1 /**
2 * @file
3 * This is the IPv4 packet segmentation and reassembly implementation.
4 *
5 */
6
7 /*
8 * Copyright (c) 2001-2004 Swedish Institute of Computer Science.
9 * All rights reserved.
10 *
11 * Redistribution and use in source and binary forms, with or without modification,
12 * are permitted provided that the following conditions are met:
13 *
14 * 1. Redistributions of source code must retain the above copyright notice,
15 * this list of conditions and the following disclaimer.
16 * 2. Redistributions in binary form must reproduce the above copyright notice,
17 * this list of conditions and the following disclaimer in the documentation
18 * and/or other materials provided with the distribution.
19 * 3. The name of the author may not be used to endorse or promote products
20 * derived from this software without specific prior written permission.
21 *
22 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR IMPLIED
23 * WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
24 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT
25 * SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
26 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
27 * OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
28 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
29 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING
30 * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY
31 * OF SUCH DAMAGE.
32 *
33 * This file is part of the lwIP TCP/IP stack.
34 *
35 * Author: Jani Monoses <jani@iv.ro>
36 * Simon Goldschmidt
37 * original reassembly code by Adam Dunkels <adam@sics.se>
38 *
39 */
40
41 #include "lwip/opt.h"
42
43 #if LWIP_IPV4
44
45 #include "lwip/ip4_frag.h"
46 #include "lwip/def.h"
47 #include "lwip/inet_chksum.h"
48 #include "lwip/netif.h"
49 #include "lwip/stats.h"
50 #include "lwip/icmp.h"
51
52 #include <string.h>
53
54 #if IP_REASSEMBLY
55 /**
56 * The IP reassembly code currently has the following limitations:
57 * - IP header options are not supported
58 * - fragments must not overlap (e.g. due to different routes),
59 * currently, overlapping or duplicate fragments are thrown away
60 * if IP_REASS_CHECK_OVERLAP=1 (the default)!
61 *
62 * @todo: work with IP header options
63 */
64
65 /** Setting this to 0, you can turn off checking the fragments for overlapping
66 * regions. The code gets a little smaller. Only use this if you know that
67 * overlapping won't occur on your network! */
68 #ifndef IP_REASS_CHECK_OVERLAP
69 #define IP_REASS_CHECK_OVERLAP 1
70 #endif /* IP_REASS_CHECK_OVERLAP */
71
72 /** Set to 0 to prevent freeing the oldest datagram when the reassembly buffer is
73 * full (IP_REASS_MAX_PBUFS pbufs are enqueued). The code gets a little smaller.
74 * Datagrams will be freed by timeout only. Especially useful when MEMP_NUM_REASSDATA
75 * is set to 1, so one datagram can be reassembled at a time, only. */
76 #ifndef IP_REASS_FREE_OLDEST
77 #define IP_REASS_FREE_OLDEST 1
78 #endif /* IP_REASS_FREE_OLDEST */
79
80 #define IP_REASS_FLAG_LASTFRAG 0x01
81
82 #define IP_REASS_VALIDATE_TELEGRAM_FINISHED 1
83 #define IP_REASS_VALIDATE_PBUF_QUEUED 0
84 #define IP_REASS_VALIDATE_PBUF_DROPPED -1
85
86 /** This is a helper struct which holds the starting
87 * offset and the ending offset of this fragment to
88 * easily chain the fragments.
89 * It has the same packing requirements as the IP header, since it replaces
90 * the IP header in memory in incoming fragments (after copying it) to keep
91 * track of the various fragments. (-> If the IP header doesn't need packing,
92 * this struct doesn't need packing, too.)
93 */
94 #ifdef PACK_STRUCT_USE_INCLUDES
95 # include "arch/bpstruct.h"
96 #endif
97 PACK_STRUCT_BEGIN
98 struct ip_reass_helper {
99 PACK_STRUCT_FIELD(struct pbuf *next_pbuf);
100 PACK_STRUCT_FIELD(u16_t start);
101 PACK_STRUCT_FIELD(u16_t end);
102 } PACK_STRUCT_STRUCT;
103 PACK_STRUCT_END
104 #ifdef PACK_STRUCT_USE_INCLUDES
105 # include "arch/epstruct.h"
106 #endif
107
108 #define IP_ADDRESSES_AND_ID_MATCH(iphdrA, iphdrB) \
109 (ip4_addr_cmp(&(iphdrA)->src, &(iphdrB)->src) && \
110 ip4_addr_cmp(&(iphdrA)->dest, &(iphdrB)->dest) && \
111 IPH_ID(iphdrA) == IPH_ID(iphdrB)) ? 1 : 0
112
113 /* global variables */
114 static struct ip_reassdata *reassdatagrams;
115 static u16_t ip_reass_pbufcount;
116
117 /* function prototypes */
118 static void ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
119 static int ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev);
120
121 /**
122 * Reassembly timer base function
123 * for both NO_SYS == 0 and 1 (!).
124 *
125 * Should be called every 1000 msec (defined by IP_TMR_INTERVAL).
126 */
127 void
ip_reass_tmr(void)128 ip_reass_tmr(void)
129 {
130 struct ip_reassdata *r, *prev = NULL;
131
132 r = reassdatagrams;
133 while (r != NULL) {
134 /* Decrement the timer. Once it reaches 0,
135 * clean up the incomplete fragment assembly */
136 if (r->timer > 0) {
137 r->timer--;
138 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer dec %"U16_F"\n", (u16_t)r->timer));
139 prev = r;
140 r = r->next;
141 } else {
142 /* reassembly timed out */
143 struct ip_reassdata *tmp;
144 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_tmr: timer timed out\n"));
145 tmp = r;
146 /* get the next pointer before freeing */
147 r = r->next;
148 /* free the helper struct and all enqueued pbufs */
149 ip_reass_free_complete_datagram(tmp, prev);
150 }
151 }
152 }
153
154 /**
155 * Free a datagram (struct ip_reassdata) and all its pbufs.
156 * Updates the total count of enqueued pbufs (ip_reass_pbufcount),
157 * SNMP counters and sends an ICMP time exceeded packet.
158 *
159 * @param ipr datagram to free
160 * @param prev the previous datagram in the linked list
161 * @return the number of pbufs freed
162 */
163 static int
ip_reass_free_complete_datagram(struct ip_reassdata * ipr,struct ip_reassdata * prev)164 ip_reass_free_complete_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
165 {
166 u16_t pbufs_freed = 0;
167 u16_t clen;
168 struct pbuf *p;
169 struct ip_reass_helper *iprh;
170
171 LWIP_ASSERT("prev != ipr", prev != ipr);
172 if (prev != NULL) {
173 LWIP_ASSERT("prev->next == ipr", prev->next == ipr);
174 }
175
176 MIB2_STATS_INC(mib2.ipreasmfails);
177 #if LWIP_ICMP
178 iprh = (struct ip_reass_helper *)ipr->p->payload;
179 if (iprh->start == 0) {
180 /* The first fragment was received, send ICMP time exceeded. */
181 /* First, de-queue the first pbuf from r->p. */
182 p = ipr->p;
183 ipr->p = iprh->next_pbuf;
184 /* Then, copy the original header into it. */
185 SMEMCPY(p->payload, &ipr->iphdr, IP_HLEN);
186 icmp_time_exceeded(p, ICMP_TE_FRAG);
187 clen = pbuf_clen(p);
188 LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
189 pbufs_freed = (u16_t)(pbufs_freed + clen);
190 pbuf_free(p);
191 }
192 #endif /* LWIP_ICMP */
193
194 /* First, free all received pbufs. The individual pbufs need to be released
195 separately as they have not yet been chained */
196 p = ipr->p;
197 while (p != NULL) {
198 struct pbuf *pcur;
199 iprh = (struct ip_reass_helper *)p->payload;
200 pcur = p;
201 /* get the next pointer before freeing */
202 p = iprh->next_pbuf;
203 clen = pbuf_clen(pcur);
204 LWIP_ASSERT("pbufs_freed + clen <= 0xffff", pbufs_freed + clen <= 0xffff);
205 pbufs_freed = (u16_t)(pbufs_freed + clen);
206 pbuf_free(pcur);
207 }
208 /* Then, unchain the struct ip_reassdata from the list and free it. */
209 ip_reass_dequeue_datagram(ipr, prev);
210 LWIP_ASSERT("ip_reass_pbufcount >= pbufs_freed", ip_reass_pbufcount >= pbufs_freed);
211 ip_reass_pbufcount = (u16_t)(ip_reass_pbufcount - pbufs_freed);
212
213 return pbufs_freed;
214 }
215
216 #if LWIP_LOWPOWER
217 #include "lwip/lowpower.h"
218 u32_t
ip_reass_tmr_tick(void)219 ip_reass_tmr_tick(void)
220 {
221 struct ip_reassdata *r = NULL;
222 u32_t tick = 0;
223 u32_t val;
224
225 r = reassdatagrams;
226 while (r != NULL) {
227 val = r->timer + 1;
228 SET_TMR_TICK(tick, val);
229 r = r->next;
230 }
231 LWIP_DEBUGF(LOWPOWER_DEBUG, ("%s tmr tick: %u\n", "ip_reass_tmr_tick", tick));
232 return tick;
233 }
234 #endif /* LWIP_LOWPOWER */
235
236 #if IP_REASS_FREE_OLDEST
237 /**
238 * Free the oldest datagram to make room for enqueueing new fragments.
239 * The datagram 'fraghdr' belongs to is not freed!
240 *
241 * @param fraghdr IP header of the current fragment
242 * @param pbufs_needed number of pbufs needed to enqueue
243 * (used for freeing other datagrams if not enough space)
244 * @return the number of pbufs freed
245 */
246 static int
ip_reass_remove_oldest_datagram(struct ip_hdr * fraghdr,int pbufs_needed)247 ip_reass_remove_oldest_datagram(struct ip_hdr *fraghdr, int pbufs_needed)
248 {
249 /* @todo Can't we simply remove the last datagram in the
250 * linked list behind reassdatagrams?
251 */
252 struct ip_reassdata *r, *oldest, *prev, *oldest_prev;
253 int pbufs_freed = 0, pbufs_freed_current;
254 int other_datagrams;
255
256 /* Free datagrams until being allowed to enqueue 'pbufs_needed' pbufs,
257 * but don't free the datagram that 'fraghdr' belongs to! */
258 do {
259 oldest = NULL;
260 prev = NULL;
261 oldest_prev = NULL;
262 other_datagrams = 0;
263 r = reassdatagrams;
264 while (r != NULL) {
265 if (!IP_ADDRESSES_AND_ID_MATCH(&r->iphdr, fraghdr)) {
266 /* Not the same datagram as fraghdr */
267 other_datagrams++;
268 if (oldest == NULL) {
269 oldest = r;
270 oldest_prev = prev;
271 } else if (r->timer <= oldest->timer) {
272 /* older than the previous oldest */
273 oldest = r;
274 oldest_prev = prev;
275 }
276 }
277 if (r->next != NULL) {
278 prev = r;
279 }
280 r = r->next;
281 }
282 if (oldest != NULL) {
283 pbufs_freed_current = ip_reass_free_complete_datagram(oldest, oldest_prev);
284 pbufs_freed += pbufs_freed_current;
285 }
286 } while ((pbufs_freed < pbufs_needed) && (other_datagrams > 1));
287 return pbufs_freed;
288 }
289 #endif /* IP_REASS_FREE_OLDEST */
290
291 /**
292 * Enqueues a new fragment into the fragment queue
293 * @param fraghdr points to the new fragments IP hdr
294 * @param clen number of pbufs needed to enqueue (used for freeing other datagrams if not enough space)
295 * @return A pointer to the queue location into which the fragment was enqueued
296 */
297 static struct ip_reassdata *
ip_reass_enqueue_new_datagram(struct ip_hdr * fraghdr,int clen)298 ip_reass_enqueue_new_datagram(struct ip_hdr *fraghdr, int clen)
299 {
300 struct ip_reassdata *ipr;
301 #if ! IP_REASS_FREE_OLDEST
302 LWIP_UNUSED_ARG(clen);
303 #endif
304
305 /* No matching previous fragment found, allocate a new reassdata struct */
306 ipr = (struct ip_reassdata *)memp_malloc(MEMP_REASSDATA);
307 if (ipr == NULL) {
308 #if IP_REASS_FREE_OLDEST
309 if (ip_reass_remove_oldest_datagram(fraghdr, clen) >= clen) {
310 ipr = (struct ip_reassdata *)memp_malloc(MEMP_REASSDATA);
311 }
312 if (ipr == NULL)
313 #endif /* IP_REASS_FREE_OLDEST */
314 {
315 IPFRAG_STATS_INC(ip_frag.memerr);
316 LWIP_DEBUGF(IP_REASS_DEBUG, ("Failed to alloc reassdata struct\n"));
317 return NULL;
318 }
319 }
320 memset(ipr, 0, sizeof(struct ip_reassdata));
321 ipr->timer = IP_REASS_MAXAGE;
322
323 /* enqueue the new structure to the front of the list */
324 ipr->next = reassdatagrams;
325 reassdatagrams = ipr;
326 /* copy the ip header for later tests and input */
327 /* @todo: no ip options supported? */
328 SMEMCPY(&(ipr->iphdr), fraghdr, IP_HLEN);
329 return ipr;
330 }
331
332 /**
333 * Dequeues a datagram from the datagram queue. Doesn't deallocate the pbufs.
334 * @param ipr points to the queue entry to dequeue
335 */
336 static void
ip_reass_dequeue_datagram(struct ip_reassdata * ipr,struct ip_reassdata * prev)337 ip_reass_dequeue_datagram(struct ip_reassdata *ipr, struct ip_reassdata *prev)
338 {
339 /* dequeue the reass struct */
340 if (reassdatagrams == ipr) {
341 /* it was the first in the list */
342 reassdatagrams = ipr->next;
343 } else {
344 /* it wasn't the first, so it must have a valid 'prev' */
345 LWIP_ASSERT("sanity check linked list", prev != NULL);
346 prev->next = ipr->next;
347 }
348
349 /* now we can free the ip_reassdata struct */
350 memp_free(MEMP_REASSDATA, ipr);
351 }
352
353 /**
354 * Chain a new pbuf into the pbuf list that composes the datagram. The pbuf list
355 * will grow over time as new pbufs are rx.
356 * Also checks that the datagram passes basic continuity checks (if the last
357 * fragment was received at least once).
358 * @param ipr points to the reassembly state
359 * @param new_p points to the pbuf for the current fragment
360 * @param is_last is 1 if this pbuf has MF==0 (ipr->flags not updated yet)
361 * @return see IP_REASS_VALIDATE_* defines
362 */
363 static int
ip_reass_chain_frag_into_datagram_and_validate(struct ip_reassdata * ipr,struct pbuf * new_p,int is_last)364 ip_reass_chain_frag_into_datagram_and_validate(struct ip_reassdata *ipr, struct pbuf *new_p, int is_last)
365 {
366 struct ip_reass_helper *iprh, *iprh_tmp, *iprh_prev = NULL;
367 struct pbuf *q;
368 u16_t offset, len;
369 u8_t hlen;
370 struct ip_hdr *fraghdr;
371 int valid = 1;
372
373 /* Extract length and fragment offset from current fragment */
374 fraghdr = (struct ip_hdr *)new_p->payload;
375 len = lwip_ntohs(IPH_LEN(fraghdr));
376 hlen = IPH_HL_BYTES(fraghdr);
377 if (hlen > len) {
378 /* invalid datagram */
379 return IP_REASS_VALIDATE_PBUF_DROPPED;
380 }
381 len = (u16_t)(len - hlen);
382 offset = IPH_OFFSET_BYTES(fraghdr);
383
384 /* overwrite the fragment's ip header from the pbuf with our helper struct,
385 * and setup the embedded helper structure. */
386 /* make sure the struct ip_reass_helper fits into the IP header */
387 LWIP_ASSERT("sizeof(struct ip_reass_helper) <= IP_HLEN",
388 sizeof(struct ip_reass_helper) <= IP_HLEN);
389 iprh = (struct ip_reass_helper *)new_p->payload;
390 iprh->next_pbuf = NULL;
391 iprh->start = offset;
392 iprh->end = (u16_t)(offset + len);
393 if (iprh->end < offset) {
394 /* u16_t overflow, cannot handle this */
395 return IP_REASS_VALIDATE_PBUF_DROPPED;
396 }
397
398 /* Iterate through until we either get to the end of the list (append),
399 * or we find one with a larger offset (insert). */
400 for (q = ipr->p; q != NULL;) {
401 iprh_tmp = (struct ip_reass_helper *)q->payload;
402 if (iprh->start < iprh_tmp->start) {
403 /* the new pbuf should be inserted before this */
404 iprh->next_pbuf = q;
405 if (iprh_prev != NULL) {
406 /* not the fragment with the lowest offset */
407 #if IP_REASS_CHECK_OVERLAP
408 if ((iprh->start < iprh_prev->end) || (iprh->end > iprh_tmp->start)) {
409 /* fragment overlaps with previous or following, throw away */
410 return IP_REASS_VALIDATE_PBUF_DROPPED;
411 }
412 #endif /* IP_REASS_CHECK_OVERLAP */
413 iprh_prev->next_pbuf = new_p;
414 if (iprh_prev->end != iprh->start) {
415 /* There is a fragment missing between the current
416 * and the previous fragment */
417 valid = 0;
418 }
419 } else {
420 #if IP_REASS_CHECK_OVERLAP
421 if (iprh->end > iprh_tmp->start) {
422 /* fragment overlaps with following, throw away */
423 return IP_REASS_VALIDATE_PBUF_DROPPED;
424 }
425 #endif /* IP_REASS_CHECK_OVERLAP */
426 /* fragment with the lowest offset */
427 ipr->p = new_p;
428 }
429 break;
430 } else if (iprh->start == iprh_tmp->start) {
431 /* received the same datagram twice: no need to keep the datagram */
432 return IP_REASS_VALIDATE_PBUF_DROPPED;
433 #if IP_REASS_CHECK_OVERLAP
434 } else if (iprh->start < iprh_tmp->end) {
435 /* overlap: no need to keep the new datagram */
436 return IP_REASS_VALIDATE_PBUF_DROPPED;
437 #endif /* IP_REASS_CHECK_OVERLAP */
438 } else {
439 /* Check if the fragments received so far have no holes. */
440 if (iprh_prev != NULL) {
441 if (iprh_prev->end != iprh_tmp->start) {
442 /* There is a fragment missing between the current
443 * and the previous fragment */
444 valid = 0;
445 }
446 }
447 }
448 q = iprh_tmp->next_pbuf;
449 iprh_prev = iprh_tmp;
450 }
451
452 /* If q is NULL, then we made it to the end of the list. Determine what to do now */
453 if (q == NULL) {
454 if (iprh_prev != NULL) {
455 /* this is (for now), the fragment with the highest offset:
456 * chain it to the last fragment */
457 #if IP_REASS_CHECK_OVERLAP
458 LWIP_ASSERT("check fragments don't overlap", iprh_prev->end <= iprh->start);
459 #endif /* IP_REASS_CHECK_OVERLAP */
460 iprh_prev->next_pbuf = new_p;
461 if (iprh_prev->end != iprh->start) {
462 valid = 0;
463 }
464 } else {
465 #if IP_REASS_CHECK_OVERLAP
466 LWIP_ASSERT("no previous fragment, this must be the first fragment!",
467 ipr->p == NULL);
468 #endif /* IP_REASS_CHECK_OVERLAP */
469 /* this is the first fragment we ever received for this ip datagram */
470 ipr->p = new_p;
471 }
472 }
473
474 /* At this point, the validation part begins: */
475 /* If we already received the last fragment */
476 if (is_last || ((ipr->flags & IP_REASS_FLAG_LASTFRAG) != 0)) {
477 /* and had no holes so far */
478 if (valid) {
479 /* then check if the rest of the fragments is here */
480 /* Check if the queue starts with the first datagram */
481 if ((ipr->p == NULL) || (((struct ip_reass_helper *)ipr->p->payload)->start != 0)) {
482 valid = 0;
483 } else {
484 /* and check that there are no holes after this datagram */
485 iprh_prev = iprh;
486 q = iprh->next_pbuf;
487 while (q != NULL) {
488 iprh = (struct ip_reass_helper *)q->payload;
489 if (iprh_prev->end != iprh->start) {
490 valid = 0;
491 break;
492 }
493 iprh_prev = iprh;
494 q = iprh->next_pbuf;
495 }
496 /* if still valid, all fragments are received
497 * (because to the MF==0 already arrived */
498 if (valid) {
499 LWIP_ASSERT("sanity check", ipr->p != NULL);
500 LWIP_ASSERT("sanity check",
501 ((struct ip_reass_helper *)ipr->p->payload) != iprh);
502 LWIP_ASSERT("validate_datagram:next_pbuf!=NULL",
503 iprh->next_pbuf == NULL);
504 }
505 }
506 }
507 /* If valid is 0 here, there are some fragments missing in the middle
508 * (since MF == 0 has already arrived). Such datagrams simply time out if
509 * no more fragments are received... */
510 return valid ? IP_REASS_VALIDATE_TELEGRAM_FINISHED : IP_REASS_VALIDATE_PBUF_QUEUED;
511 }
512 /* If we come here, not all fragments were received, yet! */
513 return IP_REASS_VALIDATE_PBUF_QUEUED; /* not yet valid! */
514 }
515
516 /**
517 * Reassembles incoming IP fragments into an IP datagram.
518 *
519 * @param p points to a pbuf chain of the fragment
520 * @return NULL if reassembly is incomplete, ? otherwise
521 */
522 struct pbuf *
ip4_reass(struct pbuf * p)523 ip4_reass(struct pbuf *p)
524 {
525 struct pbuf *r;
526 struct ip_hdr *fraghdr;
527 struct ip_reassdata *ipr;
528 struct ip_reass_helper *iprh;
529 u16_t offset, len, clen;
530 u8_t hlen;
531 int valid;
532 int is_last;
533
534 IPFRAG_STATS_INC(ip_frag.recv);
535 MIB2_STATS_INC(mib2.ipreasmreqds);
536
537 fraghdr = (struct ip_hdr *)p->payload;
538
539 if (IPH_HL_BYTES(fraghdr) != IP_HLEN) {
540 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip4_reass: IP options currently not supported!\n"));
541 IPFRAG_STATS_INC(ip_frag.err);
542 goto nullreturn;
543 }
544
545 offset = IPH_OFFSET_BYTES(fraghdr);
546 len = lwip_ntohs(IPH_LEN(fraghdr));
547 hlen = IPH_HL_BYTES(fraghdr);
548 if (hlen > len) {
549 /* invalid datagram */
550 goto nullreturn;
551 }
552 len = (u16_t)(len - hlen);
553
554 /* Check if we are allowed to enqueue more datagrams. */
555 clen = pbuf_clen(p);
556 if ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS) {
557 #if IP_REASS_FREE_OLDEST
558 if (!ip_reass_remove_oldest_datagram(fraghdr, clen) ||
559 ((ip_reass_pbufcount + clen) > IP_REASS_MAX_PBUFS))
560 #endif /* IP_REASS_FREE_OLDEST */
561 {
562 /* No datagram could be freed and still too many pbufs enqueued */
563 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip4_reass: Overflow condition: pbufct=%d, clen=%d, MAX=%d\n",
564 ip_reass_pbufcount, clen, IP_REASS_MAX_PBUFS));
565 IPFRAG_STATS_INC(ip_frag.memerr);
566 /* @todo: send ICMP time exceeded here? */
567 /* drop this pbuf */
568 goto nullreturn;
569 }
570 }
571
572 /* Look for the datagram the fragment belongs to in the current datagram queue,
573 * remembering the previous in the queue for later dequeueing. */
574 for (ipr = reassdatagrams; ipr != NULL; ipr = ipr->next) {
575 /* Check if the incoming fragment matches the one currently present
576 in the reassembly buffer. If so, we proceed with copying the
577 fragment into the buffer. */
578 if (IP_ADDRESSES_AND_ID_MATCH(&ipr->iphdr, fraghdr)) {
579 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip4_reass: matching previous fragment ID=%"X16_F"\n",
580 lwip_ntohs(IPH_ID(fraghdr))));
581 IPFRAG_STATS_INC(ip_frag.cachehit);
582 break;
583 }
584 }
585
586 if (ipr == NULL) {
587 /* Enqueue a new datagram into the datagram queue */
588 ipr = ip_reass_enqueue_new_datagram(fraghdr, clen);
589 /* Bail if unable to enqueue */
590 if (ipr == NULL) {
591 goto nullreturn;
592 }
593 } else {
594 if (((lwip_ntohs(IPH_OFFSET(fraghdr)) & IP_OFFMASK) == 0) &&
595 ((lwip_ntohs(IPH_OFFSET(&ipr->iphdr)) & IP_OFFMASK) != 0)) {
596 /* ipr->iphdr is not the header from the first fragment, but fraghdr is
597 * -> copy fraghdr into ipr->iphdr since we want to have the header
598 * of the first fragment (for ICMP time exceeded and later, for copying
599 * all options, if supported)*/
600 SMEMCPY(&ipr->iphdr, fraghdr, IP_HLEN);
601 }
602 }
603
604 /* At this point, we have either created a new entry or pointing
605 * to an existing one */
606
607 /* check for 'no more fragments', and update queue entry*/
608 is_last = (IPH_OFFSET(fraghdr) & PP_NTOHS(IP_MF)) == 0;
609 if (is_last) {
610 u16_t datagram_len = (u16_t)(offset + len);
611 if ((datagram_len < offset) || (datagram_len > (0xFFFF - IP_HLEN))) {
612 /* u16_t overflow, cannot handle this */
613 goto nullreturn_ipr;
614 }
615 }
616 /* find the right place to insert this pbuf */
617 /* @todo: trim pbufs if fragments are overlapping */
618 valid = ip_reass_chain_frag_into_datagram_and_validate(ipr, p, is_last);
619 if (valid == IP_REASS_VALIDATE_PBUF_DROPPED) {
620 goto nullreturn_ipr;
621 }
622 /* if we come here, the pbuf has been enqueued */
623
624 /* Track the current number of pbufs current 'in-flight', in order to limit
625 the number of fragments that may be enqueued at any one time
626 (overflow checked by testing against IP_REASS_MAX_PBUFS) */
627 ip_reass_pbufcount = (u16_t)(ip_reass_pbufcount + clen);
628 if (is_last) {
629 u16_t datagram_len = (u16_t)(offset + len);
630 ipr->datagram_len = datagram_len;
631 ipr->flags |= IP_REASS_FLAG_LASTFRAG;
632 LWIP_DEBUGF(IP_REASS_DEBUG,
633 ("ip4_reass: last fragment seen, total len %"S16_F"\n",
634 ipr->datagram_len));
635 }
636
637 if (valid == IP_REASS_VALIDATE_TELEGRAM_FINISHED) {
638 struct ip_reassdata *ipr_prev;
639 /* the totally last fragment (flag more fragments = 0) was received at least
640 * once AND all fragments are received */
641 u16_t datagram_len = (u16_t)(ipr->datagram_len + IP_HLEN);
642
643 /* save the second pbuf before copying the header over the pointer */
644 r = ((struct ip_reass_helper *)ipr->p->payload)->next_pbuf;
645
646 /* copy the original ip header back to the first pbuf */
647 fraghdr = (struct ip_hdr *)(ipr->p->payload);
648 SMEMCPY(fraghdr, &ipr->iphdr, IP_HLEN);
649 IPH_LEN_SET(fraghdr, lwip_htons(datagram_len));
650 IPH_OFFSET_SET(fraghdr, 0);
651 IPH_CHKSUM_SET(fraghdr, 0);
652 /* @todo: do we need to set/calculate the correct checksum? */
653 #if CHECKSUM_GEN_IP
654 IF__NETIF_CHECKSUM_ENABLED(ip_current_input_netif(), NETIF_CHECKSUM_GEN_IP) {
655 IPH_CHKSUM_SET(fraghdr, inet_chksum(fraghdr, IP_HLEN));
656 }
657 #endif /* CHECKSUM_GEN_IP */
658
659 p = ipr->p;
660
661 /* chain together the pbufs contained within the reass_data list. */
662 while (r != NULL) {
663 iprh = (struct ip_reass_helper *)r->payload;
664
665 /* hide the ip header for every succeeding fragment */
666 pbuf_remove_header(r, IP_HLEN);
667 pbuf_cat(p, r);
668 r = iprh->next_pbuf;
669 }
670
671 /* find the previous entry in the linked list */
672 if (ipr == reassdatagrams) {
673 ipr_prev = NULL;
674 } else {
675 for (ipr_prev = reassdatagrams; ipr_prev != NULL; ipr_prev = ipr_prev->next) {
676 if (ipr_prev->next == ipr) {
677 break;
678 }
679 }
680 }
681
682 /* release the sources allocate for the fragment queue entry */
683 ip_reass_dequeue_datagram(ipr, ipr_prev);
684
685 /* and adjust the number of pbufs currently queued for reassembly. */
686 clen = pbuf_clen(p);
687 LWIP_ASSERT("ip_reass_pbufcount >= clen", ip_reass_pbufcount >= clen);
688 ip_reass_pbufcount = (u16_t)(ip_reass_pbufcount - clen);
689
690 MIB2_STATS_INC(mib2.ipreasmoks);
691
692 /* Return the pbuf chain */
693 return p;
694 }
695 /* the datagram is not (yet?) reassembled completely */
696 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip_reass_pbufcount: %d out\n", ip_reass_pbufcount));
697 return NULL;
698
699 nullreturn_ipr:
700 LWIP_ASSERT("ipr != NULL", ipr != NULL);
701 if (ipr->p == NULL) {
702 /* dropped pbuf after creating a new datagram entry: remove the entry, too */
703 LWIP_ASSERT("not firstalthough just enqueued", ipr == reassdatagrams);
704 ip_reass_dequeue_datagram(ipr, NULL);
705 }
706
707 nullreturn:
708 LWIP_DEBUGF(IP_REASS_DEBUG, ("ip4_reass: nullreturn\n"));
709 IPFRAG_STATS_INC(ip_frag.drop);
710 pbuf_free(p);
711 return NULL;
712 }
713 #endif /* IP_REASSEMBLY */
714
715 #if IP_FRAG
716 #if !LWIP_NETIF_TX_SINGLE_PBUF
717 /** Allocate a new struct pbuf_custom_ref */
718 static struct pbuf_custom_ref *
ip_frag_alloc_pbuf_custom_ref(void)719 ip_frag_alloc_pbuf_custom_ref(void)
720 {
721 return (struct pbuf_custom_ref *)memp_malloc(MEMP_FRAG_PBUF);
722 }
723
724 /** Free a struct pbuf_custom_ref */
725 static void
ip_frag_free_pbuf_custom_ref(struct pbuf_custom_ref * p)726 ip_frag_free_pbuf_custom_ref(struct pbuf_custom_ref *p)
727 {
728 LWIP_ASSERT("p != NULL", p != NULL);
729 memp_free(MEMP_FRAG_PBUF, p);
730 }
731
732 /** Free-callback function to free a 'struct pbuf_custom_ref', called by
733 * pbuf_free. */
734 static void
ipfrag_free_pbuf_custom(struct pbuf * p)735 ipfrag_free_pbuf_custom(struct pbuf *p)
736 {
737 struct pbuf_custom_ref *pcr = (struct pbuf_custom_ref *)p;
738 LWIP_ASSERT("pcr != NULL", pcr != NULL);
739 LWIP_ASSERT("pcr == p", (void *)pcr == (void *)p);
740 if (pcr->original != NULL) {
741 pbuf_free(pcr->original);
742 }
743 ip_frag_free_pbuf_custom_ref(pcr);
744 }
745 #endif /* !LWIP_NETIF_TX_SINGLE_PBUF */
746
747 /**
748 * Fragment an IP datagram if too large for the netif.
749 *
750 * Chop the datagram in MTU sized chunks and send them in order
751 * by pointing PBUF_REFs into p.
752 *
753 * @param p ip packet to send
754 * @param netif the netif on which to send
755 * @param dest destination ip address to which to send
756 *
757 * @return ERR_OK if sent successfully, err_t otherwise
758 */
759 err_t
ip4_frag(struct pbuf * p,struct netif * netif,const ip4_addr_t * dest)760 ip4_frag(struct pbuf *p, struct netif *netif, const ip4_addr_t *dest)
761 {
762 struct pbuf *rambuf;
763 #if !LWIP_NETIF_TX_SINGLE_PBUF
764 struct pbuf *newpbuf;
765 u16_t newpbuflen = 0;
766 u16_t left_to_copy;
767 #endif
768 struct ip_hdr *original_iphdr;
769 struct ip_hdr *iphdr;
770 const u16_t nfb = (u16_t)((netif->mtu - IP_HLEN) / 8);
771 u16_t left, fragsize;
772 u16_t ofo;
773 int last;
774 u16_t poff = IP_HLEN;
775 u16_t tmp;
776 int mf_set;
777
778 original_iphdr = (struct ip_hdr *)p->payload;
779 iphdr = original_iphdr;
780 if (IPH_HL_BYTES(iphdr) != IP_HLEN) {
781 /* ip4_frag() does not support IP options */
782 return ERR_VAL;
783 }
784 LWIP_ERROR("ip4_frag(): pbuf too short", p->len >= IP_HLEN, return ERR_VAL);
785
786 /* Save original offset */
787 tmp = lwip_ntohs(IPH_OFFSET(iphdr));
788 ofo = tmp & IP_OFFMASK;
789 /* already fragmented? if so, the last fragment we create must have MF, too */
790 mf_set = tmp & IP_MF;
791
792 left = (u16_t)(p->tot_len - IP_HLEN);
793
794 while (left) {
795 /* Fill this fragment */
796 fragsize = LWIP_MIN(left, (u16_t)(nfb * 8));
797
798 #if LWIP_NETIF_TX_SINGLE_PBUF
799 rambuf = pbuf_alloc(PBUF_IP, fragsize, PBUF_RAM);
800 if (rambuf == NULL) {
801 goto memerr;
802 }
803 LWIP_ASSERT("this needs a pbuf in one piece!",
804 (rambuf->len == rambuf->tot_len) && (rambuf->next == NULL));
805 poff += pbuf_copy_partial(p, rambuf->payload, fragsize, poff);
806 /* make room for the IP header */
807 if (pbuf_add_header(rambuf, IP_HLEN)) {
808 pbuf_free(rambuf);
809 goto memerr;
810 }
811 /* fill in the IP header */
812 SMEMCPY(rambuf->payload, original_iphdr, IP_HLEN);
813 iphdr = (struct ip_hdr *)rambuf->payload;
814 #else /* LWIP_NETIF_TX_SINGLE_PBUF */
815 /* When not using a static buffer, create a chain of pbufs.
816 * The first will be a PBUF_RAM holding the link and IP header.
817 * The rest will be PBUF_REFs mirroring the pbuf chain to be fragged,
818 * but limited to the size of an mtu.
819 */
820 rambuf = pbuf_alloc(PBUF_LINK, IP_HLEN, PBUF_RAM);
821 if (rambuf == NULL) {
822 goto memerr;
823 }
824 LWIP_ASSERT("this needs a pbuf in one piece!",
825 (rambuf->len >= (IP_HLEN)));
826 SMEMCPY(rambuf->payload, original_iphdr, IP_HLEN);
827 iphdr = (struct ip_hdr *)rambuf->payload;
828
829 left_to_copy = fragsize;
830 while (left_to_copy) {
831 struct pbuf_custom_ref *pcr;
832 u16_t plen = (u16_t)(p->len - poff);
833 LWIP_ASSERT("p->len >= poff", p->len >= poff);
834 newpbuflen = LWIP_MIN(left_to_copy, plen);
835 /* Is this pbuf already empty? */
836 if (!newpbuflen) {
837 poff = 0;
838 p = p->next;
839 continue;
840 }
841 pcr = ip_frag_alloc_pbuf_custom_ref();
842 if (pcr == NULL) {
843 pbuf_free(rambuf);
844 goto memerr;
845 }
846 /* Mirror this pbuf, although we might not need all of it. */
847 newpbuf = pbuf_alloced_custom(PBUF_RAW, newpbuflen, PBUF_REF, &pcr->pc,
848 (u8_t *)p->payload + poff, newpbuflen);
849 if (newpbuf == NULL) {
850 ip_frag_free_pbuf_custom_ref(pcr);
851 pbuf_free(rambuf);
852 goto memerr;
853 }
854 pbuf_ref(p);
855 pcr->original = p;
856 pcr->pc.custom_free_function = ipfrag_free_pbuf_custom;
857
858 /* Add it to end of rambuf's chain, but using pbuf_cat, not pbuf_chain
859 * so that it is removed when pbuf_dechain is later called on rambuf.
860 */
861 pbuf_cat(rambuf, newpbuf);
862 left_to_copy = (u16_t)(left_to_copy - newpbuflen);
863 if (left_to_copy) {
864 poff = 0;
865 p = p->next;
866 }
867 }
868 poff = (u16_t)(poff + newpbuflen);
869 #endif /* LWIP_NETIF_TX_SINGLE_PBUF */
870
871 /* Correct header */
872 last = (left <= netif->mtu - IP_HLEN);
873
874 /* Set new offset and MF flag */
875 tmp = (IP_OFFMASK & (ofo));
876 if (!last || mf_set) {
877 /* the last fragment has MF set if the input frame had it */
878 tmp = tmp | IP_MF;
879 }
880 IPH_OFFSET_SET(iphdr, lwip_htons(tmp));
881 IPH_LEN_SET(iphdr, lwip_htons((u16_t)(fragsize + IP_HLEN)));
882 IPH_CHKSUM_SET(iphdr, 0);
883 #if CHECKSUM_GEN_IP
884 IF__NETIF_CHECKSUM_ENABLED(netif, NETIF_CHECKSUM_GEN_IP) {
885 IPH_CHKSUM_SET(iphdr, inet_chksum(iphdr, IP_HLEN));
886 }
887 #endif /* CHECKSUM_GEN_IP */
888
889 /* No need for separate header pbuf - we allowed room for it in rambuf
890 * when allocated.
891 */
892 netif->output(netif, rambuf, dest);
893 IPFRAG_STATS_INC(ip_frag.xmit);
894
895 /* Unfortunately we can't reuse rambuf - the hardware may still be
896 * using the buffer. Instead we free it (and the ensuing chain) and
897 * recreate it next time round the loop. If we're lucky the hardware
898 * will have already sent the packet, the free will really free, and
899 * there will be zero memory penalty.
900 */
901
902 pbuf_free(rambuf);
903 left = (u16_t)(left - fragsize);
904 ofo = (u16_t)(ofo + nfb);
905 }
906 MIB2_STATS_INC(mib2.ipfragoks);
907 return ERR_OK;
908 memerr:
909 MIB2_STATS_INC(mib2.ipfragfails);
910 return ERR_MEM;
911 }
912 #endif /* IP_FRAG */
913
914 #endif /* LWIP_IPV4 */
915