1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * linux/fs/exec.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 */ 7 8 /* 9 * #!-checking implemented by tytso. 10 */ 11 /* 12 * Demand-loading implemented 01.12.91 - no need to read anything but 13 * the header into memory. The inode of the executable is put into 14 * "current->executable", and page faults do the actual loading. Clean. 15 * 16 * Once more I can proudly say that linux stood up to being changed: it 17 * was less than 2 hours work to get demand-loading completely implemented. 18 * 19 * Demand loading changed July 1993 by Eric Youngdale. Use mmap instead, 20 * current->executable is only used by the procfs. This allows a dispatch 21 * table to check for several different types of binary formats. We keep 22 * trying until we recognize the file or we run out of supported binary 23 * formats. 24 */ 25 26 #include <linux/kernel_read_file.h> 27 #include <linux/slab.h> 28 #include <linux/file.h> 29 #include <linux/fdtable.h> 30 #include <linux/mm.h> 31 #include <linux/vmacache.h> 32 #include <linux/stat.h> 33 #include <linux/fcntl.h> 34 #include <linux/swap.h> 35 #include <linux/string.h> 36 #include <linux/init.h> 37 #include <linux/sched/mm.h> 38 #include <linux/sched/coredump.h> 39 #include <linux/sched/signal.h> 40 #include <linux/sched/numa_balancing.h> 41 #include <linux/sched/task.h> 42 #include <linux/pagemap.h> 43 #include <linux/perf_event.h> 44 #include <linux/highmem.h> 45 #include <linux/spinlock.h> 46 #include <linux/key.h> 47 #include <linux/personality.h> 48 #include <linux/binfmts.h> 49 #include <linux/utsname.h> 50 #include <linux/pid_namespace.h> 51 #include <linux/module.h> 52 #include <linux/namei.h> 53 #include <linux/mount.h> 54 #include <linux/security.h> 55 #include <linux/syscalls.h> 56 #include <linux/tsacct_kern.h> 57 #include <linux/cn_proc.h> 58 #include <linux/audit.h> 59 #include <linux/tracehook.h> 60 #include <linux/kmod.h> 61 #include <linux/fsnotify.h> 62 #include <linux/fs_struct.h> 63 #include <linux/oom.h> 64 #include <linux/compat.h> 65 #include <linux/vmalloc.h> 66 #include <linux/io_uring.h> 67 68 #include <linux/uaccess.h> 69 #include <asm/mmu_context.h> 70 #include <asm/tlb.h> 71 72 #include <trace/events/task.h> 73 #include "internal.h" 74 75 #include <trace/events/sched.h> 76 #include <linux/hck/lite_hck_ced.h> 77 78 static int bprm_creds_from_file(struct linux_binprm *bprm); 79 80 int suid_dumpable = 0; 81 82 static LIST_HEAD(formats); 83 static DEFINE_RWLOCK(binfmt_lock); 84 __register_binfmt(struct linux_binfmt * fmt,int insert)85 void __register_binfmt(struct linux_binfmt * fmt, int insert) 86 { 87 BUG_ON(!fmt); 88 if (WARN_ON(!fmt->load_binary)) 89 return; 90 write_lock(&binfmt_lock); 91 insert ? list_add(&fmt->lh, &formats) : 92 list_add_tail(&fmt->lh, &formats); 93 write_unlock(&binfmt_lock); 94 } 95 96 EXPORT_SYMBOL(__register_binfmt); 97 unregister_binfmt(struct linux_binfmt * fmt)98 void unregister_binfmt(struct linux_binfmt * fmt) 99 { 100 write_lock(&binfmt_lock); 101 list_del(&fmt->lh); 102 write_unlock(&binfmt_lock); 103 } 104 105 EXPORT_SYMBOL(unregister_binfmt); 106 put_binfmt(struct linux_binfmt * fmt)107 static inline void put_binfmt(struct linux_binfmt * fmt) 108 { 109 module_put(fmt->module); 110 } 111 path_noexec(const struct path * path)112 bool path_noexec(const struct path *path) 113 { 114 return (path->mnt->mnt_flags & MNT_NOEXEC) || 115 (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC); 116 } 117 118 #ifdef CONFIG_USELIB 119 /* 120 * Note that a shared library must be both readable and executable due to 121 * security reasons. 122 * 123 * Also note that we take the address to load from from the file itself. 124 */ SYSCALL_DEFINE1(uselib,const char __user *,library)125 SYSCALL_DEFINE1(uselib, const char __user *, library) 126 { 127 struct linux_binfmt *fmt; 128 struct file *file; 129 struct filename *tmp = getname(library); 130 int error = PTR_ERR(tmp); 131 static const struct open_flags uselib_flags = { 132 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 133 .acc_mode = MAY_READ | MAY_EXEC, 134 .intent = LOOKUP_OPEN, 135 .lookup_flags = LOOKUP_FOLLOW, 136 }; 137 138 if (IS_ERR(tmp)) 139 goto out; 140 141 file = do_filp_open(AT_FDCWD, tmp, &uselib_flags); 142 putname(tmp); 143 error = PTR_ERR(file); 144 if (IS_ERR(file)) 145 goto out; 146 147 /* 148 * may_open() has already checked for this, so it should be 149 * impossible to trip now. But we need to be extra cautious 150 * and check again at the very end too. 151 */ 152 error = -EACCES; 153 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 154 path_noexec(&file->f_path))) 155 goto exit; 156 157 fsnotify_open(file); 158 159 error = -ENOEXEC; 160 161 read_lock(&binfmt_lock); 162 list_for_each_entry(fmt, &formats, lh) { 163 if (!fmt->load_shlib) 164 continue; 165 if (!try_module_get(fmt->module)) 166 continue; 167 read_unlock(&binfmt_lock); 168 error = fmt->load_shlib(file); 169 read_lock(&binfmt_lock); 170 put_binfmt(fmt); 171 if (error != -ENOEXEC) 172 break; 173 } 174 read_unlock(&binfmt_lock); 175 exit: 176 fput(file); 177 out: 178 return error; 179 } 180 #endif /* #ifdef CONFIG_USELIB */ 181 182 #ifdef CONFIG_MMU 183 /* 184 * The nascent bprm->mm is not visible until exec_mmap() but it can 185 * use a lot of memory, account these pages in current->mm temporary 186 * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we 187 * change the counter back via acct_arg_size(0). 188 */ acct_arg_size(struct linux_binprm * bprm,unsigned long pages)189 static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 190 { 191 struct mm_struct *mm = current->mm; 192 long diff = (long)(pages - bprm->vma_pages); 193 194 if (!mm || !diff) 195 return; 196 197 bprm->vma_pages = pages; 198 add_mm_counter(mm, MM_ANONPAGES, diff); 199 } 200 get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)201 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 202 int write) 203 { 204 struct page *page; 205 int ret; 206 unsigned int gup_flags = FOLL_FORCE; 207 208 #ifdef CONFIG_STACK_GROWSUP 209 if (write) { 210 ret = expand_downwards(bprm->vma, pos); 211 if (ret < 0) 212 return NULL; 213 } 214 #endif 215 216 if (write) 217 gup_flags |= FOLL_WRITE; 218 219 /* 220 * We are doing an exec(). 'current' is the process 221 * doing the exec and bprm->mm is the new process's mm. 222 */ 223 ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags, 224 &page, NULL, NULL); 225 if (ret <= 0) 226 return NULL; 227 228 if (write) 229 acct_arg_size(bprm, vma_pages(bprm->vma)); 230 231 return page; 232 } 233 put_arg_page(struct page * page)234 static void put_arg_page(struct page *page) 235 { 236 put_page(page); 237 } 238 free_arg_pages(struct linux_binprm * bprm)239 static void free_arg_pages(struct linux_binprm *bprm) 240 { 241 } 242 flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)243 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 244 struct page *page) 245 { 246 flush_cache_page(bprm->vma, pos, page_to_pfn(page)); 247 } 248 __bprm_mm_init(struct linux_binprm * bprm)249 static int __bprm_mm_init(struct linux_binprm *bprm) 250 { 251 int err; 252 struct vm_area_struct *vma = NULL; 253 struct mm_struct *mm = bprm->mm; 254 255 bprm->vma = vma = vm_area_alloc(mm); 256 if (!vma) 257 return -ENOMEM; 258 vma_set_anonymous(vma); 259 260 if (mmap_write_lock_killable(mm)) { 261 err = -EINTR; 262 goto err_free; 263 } 264 265 /* 266 * Place the stack at the largest stack address the architecture 267 * supports. Later, we'll move this to an appropriate place. We don't 268 * use STACK_TOP because that can depend on attributes which aren't 269 * configured yet. 270 */ 271 BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP); 272 vma->vm_end = STACK_TOP_MAX; 273 vma->vm_start = vma->vm_end - PAGE_SIZE; 274 vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP; 275 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags); 276 277 err = insert_vm_struct(mm, vma); 278 if (err) 279 goto err; 280 281 mm->stack_vm = mm->total_vm = 1; 282 mmap_write_unlock(mm); 283 bprm->p = vma->vm_end - sizeof(void *); 284 return 0; 285 err: 286 mmap_write_unlock(mm); 287 err_free: 288 bprm->vma = NULL; 289 vm_area_free(vma); 290 return err; 291 } 292 valid_arg_len(struct linux_binprm * bprm,long len)293 static bool valid_arg_len(struct linux_binprm *bprm, long len) 294 { 295 return len <= MAX_ARG_STRLEN; 296 } 297 298 #else 299 acct_arg_size(struct linux_binprm * bprm,unsigned long pages)300 static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages) 301 { 302 } 303 get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)304 static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos, 305 int write) 306 { 307 struct page *page; 308 309 page = bprm->page[pos / PAGE_SIZE]; 310 if (!page && write) { 311 page = alloc_page(GFP_HIGHUSER|__GFP_ZERO); 312 if (!page) 313 return NULL; 314 bprm->page[pos / PAGE_SIZE] = page; 315 } 316 317 return page; 318 } 319 put_arg_page(struct page * page)320 static void put_arg_page(struct page *page) 321 { 322 } 323 free_arg_page(struct linux_binprm * bprm,int i)324 static void free_arg_page(struct linux_binprm *bprm, int i) 325 { 326 if (bprm->page[i]) { 327 __free_page(bprm->page[i]); 328 bprm->page[i] = NULL; 329 } 330 } 331 free_arg_pages(struct linux_binprm * bprm)332 static void free_arg_pages(struct linux_binprm *bprm) 333 { 334 int i; 335 336 for (i = 0; i < MAX_ARG_PAGES; i++) 337 free_arg_page(bprm, i); 338 } 339 flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)340 static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos, 341 struct page *page) 342 { 343 } 344 __bprm_mm_init(struct linux_binprm * bprm)345 static int __bprm_mm_init(struct linux_binprm *bprm) 346 { 347 bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *); 348 return 0; 349 } 350 valid_arg_len(struct linux_binprm * bprm,long len)351 static bool valid_arg_len(struct linux_binprm *bprm, long len) 352 { 353 return len <= bprm->p; 354 } 355 356 #endif /* CONFIG_MMU */ 357 358 /* 359 * Create a new mm_struct and populate it with a temporary stack 360 * vm_area_struct. We don't have enough context at this point to set the stack 361 * flags, permissions, and offset, so we use temporary values. We'll update 362 * them later in setup_arg_pages(). 363 */ bprm_mm_init(struct linux_binprm * bprm)364 static int bprm_mm_init(struct linux_binprm *bprm) 365 { 366 int err; 367 struct mm_struct *mm = NULL; 368 369 bprm->mm = mm = mm_alloc(); 370 err = -ENOMEM; 371 if (!mm) 372 goto err; 373 374 /* Save current stack limit for all calculations made during exec. */ 375 task_lock(current->group_leader); 376 bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK]; 377 task_unlock(current->group_leader); 378 379 err = __bprm_mm_init(bprm); 380 if (err) 381 goto err; 382 383 return 0; 384 385 err: 386 if (mm) { 387 bprm->mm = NULL; 388 mmdrop(mm); 389 } 390 391 return err; 392 } 393 394 struct user_arg_ptr { 395 #ifdef CONFIG_COMPAT 396 bool is_compat; 397 #endif 398 union { 399 const char __user *const __user *native; 400 #ifdef CONFIG_COMPAT 401 const compat_uptr_t __user *compat; 402 #endif 403 } ptr; 404 }; 405 get_user_arg_ptr(struct user_arg_ptr argv,int nr)406 static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr) 407 { 408 const char __user *native; 409 410 #ifdef CONFIG_COMPAT 411 if (unlikely(argv.is_compat)) { 412 compat_uptr_t compat; 413 414 if (get_user(compat, argv.ptr.compat + nr)) 415 return ERR_PTR(-EFAULT); 416 417 return compat_ptr(compat); 418 } 419 #endif 420 421 if (get_user(native, argv.ptr.native + nr)) 422 return ERR_PTR(-EFAULT); 423 424 return native; 425 } 426 427 /* 428 * count() counts the number of strings in array ARGV. 429 */ count(struct user_arg_ptr argv,int max)430 static int count(struct user_arg_ptr argv, int max) 431 { 432 int i = 0; 433 434 if (argv.ptr.native != NULL) { 435 for (;;) { 436 const char __user *p = get_user_arg_ptr(argv, i); 437 438 if (!p) 439 break; 440 441 if (IS_ERR(p)) 442 return -EFAULT; 443 444 if (i >= max) 445 return -E2BIG; 446 ++i; 447 448 if (fatal_signal_pending(current)) 449 return -ERESTARTNOHAND; 450 cond_resched(); 451 } 452 } 453 return i; 454 } 455 count_strings_kernel(const char * const * argv)456 static int count_strings_kernel(const char *const *argv) 457 { 458 int i; 459 460 if (!argv) 461 return 0; 462 463 for (i = 0; argv[i]; ++i) { 464 if (i >= MAX_ARG_STRINGS) 465 return -E2BIG; 466 if (fatal_signal_pending(current)) 467 return -ERESTARTNOHAND; 468 cond_resched(); 469 } 470 return i; 471 } 472 bprm_stack_limits(struct linux_binprm * bprm)473 static int bprm_stack_limits(struct linux_binprm *bprm) 474 { 475 unsigned long limit, ptr_size; 476 477 /* 478 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM 479 * (whichever is smaller) for the argv+env strings. 480 * This ensures that: 481 * - the remaining binfmt code will not run out of stack space, 482 * - the program will have a reasonable amount of stack left 483 * to work from. 484 */ 485 limit = _STK_LIM / 4 * 3; 486 limit = min(limit, bprm->rlim_stack.rlim_cur / 4); 487 /* 488 * We've historically supported up to 32 pages (ARG_MAX) 489 * of argument strings even with small stacks 490 */ 491 limit = max_t(unsigned long, limit, ARG_MAX); 492 /* 493 * We must account for the size of all the argv and envp pointers to 494 * the argv and envp strings, since they will also take up space in 495 * the stack. They aren't stored until much later when we can't 496 * signal to the parent that the child has run out of stack space. 497 * Instead, calculate it here so it's possible to fail gracefully. 498 * 499 * In the case of argc = 0, make sure there is space for adding a 500 * empty string (which will bump argc to 1), to ensure confused 501 * userspace programs don't start processing from argv[1], thinking 502 * argc can never be 0, to keep them from walking envp by accident. 503 * See do_execveat_common(). 504 */ 505 ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *); 506 if (limit <= ptr_size) 507 return -E2BIG; 508 limit -= ptr_size; 509 510 bprm->argmin = bprm->p - limit; 511 return 0; 512 } 513 514 /* 515 * 'copy_strings()' copies argument/environment strings from the old 516 * processes's memory to the new process's stack. The call to get_user_pages() 517 * ensures the destination page is created and not swapped out. 518 */ copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)519 static int copy_strings(int argc, struct user_arg_ptr argv, 520 struct linux_binprm *bprm) 521 { 522 struct page *kmapped_page = NULL; 523 char *kaddr = NULL; 524 unsigned long kpos = 0; 525 int ret; 526 527 while (argc-- > 0) { 528 const char __user *str; 529 int len; 530 unsigned long pos; 531 532 ret = -EFAULT; 533 str = get_user_arg_ptr(argv, argc); 534 if (IS_ERR(str)) 535 goto out; 536 537 len = strnlen_user(str, MAX_ARG_STRLEN); 538 if (!len) 539 goto out; 540 541 ret = -E2BIG; 542 if (!valid_arg_len(bprm, len)) 543 goto out; 544 545 /* We're going to work our way backwords. */ 546 pos = bprm->p; 547 str += len; 548 bprm->p -= len; 549 #ifdef CONFIG_MMU 550 if (bprm->p < bprm->argmin) 551 goto out; 552 #endif 553 554 while (len > 0) { 555 int offset, bytes_to_copy; 556 557 if (fatal_signal_pending(current)) { 558 ret = -ERESTARTNOHAND; 559 goto out; 560 } 561 cond_resched(); 562 563 offset = pos % PAGE_SIZE; 564 if (offset == 0) 565 offset = PAGE_SIZE; 566 567 bytes_to_copy = offset; 568 if (bytes_to_copy > len) 569 bytes_to_copy = len; 570 571 offset -= bytes_to_copy; 572 pos -= bytes_to_copy; 573 str -= bytes_to_copy; 574 len -= bytes_to_copy; 575 576 if (!kmapped_page || kpos != (pos & PAGE_MASK)) { 577 struct page *page; 578 579 page = get_arg_page(bprm, pos, 1); 580 if (!page) { 581 ret = -E2BIG; 582 goto out; 583 } 584 585 if (kmapped_page) { 586 flush_kernel_dcache_page(kmapped_page); 587 kunmap(kmapped_page); 588 put_arg_page(kmapped_page); 589 } 590 kmapped_page = page; 591 kaddr = kmap(kmapped_page); 592 kpos = pos & PAGE_MASK; 593 flush_arg_page(bprm, kpos, kmapped_page); 594 } 595 if (copy_from_user(kaddr+offset, str, bytes_to_copy)) { 596 ret = -EFAULT; 597 goto out; 598 } 599 } 600 } 601 ret = 0; 602 out: 603 if (kmapped_page) { 604 flush_kernel_dcache_page(kmapped_page); 605 kunmap(kmapped_page); 606 put_arg_page(kmapped_page); 607 } 608 return ret; 609 } 610 611 /* 612 * Copy and argument/environment string from the kernel to the processes stack. 613 */ copy_string_kernel(const char * arg,struct linux_binprm * bprm)614 int copy_string_kernel(const char *arg, struct linux_binprm *bprm) 615 { 616 int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */; 617 unsigned long pos = bprm->p; 618 619 if (len == 0) 620 return -EFAULT; 621 if (!valid_arg_len(bprm, len)) 622 return -E2BIG; 623 624 /* We're going to work our way backwards. */ 625 arg += len; 626 bprm->p -= len; 627 if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin) 628 return -E2BIG; 629 630 while (len > 0) { 631 unsigned int bytes_to_copy = min_t(unsigned int, len, 632 min_not_zero(offset_in_page(pos), PAGE_SIZE)); 633 struct page *page; 634 char *kaddr; 635 636 pos -= bytes_to_copy; 637 arg -= bytes_to_copy; 638 len -= bytes_to_copy; 639 640 page = get_arg_page(bprm, pos, 1); 641 if (!page) 642 return -E2BIG; 643 kaddr = kmap_atomic(page); 644 flush_arg_page(bprm, pos & PAGE_MASK, page); 645 memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy); 646 flush_kernel_dcache_page(page); 647 kunmap_atomic(kaddr); 648 put_arg_page(page); 649 } 650 651 return 0; 652 } 653 EXPORT_SYMBOL(copy_string_kernel); 654 copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)655 static int copy_strings_kernel(int argc, const char *const *argv, 656 struct linux_binprm *bprm) 657 { 658 while (argc-- > 0) { 659 int ret = copy_string_kernel(argv[argc], bprm); 660 if (ret < 0) 661 return ret; 662 if (fatal_signal_pending(current)) 663 return -ERESTARTNOHAND; 664 cond_resched(); 665 } 666 return 0; 667 } 668 669 #ifdef CONFIG_MMU 670 671 /* 672 * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX. Once 673 * the binfmt code determines where the new stack should reside, we shift it to 674 * its final location. The process proceeds as follows: 675 * 676 * 1) Use shift to calculate the new vma endpoints. 677 * 2) Extend vma to cover both the old and new ranges. This ensures the 678 * arguments passed to subsequent functions are consistent. 679 * 3) Move vma's page tables to the new range. 680 * 4) Free up any cleared pgd range. 681 * 5) Shrink the vma to cover only the new range. 682 */ shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)683 static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift) 684 { 685 struct mm_struct *mm = vma->vm_mm; 686 unsigned long old_start = vma->vm_start; 687 unsigned long old_end = vma->vm_end; 688 unsigned long length = old_end - old_start; 689 unsigned long new_start = old_start - shift; 690 unsigned long new_end = old_end - shift; 691 struct mmu_gather tlb; 692 693 BUG_ON(new_start > new_end); 694 695 /* 696 * ensure there are no vmas between where we want to go 697 * and where we are 698 */ 699 if (vma != find_vma(mm, new_start)) 700 return -EFAULT; 701 702 /* 703 * cover the whole range: [new_start, old_end) 704 */ 705 if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL)) 706 return -ENOMEM; 707 708 /* 709 * move the page tables downwards, on failure we rely on 710 * process cleanup to remove whatever mess we made. 711 */ 712 if (length != move_page_tables(vma, old_start, 713 vma, new_start, length, false)) 714 return -ENOMEM; 715 716 lru_add_drain(); 717 tlb_gather_mmu(&tlb, mm, old_start, old_end); 718 if (new_end > old_start) { 719 /* 720 * when the old and new regions overlap clear from new_end. 721 */ 722 free_pgd_range(&tlb, new_end, old_end, new_end, 723 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 724 } else { 725 /* 726 * otherwise, clean from old_start; this is done to not touch 727 * the address space in [new_end, old_start) some architectures 728 * have constraints on va-space that make this illegal (IA64) - 729 * for the others its just a little faster. 730 */ 731 free_pgd_range(&tlb, old_start, old_end, new_end, 732 vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING); 733 } 734 tlb_finish_mmu(&tlb, old_start, old_end); 735 736 /* 737 * Shrink the vma to just the new range. Always succeeds. 738 */ 739 vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL); 740 741 return 0; 742 } 743 744 /* 745 * Finalizes the stack vm_area_struct. The flags and permissions are updated, 746 * the stack is optionally relocated, and some extra space is added. 747 */ setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)748 int setup_arg_pages(struct linux_binprm *bprm, 749 unsigned long stack_top, 750 int executable_stack) 751 { 752 unsigned long ret; 753 unsigned long stack_shift; 754 struct mm_struct *mm = current->mm; 755 struct vm_area_struct *vma = bprm->vma; 756 struct vm_area_struct *prev = NULL; 757 unsigned long vm_flags; 758 unsigned long stack_base; 759 unsigned long stack_size; 760 unsigned long stack_expand; 761 unsigned long rlim_stack; 762 763 #ifdef CONFIG_STACK_GROWSUP 764 /* Limit stack size */ 765 stack_base = bprm->rlim_stack.rlim_max; 766 if (stack_base > STACK_SIZE_MAX) 767 stack_base = STACK_SIZE_MAX; 768 769 /* Add space for stack randomization. */ 770 stack_base += (STACK_RND_MASK << PAGE_SHIFT); 771 772 /* Make sure we didn't let the argument array grow too large. */ 773 if (vma->vm_end - vma->vm_start > stack_base) 774 return -ENOMEM; 775 776 stack_base = PAGE_ALIGN(stack_top - stack_base); 777 778 stack_shift = vma->vm_start - stack_base; 779 mm->arg_start = bprm->p - stack_shift; 780 bprm->p = vma->vm_end - stack_shift; 781 #else 782 stack_top = arch_align_stack(stack_top); 783 stack_top = PAGE_ALIGN(stack_top); 784 785 if (unlikely(stack_top < mmap_min_addr) || 786 unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr)) 787 return -ENOMEM; 788 789 stack_shift = vma->vm_end - stack_top; 790 791 bprm->p -= stack_shift; 792 mm->arg_start = bprm->p; 793 #endif 794 795 if (bprm->loader) 796 bprm->loader -= stack_shift; 797 bprm->exec -= stack_shift; 798 799 if (mmap_write_lock_killable(mm)) 800 return -EINTR; 801 802 vm_flags = VM_STACK_FLAGS; 803 804 /* 805 * Adjust stack execute permissions; explicitly enable for 806 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone 807 * (arch default) otherwise. 808 */ 809 if (unlikely(executable_stack == EXSTACK_ENABLE_X)) 810 vm_flags |= VM_EXEC; 811 else if (executable_stack == EXSTACK_DISABLE_X) 812 vm_flags &= ~VM_EXEC; 813 vm_flags |= mm->def_flags; 814 vm_flags |= VM_STACK_INCOMPLETE_SETUP; 815 816 ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end, 817 vm_flags); 818 if (ret) 819 goto out_unlock; 820 BUG_ON(prev != vma); 821 822 if (unlikely(vm_flags & VM_EXEC)) { 823 pr_warn_once("process '%pD4' started with executable stack\n", 824 bprm->file); 825 } 826 827 /* Move stack pages down in memory. */ 828 if (stack_shift) { 829 ret = shift_arg_pages(vma, stack_shift); 830 if (ret) 831 goto out_unlock; 832 } 833 834 /* mprotect_fixup is overkill to remove the temporary stack flags */ 835 vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP; 836 837 stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */ 838 stack_size = vma->vm_end - vma->vm_start; 839 /* 840 * Align this down to a page boundary as expand_stack 841 * will align it up. 842 */ 843 rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK; 844 #ifdef CONFIG_STACK_GROWSUP 845 if (stack_size + stack_expand > rlim_stack) 846 stack_base = vma->vm_start + rlim_stack; 847 else 848 stack_base = vma->vm_end + stack_expand; 849 #else 850 if (stack_size + stack_expand > rlim_stack) 851 stack_base = vma->vm_end - rlim_stack; 852 else 853 stack_base = vma->vm_start - stack_expand; 854 #endif 855 current->mm->start_stack = bprm->p; 856 ret = expand_stack(vma, stack_base); 857 if (ret) 858 ret = -EFAULT; 859 860 out_unlock: 861 mmap_write_unlock(mm); 862 return ret; 863 } 864 EXPORT_SYMBOL(setup_arg_pages); 865 866 #else 867 868 /* 869 * Transfer the program arguments and environment from the holding pages 870 * onto the stack. The provided stack pointer is adjusted accordingly. 871 */ transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)872 int transfer_args_to_stack(struct linux_binprm *bprm, 873 unsigned long *sp_location) 874 { 875 unsigned long index, stop, sp; 876 int ret = 0; 877 878 stop = bprm->p >> PAGE_SHIFT; 879 sp = *sp_location; 880 881 for (index = MAX_ARG_PAGES - 1; index >= stop; index--) { 882 unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0; 883 char *src = kmap(bprm->page[index]) + offset; 884 sp -= PAGE_SIZE - offset; 885 if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0) 886 ret = -EFAULT; 887 kunmap(bprm->page[index]); 888 if (ret) 889 goto out; 890 } 891 892 *sp_location = sp; 893 894 out: 895 return ret; 896 } 897 EXPORT_SYMBOL(transfer_args_to_stack); 898 899 #endif /* CONFIG_MMU */ 900 do_open_execat(int fd,struct filename * name,int flags)901 static struct file *do_open_execat(int fd, struct filename *name, int flags) 902 { 903 struct file *file; 904 int err; 905 struct open_flags open_exec_flags = { 906 .open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC, 907 .acc_mode = MAY_EXEC, 908 .intent = LOOKUP_OPEN, 909 .lookup_flags = LOOKUP_FOLLOW, 910 }; 911 912 if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0) 913 return ERR_PTR(-EINVAL); 914 if (flags & AT_SYMLINK_NOFOLLOW) 915 open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW; 916 if (flags & AT_EMPTY_PATH) 917 open_exec_flags.lookup_flags |= LOOKUP_EMPTY; 918 919 file = do_filp_open(fd, name, &open_exec_flags); 920 if (IS_ERR(file)) 921 goto out; 922 923 /* 924 * may_open() has already checked for this, so it should be 925 * impossible to trip now. But we need to be extra cautious 926 * and check again at the very end too. 927 */ 928 err = -EACCES; 929 if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) || 930 path_noexec(&file->f_path))) 931 goto exit; 932 933 err = deny_write_access(file); 934 if (err) 935 goto exit; 936 937 if (name->name[0] != '\0') 938 fsnotify_open(file); 939 940 out: 941 return file; 942 943 exit: 944 fput(file); 945 return ERR_PTR(err); 946 } 947 open_exec(const char * name)948 struct file *open_exec(const char *name) 949 { 950 struct filename *filename = getname_kernel(name); 951 struct file *f = ERR_CAST(filename); 952 953 if (!IS_ERR(filename)) { 954 f = do_open_execat(AT_FDCWD, filename, 0); 955 putname(filename); 956 } 957 return f; 958 } 959 EXPORT_SYMBOL(open_exec); 960 961 #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \ 962 defined(CONFIG_BINFMT_ELF_FDPIC) read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)963 ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len) 964 { 965 ssize_t res = vfs_read(file, (void __user *)addr, len, &pos); 966 if (res > 0) 967 flush_icache_user_range(addr, addr + len); 968 return res; 969 } 970 EXPORT_SYMBOL(read_code); 971 #endif 972 973 /* 974 * Maps the mm_struct mm into the current task struct. 975 * On success, this function returns with exec_update_lock 976 * held for writing. 977 */ exec_mmap(struct mm_struct * mm)978 static int exec_mmap(struct mm_struct *mm) 979 { 980 struct task_struct *tsk; 981 struct mm_struct *old_mm, *active_mm; 982 int ret; 983 984 /* Notify parent that we're no longer interested in the old VM */ 985 tsk = current; 986 old_mm = current->mm; 987 exec_mm_release(tsk, old_mm); 988 if (old_mm) 989 sync_mm_rss(old_mm); 990 991 ret = down_write_killable(&tsk->signal->exec_update_lock); 992 if (ret) 993 return ret; 994 995 if (old_mm) { 996 /* 997 * Make sure that if there is a core dump in progress 998 * for the old mm, we get out and die instead of going 999 * through with the exec. We must hold mmap_lock around 1000 * checking core_state and changing tsk->mm. 1001 */ 1002 mmap_read_lock(old_mm); 1003 if (unlikely(old_mm->core_state)) { 1004 mmap_read_unlock(old_mm); 1005 up_write(&tsk->signal->exec_update_lock); 1006 return -EINTR; 1007 } 1008 } 1009 1010 task_lock(tsk); 1011 membarrier_exec_mmap(mm); 1012 1013 local_irq_disable(); 1014 active_mm = tsk->active_mm; 1015 tsk->active_mm = mm; 1016 tsk->mm = mm; 1017 /* 1018 * This prevents preemption while active_mm is being loaded and 1019 * it and mm are being updated, which could cause problems for 1020 * lazy tlb mm refcounting when these are updated by context 1021 * switches. Not all architectures can handle irqs off over 1022 * activate_mm yet. 1023 */ 1024 if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1025 local_irq_enable(); 1026 activate_mm(active_mm, mm); 1027 if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM)) 1028 local_irq_enable(); 1029 tsk->mm->vmacache_seqnum = 0; 1030 vmacache_flush(tsk); 1031 task_unlock(tsk); 1032 if (old_mm) { 1033 mmap_read_unlock(old_mm); 1034 BUG_ON(active_mm != old_mm); 1035 setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm); 1036 mm_update_next_owner(old_mm); 1037 mmput(old_mm); 1038 return 0; 1039 } 1040 mmdrop(active_mm); 1041 return 0; 1042 } 1043 de_thread(struct task_struct * tsk)1044 static int de_thread(struct task_struct *tsk) 1045 { 1046 struct signal_struct *sig = tsk->signal; 1047 struct sighand_struct *oldsighand = tsk->sighand; 1048 spinlock_t *lock = &oldsighand->siglock; 1049 1050 if (thread_group_empty(tsk)) 1051 goto no_thread_group; 1052 1053 /* 1054 * Kill all other threads in the thread group. 1055 */ 1056 spin_lock_irq(lock); 1057 if (signal_group_exit(sig)) { 1058 /* 1059 * Another group action in progress, just 1060 * return so that the signal is processed. 1061 */ 1062 spin_unlock_irq(lock); 1063 return -EAGAIN; 1064 } 1065 1066 sig->group_exit_task = tsk; 1067 sig->notify_count = zap_other_threads(tsk); 1068 if (!thread_group_leader(tsk)) 1069 sig->notify_count--; 1070 1071 while (sig->notify_count) { 1072 __set_current_state(TASK_KILLABLE); 1073 spin_unlock_irq(lock); 1074 schedule(); 1075 if (__fatal_signal_pending(tsk)) 1076 goto killed; 1077 spin_lock_irq(lock); 1078 } 1079 spin_unlock_irq(lock); 1080 1081 /* 1082 * At this point all other threads have exited, all we have to 1083 * do is to wait for the thread group leader to become inactive, 1084 * and to assume its PID: 1085 */ 1086 if (!thread_group_leader(tsk)) { 1087 struct task_struct *leader = tsk->group_leader; 1088 1089 for (;;) { 1090 cgroup_threadgroup_change_begin(tsk); 1091 write_lock_irq(&tasklist_lock); 1092 /* 1093 * Do this under tasklist_lock to ensure that 1094 * exit_notify() can't miss ->group_exit_task 1095 */ 1096 sig->notify_count = -1; 1097 if (likely(leader->exit_state)) 1098 break; 1099 __set_current_state(TASK_KILLABLE); 1100 write_unlock_irq(&tasklist_lock); 1101 cgroup_threadgroup_change_end(tsk); 1102 schedule(); 1103 if (__fatal_signal_pending(tsk)) 1104 goto killed; 1105 } 1106 1107 /* 1108 * The only record we have of the real-time age of a 1109 * process, regardless of execs it's done, is start_time. 1110 * All the past CPU time is accumulated in signal_struct 1111 * from sister threads now dead. But in this non-leader 1112 * exec, nothing survives from the original leader thread, 1113 * whose birth marks the true age of this process now. 1114 * When we take on its identity by switching to its PID, we 1115 * also take its birthdate (always earlier than our own). 1116 */ 1117 tsk->start_time = leader->start_time; 1118 tsk->start_boottime = leader->start_boottime; 1119 1120 BUG_ON(!same_thread_group(leader, tsk)); 1121 /* 1122 * An exec() starts a new thread group with the 1123 * TGID of the previous thread group. Rehash the 1124 * two threads with a switched PID, and release 1125 * the former thread group leader: 1126 */ 1127 1128 /* Become a process group leader with the old leader's pid. 1129 * The old leader becomes a thread of the this thread group. 1130 */ 1131 exchange_tids(tsk, leader); 1132 transfer_pid(leader, tsk, PIDTYPE_TGID); 1133 transfer_pid(leader, tsk, PIDTYPE_PGID); 1134 transfer_pid(leader, tsk, PIDTYPE_SID); 1135 1136 list_replace_rcu(&leader->tasks, &tsk->tasks); 1137 list_replace_init(&leader->sibling, &tsk->sibling); 1138 1139 tsk->group_leader = tsk; 1140 leader->group_leader = tsk; 1141 1142 tsk->exit_signal = SIGCHLD; 1143 leader->exit_signal = -1; 1144 1145 BUG_ON(leader->exit_state != EXIT_ZOMBIE); 1146 leader->exit_state = EXIT_DEAD; 1147 1148 /* 1149 * We are going to release_task()->ptrace_unlink() silently, 1150 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees 1151 * the tracer wont't block again waiting for this thread. 1152 */ 1153 if (unlikely(leader->ptrace)) 1154 __wake_up_parent(leader, leader->parent); 1155 write_unlock_irq(&tasklist_lock); 1156 cgroup_threadgroup_change_end(tsk); 1157 1158 release_task(leader); 1159 } 1160 1161 sig->group_exit_task = NULL; 1162 sig->notify_count = 0; 1163 1164 no_thread_group: 1165 /* we have changed execution domain */ 1166 tsk->exit_signal = SIGCHLD; 1167 1168 BUG_ON(!thread_group_leader(tsk)); 1169 return 0; 1170 1171 killed: 1172 /* protects against exit_notify() and __exit_signal() */ 1173 read_lock(&tasklist_lock); 1174 sig->group_exit_task = NULL; 1175 sig->notify_count = 0; 1176 read_unlock(&tasklist_lock); 1177 return -EAGAIN; 1178 } 1179 1180 1181 /* 1182 * This function makes sure the current process has its own signal table, 1183 * so that flush_signal_handlers can later reset the handlers without 1184 * disturbing other processes. (Other processes might share the signal 1185 * table via the CLONE_SIGHAND option to clone().) 1186 */ unshare_sighand(struct task_struct * me)1187 static int unshare_sighand(struct task_struct *me) 1188 { 1189 struct sighand_struct *oldsighand = me->sighand; 1190 1191 if (refcount_read(&oldsighand->count) != 1) { 1192 struct sighand_struct *newsighand; 1193 /* 1194 * This ->sighand is shared with the CLONE_SIGHAND 1195 * but not CLONE_THREAD task, switch to the new one. 1196 */ 1197 newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL); 1198 if (!newsighand) 1199 return -ENOMEM; 1200 1201 refcount_set(&newsighand->count, 1); 1202 1203 write_lock_irq(&tasklist_lock); 1204 spin_lock(&oldsighand->siglock); 1205 memcpy(newsighand->action, oldsighand->action, 1206 sizeof(newsighand->action)); 1207 rcu_assign_pointer(me->sighand, newsighand); 1208 spin_unlock(&oldsighand->siglock); 1209 write_unlock_irq(&tasklist_lock); 1210 1211 __cleanup_sighand(oldsighand); 1212 } 1213 return 0; 1214 } 1215 __get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1216 char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk) 1217 { 1218 task_lock(tsk); 1219 strncpy(buf, tsk->comm, buf_size); 1220 task_unlock(tsk); 1221 return buf; 1222 } 1223 EXPORT_SYMBOL_GPL(__get_task_comm); 1224 1225 /* 1226 * These functions flushes out all traces of the currently running executable 1227 * so that a new one can be started 1228 */ 1229 __set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1230 void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec) 1231 { 1232 task_lock(tsk); 1233 trace_task_rename(tsk, buf); 1234 strlcpy(tsk->comm, buf, sizeof(tsk->comm)); 1235 task_unlock(tsk); 1236 perf_event_comm(tsk, exec); 1237 } 1238 1239 /* 1240 * Calling this is the point of no return. None of the failures will be 1241 * seen by userspace since either the process is already taking a fatal 1242 * signal (via de_thread() or coredump), or will have SEGV raised 1243 * (after exec_mmap()) by search_binary_handler (see below). 1244 */ begin_new_exec(struct linux_binprm * bprm)1245 int begin_new_exec(struct linux_binprm * bprm) 1246 { 1247 struct task_struct *me = current; 1248 struct files_struct *displaced; 1249 int retval; 1250 1251 /* Once we are committed compute the creds */ 1252 retval = bprm_creds_from_file(bprm); 1253 if (retval) 1254 return retval; 1255 1256 /* 1257 * Ensure all future errors are fatal. 1258 */ 1259 bprm->point_of_no_return = true; 1260 1261 /* 1262 * Make this the only thread in the thread group. 1263 */ 1264 retval = de_thread(me); 1265 if (retval) 1266 goto out; 1267 1268 /* Ensure the files table is not shared. */ 1269 retval = unshare_files(&displaced); 1270 if (retval) 1271 goto out; 1272 if (displaced) 1273 put_files_struct(displaced); 1274 1275 /* 1276 * Must be called _before_ exec_mmap() as bprm->mm is 1277 * not visibile until then. This also enables the update 1278 * to be lockless. 1279 */ 1280 set_mm_exe_file(bprm->mm, bprm->file); 1281 1282 /* If the binary is not readable then enforce mm->dumpable=0 */ 1283 would_dump(bprm, bprm->file); 1284 if (bprm->have_execfd) 1285 would_dump(bprm, bprm->executable); 1286 1287 /* 1288 * Release all of the old mmap stuff 1289 */ 1290 acct_arg_size(bprm, 0); 1291 retval = exec_mmap(bprm->mm); 1292 if (retval) 1293 goto out; 1294 1295 bprm->mm = NULL; 1296 1297 #ifdef CONFIG_POSIX_TIMERS 1298 spin_lock_irq(&me->sighand->siglock); 1299 posix_cpu_timers_exit(me); 1300 spin_unlock_irq(&me->sighand->siglock); 1301 exit_itimers(me); 1302 flush_itimer_signals(); 1303 #endif 1304 1305 /* 1306 * Make the signal table private. 1307 */ 1308 retval = unshare_sighand(me); 1309 if (retval) 1310 goto out_unlock; 1311 1312 /* 1313 * Ensure that the uaccess routines can actually operate on userspace 1314 * pointers: 1315 */ 1316 force_uaccess_begin(); 1317 1318 me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD | 1319 PF_NOFREEZE | PF_NO_SETAFFINITY); 1320 flush_thread(); 1321 me->personality &= ~bprm->per_clear; 1322 1323 /* 1324 * We have to apply CLOEXEC before we change whether the process is 1325 * dumpable (in setup_new_exec) to avoid a race with a process in userspace 1326 * trying to access the should-be-closed file descriptors of a process 1327 * undergoing exec(2). 1328 */ 1329 do_close_on_exec(me->files); 1330 1331 if (bprm->secureexec) { 1332 /* Make sure parent cannot signal privileged process. */ 1333 me->pdeath_signal = 0; 1334 1335 /* 1336 * For secureexec, reset the stack limit to sane default to 1337 * avoid bad behavior from the prior rlimits. This has to 1338 * happen before arch_pick_mmap_layout(), which examines 1339 * RLIMIT_STACK, but after the point of no return to avoid 1340 * needing to clean up the change on failure. 1341 */ 1342 if (bprm->rlim_stack.rlim_cur > _STK_LIM) 1343 bprm->rlim_stack.rlim_cur = _STK_LIM; 1344 } 1345 1346 me->sas_ss_sp = me->sas_ss_size = 0; 1347 1348 /* 1349 * Figure out dumpability. Note that this checking only of current 1350 * is wrong, but userspace depends on it. This should be testing 1351 * bprm->secureexec instead. 1352 */ 1353 if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP || 1354 !(uid_eq(current_euid(), current_uid()) && 1355 gid_eq(current_egid(), current_gid()))) 1356 set_dumpable(current->mm, suid_dumpable); 1357 else 1358 set_dumpable(current->mm, SUID_DUMP_USER); 1359 1360 perf_event_exec(); 1361 __set_task_comm(me, kbasename(bprm->filename), true); 1362 1363 /* An exec changes our domain. We are no longer part of the thread 1364 group */ 1365 WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1); 1366 flush_signal_handlers(me, 0); 1367 1368 /* 1369 * install the new credentials for this executable 1370 */ 1371 security_bprm_committing_creds(bprm); 1372 1373 commit_creds(bprm->cred); 1374 bprm->cred = NULL; 1375 1376 /* 1377 * Disable monitoring for regular users 1378 * when executing setuid binaries. Must 1379 * wait until new credentials are committed 1380 * by commit_creds() above 1381 */ 1382 if (get_dumpable(me->mm) != SUID_DUMP_USER) 1383 perf_event_exit_task(me); 1384 /* 1385 * cred_guard_mutex must be held at least to this point to prevent 1386 * ptrace_attach() from altering our determination of the task's 1387 * credentials; any time after this it may be unlocked. 1388 */ 1389 security_bprm_committed_creds(bprm); 1390 1391 /* Pass the opened binary to the interpreter. */ 1392 if (bprm->have_execfd) { 1393 retval = get_unused_fd_flags(0); 1394 if (retval < 0) 1395 goto out_unlock; 1396 fd_install(retval, bprm->executable); 1397 bprm->executable = NULL; 1398 bprm->execfd = retval; 1399 } 1400 return 0; 1401 1402 out_unlock: 1403 up_write(&me->signal->exec_update_lock); 1404 out: 1405 return retval; 1406 } 1407 EXPORT_SYMBOL(begin_new_exec); 1408 would_dump(struct linux_binprm * bprm,struct file * file)1409 void would_dump(struct linux_binprm *bprm, struct file *file) 1410 { 1411 struct inode *inode = file_inode(file); 1412 if (inode_permission(inode, MAY_READ) < 0) { 1413 struct user_namespace *old, *user_ns; 1414 bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP; 1415 1416 /* Ensure mm->user_ns contains the executable */ 1417 user_ns = old = bprm->mm->user_ns; 1418 while ((user_ns != &init_user_ns) && 1419 !privileged_wrt_inode_uidgid(user_ns, inode)) 1420 user_ns = user_ns->parent; 1421 1422 if (old != user_ns) { 1423 bprm->mm->user_ns = get_user_ns(user_ns); 1424 put_user_ns(old); 1425 } 1426 } 1427 } 1428 EXPORT_SYMBOL(would_dump); 1429 setup_new_exec(struct linux_binprm * bprm)1430 void setup_new_exec(struct linux_binprm * bprm) 1431 { 1432 /* Setup things that can depend upon the personality */ 1433 struct task_struct *me = current; 1434 1435 arch_pick_mmap_layout(me->mm, &bprm->rlim_stack); 1436 1437 arch_setup_new_exec(); 1438 1439 /* Set the new mm task size. We have to do that late because it may 1440 * depend on TIF_32BIT which is only updated in flush_thread() on 1441 * some architectures like powerpc 1442 */ 1443 me->mm->task_size = TASK_SIZE; 1444 up_write(&me->signal->exec_update_lock); 1445 mutex_unlock(&me->signal->cred_guard_mutex); 1446 } 1447 EXPORT_SYMBOL(setup_new_exec); 1448 1449 /* Runs immediately before start_thread() takes over. */ finalize_exec(struct linux_binprm * bprm)1450 void finalize_exec(struct linux_binprm *bprm) 1451 { 1452 /* Store any stack rlimit changes before starting thread. */ 1453 task_lock(current->group_leader); 1454 current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack; 1455 task_unlock(current->group_leader); 1456 } 1457 EXPORT_SYMBOL(finalize_exec); 1458 1459 /* 1460 * Prepare credentials and lock ->cred_guard_mutex. 1461 * setup_new_exec() commits the new creds and drops the lock. 1462 * Or, if exec fails before, free_bprm() should release ->cred and 1463 * and unlock. 1464 */ prepare_bprm_creds(struct linux_binprm * bprm)1465 static int prepare_bprm_creds(struct linux_binprm *bprm) 1466 { 1467 if (mutex_lock_interruptible(¤t->signal->cred_guard_mutex)) 1468 return -ERESTARTNOINTR; 1469 1470 bprm->cred = prepare_exec_creds(); 1471 if (likely(bprm->cred)) 1472 return 0; 1473 1474 mutex_unlock(¤t->signal->cred_guard_mutex); 1475 return -ENOMEM; 1476 } 1477 free_bprm(struct linux_binprm * bprm)1478 static void free_bprm(struct linux_binprm *bprm) 1479 { 1480 if (bprm->mm) { 1481 acct_arg_size(bprm, 0); 1482 mmput(bprm->mm); 1483 } 1484 free_arg_pages(bprm); 1485 if (bprm->cred) { 1486 mutex_unlock(¤t->signal->cred_guard_mutex); 1487 abort_creds(bprm->cred); 1488 } 1489 if (bprm->file) { 1490 allow_write_access(bprm->file); 1491 fput(bprm->file); 1492 } 1493 if (bprm->executable) 1494 fput(bprm->executable); 1495 /* If a binfmt changed the interp, free it. */ 1496 if (bprm->interp != bprm->filename) 1497 kfree(bprm->interp); 1498 kfree(bprm->fdpath); 1499 kfree(bprm); 1500 } 1501 alloc_bprm(int fd,struct filename * filename)1502 static struct linux_binprm *alloc_bprm(int fd, struct filename *filename) 1503 { 1504 struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL); 1505 int retval = -ENOMEM; 1506 if (!bprm) 1507 goto out; 1508 1509 if (fd == AT_FDCWD || filename->name[0] == '/') { 1510 bprm->filename = filename->name; 1511 } else { 1512 if (filename->name[0] == '\0') 1513 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd); 1514 else 1515 bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s", 1516 fd, filename->name); 1517 if (!bprm->fdpath) 1518 goto out_free; 1519 1520 bprm->filename = bprm->fdpath; 1521 } 1522 bprm->interp = bprm->filename; 1523 1524 retval = bprm_mm_init(bprm); 1525 if (retval) 1526 goto out_free; 1527 return bprm; 1528 1529 out_free: 1530 free_bprm(bprm); 1531 out: 1532 return ERR_PTR(retval); 1533 } 1534 bprm_change_interp(const char * interp,struct linux_binprm * bprm)1535 int bprm_change_interp(const char *interp, struct linux_binprm *bprm) 1536 { 1537 /* If a binfmt changed the interp, free it first. */ 1538 if (bprm->interp != bprm->filename) 1539 kfree(bprm->interp); 1540 bprm->interp = kstrdup(interp, GFP_KERNEL); 1541 if (!bprm->interp) 1542 return -ENOMEM; 1543 return 0; 1544 } 1545 EXPORT_SYMBOL(bprm_change_interp); 1546 1547 /* 1548 * determine how safe it is to execute the proposed program 1549 * - the caller must hold ->cred_guard_mutex to protect against 1550 * PTRACE_ATTACH or seccomp thread-sync 1551 */ check_unsafe_exec(struct linux_binprm * bprm)1552 static void check_unsafe_exec(struct linux_binprm *bprm) 1553 { 1554 struct task_struct *p = current, *t; 1555 unsigned n_fs; 1556 1557 if (p->ptrace) 1558 bprm->unsafe |= LSM_UNSAFE_PTRACE; 1559 1560 /* 1561 * This isn't strictly necessary, but it makes it harder for LSMs to 1562 * mess up. 1563 */ 1564 if (task_no_new_privs(current)) 1565 bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS; 1566 1567 t = p; 1568 n_fs = 1; 1569 spin_lock(&p->fs->lock); 1570 rcu_read_lock(); 1571 while_each_thread(p, t) { 1572 if (t->fs == p->fs) 1573 n_fs++; 1574 } 1575 rcu_read_unlock(); 1576 1577 if (p->fs->users > n_fs) 1578 bprm->unsafe |= LSM_UNSAFE_SHARE; 1579 else 1580 p->fs->in_exec = 1; 1581 spin_unlock(&p->fs->lock); 1582 } 1583 bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1584 static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file) 1585 { 1586 /* Handle suid and sgid on files */ 1587 struct inode *inode; 1588 unsigned int mode; 1589 kuid_t uid; 1590 kgid_t gid; 1591 1592 if (!mnt_may_suid(file->f_path.mnt)) 1593 return; 1594 1595 if (task_no_new_privs(current)) 1596 return; 1597 1598 inode = file->f_path.dentry->d_inode; 1599 mode = READ_ONCE(inode->i_mode); 1600 if (!(mode & (S_ISUID|S_ISGID))) 1601 return; 1602 1603 /* Be careful if suid/sgid is set */ 1604 inode_lock(inode); 1605 1606 /* reload atomically mode/uid/gid now that lock held */ 1607 mode = inode->i_mode; 1608 uid = inode->i_uid; 1609 gid = inode->i_gid; 1610 inode_unlock(inode); 1611 1612 /* We ignore suid/sgid if there are no mappings for them in the ns */ 1613 if (!kuid_has_mapping(bprm->cred->user_ns, uid) || 1614 !kgid_has_mapping(bprm->cred->user_ns, gid)) 1615 return; 1616 1617 if (mode & S_ISUID) { 1618 bprm->per_clear |= PER_CLEAR_ON_SETID; 1619 bprm->cred->euid = uid; 1620 } 1621 1622 if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) { 1623 bprm->per_clear |= PER_CLEAR_ON_SETID; 1624 bprm->cred->egid = gid; 1625 } 1626 } 1627 1628 /* 1629 * Compute brpm->cred based upon the final binary. 1630 */ bprm_creds_from_file(struct linux_binprm * bprm)1631 static int bprm_creds_from_file(struct linux_binprm *bprm) 1632 { 1633 /* Compute creds based on which file? */ 1634 struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file; 1635 1636 bprm_fill_uid(bprm, file); 1637 return security_bprm_creds_from_file(bprm, file); 1638 } 1639 1640 /* 1641 * Fill the binprm structure from the inode. 1642 * Read the first BINPRM_BUF_SIZE bytes 1643 * 1644 * This may be called multiple times for binary chains (scripts for example). 1645 */ prepare_binprm(struct linux_binprm * bprm)1646 static int prepare_binprm(struct linux_binprm *bprm) 1647 { 1648 loff_t pos = 0; 1649 1650 memset(bprm->buf, 0, BINPRM_BUF_SIZE); 1651 return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos); 1652 } 1653 1654 /* 1655 * Arguments are '\0' separated strings found at the location bprm->p 1656 * points to; chop off the first by relocating brpm->p to right after 1657 * the first '\0' encountered. 1658 */ remove_arg_zero(struct linux_binprm * bprm)1659 int remove_arg_zero(struct linux_binprm *bprm) 1660 { 1661 int ret = 0; 1662 unsigned long offset; 1663 char *kaddr; 1664 struct page *page; 1665 1666 if (!bprm->argc) 1667 return 0; 1668 1669 do { 1670 offset = bprm->p & ~PAGE_MASK; 1671 page = get_arg_page(bprm, bprm->p, 0); 1672 if (!page) { 1673 ret = -EFAULT; 1674 goto out; 1675 } 1676 kaddr = kmap_atomic(page); 1677 1678 for (; offset < PAGE_SIZE && kaddr[offset]; 1679 offset++, bprm->p++) 1680 ; 1681 1682 kunmap_atomic(kaddr); 1683 put_arg_page(page); 1684 } while (offset == PAGE_SIZE); 1685 1686 bprm->p++; 1687 bprm->argc--; 1688 ret = 0; 1689 1690 out: 1691 return ret; 1692 } 1693 EXPORT_SYMBOL(remove_arg_zero); 1694 1695 #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e)) 1696 /* 1697 * cycle the list of binary formats handler, until one recognizes the image 1698 */ search_binary_handler(struct linux_binprm * bprm)1699 static int search_binary_handler(struct linux_binprm *bprm) 1700 { 1701 bool need_retry = IS_ENABLED(CONFIG_MODULES); 1702 struct linux_binfmt *fmt; 1703 int retval; 1704 1705 retval = prepare_binprm(bprm); 1706 if (retval < 0) 1707 return retval; 1708 1709 retval = security_bprm_check(bprm); 1710 if (retval) 1711 return retval; 1712 1713 retval = -ENOENT; 1714 retry: 1715 read_lock(&binfmt_lock); 1716 list_for_each_entry(fmt, &formats, lh) { 1717 if (!try_module_get(fmt->module)) 1718 continue; 1719 read_unlock(&binfmt_lock); 1720 1721 retval = fmt->load_binary(bprm); 1722 1723 read_lock(&binfmt_lock); 1724 put_binfmt(fmt); 1725 if (bprm->point_of_no_return || (retval != -ENOEXEC)) { 1726 read_unlock(&binfmt_lock); 1727 return retval; 1728 } 1729 } 1730 read_unlock(&binfmt_lock); 1731 1732 if (need_retry) { 1733 if (printable(bprm->buf[0]) && printable(bprm->buf[1]) && 1734 printable(bprm->buf[2]) && printable(bprm->buf[3])) 1735 return retval; 1736 if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0) 1737 return retval; 1738 need_retry = false; 1739 goto retry; 1740 } 1741 1742 return retval; 1743 } 1744 exec_binprm(struct linux_binprm * bprm)1745 static int exec_binprm(struct linux_binprm *bprm) 1746 { 1747 pid_t old_pid, old_vpid; 1748 int ret, depth; 1749 1750 /* Need to fetch pid before load_binary changes it */ 1751 old_pid = current->pid; 1752 rcu_read_lock(); 1753 old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent)); 1754 rcu_read_unlock(); 1755 1756 /* This allows 4 levels of binfmt rewrites before failing hard. */ 1757 for (depth = 0;; depth++) { 1758 struct file *exec; 1759 if (depth > 5) 1760 return -ELOOP; 1761 1762 ret = search_binary_handler(bprm); 1763 if (ret < 0) 1764 return ret; 1765 if (!bprm->interpreter) 1766 break; 1767 1768 exec = bprm->file; 1769 bprm->file = bprm->interpreter; 1770 bprm->interpreter = NULL; 1771 1772 allow_write_access(exec); 1773 if (unlikely(bprm->have_execfd)) { 1774 if (bprm->executable) { 1775 fput(exec); 1776 return -ENOEXEC; 1777 } 1778 bprm->executable = exec; 1779 } else 1780 fput(exec); 1781 } 1782 1783 audit_bprm(bprm); 1784 trace_sched_process_exec(current, old_pid, bprm); 1785 ptrace_event(PTRACE_EVENT_EXEC, old_vpid); 1786 proc_exec_connector(current); 1787 return 0; 1788 } 1789 1790 /* 1791 * sys_execve() executes a new program. 1792 */ bprm_execve(struct linux_binprm * bprm,int fd,struct filename * filename,int flags)1793 static int bprm_execve(struct linux_binprm *bprm, 1794 int fd, struct filename *filename, int flags) 1795 { 1796 struct file *file; 1797 int retval; 1798 1799 /* 1800 * Cancel any io_uring activity across execve 1801 */ 1802 io_uring_task_cancel(); 1803 1804 retval = prepare_bprm_creds(bprm); 1805 if (retval) 1806 return retval; 1807 1808 check_unsafe_exec(bprm); 1809 current->in_execve = 1; 1810 1811 file = do_open_execat(fd, filename, flags); 1812 retval = PTR_ERR(file); 1813 if (IS_ERR(file)) 1814 goto out_unmark; 1815 1816 sched_exec(); 1817 1818 bprm->file = file; 1819 /* 1820 * Record that a name derived from an O_CLOEXEC fd will be 1821 * inaccessible after exec. This allows the code in exec to 1822 * choose to fail when the executable is not mmaped into the 1823 * interpreter and an open file descriptor is not passed to 1824 * the interpreter. This makes for a better user experience 1825 * than having the interpreter start and then immediately fail 1826 * when it finds the executable is inaccessible. 1827 */ 1828 if (bprm->fdpath && get_close_on_exec(fd)) 1829 bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE; 1830 1831 /* Set the unchanging part of bprm->cred */ 1832 retval = security_bprm_creds_for_exec(bprm); 1833 if (retval) 1834 goto out; 1835 1836 retval = exec_binprm(bprm); 1837 if (retval < 0) 1838 goto out; 1839 1840 /* execve succeeded */ 1841 current->fs->in_exec = 0; 1842 current->in_execve = 0; 1843 rseq_execve(current); 1844 acct_update_integrals(current); 1845 task_numa_free(current, false); 1846 CALL_HCK_LITE_HOOK(ced_detection_lhck, current); 1847 return retval; 1848 1849 out: 1850 /* 1851 * If past the point of no return ensure the the code never 1852 * returns to the userspace process. Use an existing fatal 1853 * signal if present otherwise terminate the process with 1854 * SIGSEGV. 1855 */ 1856 if (bprm->point_of_no_return && !fatal_signal_pending(current)) 1857 force_sigsegv(SIGSEGV); 1858 1859 out_unmark: 1860 current->fs->in_exec = 0; 1861 current->in_execve = 0; 1862 1863 return retval; 1864 } 1865 do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1866 static int do_execveat_common(int fd, struct filename *filename, 1867 struct user_arg_ptr argv, 1868 struct user_arg_ptr envp, 1869 int flags) 1870 { 1871 struct linux_binprm *bprm; 1872 int retval; 1873 1874 if (IS_ERR(filename)) 1875 return PTR_ERR(filename); 1876 1877 /* 1878 * We move the actual failure in case of RLIMIT_NPROC excess from 1879 * set*uid() to execve() because too many poorly written programs 1880 * don't check setuid() return code. Here we additionally recheck 1881 * whether NPROC limit is still exceeded. 1882 */ 1883 if ((current->flags & PF_NPROC_EXCEEDED) && 1884 atomic_read(¤t_user()->processes) > rlimit(RLIMIT_NPROC)) { 1885 retval = -EAGAIN; 1886 goto out_ret; 1887 } 1888 1889 /* We're below the limit (still or again), so we don't want to make 1890 * further execve() calls fail. */ 1891 current->flags &= ~PF_NPROC_EXCEEDED; 1892 1893 bprm = alloc_bprm(fd, filename); 1894 if (IS_ERR(bprm)) { 1895 retval = PTR_ERR(bprm); 1896 goto out_ret; 1897 } 1898 1899 retval = count(argv, MAX_ARG_STRINGS); 1900 if (retval == 0) 1901 pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n", 1902 current->comm, bprm->filename); 1903 if (retval < 0) 1904 goto out_free; 1905 bprm->argc = retval; 1906 1907 retval = count(envp, MAX_ARG_STRINGS); 1908 if (retval < 0) 1909 goto out_free; 1910 bprm->envc = retval; 1911 1912 retval = bprm_stack_limits(bprm); 1913 if (retval < 0) 1914 goto out_free; 1915 1916 retval = copy_string_kernel(bprm->filename, bprm); 1917 if (retval < 0) 1918 goto out_free; 1919 bprm->exec = bprm->p; 1920 1921 retval = copy_strings(bprm->envc, envp, bprm); 1922 if (retval < 0) 1923 goto out_free; 1924 1925 retval = copy_strings(bprm->argc, argv, bprm); 1926 if (retval < 0) 1927 goto out_free; 1928 1929 /* 1930 * When argv is empty, add an empty string ("") as argv[0] to 1931 * ensure confused userspace programs that start processing 1932 * from argv[1] won't end up walking envp. See also 1933 * bprm_stack_limits(). 1934 */ 1935 if (bprm->argc == 0) { 1936 retval = copy_string_kernel("", bprm); 1937 if (retval < 0) 1938 goto out_free; 1939 bprm->argc = 1; 1940 } 1941 1942 retval = bprm_execve(bprm, fd, filename, flags); 1943 out_free: 1944 free_bprm(bprm); 1945 1946 out_ret: 1947 putname(filename); 1948 return retval; 1949 } 1950 kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1951 int kernel_execve(const char *kernel_filename, 1952 const char *const *argv, const char *const *envp) 1953 { 1954 struct filename *filename; 1955 struct linux_binprm *bprm; 1956 int fd = AT_FDCWD; 1957 int retval; 1958 1959 filename = getname_kernel(kernel_filename); 1960 if (IS_ERR(filename)) 1961 return PTR_ERR(filename); 1962 1963 bprm = alloc_bprm(fd, filename); 1964 if (IS_ERR(bprm)) { 1965 retval = PTR_ERR(bprm); 1966 goto out_ret; 1967 } 1968 1969 retval = count_strings_kernel(argv); 1970 if (WARN_ON_ONCE(retval == 0)) 1971 retval = -EINVAL; 1972 if (retval < 0) 1973 goto out_free; 1974 bprm->argc = retval; 1975 1976 retval = count_strings_kernel(envp); 1977 if (retval < 0) 1978 goto out_free; 1979 bprm->envc = retval; 1980 1981 retval = bprm_stack_limits(bprm); 1982 if (retval < 0) 1983 goto out_free; 1984 1985 retval = copy_string_kernel(bprm->filename, bprm); 1986 if (retval < 0) 1987 goto out_free; 1988 bprm->exec = bprm->p; 1989 1990 retval = copy_strings_kernel(bprm->envc, envp, bprm); 1991 if (retval < 0) 1992 goto out_free; 1993 1994 retval = copy_strings_kernel(bprm->argc, argv, bprm); 1995 if (retval < 0) 1996 goto out_free; 1997 1998 retval = bprm_execve(bprm, fd, filename, 0); 1999 out_free: 2000 free_bprm(bprm); 2001 out_ret: 2002 putname(filename); 2003 return retval; 2004 } 2005 do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2006 static int do_execve(struct filename *filename, 2007 const char __user *const __user *__argv, 2008 const char __user *const __user *__envp) 2009 { 2010 struct user_arg_ptr argv = { .ptr.native = __argv }; 2011 struct user_arg_ptr envp = { .ptr.native = __envp }; 2012 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2013 } 2014 do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2015 static int do_execveat(int fd, struct filename *filename, 2016 const char __user *const __user *__argv, 2017 const char __user *const __user *__envp, 2018 int flags) 2019 { 2020 struct user_arg_ptr argv = { .ptr.native = __argv }; 2021 struct user_arg_ptr envp = { .ptr.native = __envp }; 2022 2023 return do_execveat_common(fd, filename, argv, envp, flags); 2024 } 2025 2026 #ifdef CONFIG_COMPAT compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2027 static int compat_do_execve(struct filename *filename, 2028 const compat_uptr_t __user *__argv, 2029 const compat_uptr_t __user *__envp) 2030 { 2031 struct user_arg_ptr argv = { 2032 .is_compat = true, 2033 .ptr.compat = __argv, 2034 }; 2035 struct user_arg_ptr envp = { 2036 .is_compat = true, 2037 .ptr.compat = __envp, 2038 }; 2039 return do_execveat_common(AT_FDCWD, filename, argv, envp, 0); 2040 } 2041 compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2042 static int compat_do_execveat(int fd, struct filename *filename, 2043 const compat_uptr_t __user *__argv, 2044 const compat_uptr_t __user *__envp, 2045 int flags) 2046 { 2047 struct user_arg_ptr argv = { 2048 .is_compat = true, 2049 .ptr.compat = __argv, 2050 }; 2051 struct user_arg_ptr envp = { 2052 .is_compat = true, 2053 .ptr.compat = __envp, 2054 }; 2055 return do_execveat_common(fd, filename, argv, envp, flags); 2056 } 2057 #endif 2058 set_binfmt(struct linux_binfmt * new)2059 void set_binfmt(struct linux_binfmt *new) 2060 { 2061 struct mm_struct *mm = current->mm; 2062 2063 if (mm->binfmt) 2064 module_put(mm->binfmt->module); 2065 2066 mm->binfmt = new; 2067 if (new) 2068 __module_get(new->module); 2069 } 2070 EXPORT_SYMBOL(set_binfmt); 2071 2072 /* 2073 * set_dumpable stores three-value SUID_DUMP_* into mm->flags. 2074 */ set_dumpable(struct mm_struct * mm,int value)2075 void set_dumpable(struct mm_struct *mm, int value) 2076 { 2077 if (WARN_ON((unsigned)value > SUID_DUMP_ROOT)) 2078 return; 2079 2080 set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value); 2081 } 2082 SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2083 SYSCALL_DEFINE3(execve, 2084 const char __user *, filename, 2085 const char __user *const __user *, argv, 2086 const char __user *const __user *, envp) 2087 { 2088 return do_execve(getname(filename), argv, envp); 2089 } 2090 SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2091 SYSCALL_DEFINE5(execveat, 2092 int, fd, const char __user *, filename, 2093 const char __user *const __user *, argv, 2094 const char __user *const __user *, envp, 2095 int, flags) 2096 { 2097 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2098 2099 return do_execveat(fd, 2100 getname_flags(filename, lookup_flags, NULL), 2101 argv, envp, flags); 2102 } 2103 2104 #ifdef CONFIG_COMPAT COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2105 COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename, 2106 const compat_uptr_t __user *, argv, 2107 const compat_uptr_t __user *, envp) 2108 { 2109 return compat_do_execve(getname(filename), argv, envp); 2110 } 2111 COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2112 COMPAT_SYSCALL_DEFINE5(execveat, int, fd, 2113 const char __user *, filename, 2114 const compat_uptr_t __user *, argv, 2115 const compat_uptr_t __user *, envp, 2116 int, flags) 2117 { 2118 int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0; 2119 2120 return compat_do_execveat(fd, 2121 getname_flags(filename, lookup_flags, NULL), 2122 argv, envp, flags); 2123 } 2124 #endif 2125