(WARNING, "%s: failed to read elf header", obj->filename);
1289      return false;
1290    }
1291    const int phnum = obj->elf_header.e_phnum;
1292    const int phentsize = obj->elf_header.e_phentsize;
1293    size_t phoff = obj->elf_header.e_phoff;
1294    size_t num_executable_load_segments = 0;
1295    for (int j = 0; j < phnum; j++) {
1296      ElfW(Phdr) phdr;
1297      if (!ReadFromOffsetExact(obj->fd, &phdr, sizeof(phdr), phoff)) {
1298        ABSL_RAW_LOG(WARNING, "%s: failed to read program header %d",
1299                     obj->filename, j);
1300        return false;
1301      }
1302      phoff += phentsize;
1303      constexpr int rx = PF_X | PF_R;
1304      if (phdr.p_type != PT_LOAD || (phdr.p_flags & rx) != rx) {
1305        // Not a LOAD segment, or not executable code.
1306        continue;
1307      }
1308      if (num_executable_load_segments < obj->phdr.size()) {
1309        memcpy(&obj->phdr[num_executable_load_segments++], &phdr, sizeof(phdr));
1310      } else {
1311        ABSL_RAW_LOG(WARNING, "%s: too many executable LOAD segments",
1312                     obj->filename);
1313        break;
1314      }
1315    }
1316    if (num_executable_load_segments == 0) {
1317      // This object has no "r-x" LOAD segments. That's unexpected.
1318      ABSL_RAW_LOG(WARNING, "%s: no executable LOAD segments", obj->filename);
1319      return false;
1320    }
1321  }
1322  return true;
1323}
1324
1325// The implementation of our symbolization routine.  If it
1326// successfully finds the symbol containing "pc" and obtains the
1327// symbol name, returns pointer to that symbol. Otherwise, returns nullptr.
1328// If any symbol decorators have been installed via InstallSymbolDecorator(),
1329// they are called here as well.
1330// To keep stack consumption low, we would like this function to not
1331// get inlined.
1332const char *Symbolizer::GetSymbol(const void *const pc) {
1333  const char *entry = FindSymbolInCache(pc);
1334  if (entry != nullptr) {
1335    return entry;
1336  }
1337  symbol_buf_[0] = '\0';
1338
1339  ObjFile *const obj = FindObjFile(pc, 1);
1340  ptrdiff_t relocation = 0;
1341  int fd = -1;
1342  if (obj != nullptr) {
1343    if (MaybeInitializeObjFile(obj)) {
1344      const size_t start_addr = reinterpret_cast<size_t>(obj->start_addr);
1345      if (obj->elf_type == ET_DYN && start_addr >= obj->offset) {
1346        // This object was relocated.
1347        //
1348        // For obj->offset > 0, adjust the relocation since a mapping at offset
1349        // X in the file will have a start address of [true relocation]+X.
1350        relocation = start_addr - obj->offset;
1351
1352        // Note: some binaries have multiple "rx" LOAD segments. We must
1353        // find the right one.
1354        ElfW(Phdr) *phdr = nullptr;
1355        for (size_t j = 0; j < obj->phdr.size(); j++) {
1356          ElfW(Phdr) &p = obj->phdr[j];
1357          if (p.p_type != PT_LOAD) {
1358            // We only expect PT_LOADs. This must be PT_NULL that we didn't
1359            // write over (i.e. we exhausted all interesting PT_LOADs).
1360            ABSL_RAW_CHECK(p.p_type == PT_NULL, "unexpected p_type");
1361            break;
1362          }
1363          if (pc < reinterpret_cast<void *>(start_addr + p.p_memsz)) {
1364            phdr = &p;
1365            break;
1366          }
1367        }
1368        if (phdr == nullptr) {
1369          // That's unexpected. Hope for the best.
1370          ABSL_RAW_LOG(
1371              WARNING,
1372              "%s: unable to find LOAD segment for pc: %p, start_addr: %zx",
1373              obj->filename, pc, start_addr);
1374        } else {
1375          // Adjust relocation in case phdr.p_vaddr != 0.
1376          // This happens for binaries linked with `lld --rosegment`, and for
1377          // binaries linked with BFD `ld -z separate-code`.
1378          relocation -= phdr->p_vaddr - phdr->p_offset;
1379        }
1380      }
1381
1382      fd = obj->fd;
1383      if (GetSymbolFromObjectFile(*obj, pc, relocation, symbol_buf_,
1384                                  sizeof(symbol_buf_), tmp_buf_,
1385                                  sizeof(tmp_buf_)) == SYMBOL_FOUND) {
1386        // Only try to demangle the symbol name if it fit into symbol_buf_.
1387        DemangleInplace(symbol_buf_, sizeof(symbol_buf_), tmp_buf_,
1388                        sizeof(tmp_buf_));
1389      }
1390    }
1391  } else {
1392#if ABSL_HAVE_VDSO_SUPPORT
1393    VDSOSupport vdso;
1394    if (vdso.IsPresent()) {
1395      VDSOSupport::SymbolInfo symbol_info;
1396      if (vdso.LookupSymbolByAddress(pc, &symbol_info)) {
1397        // All VDSO symbols are known to be short.
1398        size_t len = strlen(symbol_info.name);
1399        ABSL_RAW_CHECK(len + 1 < sizeof(symbol_buf_),
1400                       "VDSO symbol unexpectedly long");
1401        memcpy(symbol_buf_, symbol_info.name, len + 1);
1402      }
1403    }
1404#endif
1405  }
1406
1407  if (g_decorators_mu.TryLock()) {
1408    if (g_num_decorators > 0) {
1409      SymbolDecoratorArgs decorator_args = {
1410          pc,       relocation,       fd,     symbol_buf_, sizeof(symbol_buf_),
1411          tmp_buf_, sizeof(tmp_buf_), nullptr};
1412      for (int i = 0; i < g_num_decorators; ++i) {
1413        decorator_args.arg = g_decorators[i].arg;
1414        g_decorators[i].fn(&decorator_args);
1415      }
1416    }
1417    g_decorators_mu.Unlock();
1418  }
1419  if (symbol_buf_[0] == '\0') {
1420    return nullptr;
1421  }
1422  symbol_buf_[sizeof(symbol_buf_) - 1] = '\0';  // Paranoia.
1423  return InsertSymbolInCache(pc, symbol_buf_);
1424}
1425
1426bool RemoveAllSymbolDecorators(void) {
1427  if (!g_decorators_mu.TryLock()) {
1428    // Someone else is using decorators. Get out.
1429    return false;
1430  }
1431  g_num_decorators = 0;
1432  g_decorators_mu.Unlock();
1433  return true;
1434}
1435
1436bool RemoveSymbolDecorator(int ticket) {
1437  if (!g_decorators_mu.TryLock()) {
1438    // Someone else is using decorators. Get out.
1439    return false;
1440  }
1441  for (int i = 0; i < g_num_decorators; ++i) {
1442    if (g_decorators[i].ticket == ticket) {
1443      while (i < g_num_decorators - 1) {
1444        g_decorators[i] = g_decorators[i + 1];
1445        ++i;
1446      }
1447      g_num_decorators = i;
1448      break;
1449    }
1450  }
1451  g_decorators_mu.Unlock();
1452  return true;  // Decorator is known to be removed.
1453}
1454
1455int InstallSymbolDecorator(SymbolDecorator decorator, void *arg) {
1456  static int ticket = 0;
1457
1458  if (!g_decorators_mu.TryLock()) {
1459    // Someone else is using decorators. Get out.
1460    return -2;
1461  }
1462  int ret = ticket;
1463  if (g_num_decorators >= kMaxDecorators) {
1464    ret = -1;
1465  } else {
1466    g_decorators[g_num_decorators] = {decorator, arg, ticket++};
1467    ++g_num_decorators;
1468  }
1469  g_decorators_mu.Unlock();
1470  return ret;
1471}
1472
1473bool RegisterFileMappingHint(const void *start, const void *end, uint64_t offset,
1474                             const char *filename) {
1475  SAFE_ASSERT(start <= end);
1476  SAFE_ASSERT(filename != nullptr);
1477
1478  InitSigSafeArena();
1479
1480  if (!g_file_mapping_mu.TryLock()) {
1481    return false;
1482  }
1483
1484  bool ret = true;
1485  if (g_num_file_mapping_hints >= kMaxFileMappingHints) {
1486    ret = false;
1487  } else {
1488    // TODO(ckennelly): Move this into a string copy routine.
1489    int len = strlen(filename);
1490    char *dst = static_cast<char *>(
1491        base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena()));
1492    ABSL_RAW_CHECK(dst != nullptr, "out of memory");
1493    memcpy(dst, filename, len + 1);
1494
1495    auto &hint = g_file_mapping_hints[g_num_file_mapping_hints++];
1496    hint.start = start;
1497    hint.end = end;
1498    hint.offset = offset;
1499    hint.filename = dst;
1500  }
1501
1502  g_file_mapping_mu.Unlock();
1503  return ret;
1504}
1505
1506bool GetFileMappingHint(const void **start, const void **end, uint64_t *offset,
1507                        const char **filename) {
1508  if (!g_file_mapping_mu.TryLock()) {
1509    return false;
1510  }
1511  bool found = false;
1512  for (int i = 0; i < g_num_file_mapping_hints; i++) {
1513    if (g_file_mapping_hints[i].start <= *start &&
1514        *end <= g_file_mapping_hints[i].end) {
1515      // We assume that the start_address for the mapping is the base
1516      // address of the ELF section, but when [start_address,end_address) is
1517      // not strictly equal to [hint.start, hint.end), that assumption is
1518      // invalid.
1519      //
1520      // This uses the hint's start address (even though hint.start is not
1521      // necessarily equal to start_address) to ensure the correct
1522      // relocation is computed later.
1523      *start = g_file_mapping_hints[i].start;
1524      *end = g_file_mapping_hints[i].end;
1525      *offset = g_file_mapping_hints[i].offset;
1526      *filename = g_file_mapping_hints[i].filename;
1527      found = true;
1528      break;
1529    }
1530  }
1531  g_file_mapping_mu.Unlock();
1532  return found;
1533}
1534
1535}  // namespace debugging_internal
1536
1537bool Symbolize(const void *pc, char *out, int out_size) {
1538  // Symbolization is very slow under tsan.
1539  ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN();
1540  SAFE_ASSERT(out_size >= 0);
1541  debugging_internal::Symbolizer *s = debugging_internal::AllocateSymbolizer();
1542  const char *name = s->GetSymbol(pc);
1543  bool ok = false;
1544  if (name != nullptr && out_size > 0) {
1545    strncpy(out, name, out_size);
1546    ok = true;
1547    if (out[out_size - 1] != '\0') {
1548      // strncpy() does not '\0' terminate when it truncates.  Do so, with
1549      // trailing ellipsis.
1550      static constexpr char kEllipsis[] = "...";
1551      int ellipsis_size =
1552          std::min(implicit_cast<int>(strlen(kEllipsis)), out_size - 1);
1553      memcpy(out + out_size - ellipsis_size - 1, kEllipsis, ellipsis_size);
1554      out[out_size - 1] = '\0';
1555    }
1556  }
1557  debugging_internal::FreeSymbolizer(s);
1558  ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_END();
1559  return ok;
1560}
1561
1562ABSL_NAMESPACE_END
1563}  // namespace absl
1564
1565extern "C" bool AbslInternalGetFileMappingHint(const void **start,
1566                                               const void **end, uint64_t *offset,
1567                                               const char **filename) {
1568  return absl::debugging_internal::GetFileMappingHint(start, end, offset,
1569                                                      filename);
1570}
1571