• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /**
2  * @file
3  * This is the IPv4 packet segmentation and reassembly implementation.
4  *
5  */
6 
7 /*
8  * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
9  * All rights reserved.
10  *
11  * Redistribution and use in source and binary forms, with or without modification,
12  * are permitted provided that the following conditions are met:
13  *
14  * 1. Redistributions of source code must retain the above copyright notice,
15  *    this list of conditions and the following disclaimer.
16  * 2. Redistributions in binary form must reproduce the above copyright notice,
17  *    this list of conditions and the following disclaimer in the documentation
18  *    and/or other materials provided with the distribution.
19  * 3. The name of the author may not be used to endorse or promote products
20  *    derived from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
23  * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
25  * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
27  * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
30  * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
31  * OF SUCH DAMAGE.
32  *
33  * This file is part of the lwIP TCP/IP stack.
34  *
35  * Author: Jani Monoses <jani@iv.ro>
36  *         Simon Goldschmidt
37  * original reassembly code by Adam Dunkels <adam@sics.se>
38  *
39  */
40 
41 #include "lwip/opt.h"
42 
43 #if LWIP_IPV4
44 
45 #include "lwip/ip4_frag.h"
46 #include "lwip/def.h"
47 #include "lwip/inet_chksum.h"
48 #include "lwip/netif.h"
49 #include "lwip/stats.h"
50 #include "lwip/icmp.h"
51 
52 #include <string.h>
53 
54 #if IP_REASSEMBLY
55 /**
56  * The IP reassembly code currently has the following limitations:
57  * - IP header options are not supported
58  * - fragments must not overlap (e.g. due to different routes),
59  *   currently, overlapping or duplicate fragments are thrown away
60  *   if IP_REASS_CHECK_OVERLAP=1 (the default)!
61  *
62  * @todo: work with IP header options
63  */
64 
65 /** Setting this to 0, you can turn off checking the fragments for overlapping
66  * regions. The code gets a little smaller. Only use this if you know that
67  * overlapping won't occur on your network! */
68 #ifndef IP_REASS_CHECK_OVERLAP
69 #define IP_REASS_CHECK_OVERLAP 1
70 #endif /* IP_REASS_CHECK_OVERLAP */
71 
72 /** Set to 0 to prevent freeing the oldest datagram when the reassembly buffer is
73  * full (IP_REASS_MAX_PBUFS pbufs are enqueued). The code gets a little smaller.
74  * Datagrams will be freed by timeout only. Especially useful when MEMP_NUM_REASSDATA
75  * is set to 1, so one datagram can be reassembled at a time, only. */
76 #ifndef IP_REASS_FREE_OLDEST
77 #define IP_REASS_FREE_OLDEST 1
78 #endif /* IP_REASS_FREE_OLDEST */
79 
80 #define IP_REASS_FLAG_LASTFRAG 0x01
81 
82 #define IP_REASS_VALIDATE_TELEGRAM_FINISHED  1
83 #define IP_REASS_VALIDATE_PBUF_QUEUED        0
84 #define IP_REASS_VALIDATE_PBUF_DROPPED       -1
85 
86 /** This is a helper struct which holds the starting
87  * offset and the ending offset of this fragment to
88  * easily chain the fragments.
89  * It has the same packing requirements as the IP header, since it replaces
90  * the IP header in memory in incoming fragments (after copying it) to keep
91  * track of the various fragments. (-> If the IP header doesn't need packing,
92  * this struct doesn't need packing, too.)
93  */
94 #ifdef PACK_STRUCT_USE_INCLUDES
95 #  include "arch/bpstruct.h"
96 #endif
97 PACK_STRUCT_BEGIN
98 struct ip_reass_helper {
99   PACK_STRUCT_FIELD(struct pbuf *next_pbuf);
100   PACK_STRUCT_FIELD(u16_t start);
101   PACK_STRUCT_FIELD(u16_t end);
102 } PACK_STRUCT_STRUCT;
103 PACK_STRUCT_END
104 #ifdef PACK_STRUCT_USE_INCLUDES
105 #  include "arch/epstruct.h"
106 #endif
107 
108 #define IP_ADDRESSES_AND_ID_MATCH(iphdrA, iphdrB)  \
109   (ip4_addr_cmp(&(iphdrA)->src, &(iphdrB)->src) && \
110    ip4_addr_cmp(&(iphdrA)->dest, &(iphdrB)->dest) && \
111    IPH_ID(iphdrA) == IPH_ID(iphdrB)) ? 1 : 0
112 
113 /* global variables */
114 static struct ip_reassdata *reassdatagrams;
115 static u16_t ip_reass_pbufcount;
116 
117 /* function prototypes */
118 static void ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
119 static int ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
120 
121 /**
122  * Reassembly timer base function
123  * for both NO_SYS == 0 and 1 (!).
124  *
125  * Should be called every 1000 msec (defined by IP_TMR_INTERVAL).
126  */
127 void
ip_reass_tmr(void)128 ip_reass_tmr(void)
129 {
130   struct ip_reassdata *r, *prev = NULL;
131 
132   r = reassdatagrams;
133   while (r != NULL) {
134     /* Decrement the timer. Once it reaches 0,
135      * clean up the incomplete fragment assembly */
136     if (r->timer > 0) {
137       r->timer--;
138       LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer dec %"U16_F"\n", (u16_t)r->timer));
139       prev = r;
140       r = r->next;
141     } else {
142       /* reassembly timed out */
143       struct ip_reassdata *tmp;
144       LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer timed out\n"));
145       tmp = r;
146       /* get the next pointer before freeing */
147       r = r->next;
148       /* free the helper struct and all enqueued pbufs */
149       ip_reass_free_complete_datagram(tmp, prev);
150     }
151   }
152 }
153 
154 /**
155  * Free a datagram (struct ip_reassdata) and all its pbufs.
156  * Updates the total count of enqueued pbufs (ip_reass_pbufcount),
157  * SNMP counters and sends an ICMP time exceeded packet.
158  *
159  * @param ipr datagram to free
160  * @param prev the previous datagram in the linked list
161  * @return the number of pbufs freed
162  */
163 static int
ip_reass_free_complete_datagram(struct ip_reassdata * ipr,struct ip_reassdata * prev)164 ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
165 {
166   u16_t pbufs_freed = 0;
167   u16_t clen;
168   struct pbuf *p;
169   struct ip_reass_helper *iprh;
170 
171   LWIP_ASSERT("prev != ipr", prev != ipr);
172   if (prev != NULL) {
173     LWIP_ASSERT("prev->next == ipr", prev->next == ipr);
174   }
175 
176   MIB2_STATS_INC(mib2.ipreasmfails);
177 #if LWIP_ICMP
178   iprh = (struct ip_reass_helper *)ipr->p->payload;
179   if (iprh->start == 0) {
180     /* The first fragment was received, send ICMP time exceeded. */
181     /* First, de-queue the first pbuf from r->p. */
182     p = ipr->p;
183     ipr->p = iprh->next_pbuf;
184     /* Then, copy the original header into it. */
185     SMEMCPY(p->payload, &ipr->iphdr, IP_HLEN);
186     icmp_time_exceeded(p, ICMP_TE_FRAG);
187     clen = pbuf_clen(p);
188     LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
189     pbufs_freed = (u16_t)(pbufs_freed + clen);
190     pbuf_free(p);
191   }
192 #endif /* LWIP_ICMP */
193 
194   /* First, free all received pbufs.  The individual pbufs need to be released
195      separately as they have not yet been chained */
196   p = ipr->p;
197   while (p != NULL) {
198     struct pbuf *pcur;
199     iprh = (struct ip_reass_helper *)p->payload;
200     pcur = p;
201     /* get the next pointer before freeing */
202     p = iprh->next_pbuf;
203     clen = pbuf_clen(pcur);
204     LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
205     pbufs_freed = (u16_t)(pbufs_freed + clen);
206     pbuf_free(pcur);
207   }
208   /* Then, unchain the struct ip_reassdata from the list and free it. */
209   ip_reass_dequeue_datagram(ipr, prev);
210   LWIP_ASSERT("ip_reass_pbufcount >= pbufs_freed", ip_reass_pbufcount >= pbufs_freed);
211   ip_reass_pbufcount = (u16_t)(ip_reass_pbufcount - pbufs_freed);
212 
213   return pbufs_freed;
214 }
215 
216 #if LWIP_LOWPOWER
217 #include "lwip/lowpower.h"
218 u32_t
ip_reass_tmr_tick(void)219 ip_reass_tmr_tick(void)
220 {
221   struct ip_reassdata *r = NULL;
222   u32_t tick = 0;
223   u32_t val;
224 
225   r = reassdatagrams;
226   while (r != NULL) {
227     val = r->timer + 1;
228     SET_TMR_TICK(tick, val);
229     r = r->next;
230   }
231   LWIP_DEBUGF(LOWPOWER_DEBUG, ("%s tmr tick: %u\n", "ip_reass_tmr_tick", tick));
232   return tick;
233 }
234 #endif /* LWIP_LOWPOWER */
235 
236 #if IP_REASS_FREE_OLDEST
237 /**
238  * Free the oldest datagram to make room for enqueueing new fragments.
239  * The datagram 'fraghdr' belongs to is not freed!
240  *
241  * @param fraghdr IP header of the current fragment
242  * @param pbufs_needed number of pbufs needed to enqueue
243  *        (used for freeing other datagrams if not enough space)
244  * @return the number of pbufs freed
245  */
246 static int
ip_reass_remove_oldest_datagram(struct ip_hdr * fraghdr,int pbufs_needed)247 ip_reass_remove_oldest_datagram(struct ip_hdr *fraghdr, int pbufs_needed)
248 {
249   /* @todo Can't we simply remove the last datagram in the
250    *       linked list behind reassdatagrams?
251    */
252   struct ip_reassdata *r, *oldest, *prev, *oldest_prev;
253   int pbufs_freed = 0, pbufs_freed_current;
254   int other_datagrams;
255 
256   /* Free datagrams until being allowed to enqueue 'pbufs_needed' pbufs,
257    * but don't free the datagram that 'fraghdr' belongs to! */
258   do {
259     oldest = NULL;
260     prev = NULL;
261     oldest_prev = NULL;
262     other_datagrams = 0;
263     r = reassdatagrams;
264     while (r != NULL) {
265       if (!IP_ADDRESSES_AND_ID_MATCH(&r->iphdr, fraghdr)) {
266         /* Not the same datagram as fraghdr */
267         other_datagrams++;
268         if (oldest == NULL) {
269           oldest = r;
270           oldest_prev = prev;
271         } else if (r->timer <= oldest->timer) {
272           /* older than the previous oldest */
273           oldest = r;
274           oldest_prev = prev;
275         }
276       }
277       if (r->next != NULL) {
278         prev = r;
279       }
280       r = r->next;
281     }
282     if (oldest != NULL) {
283       pbufs_freed_current = ip_reass_free_complete_datagram(oldest, oldest_prev);
284       pbufs_freed += pbufs_freed_current;
285     }
286   } while ((pbufs_freed < pbufs_needed) && (other_datagrams > 1));
287   return pbufs_freed;
288 }
289 #endif /* IP_REASS_FREE_OLDEST */
290 
291 /**
292  * Enqueues a new fragment into the fragment queue
293  * @param fraghdr points to the new fragments IP hdr
294  * @param clen number of pbufs needed to enqueue (used for freeing other datagrams if not enough space)
295  * @return A pointer to the queue location into which the fragment was enqueued
296  */
297 static struct ip_reassdata *
ip_reass_enqueue_new_datagram(struct ip_hdr * fraghdr,int clen)298 ip_reass_enqueue_new_datagram(struct ip_hdr *fraghdr, int clen)
299 {
300   struct ip_reassdata *ipr;
301 #if ! IP_REASS_FREE_OLDEST
302   LWIP_UNUSED_ARG(clen);
303 #endif
304 
305   /* No matching previous fragment found, allocate a new reassdata struct */
306   ipr = (struct ip_reassdata *)memp_malloc(MEMP_REASSDATA);
307   if (ipr == NULL) {
308 #if IP_REASS_FREE_OLDEST
309     if (ip_reass_remove_oldest_datagram(fraghdr, clen) >= clen) {
310       ipr = (struct ip_reassdata *)memp_malloc(MEMP_REASSDATA);
311     }
312     if (ipr == NULL)
313 #endif /* IP_REASS_FREE_OLDEST */
314     {
315       IPFRAG_STATS_INC(ip_frag.memerr);
316       LWIP_DEBUGF(IP_REASS_DEBUG, ("Failed to alloc reassdata struct\n"));
317       return NULL;
318     }
319   }
320   memset(ipr, 0, sizeof(struct ip_reassdata));
321   ipr->timer = IP_REASS_MAXAGE;
322 
323   /* enqueue the new structure to the front of the list */
324   ipr->next = reassdatagrams;
325   reassdatagrams = ipr;
326   /* copy the ip header for later tests and input */
327   /* @todo: no ip options supported? */
328   SMEMCPY(&(ipr->iphdr), fraghdr, IP_HLEN);
329   return ipr;
330 }
331 
332 /**
333  * Dequeues a datagram from the datagram queue. Doesn't deallocate the pbufs.
334  * @param ipr points to the queue entry to dequeue
335  */
336 static void
ip_reass_dequeue_datagram(struct ip_reassdata * ipr,struct ip_reassdata * prev)337 ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
338 {
339   /* dequeue the reass struct  */
340   if (reassdatagrams == ipr) {
341     /* it was the first in the list */
342     reassdatagrams = ipr->next;
343   } else {
344     /* it wasn't the first, so it must have a valid 'prev' */
345     LWIP_ASSERT("sanity check linked list", prev != NULL);
346     prev->next = ipr->next;
347   }
348 
349   /* now we can free the ip_reassdata struct */
350   memp_free(MEMP_REASSDATA, ipr);
351 }
352 
353 /**
354  * Chain a new pbuf into the pbuf list that composes the datagram.  The pbuf list
355  * will grow over time as  new pbufs are rx.
356  * Also checks that the datagram passes basic continuity checks (if the last
357  * fragment was received at least once).
358  * @param ipr points to the reassembly state
359  * @param new_p points to the pbuf for the current fragment
360  * @param is_last is 1 if this pbuf has MF==0 (ipr->flags not updated yet)
361  * @return see IP_REASS_VALIDATE_* defines
362  */
363 static int
ip_reass_chain_frag_into_datagram_and_validate(struct ip_reassdata * ipr,struct pbuf * new_p,int is_last)364 ip_reass_chain_frag_into_datagram_and_validate(struct ip_reassdata *ipr, struct pbuf *new_p, int is_last)
365 {
366   struct ip_reass_helper *iprh, *iprh_tmp, *iprh_prev = NULL;
367   struct pbuf *q;
368   u16_t offset, len;
369   u8_t hlen;
370   struct ip_hdr *fraghdr;
371   int valid = 1;
372 
373   /* Extract length and fragment offset from current fragment */
374   fraghdr = (struct ip_hdr *)new_p->payload;
375   len = lwip_ntohs(IPH_LEN(fraghdr));
376   hlen = IPH_HL_BYTES(fraghdr);
377   if (hlen > len) {
378     /* invalid datagram */
379     return IP_REASS_VALIDATE_PBUF_DROPPED;
380   }
381   len = (u16_t)(len - hlen);
382   offset = IPH_OFFSET_BYTES(fraghdr);
383 
384   /* overwrite the fragment's ip header from the pbuf with our helper struct,
385    * and setup the embedded helper structure. */
386   /* make sure the struct ip_reass_helper fits into the IP header */
387   LWIP_ASSERT("sizeof(struct ip_reass_helper) <= IP_HLEN",
388               sizeof(struct ip_reass_helper) <= IP_HLEN);
389   iprh = (struct ip_reass_helper *)new_p->payload;
390   iprh->next_pbuf = NULL;
391   iprh->start = offset;
392   iprh->end = (u16_t)(offset + len);
393   if (iprh->end < offset) {
394     /* u16_t overflow, cannot handle this */
395     return IP_REASS_VALIDATE_PBUF_DROPPED;
396   }
397 
398   /* Iterate through until we either get to the end of the list (append),
399    * or we find one with a larger offset (insert). */
400   for (q = ipr->p; q != NULL;) {
401     iprh_tmp = (struct ip_reass_helper *)q->payload;
402     if (iprh->start < iprh_tmp->start) {
403       /* the new pbuf should be inserted before this */
404       iprh->next_pbuf = q;
405       if (iprh_prev != NULL) {
406         /* not the fragment with the lowest offset */
407 #if IP_REASS_CHECK_OVERLAP
408         if ((iprh->start < iprh_prev->end) || (iprh->end > iprh_tmp->start)) {
409           /* fragment overlaps with previous or following, throw away */
410           return IP_REASS_VALIDATE_PBUF_DROPPED;
411         }
412 #endif /* IP_REASS_CHECK_OVERLAP */
413         iprh_prev->next_pbuf = new_p;
414         if (iprh_prev->end != iprh->start) {
415           /* There is a fragment missing between the current
416            * and the previous fragment */
417           valid = 0;
418         }
419       } else {
420 #if IP_REASS_CHECK_OVERLAP
421         if (iprh->end > iprh_tmp->start) {
422           /* fragment overlaps with following, throw away */
423           return IP_REASS_VALIDATE_PBUF_DROPPED;
424         }
425 #endif /* IP_REASS_CHECK_OVERLAP */
426         /* fragment with the lowest offset */
427         ipr->p = new_p;
428       }
429       break;
430     } else if (iprh->start == iprh_tmp->start) {
431       /* received the same datagram twice: no need to keep the datagram */
432       return IP_REASS_VALIDATE_PBUF_DROPPED;
433 #if IP_REASS_CHECK_OVERLAP
434     } else if (iprh->start < iprh_tmp->end) {
435       /* overlap: no need to keep the new datagram */
436       return IP_REASS_VALIDATE_PBUF_DROPPED;
437 #endif /* IP_REASS_CHECK_OVERLAP */
438     } else {
439       /* Check if the fragments received so far have no holes. */
440       if (iprh_prev != NULL) {
441         if (iprh_prev->end != iprh_tmp->start) {
442           /* There is a fragment missing between the current
443            * and the previous fragment */
444           valid = 0;
445         }
446       }
447     }
448     q = iprh_tmp->next_pbuf;
449     iprh_prev = iprh_tmp;
450   }
451 
452   /* If q is NULL, then we made it to the end of the list. Determine what to do now */
453   if (q == NULL) {
454     if (iprh_prev != NULL) {
455       /* this is (for now), the fragment with the highest offset:
456        * chain it to the last fragment */
457 #if IP_REASS_CHECK_OVERLAP
458       LWIP_ASSERT("check fragments don't overlap", iprh_prev->end <= iprh->start);
459 #endif /* IP_REASS_CHECK_OVERLAP */
460       iprh_prev->next_pbuf = new_p;
461       if (iprh_prev->end != iprh->start) {
462         valid = 0;
463       }
464     } else {
465 #if IP_REASS_CHECK_OVERLAP
466       LWIP_ASSERT("no previous fragment, this must be the first fragment!",
467                   ipr->p == NULL);
468 #endif /* IP_REASS_CHECK_OVERLAP */
469       /* this is the first fragment we ever received for this ip datagram */
470       ipr->p = new_p;
471     }
472   }
473 
474   /* At this point, the validation part begins: */
475   /* If we already received the last fragment */
476   if (is_last || ((ipr->flags & IP_REASS_FLAG_LASTFRAG) != 0)) {
477     /* and had no holes so far */
478     if (valid) {
479       /* then check if the rest of the fragments is here */
480       /* Check if the queue starts with the first datagram */
481       if ((ipr->p == NULL) || (((struct ip_reass_helper *)ipr->p->payload)->start != 0)) {
482         valid = 0;
483       } else {
484         /* and check that there are no holes after this datagram */
485         iprh_prev = iprh;
486         q = iprh->next_pbuf;
487         while (q != NULL) {
488           iprh = (struct ip_reass_helper *)q->payload;
489           if (iprh_prev->end != iprh->start) {
490             valid = 0;
491             break;
492           }
493           iprh_prev = iprh;
494           q = iprh->next_pbuf;
495         }
496         /* if still valid, all fragments are received
497          * (because to the MF==0 already arrived */
498         if (valid) {
499           LWIP_ASSERT("sanity check", ipr->p != NULL);
500           LWIP_ASSERT("sanity check",
501                       ((struct ip_reass_helper *)ipr->p->payload) != iprh);
502           LWIP_ASSERT("validate_datagram:next_pbuf!=NULL",
503                       iprh->next_pbuf == NULL);
504         }
505       }
506     }
507     /* If valid is 0 here, there are some fragments missing in the middle
508      * (since MF == 0 has already arrived). Such datagrams simply time out if
509      * no more fragments are received... */
510     return valid ? IP_REASS_VALIDATE_TELEGRAM_FINISHED : IP_REASS_VALIDATE_PBUF_QUEUED;
511   }
512   /* If we come here, not all fragments were received, yet! */
513   return IP_REASS_VALIDATE_PBUF_QUEUED; /* not yet valid! */
514 }
515 
516 /**
517  * Reassembles incoming IP fragments into an IP datagram.
518  *
519  * @param p points to a pbuf chain of the fragment
520  * @return NULL if reassembly is incomplete, ? otherwise
521  */
522 struct pbuf *
ip4_reass(struct pbuf * p)523 ip4_reass(struct pbuf *p)
524 {
525   struct pbuf *r;
526   struct ip_hdr *fraghdr;
527   struct ip_reassdata *ipr;
528   struct ip_reass_helper *iprh;
529   u16_t offset, len, clen;
530   u8_t hlen;
531   int valid;
532   int is_last;
533 
534   IPFRAG_STATS_INC(ip_frag.recv);
535   MIB2_STATS_INC(mib2.ipreasmreqds);
536 
537   fraghdr = (struct ip_hdr *)p->payload;
538 
539   if (IPH_HL_BYTES(fraghdr) != IP_HLEN) {
540     LWIP_DEBUGF(IP_REASS_DEBUG, ("ip4_reass: IP options currently not supported!\n"));
541     IPFRAG_STATS_INC(ip_frag.err);
542     goto nullreturn;
543   }
544 
545   offset = IPH_OFFSET_BYTES(fraghdr);
546   len = lwip_ntohs(IPH_LEN(fraghdr));
547   hlen = IPH_HL_BYTES(fraghdr);
548   if (hlen > len) {
549     /* invalid datagram */
550     goto nullreturn;
551   }
552   len = (u16_t)(len - hlen);
553 
554   /* Check if we are allowed to enqueue more datagrams. */
555   clen = pbuf_clen(p);
556   if ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS) {
557 #if IP_REASS_FREE_OLDEST
558     if (!ip_reass_remove_oldest_datagram(fraghdr, clen) ||
559         ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS))
560 #endif /* IP_REASS_FREE_OLDEST */
561     {
562       /* No datagram could be freed and still too many pbufs enqueued */
563       LWIP_DEBUGF(IP_REASS_DEBUG, ("ip4_reass: Overflow condition: pbufct=%d, clen=%d, MAX=%d\n",
564                                    ip_reass_pbufcount, clen, IP_REASS_MAX_PBUFS));
565       IPFRAG_STATS_INC(ip_frag.memerr);
566       /* @todo: send ICMP time exceeded here? */
567       /* drop this pbuf */
568       goto nullreturn;
569     }
570   }
571 
572   /* Look for the datagram the fragment belongs to in the current datagram queue,
573    * remembering the previous in the queue for later dequeueing. */
574   for (ipr = reassdatagrams; ipr != NULL; ipr = ipr->next) {
575     /* Check if the incoming fragment matches the one currently present
576        in the reassembly buffer. If so, we proceed with copying the
577        fragment into the buffer. */
578     if (IP_ADDRESSES_AND_ID_MATCH(&ipr->iphdr, fraghdr)) {
579       LWIP_DEBUGF(IP_REASS_DEBUG, ("ip4_reass: matching previous fragment ID=%"X16_F"\n",
580                                    lwip_ntohs(IPH_ID(fraghdr))));
581       IPFRAG_STATS_INC(ip_frag.cachehit);
582       break;
583     }
584   }
585 
586   if (ipr == NULL) {
587     /* Enqueue a new datagram into the datagram queue */
588     ipr = ip_reass_enqueue_new_datagram(fraghdr, clen);
589     /* Bail if unable to enqueue */
590     if (ipr == NULL) {
591       goto nullreturn;
592     }
593   } else {
594     if (((lwip_ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) == 0) &&
595         ((lwip_ntohs(IPH_OFFSET(&ipr->iphdr)) & IP_OFFMASK) != 0)) {
596       /* ipr->iphdr is not the header from the first fragment, but fraghdr is
597        * -> copy fraghdr into ipr->iphdr since we want to have the header
598        * of the first fragment (for ICMP time exceeded and later, for copying
599        * all options, if supported)*/
600       SMEMCPY(&ipr->iphdr, fraghdr, IP_HLEN);
601     }
602   }
603 
604   /* At this point, we have either created a new entry or pointing
605    * to an existing one */
606 
607   /* check for 'no more fragments', and update queue entry*/
608   is_last = (IPH_OFFSET(fraghdr) & PP_NTOHS(IP_MF)) == 0;
609   if (is_last) {
610     u16_t datagram_len = (u16_t)(offset + len);
611     if ((datagram_len < offset) || (datagram_len > (0xFFFF - IP_HLEN))) {
612       /* u16_t overflow, cannot handle this */
613       goto nullreturn_ipr;
614     }
615   }
616   /* find the right place to insert this pbuf */
617   /* @todo: trim pbufs if fragments are overlapping */
618   valid = ip_reass_chain_frag_into_datagram_and_validate(ipr, p, is_last);
619   if (valid == IP_REASS_VALIDATE_PBUF_DROPPED) {
620     goto nullreturn_ipr;
621   }
622   /* if we come here, the pbuf has been enqueued */
623 
624   /* Track the current number of pbufs current 'in-flight', in order to limit
625      the number of fragments that may be enqueued at any one time
626      (overflow checked by testing against IP_REASS_MAX_PBUFS) */
627   ip_reass_pbufcount = (u16_t)(ip_reass_pbufcount + clen);
628   if (is_last) {
629     u16_t datagram_len = (u16_t)(offset + len);
630     ipr->datagram_len = datagram_len;
631     ipr->flags |= IP_REASS_FLAG_LASTFRAG;
632     LWIP_DEBUGF(IP_REASS_DEBUG,
633                 ("ip4_reass: last fragment seen, total len %"S16_F"\n",
634                  ipr->datagram_len));
635   }
636 
637   if (valid == IP_REASS_VALIDATE_TELEGRAM_FINISHED) {
638     struct ip_reassdata *ipr_prev;
639     /* the totally last fragment (flag more fragments = 0) was received at least
640      * once AND all fragments are received */
641     u16_t datagram_len = (u16_t)(ipr->datagram_len + IP_HLEN);
642 
643     /* save the second pbuf before copying the header over the pointer */
644     r = ((struct ip_reass_helper *)ipr->p->payload)->next_pbuf;
645 
646     /* copy the original ip header back to the first pbuf */
647     fraghdr = (struct ip_hdr *)(ipr->p->payload);
648     SMEMCPY(fraghdr, &ipr->iphdr, IP_HLEN);
649     IPH_LEN_SET(fraghdr, lwip_htons(datagram_len));
650     IPH_OFFSET_SET(fraghdr, 0);
651     IPH_CHKSUM_SET(fraghdr, 0);
652     /* @todo: do we need to set/calculate the correct checksum? */
653 #if CHECKSUM_GEN_IP
654     IF__NETIF_CHECKSUM_ENABLED(ip_current_input_netif(), NETIF_CHECKSUM_GEN_IP) {
655       IPH_CHKSUM_SET(fraghdr, inet_chksum(fraghdr, IP_HLEN));
656     }
657 #endif /* CHECKSUM_GEN_IP */
658 
659     p = ipr->p;
660 
661     /* chain together the pbufs contained within the reass_data list. */
662     while (r != NULL) {
663       iprh = (struct ip_reass_helper *)r->payload;
664 
665       /* hide the ip header for every succeeding fragment */
666       pbuf_remove_header(r, IP_HLEN);
667       pbuf_cat(p, r);
668       r = iprh->next_pbuf;
669     }
670 
671     /* find the previous entry in the linked list */
672     if (ipr == reassdatagrams) {
673       ipr_prev = NULL;
674     } else {
675       for (ipr_prev = reassdatagrams; ipr_prev != NULL; ipr_prev = ipr_prev->next) {
676         if (ipr_prev->next == ipr) {
677           break;
678         }
679       }
680     }
681 
682     /* release the sources allocate for the fragment queue entry */
683     ip_reass_dequeue_datagram(ipr, ipr_prev);
684 
685     /* and adjust the number of pbufs currently queued for reassembly. */
686     clen = pbuf_clen(p);
687     LWIP_ASSERT("ip_reass_pbufcount >= clen", ip_reass_pbufcount >= clen);
688     ip_reass_pbufcount = (u16_t)(ip_reass_pbufcount - clen);
689 
690     MIB2_STATS_INC(mib2.ipreasmoks);
691 
692     /* Return the pbuf chain */
693     return p;
694   }
695   /* the datagram is not (yet?) reassembled completely */
696   LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_pbufcount: %d out\n", ip_reass_pbufcount));
697   return NULL;
698 
699 nullreturn_ipr:
700   LWIP_ASSERT("ipr != NULL", ipr != NULL);
701   if (ipr->p == NULL) {
702     /* dropped pbuf after creating a new datagram entry: remove the entry, too */
703     LWIP_ASSERT("not firstalthough just enqueued", ipr == reassdatagrams);
704     ip_reass_dequeue_datagram(ipr, NULL);
705   }
706 
707 nullreturn:
708   LWIP_DEBUGF(IP_REASS_DEBUG, ("ip4_reass: nullreturn\n"));
709   IPFRAG_STATS_INC(ip_frag.drop);
710   pbuf_free(p);
711   return NULL;
712 }
713 #endif /* IP_REASSEMBLY */
714 
715 #if IP_FRAG
716 #if !LWIP_NETIF_TX_SINGLE_PBUF
717 /** Allocate a new struct pbuf_custom_ref */
718 static struct pbuf_custom_ref *
ip_frag_alloc_pbuf_custom_ref(void)719 ip_frag_alloc_pbuf_custom_ref(void)
720 {
721   return (struct pbuf_custom_ref *)memp_malloc(MEMP_FRAG_PBUF);
722 }
723 
724 /** Free a struct pbuf_custom_ref */
725 static void
ip_frag_free_pbuf_custom_ref(struct pbuf_custom_ref * p)726 ip_frag_free_pbuf_custom_ref(struct pbuf_custom_ref *p)
727 {
728   LWIP_ASSERT("p != NULL", p != NULL);
729   memp_free(MEMP_FRAG_PBUF, p);
730 }
731 
732 /** Free-callback function to free a 'struct pbuf_custom_ref', called by
733  * pbuf_free. */
734 static void
ipfrag_free_pbuf_custom(struct pbuf * p)735 ipfrag_free_pbuf_custom(struct pbuf *p)
736 {
737   struct pbuf_custom_ref *pcr = (struct pbuf_custom_ref *)p;
738   LWIP_ASSERT("pcr != NULL", pcr != NULL);
739   LWIP_ASSERT("pcr == p", (void *)pcr == (void *)p);
740   if (pcr->original != NULL) {
741     pbuf_free(pcr->original);
742   }
743   ip_frag_free_pbuf_custom_ref(pcr);
744 }
745 #endif /* !LWIP_NETIF_TX_SINGLE_PBUF */
746 
747 /**
748  * Fragment an IP datagram if too large for the netif.
749  *
750  * Chop the datagram in MTU sized chunks and send them in order
751  * by pointing PBUF_REFs into p.
752  *
753  * @param p ip packet to send
754  * @param netif the netif on which to send
755  * @param dest destination ip address to which to send
756  *
757  * @return ERR_OK if sent successfully, err_t otherwise
758  */
759 err_t
ip4_frag(struct pbuf * p,struct netif * netif,const ip4_addr_t * dest)760 ip4_frag(struct pbuf *p, struct netif *netif, const ip4_addr_t *dest)
761 {
762   struct pbuf *rambuf;
763 #if !LWIP_NETIF_TX_SINGLE_PBUF
764   struct pbuf *newpbuf;
765   u16_t newpbuflen = 0;
766   u16_t left_to_copy;
767 #endif
768   struct ip_hdr *original_iphdr;
769   struct ip_hdr *iphdr;
770   const u16_t nfb = (u16_t)((netif->mtu - IP_HLEN) / 8);
771   u16_t left, fragsize;
772   u16_t ofo;
773   int last;
774   u16_t poff = IP_HLEN;
775   u16_t tmp;
776   int mf_set;
777 
778   original_iphdr = (struct ip_hdr *)p->payload;
779   iphdr = original_iphdr;
780   if (IPH_HL_BYTES(iphdr) != IP_HLEN) {
781     /* ip4_frag() does not support IP options */
782     return ERR_VAL;
783   }
784   LWIP_ERROR("ip4_frag(): pbuf too short", p->len >= IP_HLEN, return ERR_VAL);
785 
786   /* Save original offset */
787   tmp = lwip_ntohs(IPH_OFFSET(iphdr));
788   ofo = tmp & IP_OFFMASK;
789   /* already fragmented? if so, the last fragment we create must have MF, too */
790   mf_set = tmp & IP_MF;
791 
792   left = (u16_t)(p->tot_len - IP_HLEN);
793 
794   while (left) {
795     /* Fill this fragment */
796     fragsize = LWIP_MIN(left, (u16_t)(nfb * 8));
797 
798 #if LWIP_NETIF_TX_SINGLE_PBUF
799     rambuf = pbuf_alloc(PBUF_IP, fragsize, PBUF_RAM);
800     if (rambuf == NULL) {
801       goto memerr;
802     }
803     LWIP_ASSERT("this needs a pbuf in one piece!",
804                 (rambuf->len == rambuf->tot_len) && (rambuf->next == NULL));
805     poff += pbuf_copy_partial(p, rambuf->payload, fragsize, poff);
806     /* make room for the IP header */
807     if (pbuf_add_header(rambuf, IP_HLEN)) {
808       pbuf_free(rambuf);
809       goto memerr;
810     }
811     /* fill in the IP header */
812     SMEMCPY(rambuf->payload, original_iphdr, IP_HLEN);
813     iphdr = (struct ip_hdr *)rambuf->payload;
814 #else /* LWIP_NETIF_TX_SINGLE_PBUF */
815     /* When not using a static buffer, create a chain of pbufs.
816      * The first will be a PBUF_RAM holding the link and IP header.
817      * The rest will be PBUF_REFs mirroring the pbuf chain to be fragged,
818      * but limited to the size of an mtu.
819      */
820     rambuf = pbuf_alloc(PBUF_LINK, IP_HLEN, PBUF_RAM);
821     if (rambuf == NULL) {
822       goto memerr;
823     }
824     LWIP_ASSERT("this needs a pbuf in one piece!",
825                 (rambuf->len >= (IP_HLEN)));
826     SMEMCPY(rambuf->payload, original_iphdr, IP_HLEN);
827     iphdr = (struct ip_hdr *)rambuf->payload;
828 
829     left_to_copy = fragsize;
830     while (left_to_copy) {
831       struct pbuf_custom_ref *pcr;
832       u16_t plen = (u16_t)(p->len - poff);
833       LWIP_ASSERT("p->len >= poff", p->len >= poff);
834       newpbuflen = LWIP_MIN(left_to_copy, plen);
835       /* Is this pbuf already empty? */
836       if (!newpbuflen) {
837         poff = 0;
838         p = p->next;
839         continue;
840       }
841       pcr = ip_frag_alloc_pbuf_custom_ref();
842       if (pcr == NULL) {
843         pbuf_free(rambuf);
844         goto memerr;
845       }
846       /* Mirror this pbuf, although we might not need all of it. */
847       newpbuf = pbuf_alloced_custom(PBUF_RAW, newpbuflen, PBUF_REF, &pcr->pc,
848                                     (u8_t *)p->payload + poff, newpbuflen);
849       if (newpbuf == NULL) {
850         ip_frag_free_pbuf_custom_ref(pcr);
851         pbuf_free(rambuf);
852         goto memerr;
853       }
854       pbuf_ref(p);
855       pcr->original = p;
856       pcr->pc.custom_free_function = ipfrag_free_pbuf_custom;
857 
858       /* Add it to end of rambuf's chain, but using pbuf_cat, not pbuf_chain
859        * so that it is removed when pbuf_dechain is later called on rambuf.
860        */
861       pbuf_cat(rambuf, newpbuf);
862       left_to_copy = (u16_t)(left_to_copy - newpbuflen);
863       if (left_to_copy) {
864         poff = 0;
865         p = p->next;
866       }
867     }
868     poff = (u16_t)(poff + newpbuflen);
869 #endif /* LWIP_NETIF_TX_SINGLE_PBUF */
870 
871     /* Correct header */
872     last = (left <= netif->mtu - IP_HLEN);
873 
874     /* Set new offset and MF flag */
875     tmp = (IP_OFFMASK & (ofo));
876     if (!last || mf_set) {
877       /* the last fragment has MF set if the input frame had it */
878       tmp = tmp | IP_MF;
879     }
880     IPH_OFFSET_SET(iphdr, lwip_htons(tmp));
881     IPH_LEN_SET(iphdr, lwip_htons((u16_t)(fragsize + IP_HLEN)));
882     IPH_CHKSUM_SET(iphdr, 0);
883 #if CHECKSUM_GEN_IP
884     IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_IP) {
885       IPH_CHKSUM_SET(iphdr, inet_chksum(iphdr, IP_HLEN));
886     }
887 #endif /* CHECKSUM_GEN_IP */
888 
889     /* No need for separate header pbuf - we allowed room for it in rambuf
890      * when allocated.
891      */
892     netif->output(netif, rambuf, dest);
893     IPFRAG_STATS_INC(ip_frag.xmit);
894 
895     /* Unfortunately we can't reuse rambuf - the hardware may still be
896      * using the buffer. Instead we free it (and the ensuing chain) and
897      * recreate it next time round the loop. If we're lucky the hardware
898      * will have already sent the packet, the free will really free, and
899      * there will be zero memory penalty.
900      */
901 
902     pbuf_free(rambuf);
903     left = (u16_t)(left - fragsize);
904     ofo = (u16_t)(ofo + nfb);
905   }
906   MIB2_STATS_INC(mib2.ipfragoks);
907   return ERR_OK;
908 memerr:
909   MIB2_STATS_INC(mib2.ipfragfails);
910   return ERR_MEM;
911 }
912 #endif /* IP_FRAG */
913 
914 #endif /* LWIP_IPV4 */
915