1// Copyright 2018 The Abseil Authors. 2// 3// Licensed under the Apache License, Version 2.0 (the "License"); 4// you may not use this file except in compliance with the License. 5// You may obtain a copy of the License at 6// 7// https://www.apache.org/licenses/LICENSE-2.0 8// 9// Unless required by applicable law or agreed to in writing, software 10// distributed under the License is distributed on an "AS IS" BASIS, 11// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12// See the License for the specific language governing permissions and 13// limitations under the License. 14 15// This library provides Symbolize() function that symbolizes program 16// counters to their corresponding symbol names on linux platforms. 17// This library has a minimal implementation of an ELF symbol table 18// reader (i.e. it doesn't depend on libelf, etc.). 19// 20// The algorithm used in Symbolize() is as follows. 21// 22// 1. Go through a list of maps in /proc/self/maps and find the map 23// containing the program counter. 24// 25// 2. Open the mapped file and find a regular symbol table inside. 26// Iterate over symbols in the symbol table and look for the symbol 27// containing the program counter. If such a symbol is found, 28// obtain the symbol name, and demangle the symbol if possible. 29// If the symbol isn't found in the regular symbol table (binary is 30// stripped), try the same thing with a dynamic symbol table. 31// 32// Note that Symbolize() is originally implemented to be used in 33// signal handlers, hence it doesn't use malloc() and other unsafe 34// operations. It should be both thread-safe and async-signal-safe. 35// 36// Implementation note: 37// 38// We don't use heaps but only use stacks. We want to reduce the 39// stack consumption so that the symbolizer can run on small stacks. 40// 41// Here are some numbers collected with GCC 4.1.0 on x86: 42// - sizeof(Elf32_Sym) = 16 43// - sizeof(Elf32_Shdr) = 40 44// - sizeof(Elf64_Sym) = 24 45// - sizeof(Elf64_Shdr) = 64 46// 47// This implementation is intended to be async-signal-safe but uses some 48// functions which are not guaranteed to be so, such as memchr() and 49// memmove(). We assume they are async-signal-safe. 50 51#include <dlfcn.h> 52#include <elf.h> 53#include <fcntl.h> 54#include <link.h> // For ElfW() macro. 55#include <sys/stat.h> 56#include <sys/types.h> 57#include <unistd.h> 58 59#include <algorithm> 60#include <array> 61#include <atomic> 62#include <cerrno> 63#include <cinttypes> 64#include <climits> 65#include <cstdint> 66#include <cstdio> 67#include <cstdlib> 68#include <cstring> 69 70#include "absl/base/casts.h" 71#include "absl/base/dynamic_annotations.h" 72#include "absl/base/internal/low_level_alloc.h" 73#include "absl/base/internal/raw_logging.h" 74#include "absl/base/internal/spinlock.h" 75#include "absl/base/port.h" 76#include "absl/debugging/internal/demangle.h" 77#include "absl/debugging/internal/vdso_support.h" 78#include "absl/strings/string_view.h" 79 80namespace absl { 81ABSL_NAMESPACE_BEGIN 82 83// Value of argv[0]. Used by MaybeInitializeObjFile(). 84static char *argv0_value = nullptr; 85 86void InitializeSymbolizer(const char *argv0) { 87#ifdef ABSL_HAVE_VDSO_SUPPORT 88 // We need to make sure VDSOSupport::Init() is called before any setuid or 89 // chroot calls, so InitializeSymbolizer() should be called very early in the 90 // life of a program. 91 absl::debugging_internal::VDSOSupport::Init(); 92#endif 93 if (argv0_value != nullptr) { 94 free(argv0_value); 95 argv0_value = nullptr; 96 } 97 if (argv0 != nullptr && argv0[0] != '\0') { 98 argv0_value = strdup(argv0); 99 } 100} 101 102namespace debugging_internal { 103namespace { 104 105// Re-runs fn until it doesn't cause EINTR. 106#define NO_INTR(fn) \ 107 do { \ 108 } while ((fn) < 0 && errno == EINTR) 109 110// On Linux, ELF_ST_* are defined in <linux/elf.h>. To make this portable 111// we define our own ELF_ST_BIND and ELF_ST_TYPE if not available. 112#ifndef ELF_ST_BIND 113#define ELF_ST_BIND(info) (((unsigned char)(info)) >> 4) 114#endif 115 116#ifndef ELF_ST_TYPE 117#define ELF_ST_TYPE(info) (((unsigned char)(info)) & 0xF) 118#endif 119 120// Some platforms use a special .opd section to store function pointers. 121const char kOpdSectionName[] = ".opd"; 122 123#if (defined(__powerpc__) && !(_CALL_ELF > 1)) || defined(__ia64) 124// Use opd section for function descriptors on these platforms, the function 125// address is the first word of the descriptor. 126enum { kPlatformUsesOPDSections = 1 }; 127#else // not PPC or IA64 128enum { kPlatformUsesOPDSections = 0 }; 129#endif 130 131// This works for PowerPC & IA64 only. A function descriptor consist of two 132// pointers and the first one is the function's entry. 133const size_t kFunctionDescriptorSize = sizeof(void *) * 2; 134 135const int kMaxDecorators = 10; // Seems like a reasonable upper limit. 136 137struct InstalledSymbolDecorator { 138 SymbolDecorator fn; 139 void *arg; 140 int ticket; 141}; 142 143int g_num_decorators; 144InstalledSymbolDecorator g_decorators[kMaxDecorators]; 145 146struct FileMappingHint { 147 const void *start; 148 const void *end; 149 uint64_t offset; 150 const char *filename; 151}; 152 153// Protects g_decorators. 154// We are using SpinLock and not a Mutex here, because we may be called 155// from inside Mutex::Lock itself, and it prohibits recursive calls. 156// This happens in e.g. base/stacktrace_syscall_unittest. 157// Moreover, we are using only TryLock(), if the decorator list 158// is being modified (is busy), we skip all decorators, and possibly 159// loose some info. Sorry, that's the best we could do. 160ABSL_CONST_INIT absl::base_internal::SpinLock g_decorators_mu( 161 absl::kConstInit, absl::base_internal::SCHEDULE_KERNEL_ONLY); 162 163const int kMaxFileMappingHints = 8; 164int g_num_file_mapping_hints; 165FileMappingHint g_file_mapping_hints[kMaxFileMappingHints]; 166// Protects g_file_mapping_hints. 167ABSL_CONST_INIT absl::base_internal::SpinLock g_file_mapping_mu( 168 absl::kConstInit, absl::base_internal::SCHEDULE_KERNEL_ONLY); 169 170// Async-signal-safe function to zero a buffer. 171// memset() is not guaranteed to be async-signal-safe. 172static void SafeMemZero(void* p, size_t size) { 173 unsigned char *c = static_cast<unsigned char *>(p); 174 while (size--) { 175 *c++ = 0; 176 } 177} 178 179struct ObjFile { 180 ObjFile() 181 : filename(nullptr), 182 start_addr(nullptr), 183 end_addr(nullptr), 184 offset(0), 185 fd(-1), 186 elf_type(-1) { 187 SafeMemZero(&elf_header, sizeof(elf_header)); 188 SafeMemZero(&phdr[0], sizeof(phdr)); 189 } 190 191 char *filename; 192 const void *start_addr; 193 const void *end_addr; 194 uint64_t offset; 195 196 // The following fields are initialized on the first access to the 197 // object file. 198 int fd; 199 int elf_type; 200 ElfW(Ehdr) elf_header; 201 202 // PT_LOAD program header describing executable code. 203 // Normally we expect just one, but SWIFT binaries have two. 204 std::array<ElfW(Phdr), 2> phdr; 205}; 206 207// Build 4-way associative cache for symbols. Within each cache line, symbols 208// are replaced in LRU order. 209enum { 210 ASSOCIATIVITY = 4, 211}; 212struct SymbolCacheLine { 213 const void *pc[ASSOCIATIVITY]; 214 char *name[ASSOCIATIVITY]; 215 216 // age[i] is incremented when a line is accessed. it's reset to zero if the 217 // i'th entry is read. 218 uint32_t age[ASSOCIATIVITY]; 219}; 220 221// --------------------------------------------------------------- 222// An async-signal-safe arena for LowLevelAlloc 223static std::atomic<base_internal::LowLevelAlloc::Arena *> g_sig_safe_arena; 224 225static base_internal::LowLevelAlloc::Arena *SigSafeArena() { 226 return g_sig_safe_arena.load(std::memory_order_acquire); 227} 228 229static void InitSigSafeArena() { 230 if (SigSafeArena() == nullptr) { 231 base_internal::LowLevelAlloc::Arena *new_arena = 232 base_internal::LowLevelAlloc::NewArena( 233 base_internal::LowLevelAlloc::kAsyncSignalSafe); 234 base_internal::LowLevelAlloc::Arena *old_value = nullptr; 235 if (!g_sig_safe_arena.compare_exchange_strong(old_value, new_arena, 236 std::memory_order_release, 237 std::memory_order_relaxed)) { 238 // We lost a race to allocate an arena; deallocate. 239 base_internal::LowLevelAlloc::DeleteArena(new_arena); 240 } 241 } 242} 243 244// --------------------------------------------------------------- 245// An AddrMap is a vector of ObjFile, using SigSafeArena() for allocation. 246 247class AddrMap { 248 public: 249 AddrMap() : size_(0), allocated_(0), obj_(nullptr) {} 250 ~AddrMap() { base_internal::LowLevelAlloc::Free(obj_); } 251 int Size() const { return size_; } 252 ObjFile *At(int i) { return &obj_[i]; } 253 ObjFile *Add(); 254 void Clear(); 255 256 private: 257 int size_; // count of valid elements (<= allocated_) 258 int allocated_; // count of allocated elements 259 ObjFile *obj_; // array of allocated_ elements 260 AddrMap(const AddrMap &) = delete; 261 AddrMap &operator=(const AddrMap &) = delete; 262}; 263 264void AddrMap::Clear() { 265 for (int i = 0; i != size_; i++) { 266 At(i)->~ObjFile(); 267 } 268 size_ = 0; 269} 270 271ObjFile *AddrMap::Add() { 272 if (size_ == allocated_) { 273 int new_allocated = allocated_ * 2 + 50; 274 ObjFile *new_obj_ = 275 static_cast<ObjFile *>(base_internal::LowLevelAlloc::AllocWithArena( 276 new_allocated * sizeof(*new_obj_), SigSafeArena())); 277 if (obj_) { 278 memcpy(new_obj_, obj_, allocated_ * sizeof(*new_obj_)); 279 base_internal::LowLevelAlloc::Free(obj_); 280 } 281 obj_ = new_obj_; 282 allocated_ = new_allocated; 283 } 284 return new (&obj_[size_++]) ObjFile; 285} 286 287// --------------------------------------------------------------- 288 289enum FindSymbolResult { SYMBOL_NOT_FOUND = 1, SYMBOL_TRUNCATED, SYMBOL_FOUND }; 290 291class Symbolizer { 292 public: 293 Symbolizer(); 294 ~Symbolizer(); 295 const char *GetSymbol(const void *const pc); 296 297 private: 298 char *CopyString(const char *s) { 299 int len = strlen(s); 300 char *dst = static_cast<char *>( 301 base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena())); 302 ABSL_RAW_CHECK(dst != nullptr, "out of memory"); 303 memcpy(dst, s, len + 1); 304 return dst; 305 } 306 ObjFile *FindObjFile(const void *const start, 307 size_t size) ABSL_ATTRIBUTE_NOINLINE; 308 static bool RegisterObjFile(const char *filename, 309 const void *const start_addr, 310 const void *const end_addr, uint64_t offset, 311 void *arg); 312 SymbolCacheLine *GetCacheLine(const void *const pc); 313 const char *FindSymbolInCache(const void *const pc); 314 const char *InsertSymbolInCache(const void *const pc, const char *name); 315 void AgeSymbols(SymbolCacheLine *line); 316 void ClearAddrMap(); 317 FindSymbolResult GetSymbolFromObjectFile(const ObjFile &obj, 318 const void *const pc, 319 const ptrdiff_t relocation, 320 char *out, int out_size, 321 char *tmp_buf, int tmp_buf_size); 322 323 enum { 324 SYMBOL_BUF_SIZE = 3072, 325 TMP_BUF_SIZE = 1024, 326 SYMBOL_CACHE_LINES = 128, 327 }; 328 329 AddrMap addr_map_; 330 331 bool ok_; 332 bool addr_map_read_; 333 334 char symbol_buf_[SYMBOL_BUF_SIZE]; 335 336 // tmp_buf_ will be used to store arrays of ElfW(Shdr) and ElfW(Sym) 337 // so we ensure that tmp_buf_ is properly aligned to store either. 338 alignas(16) char tmp_buf_[TMP_BUF_SIZE]; 339 static_assert(alignof(ElfW(Shdr)) <= 16, 340 "alignment of tmp buf too small for Shdr"); 341 static_assert(alignof(ElfW(Sym)) <= 16, 342 "alignment of tmp buf too small for Sym"); 343 344 SymbolCacheLine symbol_cache_[SYMBOL_CACHE_LINES]; 345}; 346 347static std::atomic<Symbolizer *> g_cached_symbolizer; 348 349} // namespace 350 351static int SymbolizerSize() { 352#if defined(__wasm__) || defined(__asmjs__) 353 int pagesize = getpagesize(); 354#else 355 int pagesize = sysconf(_SC_PAGESIZE); 356#endif 357 return ((sizeof(Symbolizer) - 1) / pagesize + 1) * pagesize; 358} 359 360// Return (and set null) g_cached_symbolized_state if it is not null. 361// Otherwise return a new symbolizer. 362static Symbolizer *AllocateSymbolizer() { 363 InitSigSafeArena(); 364 Symbolizer *symbolizer = 365 g_cached_symbolizer.exchange(nullptr, std::memory_order_acquire); 366 if (symbolizer != nullptr) { 367 return symbolizer; 368 } 369 return new (base_internal::LowLevelAlloc::AllocWithArena( 370 SymbolizerSize(), SigSafeArena())) Symbolizer(); 371} 372 373// Set g_cached_symbolize_state to s if it is null, otherwise 374// delete s. 375static void FreeSymbolizer(Symbolizer *s) { 376 Symbolizer *old_cached_symbolizer = nullptr; 377 if (!g_cached_symbolizer.compare_exchange_strong(old_cached_symbolizer, s, 378 std::memory_order_release, 379 std::memory_order_relaxed)) { 380 s->~Symbolizer(); 381 base_internal::LowLevelAlloc::Free(s); 382 } 383} 384 385Symbolizer::Symbolizer() : ok_(true), addr_map_read_(false) { 386 for (SymbolCacheLine &symbol_cache_line : symbol_cache_) { 387 for (size_t j = 0; j < ABSL_ARRAYSIZE(symbol_cache_line.name); ++j) { 388 symbol_cache_line.pc[j] = nullptr; 389 symbol_cache_line.name[j] = nullptr; 390 symbol_cache_line.age[j] = 0; 391 } 392 } 393} 394 395Symbolizer::~Symbolizer() { 396 for (SymbolCacheLine &symbol_cache_line : symbol_cache_) { 397 for (char *s : symbol_cache_line.name) { 398 base_internal::LowLevelAlloc::Free(s); 399 } 400 } 401 ClearAddrMap(); 402} 403 404// We don't use assert() since it's not guaranteed to be 405// async-signal-safe. Instead we define a minimal assertion 406// macro. So far, we don't need pretty printing for __FILE__, etc. 407#define SAFE_ASSERT(expr) ((expr) ? static_cast<void>(0) : abort()) 408 409// Read up to "count" bytes from file descriptor "fd" into the buffer 410// starting at "buf" while handling short reads and EINTR. On 411// success, return the number of bytes read. Otherwise, return -1. 412static ssize_t ReadPersistent(int fd, void *buf, size_t count) { 413 SAFE_ASSERT(fd >= 0); 414 SAFE_ASSERT(count <= SSIZE_MAX); 415 char *buf0 = reinterpret_cast<char *>(buf); 416 size_t num_bytes = 0; 417 while (num_bytes < count) { 418 ssize_t len; 419 NO_INTR(len = read(fd, buf0 + num_bytes, count - num_bytes)); 420 if (len < 0) { // There was an error other than EINTR. 421 ABSL_RAW_LOG(WARNING, "read failed: errno=%d", errno); 422 return -1; 423 } 424 if (len == 0) { // Reached EOF. 425 break; 426 } 427 num_bytes += len; 428 } 429 SAFE_ASSERT(num_bytes <= count); 430 return static_cast<ssize_t>(num_bytes); 431} 432 433// Read up to "count" bytes from "offset" in the file pointed by file 434// descriptor "fd" into the buffer starting at "buf". On success, 435// return the number of bytes read. Otherwise, return -1. 436static ssize_t ReadFromOffset(const int fd, void *buf, const size_t count, 437 const off_t offset) { 438 off_t off = lseek(fd, offset, SEEK_SET); 439 if (off == (off_t)-1) { 440 ABSL_RAW_LOG(WARNING, "lseek(%d, %ju, SEEK_SET) failed: errno=%d", fd, 441 static_cast<uintmax_t>(offset), errno); 442 return -1; 443 } 444 return ReadPersistent(fd, buf, count); 445} 446 447// Try reading exactly "count" bytes from "offset" bytes in a file 448// pointed by "fd" into the buffer starting at "buf" while handling 449// short reads and EINTR. On success, return true. Otherwise, return 450// false. 451static bool ReadFromOffsetExact(const int fd, void *buf, const size_t count, 452 const off_t offset) { 453 ssize_t len = ReadFromOffset(fd, buf, count, offset); 454 return len >= 0 && static_cast<size_t>(len) == count; 455} 456 457// Returns elf_header.e_type if the file pointed by fd is an ELF binary. 458static int FileGetElfType(const int fd) { 459 ElfW(Ehdr) elf_header; 460 if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) { 461 return -1; 462 } 463 if (memcmp(elf_header.e_ident, ELFMAG, SELFMAG) != 0) { 464 return -1; 465 } 466 return elf_header.e_type; 467} 468 469// Read the section headers in the given ELF binary, and if a section 470// of the specified type is found, set the output to this section header 471// and return true. Otherwise, return false. 472// To keep stack consumption low, we would like this function to not get 473// inlined. 474static ABSL_ATTRIBUTE_NOINLINE bool GetSectionHeaderByType( 475 const int fd, ElfW(Half) sh_num, const off_t sh_offset, ElfW(Word) type, 476 ElfW(Shdr) * out, char *tmp_buf, int tmp_buf_size) { 477 ElfW(Shdr) *buf = reinterpret_cast<ElfW(Shdr) *>(tmp_buf); 478 const int buf_entries = tmp_buf_size / sizeof(buf[0]); 479 const int buf_bytes = buf_entries * sizeof(buf[0]); 480 481 for (int i = 0; i < sh_num;) { 482 const ssize_t num_bytes_left = (sh_num - i) * sizeof(buf[0]); 483 const ssize_t num_bytes_to_read = 484 (buf_bytes > num_bytes_left) ? num_bytes_left : buf_bytes; 485 const off_t offset = sh_offset + i * sizeof(buf[0]); 486 const ssize_t len = ReadFromOffset(fd, buf, num_bytes_to_read, offset); 487 if (len % sizeof(buf[0]) != 0) { 488 ABSL_RAW_LOG( 489 WARNING, 490 "Reading %zd bytes from offset %ju returned %zd which is not a " 491 "multiple of %zu.", 492 num_bytes_to_read, static_cast<uintmax_t>(offset), len, 493 sizeof(buf[0])); 494 return false; 495 } 496 const ssize_t num_headers_in_buf = len / sizeof(buf[0]); 497 SAFE_ASSERT(num_headers_in_buf <= buf_entries); 498 for (int j = 0; j < num_headers_in_buf; ++j) { 499 if (buf[j].sh_type == type) { 500 *out = buf[j]; 501 return true; 502 } 503 } 504 i += num_headers_in_buf; 505 } 506 return false; 507} 508 509// There is no particular reason to limit section name to 63 characters, 510// but there has (as yet) been no need for anything longer either. 511const int kMaxSectionNameLen = 64; 512 513bool ForEachSection(int fd, 514 const std::function<bool(absl::string_view name, 515 const ElfW(Shdr) &)> &callback) { 516 ElfW(Ehdr) elf_header; 517 if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) { 518 return false; 519 } 520 521 ElfW(Shdr) shstrtab; 522 off_t shstrtab_offset = 523 (elf_header.e_shoff + elf_header.e_shentsize * elf_header.e_shstrndx); 524 if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) { 525 return false; 526 } 527 528 for (int i = 0; i < elf_header.e_shnum; ++i) { 529 ElfW(Shdr) out; 530 off_t section_header_offset = 531 (elf_header.e_shoff + elf_header.e_shentsize * i); 532 if (!ReadFromOffsetExact(fd, &out, sizeof(out), section_header_offset)) { 533 return false; 534 } 535 off_t name_offset = shstrtab.sh_offset + out.sh_name; 536 char header_name[kMaxSectionNameLen]; 537 ssize_t n_read = 538 ReadFromOffset(fd, &header_name, kMaxSectionNameLen, name_offset); 539 if (n_read == -1) { 540 return false; 541 } else if (n_read > kMaxSectionNameLen) { 542 // Long read? 543 return false; 544 } 545 546 absl::string_view name(header_name, strnlen(header_name, n_read)); 547 if (!callback(name, out)) { 548 break; 549 } 550 } 551 return true; 552} 553 554// name_len should include terminating '\0'. 555bool GetSectionHeaderByName(int fd, const char *name, size_t name_len, 556 ElfW(Shdr) * out) { 557 char header_name[kMaxSectionNameLen]; 558 if (sizeof(header_name) < name_len) { 559 ABSL_RAW_LOG(WARNING, 560 "Section name '%s' is too long (%zu); " 561 "section will not be found (even if present).", 562 name, name_len); 563 // No point in even trying. 564 return false; 565 } 566 567 ElfW(Ehdr) elf_header; 568 if (!ReadFromOffsetExact(fd, &elf_header, sizeof(elf_header), 0)) { 569 return false; 570 } 571 572 ElfW(Shdr) shstrtab; 573 off_t shstrtab_offset = 574 (elf_header.e_shoff + elf_header.e_shentsize * elf_header.e_shstrndx); 575 if (!ReadFromOffsetExact(fd, &shstrtab, sizeof(shstrtab), shstrtab_offset)) { 576 return false; 577 } 578 579 for (int i = 0; i < elf_header.e_shnum; ++i) { 580 off_t section_header_offset = 581 (elf_header.e_shoff + elf_header.e_shentsize * i); 582 if (!ReadFromOffsetExact(fd, out, sizeof(*out), section_header_offset)) { 583 return false; 584 } 585 off_t name_offset = shstrtab.sh_offset + out->sh_name; 586 ssize_t n_read = ReadFromOffset(fd, &header_name, name_len, name_offset); 587 if (n_read < 0) { 588 return false; 589 } else if (static_cast<size_t>(n_read) != name_len) { 590 // Short read -- name could be at end of file. 591 continue; 592 } 593 if (memcmp(header_name, name, name_len) == 0) { 594 return true; 595 } 596 } 597 return false; 598} 599 600// Compare symbols at in the same address. 601// Return true if we should pick symbol1. 602static bool ShouldPickFirstSymbol(const ElfW(Sym) & symbol1, 603 const ElfW(Sym) & symbol2) { 604 // If one of the symbols is weak and the other is not, pick the one 605 // this is not a weak symbol. 606 char bind1 = ELF_ST_BIND(symbol1.st_info); 607 char bind2 = ELF_ST_BIND(symbol1.st_info); 608 if (bind1 == STB_WEAK && bind2 != STB_WEAK) return false; 609 if (bind2 == STB_WEAK && bind1 != STB_WEAK) return true; 610 611 // If one of the symbols has zero size and the other is not, pick the 612 // one that has non-zero size. 613 if (symbol1.st_size != 0 && symbol2.st_size == 0) { 614 return true; 615 } 616 if (symbol1.st_size == 0 && symbol2.st_size != 0) { 617 return false; 618 } 619 620 // If one of the symbols has no type and the other is not, pick the 621 // one that has a type. 622 char type1 = ELF_ST_TYPE(symbol1.st_info); 623 char type2 = ELF_ST_TYPE(symbol1.st_info); 624 if (type1 != STT_NOTYPE && type2 == STT_NOTYPE) { 625 return true; 626 } 627 if (type1 == STT_NOTYPE && type2 != STT_NOTYPE) { 628 return false; 629 } 630 631 // Pick the first one, if we still cannot decide. 632 return true; 633} 634 635// Return true if an address is inside a section. 636static bool InSection(const void *address, const ElfW(Shdr) * section) { 637 const char *start = reinterpret_cast<const char *>(section->sh_addr); 638 size_t size = static_cast<size_t>(section->sh_size); 639 return start <= address && address < (start + size); 640} 641 642static const char *ComputeOffset(const char *base, ptrdiff_t offset) { 643 // Note: cast to uintptr_t to avoid undefined behavior when base evaluates to 644 // zero and offset is non-zero. 645 return reinterpret_cast<const char *>( 646 reinterpret_cast<uintptr_t>(base) + offset); 647} 648 649// Read a symbol table and look for the symbol containing the 650// pc. Iterate over symbols in a symbol table and look for the symbol 651// containing "pc". If the symbol is found, and its name fits in 652// out_size, the name is written into out and SYMBOL_FOUND is returned. 653// If the name does not fit, truncated name is written into out, 654// and SYMBOL_TRUNCATED is returned. Out is NUL-terminated. 655// If the symbol is not found, SYMBOL_NOT_FOUND is returned; 656// To keep stack consumption low, we would like this function to not get 657// inlined. 658static ABSL_ATTRIBUTE_NOINLINE FindSymbolResult FindSymbol( 659 const void *const pc, const int fd, char *out, int out_size, 660 ptrdiff_t relocation, const ElfW(Shdr) * strtab, const ElfW(Shdr) * symtab, 661 const ElfW(Shdr) * opd, char *tmp_buf, int tmp_buf_size) { 662 if (symtab == nullptr) { 663 return SYMBOL_NOT_FOUND; 664 } 665 666 // Read multiple symbols at once to save read() calls. 667 ElfW(Sym) *buf = reinterpret_cast<ElfW(Sym) *>(tmp_buf); 668 const int buf_entries = tmp_buf_size / sizeof(buf[0]); 669 670 const int num_symbols = symtab->sh_size / symtab->sh_entsize; 671 672 // On platforms using an .opd section (PowerPC & IA64), a function symbol 673 // has the address of a function descriptor, which contains the real 674 // starting address. However, we do not always want to use the real 675 // starting address because we sometimes want to symbolize a function 676 // pointer into the .opd section, e.g. FindSymbol(&foo,...). 677 const bool pc_in_opd = 678 kPlatformUsesOPDSections && opd != nullptr && InSection(pc, opd); 679 const bool deref_function_descriptor_pointer = 680 kPlatformUsesOPDSections && opd != nullptr && !pc_in_opd; 681 682 ElfW(Sym) best_match; 683 SafeMemZero(&best_match, sizeof(best_match)); 684 bool found_match = false; 685 for (int i = 0; i < num_symbols;) { 686 off_t offset = symtab->sh_offset + i * symtab->sh_entsize; 687 const int num_remaining_symbols = num_symbols - i; 688 const int entries_in_chunk = std::min(num_remaining_symbols, buf_entries); 689 const int bytes_in_chunk = entries_in_chunk * sizeof(buf[0]); 690 const ssize_t len = ReadFromOffset(fd, buf, bytes_in_chunk, offset); 691 SAFE_ASSERT(len % sizeof(buf[0]) == 0); 692 const ssize_t num_symbols_in_buf = len / sizeof(buf[0]); 693 SAFE_ASSERT(num_symbols_in_buf <= entries_in_chunk); 694 for (int j = 0; j < num_symbols_in_buf; ++j) { 695 const ElfW(Sym) &symbol = buf[j]; 696 697 // For a DSO, a symbol address is relocated by the loading address. 698 // We keep the original address for opd redirection below. 699 const char *const original_start_address = 700 reinterpret_cast<const char *>(symbol.st_value); 701 const char *start_address = 702 ComputeOffset(original_start_address, relocation); 703 704#ifdef __arm__ 705 // ARM functions are always aligned to multiples of two bytes; the 706 // lowest-order bit in start_address is ignored by the CPU and indicates 707 // whether the function contains ARM (0) or Thumb (1) code. We don't care 708 // about what encoding is being used; we just want the real start address 709 // of the function. 710 start_address = reinterpret_cast<const char *>( 711 reinterpret_cast<uintptr_t>(start_address) & ~1); 712#endif 713 714 if (deref_function_descriptor_pointer && 715 InSection(original_start_address, opd)) { 716 // The opd section is mapped into memory. Just dereference 717 // start_address to get the first double word, which points to the 718 // function entry. 719 start_address = *reinterpret_cast<const char *const *>(start_address); 720 } 721 722 // If pc is inside the .opd section, it points to a function descriptor. 723 const size_t size = pc_in_opd ? kFunctionDescriptorSize : symbol.st_size; 724 const void *const end_address = ComputeOffset(start_address, size); 725 if (symbol.st_value != 0 && // Skip null value symbols. 726 symbol.st_shndx != 0 && // Skip undefined symbols. 727#ifdef STT_TLS 728 ELF_ST_TYPE(symbol.st_info) != STT_TLS && // Skip thread-local data. 729#endif // STT_TLS 730 ((start_address <= pc && pc < end_address) || 731 (start_address == pc && pc == end_address))) { 732 if (!found_match || ShouldPickFirstSymbol(symbol, best_match)) { 733 found_match = true; 734 best_match = symbol; 735 } 736 } 737 } 738 i += num_symbols_in_buf; 739 } 740 741 if (found_match) { 742 const size_t off = strtab->sh_offset + best_match.st_name; 743 const ssize_t n_read = ReadFromOffset(fd, out, out_size, off); 744 if (n_read <= 0) { 745 // This should never happen. 746 ABSL_RAW_LOG(WARNING, 747 "Unable to read from fd %d at offset %zu: n_read = %zd", fd, 748 off, n_read); 749 return SYMBOL_NOT_FOUND; 750 } 751 ABSL_RAW_CHECK(n_read <= out_size, "ReadFromOffset read too much data."); 752 753 // strtab->sh_offset points into .strtab-like section that contains 754 // NUL-terminated strings: '\0foo\0barbaz\0...". 755 // 756 // sh_offset+st_name points to the start of symbol name, but we don't know 757 // how long the symbol is, so we try to read as much as we have space for, 758 // and usually over-read (i.e. there is a NUL somewhere before n_read). 759 if (memchr(out, '\0', n_read) == nullptr) { 760 // Either out_size was too small (n_read == out_size and no NUL), or 761 // we tried to read past the EOF (n_read < out_size) and .strtab is 762 // corrupt (missing terminating NUL; should never happen for valid ELF). 763 out[n_read - 1] = '\0'; 764 return SYMBOL_TRUNCATED; 765 } 766 return SYMBOL_FOUND; 767 } 768 769 return SYMBOL_NOT_FOUND; 770} 771 772// Get the symbol name of "pc" from the file pointed by "fd". Process 773// both regular and dynamic symbol tables if necessary. 774// See FindSymbol() comment for description of return value. 775FindSymbolResult Symbolizer::GetSymbolFromObjectFile( 776 const ObjFile &obj, const void *const pc, const ptrdiff_t relocation, 777 char *out, int out_size, char *tmp_buf, int tmp_buf_size) { 778 ElfW(Shdr) symtab; 779 ElfW(Shdr) strtab; 780 ElfW(Shdr) opd; 781 ElfW(Shdr) *opd_ptr = nullptr; 782 783 // On platforms using an .opd sections for function descriptor, read 784 // the section header. The .opd section is in data segment and should be 785 // loaded but we check that it is mapped just to be extra careful. 786 if (kPlatformUsesOPDSections) { 787 if (GetSectionHeaderByName(obj.fd, kOpdSectionName, 788 sizeof(kOpdSectionName) - 1, &opd) && 789 FindObjFile(reinterpret_cast<const char *>(opd.sh_addr) + relocation, 790 opd.sh_size) != nullptr) { 791 opd_ptr = &opd; 792 } else { 793 return SYMBOL_NOT_FOUND; 794 } 795 } 796 797 // Consult a regular symbol table, then fall back to the dynamic symbol table. 798 for (const auto symbol_table_type : {SHT_SYMTAB, SHT_DYNSYM}) { 799 if (!GetSectionHeaderByType(obj.fd, obj.elf_header.e_shnum, 800 obj.elf_header.e_shoff, symbol_table_type, 801 &symtab, tmp_buf, tmp_buf_size)) { 802 continue; 803 } 804 if (!ReadFromOffsetExact( 805 obj.fd, &strtab, sizeof(strtab), 806 obj.elf_header.e_shoff + symtab.sh_link * sizeof(symtab))) { 807 continue; 808 } 809 const FindSymbolResult rc = 810 FindSymbol(pc, obj.fd, out, out_size, relocation, &strtab, &symtab, 811 opd_ptr, tmp_buf, tmp_buf_size); 812 if (rc != SYMBOL_NOT_FOUND) { 813 return rc; 814 } 815 } 816 817 return SYMBOL_NOT_FOUND; 818} 819 820namespace { 821// Thin wrapper around a file descriptor so that the file descriptor 822// gets closed for sure. 823class FileDescriptor { 824 public: 825 explicit FileDescriptor(int fd) : fd_(fd) {} 826 FileDescriptor(const FileDescriptor &) = delete; 827 FileDescriptor &operator=(const FileDescriptor &) = delete; 828 829 ~FileDescriptor() { 830 if (fd_ >= 0) { 831 NO_INTR(close(fd_)); 832 } 833 } 834 835 int get() const { return fd_; } 836 837 private: 838 const int fd_; 839}; 840 841// Helper class for reading lines from file. 842// 843// Note: we don't use ProcMapsIterator since the object is big (it has 844// a 5k array member) and uses async-unsafe functions such as sscanf() 845// and snprintf(). 846class LineReader { 847 public: 848 explicit LineReader(int fd, char *buf, int buf_len) 849 : fd_(fd), 850 buf_len_(buf_len), 851 buf_(buf), 852 bol_(buf), 853 eol_(buf), 854 eod_(buf) {} 855 856 LineReader(const LineReader &) = delete; 857 LineReader &operator=(const LineReader &) = delete; 858 859 // Read '\n'-terminated line from file. On success, modify "bol" 860 // and "eol", then return true. Otherwise, return false. 861 // 862 // Note: if the last line doesn't end with '\n', the line will be 863 // dropped. It's an intentional behavior to make the code simple. 864 bool ReadLine(const char **bol, const char **eol) { 865 if (BufferIsEmpty()) { // First time. 866 const ssize_t num_bytes = ReadPersistent(fd_, buf_, buf_len_); 867 if (num_bytes <= 0) { // EOF or error. 868 return false; 869 } 870 eod_ = buf_ + num_bytes; 871 bol_ = buf_; 872 } else { 873 bol_ = eol_ + 1; // Advance to the next line in the buffer. 874 SAFE_ASSERT(bol_ <= eod_); // "bol_" can point to "eod_". 875 if (!HasCompleteLine()) { 876 const int incomplete_line_length = eod_ - bol_; 877 // Move the trailing incomplete line to the beginning. 878 memmove(buf_, bol_, incomplete_line_length); 879 // Read text from file and append it. 880 char *const append_pos = buf_ + incomplete_line_length; 881 const int capacity_left = buf_len_ - incomplete_line_length; 882 const ssize_t num_bytes = 883 ReadPersistent(fd_, append_pos, capacity_left); 884 if (num_bytes <= 0) { // EOF or error. 885 return false; 886 } 887 eod_ = append_pos + num_bytes; 888 bol_ = buf_; 889 } 890 } 891 eol_ = FindLineFeed(); 892 if (eol_ == nullptr) { // '\n' not found. Malformed line. 893 return false; 894 } 895 *eol_ = '\0'; // Replace '\n' with '\0'. 896 897 *bol = bol_; 898 *eol = eol_; 899 return true; 900 } 901 902 private: 903 char *FindLineFeed() const { 904 return reinterpret_cast<char *>(memchr(bol_, '\n', eod_ - bol_)); 905 } 906 907 bool BufferIsEmpty() const { return buf_ == eod_; } 908 909 bool HasCompleteLine() const { 910 return !BufferIsEmpty() && FindLineFeed() != nullptr; 911 } 912 913 const int fd_; 914 const int buf_len_; 915 char *const buf_; 916 char *bol_; 917 char *eol_; 918 const char *eod_; // End of data in "buf_". 919}; 920} // namespace 921 922// Place the hex number read from "start" into "*hex". The pointer to 923// the first non-hex character or "end" is returned. 924static const char *GetHex(const char *start, const char *end, 925 uint64_t *const value) { 926 uint64_t hex = 0; 927 const char *p; 928 for (p = start; p < end; ++p) { 929 int ch = *p; 930 if ((ch >= '0' && ch <= '9') || (ch >= 'A' && ch <= 'F') || 931 (ch >= 'a' && ch <= 'f')) { 932 hex = (hex << 4) | (ch < 'A' ? ch - '0' : (ch & 0xF) + 9); 933 } else { // Encountered the first non-hex character. 934 break; 935 } 936 } 937 SAFE_ASSERT(p <= end); 938 *value = hex; 939 return p; 940} 941 942static const char *GetHex(const char *start, const char *end, 943 const void **const addr) { 944 uint64_t hex = 0; 945 const char *p = GetHex(start, end, &hex); 946 *addr = reinterpret_cast<void *>(hex); 947 return p; 948} 949 950// Normally we are only interested in "r?x" maps. 951// On the PowerPC, function pointers point to descriptors in the .opd 952// section. The descriptors themselves are not executable code, so 953// we need to relax the check below to "r??". 954static bool ShouldUseMapping(const char *const flags) { 955 return flags[0] == 'r' && (kPlatformUsesOPDSections || flags[2] == 'x'); 956} 957 958// Read /proc/self/maps and run "callback" for each mmapped file found. If 959// "callback" returns false, stop scanning and return true. Else continue 960// scanning /proc/self/maps. Return true if no parse error is found. 961static ABSL_ATTRIBUTE_NOINLINE bool ReadAddrMap( 962 bool (*callback)(const char *filename, const void *const start_addr, 963 const void *const end_addr, uint64_t offset, void *arg), 964 void *arg, void *tmp_buf, int tmp_buf_size) { 965 // Use /proc/self/task/<pid>/maps instead of /proc/self/maps. The latter 966 // requires kernel to stop all threads, and is significantly slower when there 967 // are 1000s of threads. 968 char maps_path[80]; 969 snprintf(maps_path, sizeof(maps_path), "/proc/self/task/%d/maps", getpid()); 970 971 int maps_fd; 972 NO_INTR(maps_fd = open(maps_path, O_RDONLY)); 973 FileDescriptor wrapped_maps_fd(maps_fd); 974 if (wrapped_maps_fd.get() < 0) { 975 ABSL_RAW_LOG(WARNING, "%s: errno=%d", maps_path, errno); 976 return false; 977 } 978 979 // Iterate over maps and look for the map containing the pc. Then 980 // look into the symbol tables inside. 981 LineReader reader(wrapped_maps_fd.get(), static_cast<char *>(tmp_buf), 982 tmp_buf_size); 983 while (true) { 984 const char *cursor; 985 const char *eol; 986 if (!reader.ReadLine(&cursor, &eol)) { // EOF or malformed line. 987 break; 988 } 989 990 const char *line = cursor; 991 const void *start_address; 992 // Start parsing line in /proc/self/maps. Here is an example: 993 // 994 // 08048000-0804c000 r-xp 00000000 08:01 2142121 /bin/cat 995 // 996 // We want start address (08048000), end address (0804c000), flags 997 // (r-xp) and file name (/bin/cat). 998 999 // Read start address. 1000 cursor = GetHex(cursor, eol, &start_address); 1001 if (cursor == eol || *cursor != '-') { 1002 ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line); 1003 return false; 1004 } 1005 ++cursor; // Skip '-'. 1006 1007 // Read end address. 1008 const void *end_address; 1009 cursor = GetHex(cursor, eol, &end_address); 1010 if (cursor == eol || *cursor != ' ') { 1011 ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps line: %s", line); 1012 return false; 1013 } 1014 ++cursor; // Skip ' '. 1015 1016 // Read flags. Skip flags until we encounter a space or eol. 1017 const char *const flags_start = cursor; 1018 while (cursor < eol && *cursor != ' ') { 1019 ++cursor; 1020 } 1021 // We expect at least four letters for flags (ex. "r-xp"). 1022 if (cursor == eol || cursor < flags_start + 4) { 1023 ABSL_RAW_LOG(WARNING, "Corrupt /proc/self/maps: %s", line); 1024 return false; 1025 } 1026 1027 // Check flags. 1028 if (!ShouldUseMapping(flags_start)) { 1029 continue; // We skip this map. 1030 } 1031 ++cursor; // Skip ' '. 1032 1033 // Read file offset. 1034 uint64_t offset; 1035 cursor = GetHex(cursor, eol, &offset); 1036 ++cursor; // Skip ' '. 1037 1038 // Skip to file name. "cursor" now points to dev. We need to skip at least 1039 // two spaces for dev and inode. 1040 int num_spaces = 0; 1041 while (cursor < eol) { 1042 if (*cursor == ' ') { 1043 ++num_spaces; 1044 } else if (num_spaces >= 2) { 1045 // The first non-space character after skipping two spaces 1046 // is the beginning of the file name. 1047 break; 1048 } 1049 ++cursor; 1050 } 1051 1052 // Check whether this entry corresponds to our hint table for the true 1053 // filename. 1054 bool hinted = 1055 GetFileMappingHint(&start_address, &end_address, &offset, &cursor); 1056 if (!hinted && (cursor == eol || cursor[0] == '[')) { 1057 // not an object file, typically [vdso] or [vsyscall] 1058 continue; 1059 } 1060 if (!callback(cursor, start_address, end_address, offset, arg)) break; 1061 } 1062 return true; 1063} 1064 1065// Find the objfile mapped in address region containing [addr, addr + len). 1066ObjFile *Symbolizer::FindObjFile(const void *const addr, size_t len) { 1067 for (int i = 0; i < 2; ++i) { 1068 if (!ok_) return nullptr; 1069 1070 // Read /proc/self/maps if necessary 1071 if (!addr_map_read_) { 1072 addr_map_read_ = true; 1073 if (!ReadAddrMap(RegisterObjFile, this, tmp_buf_, TMP_BUF_SIZE)) { 1074 ok_ = false; 1075 return nullptr; 1076 } 1077 } 1078 1079 int lo = 0; 1080 int hi = addr_map_.Size(); 1081 while (lo < hi) { 1082 int mid = (lo + hi) / 2; 1083 if (addr < addr_map_.At(mid)->end_addr) { 1084 hi = mid; 1085 } else { 1086 lo = mid + 1; 1087 } 1088 } 1089 if (lo != addr_map_.Size()) { 1090 ObjFile *obj = addr_map_.At(lo); 1091 SAFE_ASSERT(obj->end_addr > addr); 1092 if (addr >= obj->start_addr && 1093 reinterpret_cast<const char *>(addr) + len <= obj->end_addr) 1094 return obj; 1095 } 1096 1097 // The address mapping may have changed since it was last read. Retry. 1098 ClearAddrMap(); 1099 } 1100 return nullptr; 1101} 1102 1103void Symbolizer::ClearAddrMap() { 1104 for (int i = 0; i != addr_map_.Size(); i++) { 1105 ObjFile *o = addr_map_.At(i); 1106 base_internal::LowLevelAlloc::Free(o->filename); 1107 if (o->fd >= 0) { 1108 NO_INTR(close(o->fd)); 1109 } 1110 } 1111 addr_map_.Clear(); 1112 addr_map_read_ = false; 1113} 1114 1115// Callback for ReadAddrMap to register objfiles in an in-memory table. 1116bool Symbolizer::RegisterObjFile(const char *filename, 1117 const void *const start_addr, 1118 const void *const end_addr, uint64_t offset, 1119 void *arg) { 1120 Symbolizer *impl = static_cast<Symbolizer *>(arg); 1121 1122 // Files are supposed to be added in the increasing address order. Make 1123 // sure that's the case. 1124 int addr_map_size = impl->addr_map_.Size(); 1125 if (addr_map_size != 0) { 1126 ObjFile *old = impl->addr_map_.At(addr_map_size - 1); 1127 if (old->end_addr > end_addr) { 1128 ABSL_RAW_LOG(ERROR, 1129 "Unsorted addr map entry: 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR 1130 ": %s", 1131 reinterpret_cast<uintptr_t>(end_addr), filename, 1132 reinterpret_cast<uintptr_t>(old->end_addr), old->filename); 1133 return true; 1134 } else if (old->end_addr == end_addr) { 1135 // The same entry appears twice. This sometimes happens for [vdso]. 1136 if (old->start_addr != start_addr || 1137 strcmp(old->filename, filename) != 0) { 1138 ABSL_RAW_LOG(ERROR, 1139 "Duplicate addr 0x%" PRIxPTR ": %s <-> 0x%" PRIxPTR ": %s", 1140 reinterpret_cast<uintptr_t>(end_addr), filename, 1141 reinterpret_cast<uintptr_t>(old->end_addr), old->filename); 1142 } 1143 return true; 1144 } 1145 } 1146 ObjFile *obj = impl->addr_map_.Add(); 1147 obj->filename = impl->CopyString(filename); 1148 obj->start_addr = start_addr; 1149 obj->end_addr = end_addr; 1150 obj->offset = offset; 1151 obj->elf_type = -1; // filled on demand 1152 obj->fd = -1; // opened on demand 1153 return true; 1154} 1155 1156// This function wraps the Demangle function to provide an interface 1157// where the input symbol is demangled in-place. 1158// To keep stack consumption low, we would like this function to not 1159// get inlined. 1160static ABSL_ATTRIBUTE_NOINLINE void DemangleInplace(char *out, int out_size, 1161 char *tmp_buf, 1162 int tmp_buf_size) { 1163 if (Demangle(out, tmp_buf, tmp_buf_size)) { 1164 // Demangling succeeded. Copy to out if the space allows. 1165 int len = strlen(tmp_buf); 1166 if (len + 1 <= out_size) { // +1 for '\0'. 1167 SAFE_ASSERT(len < tmp_buf_size); 1168 memmove(out, tmp_buf, len + 1); 1169 } 1170 } 1171} 1172 1173SymbolCacheLine *Symbolizer::GetCacheLine(const void *const pc) { 1174 uintptr_t pc0 = reinterpret_cast<uintptr_t>(pc); 1175 pc0 >>= 3; // drop the low 3 bits 1176 1177 // Shuffle bits. 1178 pc0 ^= (pc0 >> 6) ^ (pc0 >> 12) ^ (pc0 >> 18); 1179 return &symbol_cache_[pc0 % SYMBOL_CACHE_LINES]; 1180} 1181 1182void Symbolizer::AgeSymbols(SymbolCacheLine *line) { 1183 for (uint32_t &age : line->age) { 1184 ++age; 1185 } 1186} 1187 1188const char *Symbolizer::FindSymbolInCache(const void *const pc) { 1189 if (pc == nullptr) return nullptr; 1190 1191 SymbolCacheLine *line = GetCacheLine(pc); 1192 for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) { 1193 if (line->pc[i] == pc) { 1194 AgeSymbols(line); 1195 line->age[i] = 0; 1196 return line->name[i]; 1197 } 1198 } 1199 return nullptr; 1200} 1201 1202const char *Symbolizer::InsertSymbolInCache(const void *const pc, 1203 const char *name) { 1204 SAFE_ASSERT(pc != nullptr); 1205 1206 SymbolCacheLine *line = GetCacheLine(pc); 1207 uint32_t max_age = 0; 1208 int oldest_index = -1; 1209 for (size_t i = 0; i < ABSL_ARRAYSIZE(line->pc); ++i) { 1210 if (line->pc[i] == nullptr) { 1211 AgeSymbols(line); 1212 line->pc[i] = pc; 1213 line->name[i] = CopyString(name); 1214 line->age[i] = 0; 1215 return line->name[i]; 1216 } 1217 if (line->age[i] >= max_age) { 1218 max_age = line->age[i]; 1219 oldest_index = i; 1220 } 1221 } 1222 1223 AgeSymbols(line); 1224 ABSL_RAW_CHECK(oldest_index >= 0, "Corrupt cache"); 1225 base_internal::LowLevelAlloc::Free(line->name[oldest_index]); 1226 line->pc[oldest_index] = pc; 1227 line->name[oldest_index] = CopyString(name); 1228 line->age[oldest_index] = 0; 1229 return line->name[oldest_index]; 1230} 1231 1232static void MaybeOpenFdFromSelfExe(ObjFile *obj) { 1233 if (memcmp(obj->start_addr, ELFMAG, SELFMAG) != 0) { 1234 return; 1235 } 1236 int fd = open("/proc/self/exe", O_RDONLY); 1237 if (fd == -1) { 1238 return; 1239 } 1240 // Verify that contents of /proc/self/exe matches in-memory image of 1241 // the binary. This can fail if the "deleted" binary is in fact not 1242 // the main executable, or for binaries that have the first PT_LOAD 1243 // segment smaller than 4K. We do it in four steps so that the 1244 // buffer is smaller and we don't consume too much stack space. 1245 const char *mem = reinterpret_cast<const char *>(obj->start_addr); 1246 for (int i = 0; i < 4; ++i) { 1247 char buf[1024]; 1248 ssize_t n = read(fd, buf, sizeof(buf)); 1249 if (n != sizeof(buf) || memcmp(buf, mem, sizeof(buf)) != 0) { 1250 close(fd); 1251 return; 1252 } 1253 mem += sizeof(buf); 1254 } 1255 obj->fd = fd; 1256} 1257 1258static bool MaybeInitializeObjFile(ObjFile *obj) { 1259 if (obj->fd < 0) { 1260 obj->fd = open(obj->filename, O_RDONLY); 1261 1262 if (obj->fd < 0) { 1263 // Getting /proc/self/exe here means that we were hinted. 1264 if (strcmp(obj->filename, "/proc/self/exe") == 0) { 1265 // /proc/self/exe may be inaccessible (due to setuid, etc.), so try 1266 // accessing the binary via argv0. 1267 if (argv0_value != nullptr) { 1268 obj->fd = open(argv0_value, O_RDONLY); 1269 } 1270 } else { 1271 MaybeOpenFdFromSelfExe(obj); 1272 } 1273 } 1274 1275 if (obj->fd < 0) { 1276 ABSL_RAW_LOG(WARNING, "%s: open failed: errno=%d", obj->filename, errno); 1277 return false; 1278 } 1279 obj->elf_type = FileGetElfType(obj->fd); 1280 if (obj->elf_type < 0) { 1281 ABSL_RAW_LOG(WARNING, "%s: wrong elf type: %d", obj->filename, 1282 obj->elf_type); 1283 return false; 1284 } 1285 1286 if (!ReadFromOffsetExact(obj->fd, &obj->elf_header, sizeof(obj->elf_header), 1287 0)) { 1288 ABSL_RAW_LOG(WARNING, "%s: failed to read elf header", obj->filename); 1289 return false; 1290 } 1291 const int phnum = obj->elf_header.e_phnum; 1292 const int phentsize = obj->elf_header.e_phentsize; 1293 size_t phoff = obj->elf_header.e_phoff; 1294 size_t num_executable_load_segments = 0; 1295 for (int j = 0; j < phnum; j++) { 1296 ElfW(Phdr) phdr; 1297 if (!ReadFromOffsetExact(obj->fd, &phdr, sizeof(phdr), phoff)) { 1298 ABSL_RAW_LOG(WARNING, "%s: failed to read program header %d", 1299 obj->filename, j); 1300 return false; 1301 } 1302 phoff += phentsize; 1303 constexpr int rx = PF_X | PF_R; 1304 if (phdr.p_type != PT_LOAD || (phdr.p_flags & rx) != rx) { 1305 // Not a LOAD segment, or not executable code. 1306 continue; 1307 } 1308 if (num_executable_load_segments < obj->phdr.size()) { 1309 memcpy(&obj->phdr[num_executable_load_segments++], &phdr, sizeof(phdr)); 1310 } else { 1311 ABSL_RAW_LOG(WARNING, "%s: too many executable LOAD segments", 1312 obj->filename); 1313 break; 1314 } 1315 } 1316 if (num_executable_load_segments == 0) { 1317 // This object has no "r-x" LOAD segments. That's unexpected. 1318 ABSL_RAW_LOG(WARNING, "%s: no executable LOAD segments", obj->filename); 1319 return false; 1320 } 1321 } 1322 return true; 1323} 1324 1325// The implementation of our symbolization routine. If it 1326// successfully finds the symbol containing "pc" and obtains the 1327// symbol name, returns pointer to that symbol. Otherwise, returns nullptr. 1328// If any symbol decorators have been installed via InstallSymbolDecorator(), 1329// they are called here as well. 1330// To keep stack consumption low, we would like this function to not 1331// get inlined. 1332const char *Symbolizer::GetSymbol(const void *const pc) { 1333 const char *entry = FindSymbolInCache(pc); 1334 if (entry != nullptr) { 1335 return entry; 1336 } 1337 symbol_buf_[0] = '\0'; 1338 1339 ObjFile *const obj = FindObjFile(pc, 1); 1340 ptrdiff_t relocation = 0; 1341 int fd = -1; 1342 if (obj != nullptr) { 1343 if (MaybeInitializeObjFile(obj)) { 1344 const size_t start_addr = reinterpret_cast<size_t>(obj->start_addr); 1345 if (obj->elf_type == ET_DYN && start_addr >= obj->offset) { 1346 // This object was relocated. 1347 // 1348 // For obj->offset > 0, adjust the relocation since a mapping at offset 1349 // X in the file will have a start address of [true relocation]+X. 1350 relocation = start_addr - obj->offset; 1351 1352 // Note: some binaries have multiple "rx" LOAD segments. We must 1353 // find the right one. 1354 ElfW(Phdr) *phdr = nullptr; 1355 for (size_t j = 0; j < obj->phdr.size(); j++) { 1356 ElfW(Phdr) &p = obj->phdr[j]; 1357 if (p.p_type != PT_LOAD) { 1358 // We only expect PT_LOADs. This must be PT_NULL that we didn't 1359 // write over (i.e. we exhausted all interesting PT_LOADs). 1360 ABSL_RAW_CHECK(p.p_type == PT_NULL, "unexpected p_type"); 1361 break; 1362 } 1363 if (pc < reinterpret_cast<void *>(start_addr + p.p_memsz)) { 1364 phdr = &p; 1365 break; 1366 } 1367 } 1368 if (phdr == nullptr) { 1369 // That's unexpected. Hope for the best. 1370 ABSL_RAW_LOG( 1371 WARNING, 1372 "%s: unable to find LOAD segment for pc: %p, start_addr: %zx", 1373 obj->filename, pc, start_addr); 1374 } else { 1375 // Adjust relocation in case phdr.p_vaddr != 0. 1376 // This happens for binaries linked with `lld --rosegment`, and for 1377 // binaries linked with BFD `ld -z separate-code`. 1378 relocation -= phdr->p_vaddr - phdr->p_offset; 1379 } 1380 } 1381 1382 fd = obj->fd; 1383 if (GetSymbolFromObjectFile(*obj, pc, relocation, symbol_buf_, 1384 sizeof(symbol_buf_), tmp_buf_, 1385 sizeof(tmp_buf_)) == SYMBOL_FOUND) { 1386 // Only try to demangle the symbol name if it fit into symbol_buf_. 1387 DemangleInplace(symbol_buf_, sizeof(symbol_buf_), tmp_buf_, 1388 sizeof(tmp_buf_)); 1389 } 1390 } 1391 } else { 1392#if ABSL_HAVE_VDSO_SUPPORT 1393 VDSOSupport vdso; 1394 if (vdso.IsPresent()) { 1395 VDSOSupport::SymbolInfo symbol_info; 1396 if (vdso.LookupSymbolByAddress(pc, &symbol_info)) { 1397 // All VDSO symbols are known to be short. 1398 size_t len = strlen(symbol_info.name); 1399 ABSL_RAW_CHECK(len + 1 < sizeof(symbol_buf_), 1400 "VDSO symbol unexpectedly long"); 1401 memcpy(symbol_buf_, symbol_info.name, len + 1); 1402 } 1403 } 1404#endif 1405 } 1406 1407 if (g_decorators_mu.TryLock()) { 1408 if (g_num_decorators > 0) { 1409 SymbolDecoratorArgs decorator_args = { 1410 pc, relocation, fd, symbol_buf_, sizeof(symbol_buf_), 1411 tmp_buf_, sizeof(tmp_buf_), nullptr}; 1412 for (int i = 0; i < g_num_decorators; ++i) { 1413 decorator_args.arg = g_decorators[i].arg; 1414 g_decorators[i].fn(&decorator_args); 1415 } 1416 } 1417 g_decorators_mu.Unlock(); 1418 } 1419 if (symbol_buf_[0] == '\0') { 1420 return nullptr; 1421 } 1422 symbol_buf_[sizeof(symbol_buf_) - 1] = '\0'; // Paranoia. 1423 return InsertSymbolInCache(pc, symbol_buf_); 1424} 1425 1426bool RemoveAllSymbolDecorators(void) { 1427 if (!g_decorators_mu.TryLock()) { 1428 // Someone else is using decorators. Get out. 1429 return false; 1430 } 1431 g_num_decorators = 0; 1432 g_decorators_mu.Unlock(); 1433 return true; 1434} 1435 1436bool RemoveSymbolDecorator(int ticket) { 1437 if (!g_decorators_mu.TryLock()) { 1438 // Someone else is using decorators. Get out. 1439 return false; 1440 } 1441 for (int i = 0; i < g_num_decorators; ++i) { 1442 if (g_decorators[i].ticket == ticket) { 1443 while (i < g_num_decorators - 1) { 1444 g_decorators[i] = g_decorators[i + 1]; 1445 ++i; 1446 } 1447 g_num_decorators = i; 1448 break; 1449 } 1450 } 1451 g_decorators_mu.Unlock(); 1452 return true; // Decorator is known to be removed. 1453} 1454 1455int InstallSymbolDecorator(SymbolDecorator decorator, void *arg) { 1456 static int ticket = 0; 1457 1458 if (!g_decorators_mu.TryLock()) { 1459 // Someone else is using decorators. Get out. 1460 return -2; 1461 } 1462 int ret = ticket; 1463 if (g_num_decorators >= kMaxDecorators) { 1464 ret = -1; 1465 } else { 1466 g_decorators[g_num_decorators] = {decorator, arg, ticket++}; 1467 ++g_num_decorators; 1468 } 1469 g_decorators_mu.Unlock(); 1470 return ret; 1471} 1472 1473bool RegisterFileMappingHint(const void *start, const void *end, uint64_t offset, 1474 const char *filename) { 1475 SAFE_ASSERT(start <= end); 1476 SAFE_ASSERT(filename != nullptr); 1477 1478 InitSigSafeArena(); 1479 1480 if (!g_file_mapping_mu.TryLock()) { 1481 return false; 1482 } 1483 1484 bool ret = true; 1485 if (g_num_file_mapping_hints >= kMaxFileMappingHints) { 1486 ret = false; 1487 } else { 1488 // TODO(ckennelly): Move this into a string copy routine. 1489 int len = strlen(filename); 1490 char *dst = static_cast<char *>( 1491 base_internal::LowLevelAlloc::AllocWithArena(len + 1, SigSafeArena())); 1492 ABSL_RAW_CHECK(dst != nullptr, "out of memory"); 1493 memcpy(dst, filename, len + 1); 1494 1495 auto &hint = g_file_mapping_hints[g_num_file_mapping_hints++]; 1496 hint.start = start; 1497 hint.end = end; 1498 hint.offset = offset; 1499 hint.filename = dst; 1500 } 1501 1502 g_file_mapping_mu.Unlock(); 1503 return ret; 1504} 1505 1506bool GetFileMappingHint(const void **start, const void **end, uint64_t *offset, 1507 const char **filename) { 1508 if (!g_file_mapping_mu.TryLock()) { 1509 return false; 1510 } 1511 bool found = false; 1512 for (int i = 0; i < g_num_file_mapping_hints; i++) { 1513 if (g_file_mapping_hints[i].start <= *start && 1514 *end <= g_file_mapping_hints[i].end) { 1515 // We assume that the start_address for the mapping is the base 1516 // address of the ELF section, but when [start_address,end_address) is 1517 // not strictly equal to [hint.start, hint.end), that assumption is 1518 // invalid. 1519 // 1520 // This uses the hint's start address (even though hint.start is not 1521 // necessarily equal to start_address) to ensure the correct 1522 // relocation is computed later. 1523 *start = g_file_mapping_hints[i].start; 1524 *end = g_file_mapping_hints[i].end; 1525 *offset = g_file_mapping_hints[i].offset; 1526 *filename = g_file_mapping_hints[i].filename; 1527 found = true; 1528 break; 1529 } 1530 } 1531 g_file_mapping_mu.Unlock(); 1532 return found; 1533} 1534 1535} // namespace debugging_internal 1536 1537bool Symbolize(const void *pc, char *out, int out_size) { 1538 // Symbolization is very slow under tsan. 1539 ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_BEGIN(); 1540 SAFE_ASSERT(out_size >= 0); 1541 debugging_internal::Symbolizer *s = debugging_internal::AllocateSymbolizer(); 1542 const char *name = s->GetSymbol(pc); 1543 bool ok = false; 1544 if (name != nullptr && out_size > 0) { 1545 strncpy(out, name, out_size); 1546 ok = true; 1547 if (out[out_size - 1] != '\0') { 1548 // strncpy() does not '\0' terminate when it truncates. Do so, with 1549 // trailing ellipsis. 1550 static constexpr char kEllipsis[] = "..."; 1551 int ellipsis_size = 1552 std::min(implicit_cast<int>(strlen(kEllipsis)), out_size - 1); 1553 memcpy(out + out_size - ellipsis_size - 1, kEllipsis, ellipsis_size); 1554 out[out_size - 1] = '\0'; 1555 } 1556 } 1557 debugging_internal::FreeSymbolizer(s); 1558 ABSL_ANNOTATE_IGNORE_READS_AND_WRITES_END(); 1559 return ok; 1560} 1561 1562ABSL_NAMESPACE_END 1563} // namespace absl 1564 1565extern "C" bool AbslInternalGetFileMappingHint(const void **start, 1566 const void **end, uint64_t *offset, 1567 const char **filename) { 1568 return absl::debugging_internal::GetFileMappingHint(start, end, offset, 1569 filename); 1570} 1571