1 /*
2 * Copyright (C) 2021 Alyssa Rosenzweig <alyssa@rosenzweig.io>
3 *
4 * Permission is hereby granted, free of charge, to any person obtaining a
5 * copy of this software and associated documentation files (the "Software"),
6 * to deal in the Software without restriction, including without limitation
7 * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8 * and/or sell copies of the Software, and to permit persons to whom the
9 * Software is furnished to do so, subject to the following conditions:
10 *
11 * The above copyright notice and this permission notice (including the next
12 * paragraph) shall be included in all copies or substantial portions of the
13 * Software.
14 *
15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 * SOFTWARE.
22 */
23
24 #include "agx_compiler.h"
25 #include "agx_minifloat.h"
26
27 /* AGX peephole optimizer responsible for instruction combining. It operates in
28 * a forward direction and a backward direction, in each case traversing in
29 * source order. SSA means the forward pass satisfies the invariant:
30 *
31 * Every def is visited before any of its uses.
32 *
33 * Dually, the backend pass satisfies the invariant:
34 *
35 * Every use of a def is visited before the def.
36 *
37 * This means the forward pass can propagate modifiers forward, whereas the
38 * backwards pass propagates modifiers backward. Consider an example:
39 *
40 * 1 = fabs 0
41 * 2 = fround 1
42 * 3 = fsat 1
43 *
44 * The forwards pass would propagate the fabs to the fround (since we can
45 * lookup the fabs from the fround source and do the replacement). By contrast
46 * the backwards pass would propagate the fsat back to the fround (since when
47 * we see the fround we know it has only a single user, fsat). Propagatable
48 * instruction have natural directions (like pushforwards and pullbacks).
49 *
50 * We are careful to update the tracked state whenever we modify an instruction
51 * to ensure the passes are linear-time and converge in a single iteration.
52 *
53 * Size conversions are worth special discussion. Consider the snippet:
54 *
55 * 2 = fadd 0, 1
56 * 3 = f2f16 2
57 * 4 = fround 3
58 *
59 * A priori, we can move the f2f16 in either direction. But it's not equal --
60 * if we move it up to the fadd, we get FP16 for two instructions, whereas if
61 * we push it into the fround, we effectively get FP32 for two instructions. So
62 * f2f16 is backwards. Likewise, consider
63 *
64 * 2 = fadd 0, 1
65 * 3 = f2f32 1
66 * 4 = fround 3
67 *
68 * This time if we move f2f32 up to the fadd, we get FP32 for two, but if we
69 * move it down to the fround, we get FP16 to too. So f2f32 is backwards.
70 */
71
72 static bool
agx_is_fmov(agx_instr * def)73 agx_is_fmov(agx_instr *def)
74 {
75 return (def->op == AGX_OPCODE_FADD)
76 && agx_is_equiv(def->src[1], agx_negzero());
77 }
78
79 /* Compose floating-point modifiers with floating-point sources */
80
81 static agx_index
agx_compose_float_src(agx_index to,agx_index from)82 agx_compose_float_src(agx_index to, agx_index from)
83 {
84 if (to.abs) {
85 from.neg = false;
86 from.abs = true;
87 }
88
89 from.neg ^= to.neg;
90
91 return from;
92 }
93
94 static void
agx_optimizer_fmov(agx_instr ** defs,agx_instr * ins)95 agx_optimizer_fmov(agx_instr **defs, agx_instr *ins)
96 {
97 agx_foreach_src(ins, s) {
98 agx_index src = ins->src[s];
99 if (src.type != AGX_INDEX_NORMAL) continue;
100
101 agx_instr *def = defs[src.value];
102 if (def == NULL) continue; /* happens for phis in loops */
103 if (!agx_is_fmov(def)) continue;
104 if (def->saturate) continue;
105
106 ins->src[s] = agx_compose_float_src(src, def->src[0]);
107 }
108 }
109
110 static void
agx_optimizer_inline_imm(agx_instr ** defs,agx_instr * I,unsigned srcs,bool is_float)111 agx_optimizer_inline_imm(agx_instr **defs, agx_instr *I,
112 unsigned srcs, bool is_float)
113 {
114 for (unsigned s = 0; s < srcs; ++s) {
115 agx_index src = I->src[s];
116 if (src.type != AGX_INDEX_NORMAL) continue;
117
118 agx_instr *def = defs[src.value];
119 if (def->op != AGX_OPCODE_MOV_IMM) continue;
120
121 uint8_t value = def->imm;
122 bool float_src = is_float;
123
124 /* cmpselsrc takes integer immediates only */
125 if (s >= 2 && I->op == AGX_OPCODE_FCMPSEL) float_src = false;
126
127 if (float_src) {
128 bool fp16 = (def->dest[0].size == AGX_SIZE_16);
129 assert(fp16 || (def->dest[0].size == AGX_SIZE_32));
130
131 float f = fp16 ? _mesa_half_to_float(def->imm) : uif(def->imm);
132 if (!agx_minifloat_exact(f)) continue;
133
134 value = agx_minifloat_encode(f);
135 } else if (value != def->imm) {
136 continue;
137 }
138
139 I->src[s].type = AGX_INDEX_IMMEDIATE;
140 I->src[s].value = value;
141 }
142 }
143
144 static bool
agx_optimizer_fmov_rev(agx_instr * I,agx_instr * use)145 agx_optimizer_fmov_rev(agx_instr *I, agx_instr *use)
146 {
147 if (!agx_is_fmov(use)) return false;
148 if (use->src[0].neg || use->src[0].abs) return false;
149
150 /* saturate(saturate(x)) = saturate(x) */
151 I->saturate |= use->saturate;
152 I->dest[0] = use->dest[0];
153 return true;
154 }
155
156 static void
agx_optimizer_copyprop(agx_instr ** defs,agx_instr * I)157 agx_optimizer_copyprop(agx_instr **defs, agx_instr *I)
158 {
159 agx_foreach_src(I, s) {
160 agx_index src = I->src[s];
161 if (src.type != AGX_INDEX_NORMAL) continue;
162
163 agx_instr *def = defs[src.value];
164 if (def == NULL) continue; /* happens for phis in loops */
165 if (def->op != AGX_OPCODE_MOV) continue;
166
167 /* At the moment, not all instructions support size conversions. Notably
168 * RA pseudo instructions don't handle size conversions. This should be
169 * refined in the future.
170 */
171 if (def->src[0].size != src.size) continue;
172
173 /* Immediate inlining happens elsewhere */
174 if (def->src[0].type == AGX_INDEX_IMMEDIATE) continue;
175
176 I->src[s] = agx_replace_index(src, def->src[0]);
177 }
178 }
179
180 static void
agx_optimizer_forward(agx_context * ctx)181 agx_optimizer_forward(agx_context *ctx)
182 {
183 agx_instr **defs = calloc(ctx->alloc, sizeof(*defs));
184
185 agx_foreach_instr_global(ctx, I) {
186 struct agx_opcode_info info = agx_opcodes_info[I->op];
187
188 agx_foreach_dest(I, d) {
189 if (I->dest[d].type == AGX_INDEX_NORMAL)
190 defs[I->dest[d].value] = I;
191 }
192
193 /* Optimize moves */
194 agx_optimizer_copyprop(defs, I);
195
196 /* Propagate fmov down */
197 if (info.is_float)
198 agx_optimizer_fmov(defs, I);
199
200 /* Inline immediates if we can. TODO: systematic */
201 if (I->op != AGX_OPCODE_ST_VARY && I->op != AGX_OPCODE_ST_TILE && I->op != AGX_OPCODE_P_EXTRACT && I->op != AGX_OPCODE_P_COMBINE)
202 agx_optimizer_inline_imm(defs, I, info.nr_srcs, info.is_float);
203 }
204
205 free(defs);
206 }
207
208 static void
agx_optimizer_backward(agx_context * ctx)209 agx_optimizer_backward(agx_context *ctx)
210 {
211 agx_instr **uses = calloc(ctx->alloc, sizeof(*uses));
212 BITSET_WORD *multiple = calloc(BITSET_WORDS(ctx->alloc), sizeof(*multiple));
213
214 agx_foreach_instr_global_rev(ctx, I) {
215 struct agx_opcode_info info = agx_opcodes_info[I->op];
216
217 for (unsigned s = 0; s < info.nr_srcs; ++s) {
218 if (I->src[s].type == AGX_INDEX_NORMAL) {
219 unsigned v = I->src[s].value;
220
221 if (uses[v])
222 BITSET_SET(multiple, v);
223 else
224 uses[v] = I;
225 }
226 }
227
228 if (info.nr_dests != 1)
229 continue;
230
231 if (I->dest[0].type != AGX_INDEX_NORMAL)
232 continue;
233
234 agx_instr *use = uses[I->dest[0].value];
235
236 if (!use || BITSET_TEST(multiple, I->dest[0].value))
237 continue;
238
239 /* Destination has a single use, try to propagate */
240 if (info.is_float && agx_optimizer_fmov_rev(I, use)) {
241 agx_remove_instruction(use);
242 continue;
243 }
244 }
245
246 free(uses);
247 free(multiple);
248 }
249
250 void
agx_optimizer(agx_context * ctx)251 agx_optimizer(agx_context *ctx)
252 {
253 agx_optimizer_backward(ctx);
254 agx_optimizer_forward(ctx);
255 }
256