• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2010 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #include <climits>
29 #include <locale>
30 #include <cmath>
31 
32 #include "string-to-double.h"
33 
34 #include "ieee.h"
35 #include "strtod.h"
36 #include "utils.h"
37 
38 #ifdef _MSC_VER
39 #  if _MSC_VER >= 1900
40 // Fix MSVC >= 2015 (_MSC_VER == 1900) warning
41 // C4244: 'argument': conversion from 'const uc16' to 'char', possible loss of data
42 // against Advance and friends, when instantiated with **it as char, not uc16.
43  __pragma(warning(disable: 4244))
44 #  endif
45 #  if _MSC_VER <= 1700 // VS2012, see IsDecimalDigitForRadix warning fix, below
46 #    define VS2012_RADIXWARN
47 #  endif
48 #endif
49 
50 namespace double_conversion {
51 
52 namespace {
53 
ToLower(char ch)54 inline char ToLower(char ch) {
55   static const std::ctype<char>& cType =
56       std::use_facet<std::ctype<char> >(std::locale::classic());
57   return cType.tolower(ch);
58 }
59 
Pass(char ch)60 inline char Pass(char ch) {
61   return ch;
62 }
63 
64 template <class Iterator, class Converter>
ConsumeSubStringImpl(Iterator * current,Iterator end,const char * substring,Converter converter)65 static inline bool ConsumeSubStringImpl(Iterator* current,
66                                         Iterator end,
67                                         const char* substring,
68                                         Converter converter) {
69   DOUBLE_CONVERSION_ASSERT(converter(**current) == *substring);
70   for (substring++; *substring != '\0'; substring++) {
71     ++*current;
72     if (*current == end || converter(**current) != *substring) {
73       return false;
74     }
75   }
76   ++*current;
77   return true;
78 }
79 
80 // Consumes the given substring from the iterator.
81 // Returns false, if the substring does not match.
82 template <class Iterator>
ConsumeSubString(Iterator * current,Iterator end,const char * substring,bool allow_case_insensitivity)83 static bool ConsumeSubString(Iterator* current,
84                              Iterator end,
85                              const char* substring,
86                              bool allow_case_insensitivity) {
87   if (allow_case_insensitivity) {
88     return ConsumeSubStringImpl(current, end, substring, ToLower);
89   } else {
90     return ConsumeSubStringImpl(current, end, substring, Pass);
91   }
92 }
93 
94 // Consumes first character of the str is equal to ch
ConsumeFirstCharacter(char ch,const char * str,bool case_insensitivity)95 inline bool ConsumeFirstCharacter(char ch,
96                                          const char* str,
97                                          bool case_insensitivity) {
98   return case_insensitivity ? ToLower(ch) == str[0] : ch == str[0];
99 }
100 }  // namespace
101 
102 // Maximum number of significant digits in decimal representation.
103 // The longest possible double in decimal representation is
104 // (2^53 - 1) * 2 ^ -1074 that is (2 ^ 53 - 1) * 5 ^ 1074 / 10 ^ 1074
105 // (768 digits). If we parse a number whose first digits are equal to a
106 // mean of 2 adjacent doubles (that could have up to 769 digits) the result
107 // must be rounded to the bigger one unless the tail consists of zeros, so
108 // we don't need to preserve all the digits.
109 const int kMaxSignificantDigits = 772;
110 
111 
112 static const char kWhitespaceTable7[] = { 32, 13, 10, 9, 11, 12 };
113 static const int kWhitespaceTable7Length = DOUBLE_CONVERSION_ARRAY_SIZE(kWhitespaceTable7);
114 
115 
116 static const uc16 kWhitespaceTable16[] = {
117   160, 8232, 8233, 5760, 6158, 8192, 8193, 8194, 8195,
118   8196, 8197, 8198, 8199, 8200, 8201, 8202, 8239, 8287, 12288, 65279
119 };
120 static const int kWhitespaceTable16Length = DOUBLE_CONVERSION_ARRAY_SIZE(kWhitespaceTable16);
121 
122 
isWhitespace(int x)123 static bool isWhitespace(int x) {
124   if (x < 128) {
125     for (int i = 0; i < kWhitespaceTable7Length; i++) {
126       if (kWhitespaceTable7[i] == x) return true;
127     }
128   } else {
129     for (int i = 0; i < kWhitespaceTable16Length; i++) {
130       if (kWhitespaceTable16[i] == x) return true;
131     }
132   }
133   return false;
134 }
135 
136 
137 // Returns true if a nonspace found and false if the end has reached.
138 template <class Iterator>
AdvanceToNonspace(Iterator * current,Iterator end)139 static inline bool AdvanceToNonspace(Iterator* current, Iterator end) {
140   while (*current != end) {
141     if (!isWhitespace(**current)) return true;
142     ++*current;
143   }
144   return false;
145 }
146 
147 
isDigit(int x,int radix)148 static bool isDigit(int x, int radix) {
149   return (x >= '0' && x <= '9' && x < '0' + radix)
150       || (radix > 10 && x >= 'a' && x < 'a' + radix - 10)
151       || (radix > 10 && x >= 'A' && x < 'A' + radix - 10);
152 }
153 
154 
SignedZero(bool sign)155 static double SignedZero(bool sign) {
156   return sign ? -0.0 : 0.0;
157 }
158 
159 
160 // Returns true if 'c' is a decimal digit that is valid for the given radix.
161 //
162 // The function is small and could be inlined, but VS2012 emitted a warning
163 // because it constant-propagated the radix and concluded that the last
164 // condition was always true. Moving it into a separate function and
165 // suppressing optimisation keeps the compiler from warning.
166 #ifdef VS2012_RADIXWARN
167 #pragma optimize("",off)
IsDecimalDigitForRadix(int c,int radix)168 static bool IsDecimalDigitForRadix(int c, int radix) {
169   return '0' <= c && c <= '9' && (c - '0') < radix;
170 }
171 #pragma optimize("",on)
172 #else
IsDecimalDigitForRadix(int c,int radix)173 static bool inline IsDecimalDigitForRadix(int c, int radix) {
174   return '0' <= c && c <= '9' && (c - '0') < radix;
175 }
176 #endif
177 // Returns true if 'c' is a character digit that is valid for the given radix.
178 // The 'a_character' should be 'a' or 'A'.
179 //
180 // The function is small and could be inlined, but VS2012 emitted a warning
181 // because it constant-propagated the radix and concluded that the first
182 // condition was always false. By moving it into a separate function the
183 // compiler wouldn't warn anymore.
IsCharacterDigitForRadix(int c,int radix,char a_character)184 static bool IsCharacterDigitForRadix(int c, int radix, char a_character) {
185   return radix > 10 && c >= a_character && c < a_character + radix - 10;
186 }
187 
188 // Returns true, when the iterator is equal to end.
189 template<class Iterator>
Advance(Iterator * it,uc16 separator,int base,Iterator & end)190 static bool Advance (Iterator* it, uc16 separator, int base, Iterator& end) {
191   if (separator == StringToDoubleConverter::kNoSeparator) {
192     ++(*it);
193     return *it == end;
194   }
195   if (!isDigit(**it, base)) {
196     ++(*it);
197     return *it == end;
198   }
199   ++(*it);
200   if (*it == end) return true;
201   if (*it + 1 == end) return false;
202   if (**it == separator && isDigit(*(*it + 1), base)) {
203     ++(*it);
204   }
205   return *it == end;
206 }
207 
208 // Checks whether the string in the range start-end is a hex-float string.
209 // This function assumes that the leading '0x'/'0X' is already consumed.
210 //
211 // Hex float strings are of one of the following forms:
212 //   - hex_digits+ 'p' ('+'|'-')? exponent_digits+
213 //   - hex_digits* '.' hex_digits+ 'p' ('+'|'-')? exponent_digits+
214 //   - hex_digits+ '.' 'p' ('+'|'-')? exponent_digits+
215 template<class Iterator>
IsHexFloatString(Iterator start,Iterator end,uc16 separator,bool allow_trailing_junk)216 static bool IsHexFloatString(Iterator start,
217                              Iterator end,
218                              uc16 separator,
219                              bool allow_trailing_junk) {
220   DOUBLE_CONVERSION_ASSERT(start != end);
221 
222   Iterator current = start;
223 
224   bool saw_digit = false;
225   while (isDigit(*current, 16)) {
226     saw_digit = true;
227     if (Advance(&current, separator, 16, end)) return false;
228   }
229   if (*current == '.') {
230     if (Advance(&current, separator, 16, end)) return false;
231     while (isDigit(*current, 16)) {
232       saw_digit = true;
233       if (Advance(&current, separator, 16, end)) return false;
234     }
235   }
236   if (!saw_digit) return false;
237   if (*current != 'p' && *current != 'P') return false;
238   if (Advance(&current, separator, 16, end)) return false;
239   if (*current == '+' || *current == '-') {
240     if (Advance(&current, separator, 16, end)) return false;
241   }
242   if (!isDigit(*current, 10)) return false;
243   if (Advance(&current, separator, 16, end)) return true;
244   while (isDigit(*current, 10)) {
245     if (Advance(&current, separator, 16, end)) return true;
246   }
247   return allow_trailing_junk || !AdvanceToNonspace(&current, end);
248 }
249 
250 
251 // Parsing integers with radix 2, 4, 8, 16, 32. Assumes current != end.
252 //
253 // If parse_as_hex_float is true, then the string must be a valid
254 // hex-float.
255 template <int radix_log_2, class Iterator>
RadixStringToIeee(Iterator * current,Iterator end,bool sign,uc16 separator,bool parse_as_hex_float,bool allow_trailing_junk,double junk_string_value,bool read_as_double,bool * result_is_junk)256 static double RadixStringToIeee(Iterator* current,
257                                 Iterator end,
258                                 bool sign,
259                                 uc16 separator,
260                                 bool parse_as_hex_float,
261                                 bool allow_trailing_junk,
262                                 double junk_string_value,
263                                 bool read_as_double,
264                                 bool* result_is_junk) {
265   DOUBLE_CONVERSION_ASSERT(*current != end);
266   DOUBLE_CONVERSION_ASSERT(!parse_as_hex_float ||
267       IsHexFloatString(*current, end, separator, allow_trailing_junk));
268 
269   const int kDoubleSize = Double::kSignificandSize;
270   const int kSingleSize = Single::kSignificandSize;
271   const int kSignificandSize = read_as_double? kDoubleSize: kSingleSize;
272 
273   *result_is_junk = true;
274 
275   int64_t number = 0;
276   int exponent = 0;
277   const int radix = (1 << radix_log_2);
278   // Whether we have encountered a '.' and are parsing the decimal digits.
279   // Only relevant if parse_as_hex_float is true.
280   bool post_decimal = false;
281 
282   // Skip leading 0s.
283   while (**current == '0') {
284     if (Advance(current, separator, radix, end)) {
285       *result_is_junk = false;
286       return SignedZero(sign);
287     }
288   }
289 
290   while (true) {
291     int digit;
292     if (IsDecimalDigitForRadix(**current, radix)) {
293       digit = static_cast<char>(**current) - '0';
294       if (post_decimal) exponent -= radix_log_2;
295     } else if (IsCharacterDigitForRadix(**current, radix, 'a')) {
296       digit = static_cast<char>(**current) - 'a' + 10;
297       if (post_decimal) exponent -= radix_log_2;
298     } else if (IsCharacterDigitForRadix(**current, radix, 'A')) {
299       digit = static_cast<char>(**current) - 'A' + 10;
300       if (post_decimal) exponent -= radix_log_2;
301     } else if (parse_as_hex_float && **current == '.') {
302       post_decimal = true;
303       Advance(current, separator, radix, end);
304       DOUBLE_CONVERSION_ASSERT(*current != end);
305       continue;
306     } else if (parse_as_hex_float && (**current == 'p' || **current == 'P')) {
307       break;
308     } else {
309       if (allow_trailing_junk || !AdvanceToNonspace(current, end)) {
310         break;
311       } else {
312         return junk_string_value;
313       }
314     }
315 
316     number = number * radix + digit;
317     int overflow = static_cast<int>(number >> kSignificandSize);
318     if (overflow != 0) {
319       // Overflow occurred. Need to determine which direction to round the
320       // result.
321       int overflow_bits_count = 1;
322       while (overflow > 1) {
323         overflow_bits_count++;
324         overflow >>= 1;
325       }
326 
327       int dropped_bits_mask = ((1 << overflow_bits_count) - 1);
328       int dropped_bits = static_cast<int>(number) & dropped_bits_mask;
329       number >>= overflow_bits_count;
330       exponent += overflow_bits_count;
331 
332       bool zero_tail = true;
333       for (;;) {
334         if (Advance(current, separator, radix, end)) break;
335         if (parse_as_hex_float && **current == '.') {
336           // Just run over the '.'. We are just trying to see whether there is
337           // a non-zero digit somewhere.
338           Advance(current, separator, radix, end);
339           DOUBLE_CONVERSION_ASSERT(*current != end);
340           post_decimal = true;
341         }
342         if (!isDigit(**current, radix)) break;
343         zero_tail = zero_tail && **current == '0';
344         if (!post_decimal) exponent += radix_log_2;
345       }
346 
347       if (!parse_as_hex_float &&
348           !allow_trailing_junk &&
349           AdvanceToNonspace(current, end)) {
350         return junk_string_value;
351       }
352 
353       int middle_value = (1 << (overflow_bits_count - 1));
354       if (dropped_bits > middle_value) {
355         number++;  // Rounding up.
356       } else if (dropped_bits == middle_value) {
357         // Rounding to even to consistency with decimals: half-way case rounds
358         // up if significant part is odd and down otherwise.
359         if ((number & 1) != 0 || !zero_tail) {
360           number++;  // Rounding up.
361         }
362       }
363 
364       // Rounding up may cause overflow.
365       if ((number & ((int64_t)1 << kSignificandSize)) != 0) {
366         exponent++;
367         number >>= 1;
368       }
369       break;
370     }
371     if (Advance(current, separator, radix, end)) break;
372   }
373 
374   DOUBLE_CONVERSION_ASSERT(number < ((int64_t)1 << kSignificandSize));
375   DOUBLE_CONVERSION_ASSERT(static_cast<int64_t>(static_cast<double>(number)) == number);
376 
377   *result_is_junk = false;
378 
379   if (parse_as_hex_float) {
380     DOUBLE_CONVERSION_ASSERT(**current == 'p' || **current == 'P');
381     Advance(current, separator, radix, end);
382     DOUBLE_CONVERSION_ASSERT(*current != end);
383     bool is_negative = false;
384     if (**current == '+') {
385       Advance(current, separator, radix, end);
386       DOUBLE_CONVERSION_ASSERT(*current != end);
387     } else if (**current == '-') {
388       is_negative = true;
389       Advance(current, separator, radix, end);
390       DOUBLE_CONVERSION_ASSERT(*current != end);
391     }
392     int written_exponent = 0;
393     while (IsDecimalDigitForRadix(**current, 10)) {
394       // No need to read exponents if they are too big. That could potentially overflow
395       // the `written_exponent` variable.
396       if (abs(written_exponent) <= 100 * Double::kMaxExponent) {
397         written_exponent = 10 * written_exponent + **current - '0';
398       }
399       if (Advance(current, separator, radix, end)) break;
400     }
401     if (is_negative) written_exponent = -written_exponent;
402     exponent += written_exponent;
403   }
404 
405   if (exponent == 0 || number == 0) {
406     if (sign) {
407       if (number == 0) return -0.0;
408       number = -number;
409     }
410     return static_cast<double>(number);
411   }
412 
413   DOUBLE_CONVERSION_ASSERT(number != 0);
414   double result = Double(DiyFp(number, exponent)).value();
415   return sign ? -result : result;
416 }
417 
418 template <class Iterator>
StringToIeee(Iterator input,int length,bool read_as_double,int * processed_characters_count) const419 double StringToDoubleConverter::StringToIeee(
420     Iterator input,
421     int length,
422     bool read_as_double,
423     int* processed_characters_count) const {
424   Iterator current = input;
425   Iterator end = input + length;
426 
427   *processed_characters_count = 0;
428 
429   const bool allow_trailing_junk = (flags_ & ALLOW_TRAILING_JUNK) != 0;
430   const bool allow_leading_spaces = (flags_ & ALLOW_LEADING_SPACES) != 0;
431   const bool allow_trailing_spaces = (flags_ & ALLOW_TRAILING_SPACES) != 0;
432   const bool allow_spaces_after_sign = (flags_ & ALLOW_SPACES_AFTER_SIGN) != 0;
433   const bool allow_case_insensitivity = (flags_ & ALLOW_CASE_INSENSITIVITY) != 0;
434 
435   // To make sure that iterator dereferencing is valid the following
436   // convention is used:
437   // 1. Each '++current' statement is followed by check for equality to 'end'.
438   // 2. If AdvanceToNonspace returned false then current == end.
439   // 3. If 'current' becomes equal to 'end' the function returns or goes to
440   // 'parsing_done'.
441   // 4. 'current' is not dereferenced after the 'parsing_done' label.
442   // 5. Code before 'parsing_done' may rely on 'current != end'.
443   if (current == end) return empty_string_value_;
444 
445   if (allow_leading_spaces || allow_trailing_spaces) {
446     if (!AdvanceToNonspace(&current, end)) {
447       *processed_characters_count = static_cast<int>(current - input);
448       return empty_string_value_;
449     }
450     if (!allow_leading_spaces && (input != current)) {
451       // No leading spaces allowed, but AdvanceToNonspace moved forward.
452       return junk_string_value_;
453     }
454   }
455 
456   // Exponent will be adjusted if insignificant digits of the integer part
457   // or insignificant leading zeros of the fractional part are dropped.
458   int exponent = 0;
459   int significant_digits = 0;
460   int insignificant_digits = 0;
461   bool nonzero_digit_dropped = false;
462 
463   bool sign = false;
464 
465   if (*current == '+' || *current == '-') {
466     sign = (*current == '-');
467     ++current;
468     Iterator next_non_space = current;
469     // Skip following spaces (if allowed).
470     if (!AdvanceToNonspace(&next_non_space, end)) return junk_string_value_;
471     if (!allow_spaces_after_sign && (current != next_non_space)) {
472       return junk_string_value_;
473     }
474     current = next_non_space;
475   }
476 
477   if (infinity_symbol_ != DOUBLE_CONVERSION_NULLPTR) {
478     if (ConsumeFirstCharacter(*current, infinity_symbol_, allow_case_insensitivity)) {
479       if (!ConsumeSubString(&current, end, infinity_symbol_, allow_case_insensitivity)) {
480         return junk_string_value_;
481       }
482 
483       if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
484         return junk_string_value_;
485       }
486       if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
487         return junk_string_value_;
488       }
489 
490       *processed_characters_count = static_cast<int>(current - input);
491       return sign ? -Double::Infinity() : Double::Infinity();
492     }
493   }
494 
495   if (nan_symbol_ != DOUBLE_CONVERSION_NULLPTR) {
496     if (ConsumeFirstCharacter(*current, nan_symbol_, allow_case_insensitivity)) {
497       if (!ConsumeSubString(&current, end, nan_symbol_, allow_case_insensitivity)) {
498         return junk_string_value_;
499       }
500 
501       if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
502         return junk_string_value_;
503       }
504       if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
505         return junk_string_value_;
506       }
507 
508       *processed_characters_count = static_cast<int>(current - input);
509       return sign ? -Double::NaN() : Double::NaN();
510     }
511   }
512 
513   bool leading_zero = false;
514   if (*current == '0') {
515     if (Advance(&current, separator_, 10, end)) {
516       *processed_characters_count = static_cast<int>(current - input);
517       return SignedZero(sign);
518     }
519 
520     leading_zero = true;
521 
522     // It could be hexadecimal value.
523     if (((flags_ & ALLOW_HEX) || (flags_ & ALLOW_HEX_FLOATS)) &&
524         (*current == 'x' || *current == 'X')) {
525       ++current;
526 
527       if (current == end) return junk_string_value_;  // "0x"
528 
529       bool parse_as_hex_float = (flags_ & ALLOW_HEX_FLOATS) &&
530                 IsHexFloatString(current, end, separator_, allow_trailing_junk);
531 
532       if (!parse_as_hex_float && !isDigit(*current, 16)) {
533         return junk_string_value_;
534       }
535 
536       bool result_is_junk;
537       double result = RadixStringToIeee<4>(&current,
538                                            end,
539                                            sign,
540                                            separator_,
541                                            parse_as_hex_float,
542                                            allow_trailing_junk,
543                                            junk_string_value_,
544                                            read_as_double,
545                                            &result_is_junk);
546       if (!result_is_junk) {
547         if (allow_trailing_spaces) AdvanceToNonspace(&current, end);
548         *processed_characters_count = static_cast<int>(current - input);
549       }
550       return result;
551     }
552 
553     // Ignore leading zeros in the integer part.
554     while (*current == '0') {
555       if (Advance(&current, separator_, 10, end)) {
556         *processed_characters_count = static_cast<int>(current - input);
557         return SignedZero(sign);
558       }
559     }
560   }
561 
562   bool octal = leading_zero && (flags_ & ALLOW_OCTALS) != 0;
563 
564   // The longest form of simplified number is: "-<significant digits>.1eXXX\0".
565   const int kBufferSize = kMaxSignificantDigits + 10;
566   DOUBLE_CONVERSION_STACK_UNINITIALIZED char
567       buffer[kBufferSize];  // NOLINT: size is known at compile time.
568   int buffer_pos = 0;
569 
570   // Copy significant digits of the integer part (if any) to the buffer.
571   while (*current >= '0' && *current <= '9') {
572     if (significant_digits < kMaxSignificantDigits) {
573       DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
574       buffer[buffer_pos++] = static_cast<char>(*current);
575       significant_digits++;
576       // Will later check if it's an octal in the buffer.
577     } else {
578       insignificant_digits++;  // Move the digit into the exponential part.
579       nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
580     }
581     octal = octal && *current < '8';
582     if (Advance(&current, separator_, 10, end)) goto parsing_done;
583   }
584 
585   if (significant_digits == 0) {
586     octal = false;
587   }
588 
589   if (*current == '.') {
590     if (octal && !allow_trailing_junk) return junk_string_value_;
591     if (octal) goto parsing_done;
592 
593     if (Advance(&current, separator_, 10, end)) {
594       if (significant_digits == 0 && !leading_zero) {
595         return junk_string_value_;
596       } else {
597         goto parsing_done;
598       }
599     }
600 
601     if (significant_digits == 0) {
602       // octal = false;
603       // Integer part consists of 0 or is absent. Significant digits start after
604       // leading zeros (if any).
605       while (*current == '0') {
606         if (Advance(&current, separator_, 10, end)) {
607           *processed_characters_count = static_cast<int>(current - input);
608           return SignedZero(sign);
609         }
610         exponent--;  // Move this 0 into the exponent.
611       }
612     }
613 
614     // There is a fractional part.
615     // We don't emit a '.', but adjust the exponent instead.
616     while (*current >= '0' && *current <= '9') {
617       if (significant_digits < kMaxSignificantDigits) {
618         DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
619         buffer[buffer_pos++] = static_cast<char>(*current);
620         significant_digits++;
621         exponent--;
622       } else {
623         // Ignore insignificant digits in the fractional part.
624         nonzero_digit_dropped = nonzero_digit_dropped || *current != '0';
625       }
626       if (Advance(&current, separator_, 10, end)) goto parsing_done;
627     }
628   }
629 
630   if (!leading_zero && exponent == 0 && significant_digits == 0) {
631     // If leading_zeros is true then the string contains zeros.
632     // If exponent < 0 then string was [+-]\.0*...
633     // If significant_digits != 0 the string is not equal to 0.
634     // Otherwise there are no digits in the string.
635     return junk_string_value_;
636   }
637 
638   // Parse exponential part.
639   if (*current == 'e' || *current == 'E') {
640     if (octal && !allow_trailing_junk) return junk_string_value_;
641     if (octal) goto parsing_done;
642     Iterator junk_begin = current;
643     ++current;
644     if (current == end) {
645       if (allow_trailing_junk) {
646         current = junk_begin;
647         goto parsing_done;
648       } else {
649         return junk_string_value_;
650       }
651     }
652     char exponen_sign = '+';
653     if (*current == '+' || *current == '-') {
654       exponen_sign = static_cast<char>(*current);
655       ++current;
656       if (current == end) {
657         if (allow_trailing_junk) {
658           current = junk_begin;
659           goto parsing_done;
660         } else {
661           return junk_string_value_;
662         }
663       }
664     }
665 
666     if (current == end || *current < '0' || *current > '9') {
667       if (allow_trailing_junk) {
668         current = junk_begin;
669         goto parsing_done;
670       } else {
671         return junk_string_value_;
672       }
673     }
674 
675     const int max_exponent = INT_MAX / 2;
676     DOUBLE_CONVERSION_ASSERT(-max_exponent / 2 <= exponent && exponent <= max_exponent / 2);
677     int num = 0;
678     do {
679       // Check overflow.
680       int digit = *current - '0';
681       if (num >= max_exponent / 10
682           && !(num == max_exponent / 10 && digit <= max_exponent % 10)) {
683         num = max_exponent;
684       } else {
685         num = num * 10 + digit;
686       }
687       ++current;
688     } while (current != end && *current >= '0' && *current <= '9');
689 
690     exponent += (exponen_sign == '-' ? -num : num);
691   }
692 
693   if (!(allow_trailing_spaces || allow_trailing_junk) && (current != end)) {
694     return junk_string_value_;
695   }
696   if (!allow_trailing_junk && AdvanceToNonspace(&current, end)) {
697     return junk_string_value_;
698   }
699   if (allow_trailing_spaces) {
700     AdvanceToNonspace(&current, end);
701   }
702 
703   parsing_done:
704   exponent += insignificant_digits;
705 
706   if (octal) {
707     double result;
708     bool result_is_junk;
709     char* start = buffer;
710     result = RadixStringToIeee<3>(&start,
711                                   buffer + buffer_pos,
712                                   sign,
713                                   separator_,
714                                   false, // Don't parse as hex_float.
715                                   allow_trailing_junk,
716                                   junk_string_value_,
717                                   read_as_double,
718                                   &result_is_junk);
719     DOUBLE_CONVERSION_ASSERT(!result_is_junk);
720     *processed_characters_count = static_cast<int>(current - input);
721     return result;
722   }
723 
724   if (nonzero_digit_dropped) {
725     buffer[buffer_pos++] = '1';
726     exponent--;
727   }
728 
729   DOUBLE_CONVERSION_ASSERT(buffer_pos < kBufferSize);
730   buffer[buffer_pos] = '\0';
731 
732   // Code above ensures there are no leading zeros and the buffer has fewer than
733   // kMaxSignificantDecimalDigits characters. Trim trailing zeros.
734   Vector<const char> chars(buffer, buffer_pos);
735   chars = TrimTrailingZeros(chars);
736   exponent += buffer_pos - chars.length();
737 
738   double converted;
739   if (read_as_double) {
740     converted = StrtodTrimmed(chars, exponent);
741   } else {
742     converted = StrtofTrimmed(chars, exponent);
743   }
744   *processed_characters_count = static_cast<int>(current - input);
745   return sign? -converted: converted;
746 }
747 
748 
StringToDouble(const char * buffer,int length,int * processed_characters_count) const749 double StringToDoubleConverter::StringToDouble(
750     const char* buffer,
751     int length,
752     int* processed_characters_count) const {
753   return StringToIeee(buffer, length, true, processed_characters_count);
754 }
755 
756 
StringToDouble(const uc16 * buffer,int length,int * processed_characters_count) const757 double StringToDoubleConverter::StringToDouble(
758     const uc16* buffer,
759     int length,
760     int* processed_characters_count) const {
761   return StringToIeee(buffer, length, true, processed_characters_count);
762 }
763 
764 
StringToFloat(const char * buffer,int length,int * processed_characters_count) const765 float StringToDoubleConverter::StringToFloat(
766     const char* buffer,
767     int length,
768     int* processed_characters_count) const {
769   return static_cast<float>(StringToIeee(buffer, length, false,
770                                          processed_characters_count));
771 }
772 
773 
StringToFloat(const uc16 * buffer,int length,int * processed_characters_count) const774 float StringToDoubleConverter::StringToFloat(
775     const uc16* buffer,
776     int length,
777     int* processed_characters_count) const {
778   return static_cast<float>(StringToIeee(buffer, length, false,
779                                          processed_characters_count));
780 }
781 
782 
783 template<>
StringTo(const char * buffer,int length,int * processed_characters_count) const784 double StringToDoubleConverter::StringTo<double>(
785     const char* buffer,
786     int length,
787     int* processed_characters_count) const {
788     return StringToDouble(buffer, length, processed_characters_count);
789 }
790 
791 
792 template<>
StringTo(const char * buffer,int length,int * processed_characters_count) const793 float StringToDoubleConverter::StringTo<float>(
794     const char* buffer,
795     int length,
796     int* processed_characters_count) const {
797     return StringToFloat(buffer, length, processed_characters_count);
798 }
799 
800 
801 template<>
StringTo(const uc16 * buffer,int length,int * processed_characters_count) const802 double StringToDoubleConverter::StringTo<double>(
803     const uc16* buffer,
804     int length,
805     int* processed_characters_count) const {
806     return StringToDouble(buffer, length, processed_characters_count);
807 }
808 
809 
810 template<>
StringTo(const uc16 * buffer,int length,int * processed_characters_count) const811 float StringToDoubleConverter::StringTo<float>(
812     const uc16* buffer,
813     int length,
814     int* processed_characters_count) const {
815     return StringToFloat(buffer, length, processed_characters_count);
816 }
817 
818 }  // namespace double_conversion
819