• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1  // SPDX-License-Identifier: GPL-2.0-only
2  /*
3   *  linux/fs/exec.c
4   *
5   *  Copyright (C) 1991, 1992  Linus Torvalds
6   */
7  
8  /*
9   * #!-checking implemented by tytso.
10   */
11  /*
12   * Demand-loading implemented 01.12.91 - no need to read anything but
13   * the header into memory. The inode of the executable is put into
14   * "current->executable", and page faults do the actual loading. Clean.
15   *
16   * Once more I can proudly say that linux stood up to being changed: it
17   * was less than 2 hours work to get demand-loading completely implemented.
18   *
19   * Demand loading changed July 1993 by Eric Youngdale.   Use mmap instead,
20   * current->executable is only used by the procfs.  This allows a dispatch
21   * table to check for several different types  of binary formats.  We keep
22   * trying until we recognize the file or we run out of supported binary
23   * formats.
24   */
25  
26  #include <linux/kernel_read_file.h>
27  #include <linux/slab.h>
28  #include <linux/file.h>
29  #include <linux/fdtable.h>
30  #include <linux/mm.h>
31  #include <linux/vmacache.h>
32  #include <linux/stat.h>
33  #include <linux/fcntl.h>
34  #include <linux/swap.h>
35  #include <linux/string.h>
36  #include <linux/init.h>
37  #include <linux/sched/mm.h>
38  #include <linux/sched/coredump.h>
39  #include <linux/sched/signal.h>
40  #include <linux/sched/numa_balancing.h>
41  #include <linux/sched/task.h>
42  #include <linux/pagemap.h>
43  #include <linux/perf_event.h>
44  #include <linux/highmem.h>
45  #include <linux/spinlock.h>
46  #include <linux/key.h>
47  #include <linux/personality.h>
48  #include <linux/binfmts.h>
49  #include <linux/utsname.h>
50  #include <linux/pid_namespace.h>
51  #include <linux/module.h>
52  #include <linux/namei.h>
53  #include <linux/mount.h>
54  #include <linux/security.h>
55  #include <linux/syscalls.h>
56  #include <linux/tsacct_kern.h>
57  #include <linux/cn_proc.h>
58  #include <linux/audit.h>
59  #include <linux/tracehook.h>
60  #include <linux/kmod.h>
61  #include <linux/fsnotify.h>
62  #include <linux/fs_struct.h>
63  #include <linux/oom.h>
64  #include <linux/compat.h>
65  #include <linux/vmalloc.h>
66  #include <linux/io_uring.h>
67  
68  #include <linux/uaccess.h>
69  #include <asm/mmu_context.h>
70  #include <asm/tlb.h>
71  
72  #include <trace/events/task.h>
73  #include "internal.h"
74  
75  #include <trace/events/sched.h>
76  #include <linux/hck/lite_hck_ced.h>
77  
78  static int bprm_creds_from_file(struct linux_binprm *bprm);
79  
80  int suid_dumpable = 0;
81  
82  static LIST_HEAD(formats);
83  static DEFINE_RWLOCK(binfmt_lock);
84  
__register_binfmt(struct linux_binfmt * fmt,int insert)85  void __register_binfmt(struct linux_binfmt * fmt, int insert)
86  {
87  	BUG_ON(!fmt);
88  	if (WARN_ON(!fmt->load_binary))
89  		return;
90  	write_lock(&binfmt_lock);
91  	insert ? list_add(&fmt->lh, &formats) :
92  		 list_add_tail(&fmt->lh, &formats);
93  	write_unlock(&binfmt_lock);
94  }
95  
96  EXPORT_SYMBOL(__register_binfmt);
97  
unregister_binfmt(struct linux_binfmt * fmt)98  void unregister_binfmt(struct linux_binfmt * fmt)
99  {
100  	write_lock(&binfmt_lock);
101  	list_del(&fmt->lh);
102  	write_unlock(&binfmt_lock);
103  }
104  
105  EXPORT_SYMBOL(unregister_binfmt);
106  
put_binfmt(struct linux_binfmt * fmt)107  static inline void put_binfmt(struct linux_binfmt * fmt)
108  {
109  	module_put(fmt->module);
110  }
111  
path_noexec(const struct path * path)112  bool path_noexec(const struct path *path)
113  {
114  	return (path->mnt->mnt_flags & MNT_NOEXEC) ||
115  	       (path->mnt->mnt_sb->s_iflags & SB_I_NOEXEC);
116  }
117  
118  #ifdef CONFIG_USELIB
119  /*
120   * Note that a shared library must be both readable and executable due to
121   * security reasons.
122   *
123   * Also note that we take the address to load from from the file itself.
124   */
SYSCALL_DEFINE1(uselib,const char __user *,library)125  SYSCALL_DEFINE1(uselib, const char __user *, library)
126  {
127  	struct linux_binfmt *fmt;
128  	struct file *file;
129  	struct filename *tmp = getname(library);
130  	int error = PTR_ERR(tmp);
131  	static const struct open_flags uselib_flags = {
132  		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
133  		.acc_mode = MAY_READ | MAY_EXEC,
134  		.intent = LOOKUP_OPEN,
135  		.lookup_flags = LOOKUP_FOLLOW,
136  	};
137  
138  	if (IS_ERR(tmp))
139  		goto out;
140  
141  	file = do_filp_open(AT_FDCWD, tmp, &uselib_flags);
142  	putname(tmp);
143  	error = PTR_ERR(file);
144  	if (IS_ERR(file))
145  		goto out;
146  
147  	/*
148  	 * may_open() has already checked for this, so it should be
149  	 * impossible to trip now. But we need to be extra cautious
150  	 * and check again at the very end too.
151  	 */
152  	error = -EACCES;
153  	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
154  			 path_noexec(&file->f_path)))
155  		goto exit;
156  
157  	fsnotify_open(file);
158  
159  	error = -ENOEXEC;
160  
161  	read_lock(&binfmt_lock);
162  	list_for_each_entry(fmt, &formats, lh) {
163  		if (!fmt->load_shlib)
164  			continue;
165  		if (!try_module_get(fmt->module))
166  			continue;
167  		read_unlock(&binfmt_lock);
168  		error = fmt->load_shlib(file);
169  		read_lock(&binfmt_lock);
170  		put_binfmt(fmt);
171  		if (error != -ENOEXEC)
172  			break;
173  	}
174  	read_unlock(&binfmt_lock);
175  exit:
176  	fput(file);
177  out:
178    	return error;
179  }
180  #endif /* #ifdef CONFIG_USELIB */
181  
182  #ifdef CONFIG_MMU
183  /*
184   * The nascent bprm->mm is not visible until exec_mmap() but it can
185   * use a lot of memory, account these pages in current->mm temporary
186   * for oom_badness()->get_mm_rss(). Once exec succeeds or fails, we
187   * change the counter back via acct_arg_size(0).
188   */
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)189  static void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
190  {
191  	struct mm_struct *mm = current->mm;
192  	long diff = (long)(pages - bprm->vma_pages);
193  
194  	if (!mm || !diff)
195  		return;
196  
197  	bprm->vma_pages = pages;
198  	add_mm_counter(mm, MM_ANONPAGES, diff);
199  }
200  
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)201  static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
202  		int write)
203  {
204  	struct page *page;
205  	int ret;
206  	unsigned int gup_flags = FOLL_FORCE;
207  
208  #ifdef CONFIG_STACK_GROWSUP
209  	if (write) {
210  		ret = expand_downwards(bprm->vma, pos);
211  		if (ret < 0)
212  			return NULL;
213  	}
214  #endif
215  
216  	if (write)
217  		gup_flags |= FOLL_WRITE;
218  
219  	/*
220  	 * We are doing an exec().  'current' is the process
221  	 * doing the exec and bprm->mm is the new process's mm.
222  	 */
223  	ret = get_user_pages_remote(bprm->mm, pos, 1, gup_flags,
224  			&page, NULL, NULL);
225  	if (ret <= 0)
226  		return NULL;
227  
228  	if (write)
229  		acct_arg_size(bprm, vma_pages(bprm->vma));
230  
231  	return page;
232  }
233  
put_arg_page(struct page * page)234  static void put_arg_page(struct page *page)
235  {
236  	put_page(page);
237  }
238  
free_arg_pages(struct linux_binprm * bprm)239  static void free_arg_pages(struct linux_binprm *bprm)
240  {
241  }
242  
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)243  static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
244  		struct page *page)
245  {
246  	flush_cache_page(bprm->vma, pos, page_to_pfn(page));
247  }
248  
__bprm_mm_init(struct linux_binprm * bprm)249  static int __bprm_mm_init(struct linux_binprm *bprm)
250  {
251  	int err;
252  	struct vm_area_struct *vma = NULL;
253  	struct mm_struct *mm = bprm->mm;
254  
255  	bprm->vma = vma = vm_area_alloc(mm);
256  	if (!vma)
257  		return -ENOMEM;
258  	vma_set_anonymous(vma);
259  
260  	if (mmap_write_lock_killable(mm)) {
261  		err = -EINTR;
262  		goto err_free;
263  	}
264  
265  	/*
266  	 * Place the stack at the largest stack address the architecture
267  	 * supports. Later, we'll move this to an appropriate place. We don't
268  	 * use STACK_TOP because that can depend on attributes which aren't
269  	 * configured yet.
270  	 */
271  	BUILD_BUG_ON(VM_STACK_FLAGS & VM_STACK_INCOMPLETE_SETUP);
272  	vma->vm_end = STACK_TOP_MAX;
273  	vma->vm_start = vma->vm_end - PAGE_SIZE;
274  	vma->vm_flags = VM_SOFTDIRTY | VM_STACK_FLAGS | VM_STACK_INCOMPLETE_SETUP;
275  	vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
276  
277  	err = insert_vm_struct(mm, vma);
278  	if (err)
279  		goto err;
280  
281  	mm->stack_vm = mm->total_vm = 1;
282  	mmap_write_unlock(mm);
283  	bprm->p = vma->vm_end - sizeof(void *);
284  	return 0;
285  err:
286  	mmap_write_unlock(mm);
287  err_free:
288  	bprm->vma = NULL;
289  	vm_area_free(vma);
290  	return err;
291  }
292  
valid_arg_len(struct linux_binprm * bprm,long len)293  static bool valid_arg_len(struct linux_binprm *bprm, long len)
294  {
295  	return len <= MAX_ARG_STRLEN;
296  }
297  
298  #else
299  
acct_arg_size(struct linux_binprm * bprm,unsigned long pages)300  static inline void acct_arg_size(struct linux_binprm *bprm, unsigned long pages)
301  {
302  }
303  
get_arg_page(struct linux_binprm * bprm,unsigned long pos,int write)304  static struct page *get_arg_page(struct linux_binprm *bprm, unsigned long pos,
305  		int write)
306  {
307  	struct page *page;
308  
309  	page = bprm->page[pos / PAGE_SIZE];
310  	if (!page && write) {
311  		page = alloc_page(GFP_HIGHUSER|__GFP_ZERO);
312  		if (!page)
313  			return NULL;
314  		bprm->page[pos / PAGE_SIZE] = page;
315  	}
316  
317  	return page;
318  }
319  
put_arg_page(struct page * page)320  static void put_arg_page(struct page *page)
321  {
322  }
323  
free_arg_page(struct linux_binprm * bprm,int i)324  static void free_arg_page(struct linux_binprm *bprm, int i)
325  {
326  	if (bprm->page[i]) {
327  		__free_page(bprm->page[i]);
328  		bprm->page[i] = NULL;
329  	}
330  }
331  
free_arg_pages(struct linux_binprm * bprm)332  static void free_arg_pages(struct linux_binprm *bprm)
333  {
334  	int i;
335  
336  	for (i = 0; i < MAX_ARG_PAGES; i++)
337  		free_arg_page(bprm, i);
338  }
339  
flush_arg_page(struct linux_binprm * bprm,unsigned long pos,struct page * page)340  static void flush_arg_page(struct linux_binprm *bprm, unsigned long pos,
341  		struct page *page)
342  {
343  }
344  
__bprm_mm_init(struct linux_binprm * bprm)345  static int __bprm_mm_init(struct linux_binprm *bprm)
346  {
347  	bprm->p = PAGE_SIZE * MAX_ARG_PAGES - sizeof(void *);
348  	return 0;
349  }
350  
valid_arg_len(struct linux_binprm * bprm,long len)351  static bool valid_arg_len(struct linux_binprm *bprm, long len)
352  {
353  	return len <= bprm->p;
354  }
355  
356  #endif /* CONFIG_MMU */
357  
358  /*
359   * Create a new mm_struct and populate it with a temporary stack
360   * vm_area_struct.  We don't have enough context at this point to set the stack
361   * flags, permissions, and offset, so we use temporary values.  We'll update
362   * them later in setup_arg_pages().
363   */
bprm_mm_init(struct linux_binprm * bprm)364  static int bprm_mm_init(struct linux_binprm *bprm)
365  {
366  	int err;
367  	struct mm_struct *mm = NULL;
368  
369  	bprm->mm = mm = mm_alloc();
370  	err = -ENOMEM;
371  	if (!mm)
372  		goto err;
373  
374  	/* Save current stack limit for all calculations made during exec. */
375  	task_lock(current->group_leader);
376  	bprm->rlim_stack = current->signal->rlim[RLIMIT_STACK];
377  	task_unlock(current->group_leader);
378  
379  	err = __bprm_mm_init(bprm);
380  	if (err)
381  		goto err;
382  
383  	return 0;
384  
385  err:
386  	if (mm) {
387  		bprm->mm = NULL;
388  		mmdrop(mm);
389  	}
390  
391  	return err;
392  }
393  
394  struct user_arg_ptr {
395  #ifdef CONFIG_COMPAT
396  	bool is_compat;
397  #endif
398  	union {
399  		const char __user *const __user *native;
400  #ifdef CONFIG_COMPAT
401  		const compat_uptr_t __user *compat;
402  #endif
403  	} ptr;
404  };
405  
get_user_arg_ptr(struct user_arg_ptr argv,int nr)406  static const char __user *get_user_arg_ptr(struct user_arg_ptr argv, int nr)
407  {
408  	const char __user *native;
409  
410  #ifdef CONFIG_COMPAT
411  	if (unlikely(argv.is_compat)) {
412  		compat_uptr_t compat;
413  
414  		if (get_user(compat, argv.ptr.compat + nr))
415  			return ERR_PTR(-EFAULT);
416  
417  		return compat_ptr(compat);
418  	}
419  #endif
420  
421  	if (get_user(native, argv.ptr.native + nr))
422  		return ERR_PTR(-EFAULT);
423  
424  	return native;
425  }
426  
427  /*
428   * count() counts the number of strings in array ARGV.
429   */
count(struct user_arg_ptr argv,int max)430  static int count(struct user_arg_ptr argv, int max)
431  {
432  	int i = 0;
433  
434  	if (argv.ptr.native != NULL) {
435  		for (;;) {
436  			const char __user *p = get_user_arg_ptr(argv, i);
437  
438  			if (!p)
439  				break;
440  
441  			if (IS_ERR(p))
442  				return -EFAULT;
443  
444  			if (i >= max)
445  				return -E2BIG;
446  			++i;
447  
448  			if (fatal_signal_pending(current))
449  				return -ERESTARTNOHAND;
450  			cond_resched();
451  		}
452  	}
453  	return i;
454  }
455  
count_strings_kernel(const char * const * argv)456  static int count_strings_kernel(const char *const *argv)
457  {
458  	int i;
459  
460  	if (!argv)
461  		return 0;
462  
463  	for (i = 0; argv[i]; ++i) {
464  		if (i >= MAX_ARG_STRINGS)
465  			return -E2BIG;
466  		if (fatal_signal_pending(current))
467  			return -ERESTARTNOHAND;
468  		cond_resched();
469  	}
470  	return i;
471  }
472  
bprm_stack_limits(struct linux_binprm * bprm)473  static int bprm_stack_limits(struct linux_binprm *bprm)
474  {
475  	unsigned long limit, ptr_size;
476  
477  	/*
478  	 * Limit to 1/4 of the max stack size or 3/4 of _STK_LIM
479  	 * (whichever is smaller) for the argv+env strings.
480  	 * This ensures that:
481  	 *  - the remaining binfmt code will not run out of stack space,
482  	 *  - the program will have a reasonable amount of stack left
483  	 *    to work from.
484  	 */
485  	limit = _STK_LIM / 4 * 3;
486  	limit = min(limit, bprm->rlim_stack.rlim_cur / 4);
487  	/*
488  	 * We've historically supported up to 32 pages (ARG_MAX)
489  	 * of argument strings even with small stacks
490  	 */
491  	limit = max_t(unsigned long, limit, ARG_MAX);
492  	/*
493  	 * We must account for the size of all the argv and envp pointers to
494  	 * the argv and envp strings, since they will also take up space in
495  	 * the stack. They aren't stored until much later when we can't
496  	 * signal to the parent that the child has run out of stack space.
497  	 * Instead, calculate it here so it's possible to fail gracefully.
498  	 *
499  	 * In the case of argc = 0, make sure there is space for adding a
500  	 * empty string (which will bump argc to 1), to ensure confused
501  	 * userspace programs don't start processing from argv[1], thinking
502  	 * argc can never be 0, to keep them from walking envp by accident.
503  	 * See do_execveat_common().
504  	 */
505  	ptr_size = (max(bprm->argc, 1) + bprm->envc) * sizeof(void *);
506  	if (limit <= ptr_size)
507  		return -E2BIG;
508  	limit -= ptr_size;
509  
510  	bprm->argmin = bprm->p - limit;
511  	return 0;
512  }
513  
514  /*
515   * 'copy_strings()' copies argument/environment strings from the old
516   * processes's memory to the new process's stack.  The call to get_user_pages()
517   * ensures the destination page is created and not swapped out.
518   */
copy_strings(int argc,struct user_arg_ptr argv,struct linux_binprm * bprm)519  static int copy_strings(int argc, struct user_arg_ptr argv,
520  			struct linux_binprm *bprm)
521  {
522  	struct page *kmapped_page = NULL;
523  	char *kaddr = NULL;
524  	unsigned long kpos = 0;
525  	int ret;
526  
527  	while (argc-- > 0) {
528  		const char __user *str;
529  		int len;
530  		unsigned long pos;
531  
532  		ret = -EFAULT;
533  		str = get_user_arg_ptr(argv, argc);
534  		if (IS_ERR(str))
535  			goto out;
536  
537  		len = strnlen_user(str, MAX_ARG_STRLEN);
538  		if (!len)
539  			goto out;
540  
541  		ret = -E2BIG;
542  		if (!valid_arg_len(bprm, len))
543  			goto out;
544  
545  		/* We're going to work our way backwords. */
546  		pos = bprm->p;
547  		str += len;
548  		bprm->p -= len;
549  #ifdef CONFIG_MMU
550  		if (bprm->p < bprm->argmin)
551  			goto out;
552  #endif
553  
554  		while (len > 0) {
555  			int offset, bytes_to_copy;
556  
557  			if (fatal_signal_pending(current)) {
558  				ret = -ERESTARTNOHAND;
559  				goto out;
560  			}
561  			cond_resched();
562  
563  			offset = pos % PAGE_SIZE;
564  			if (offset == 0)
565  				offset = PAGE_SIZE;
566  
567  			bytes_to_copy = offset;
568  			if (bytes_to_copy > len)
569  				bytes_to_copy = len;
570  
571  			offset -= bytes_to_copy;
572  			pos -= bytes_to_copy;
573  			str -= bytes_to_copy;
574  			len -= bytes_to_copy;
575  
576  			if (!kmapped_page || kpos != (pos & PAGE_MASK)) {
577  				struct page *page;
578  
579  				page = get_arg_page(bprm, pos, 1);
580  				if (!page) {
581  					ret = -E2BIG;
582  					goto out;
583  				}
584  
585  				if (kmapped_page) {
586  					flush_kernel_dcache_page(kmapped_page);
587  					kunmap(kmapped_page);
588  					put_arg_page(kmapped_page);
589  				}
590  				kmapped_page = page;
591  				kaddr = kmap(kmapped_page);
592  				kpos = pos & PAGE_MASK;
593  				flush_arg_page(bprm, kpos, kmapped_page);
594  			}
595  			if (copy_from_user(kaddr+offset, str, bytes_to_copy)) {
596  				ret = -EFAULT;
597  				goto out;
598  			}
599  		}
600  	}
601  	ret = 0;
602  out:
603  	if (kmapped_page) {
604  		flush_kernel_dcache_page(kmapped_page);
605  		kunmap(kmapped_page);
606  		put_arg_page(kmapped_page);
607  	}
608  	return ret;
609  }
610  
611  /*
612   * Copy and argument/environment string from the kernel to the processes stack.
613   */
copy_string_kernel(const char * arg,struct linux_binprm * bprm)614  int copy_string_kernel(const char *arg, struct linux_binprm *bprm)
615  {
616  	int len = strnlen(arg, MAX_ARG_STRLEN) + 1 /* terminating NUL */;
617  	unsigned long pos = bprm->p;
618  
619  	if (len == 0)
620  		return -EFAULT;
621  	if (!valid_arg_len(bprm, len))
622  		return -E2BIG;
623  
624  	/* We're going to work our way backwards. */
625  	arg += len;
626  	bprm->p -= len;
627  	if (IS_ENABLED(CONFIG_MMU) && bprm->p < bprm->argmin)
628  		return -E2BIG;
629  
630  	while (len > 0) {
631  		unsigned int bytes_to_copy = min_t(unsigned int, len,
632  				min_not_zero(offset_in_page(pos), PAGE_SIZE));
633  		struct page *page;
634  		char *kaddr;
635  
636  		pos -= bytes_to_copy;
637  		arg -= bytes_to_copy;
638  		len -= bytes_to_copy;
639  
640  		page = get_arg_page(bprm, pos, 1);
641  		if (!page)
642  			return -E2BIG;
643  		kaddr = kmap_atomic(page);
644  		flush_arg_page(bprm, pos & PAGE_MASK, page);
645  		memcpy(kaddr + offset_in_page(pos), arg, bytes_to_copy);
646  		flush_kernel_dcache_page(page);
647  		kunmap_atomic(kaddr);
648  		put_arg_page(page);
649  	}
650  
651  	return 0;
652  }
653  EXPORT_SYMBOL(copy_string_kernel);
654  
copy_strings_kernel(int argc,const char * const * argv,struct linux_binprm * bprm)655  static int copy_strings_kernel(int argc, const char *const *argv,
656  			       struct linux_binprm *bprm)
657  {
658  	while (argc-- > 0) {
659  		int ret = copy_string_kernel(argv[argc], bprm);
660  		if (ret < 0)
661  			return ret;
662  		if (fatal_signal_pending(current))
663  			return -ERESTARTNOHAND;
664  		cond_resched();
665  	}
666  	return 0;
667  }
668  
669  #ifdef CONFIG_MMU
670  
671  /*
672   * During bprm_mm_init(), we create a temporary stack at STACK_TOP_MAX.  Once
673   * the binfmt code determines where the new stack should reside, we shift it to
674   * its final location.  The process proceeds as follows:
675   *
676   * 1) Use shift to calculate the new vma endpoints.
677   * 2) Extend vma to cover both the old and new ranges.  This ensures the
678   *    arguments passed to subsequent functions are consistent.
679   * 3) Move vma's page tables to the new range.
680   * 4) Free up any cleared pgd range.
681   * 5) Shrink the vma to cover only the new range.
682   */
shift_arg_pages(struct vm_area_struct * vma,unsigned long shift)683  static int shift_arg_pages(struct vm_area_struct *vma, unsigned long shift)
684  {
685  	struct mm_struct *mm = vma->vm_mm;
686  	unsigned long old_start = vma->vm_start;
687  	unsigned long old_end = vma->vm_end;
688  	unsigned long length = old_end - old_start;
689  	unsigned long new_start = old_start - shift;
690  	unsigned long new_end = old_end - shift;
691  	struct mmu_gather tlb;
692  
693  	BUG_ON(new_start > new_end);
694  
695  	/*
696  	 * ensure there are no vmas between where we want to go
697  	 * and where we are
698  	 */
699  	if (vma != find_vma(mm, new_start))
700  		return -EFAULT;
701  
702  	/*
703  	 * cover the whole range: [new_start, old_end)
704  	 */
705  	if (vma_adjust(vma, new_start, old_end, vma->vm_pgoff, NULL))
706  		return -ENOMEM;
707  
708  	/*
709  	 * move the page tables downwards, on failure we rely on
710  	 * process cleanup to remove whatever mess we made.
711  	 */
712  	if (length != move_page_tables(vma, old_start,
713  				       vma, new_start, length, false))
714  		return -ENOMEM;
715  
716  	lru_add_drain();
717  	tlb_gather_mmu(&tlb, mm, old_start, old_end);
718  	if (new_end > old_start) {
719  		/*
720  		 * when the old and new regions overlap clear from new_end.
721  		 */
722  		free_pgd_range(&tlb, new_end, old_end, new_end,
723  			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
724  	} else {
725  		/*
726  		 * otherwise, clean from old_start; this is done to not touch
727  		 * the address space in [new_end, old_start) some architectures
728  		 * have constraints on va-space that make this illegal (IA64) -
729  		 * for the others its just a little faster.
730  		 */
731  		free_pgd_range(&tlb, old_start, old_end, new_end,
732  			vma->vm_next ? vma->vm_next->vm_start : USER_PGTABLES_CEILING);
733  	}
734  	tlb_finish_mmu(&tlb, old_start, old_end);
735  
736  	/*
737  	 * Shrink the vma to just the new range.  Always succeeds.
738  	 */
739  	vma_adjust(vma, new_start, new_end, vma->vm_pgoff, NULL);
740  
741  	return 0;
742  }
743  
744  /*
745   * Finalizes the stack vm_area_struct. The flags and permissions are updated,
746   * the stack is optionally relocated, and some extra space is added.
747   */
setup_arg_pages(struct linux_binprm * bprm,unsigned long stack_top,int executable_stack)748  int setup_arg_pages(struct linux_binprm *bprm,
749  		    unsigned long stack_top,
750  		    int executable_stack)
751  {
752  	unsigned long ret;
753  	unsigned long stack_shift;
754  	struct mm_struct *mm = current->mm;
755  	struct vm_area_struct *vma = bprm->vma;
756  	struct vm_area_struct *prev = NULL;
757  	unsigned long vm_flags;
758  	unsigned long stack_base;
759  	unsigned long stack_size;
760  	unsigned long stack_expand;
761  	unsigned long rlim_stack;
762  
763  #ifdef CONFIG_STACK_GROWSUP
764  	/* Limit stack size */
765  	stack_base = bprm->rlim_stack.rlim_max;
766  	if (stack_base > STACK_SIZE_MAX)
767  		stack_base = STACK_SIZE_MAX;
768  
769  	/* Add space for stack randomization. */
770  	stack_base += (STACK_RND_MASK << PAGE_SHIFT);
771  
772  	/* Make sure we didn't let the argument array grow too large. */
773  	if (vma->vm_end - vma->vm_start > stack_base)
774  		return -ENOMEM;
775  
776  	stack_base = PAGE_ALIGN(stack_top - stack_base);
777  
778  	stack_shift = vma->vm_start - stack_base;
779  	mm->arg_start = bprm->p - stack_shift;
780  	bprm->p = vma->vm_end - stack_shift;
781  #else
782  	stack_top = arch_align_stack(stack_top);
783  	stack_top = PAGE_ALIGN(stack_top);
784  
785  	if (unlikely(stack_top < mmap_min_addr) ||
786  	    unlikely(vma->vm_end - vma->vm_start >= stack_top - mmap_min_addr))
787  		return -ENOMEM;
788  
789  	stack_shift = vma->vm_end - stack_top;
790  
791  	bprm->p -= stack_shift;
792  	mm->arg_start = bprm->p;
793  #endif
794  
795  	if (bprm->loader)
796  		bprm->loader -= stack_shift;
797  	bprm->exec -= stack_shift;
798  
799  	if (mmap_write_lock_killable(mm))
800  		return -EINTR;
801  
802  	vm_flags = VM_STACK_FLAGS;
803  
804  	/*
805  	 * Adjust stack execute permissions; explicitly enable for
806  	 * EXSTACK_ENABLE_X, disable for EXSTACK_DISABLE_X and leave alone
807  	 * (arch default) otherwise.
808  	 */
809  	if (unlikely(executable_stack == EXSTACK_ENABLE_X))
810  		vm_flags |= VM_EXEC;
811  	else if (executable_stack == EXSTACK_DISABLE_X)
812  		vm_flags &= ~VM_EXEC;
813  	vm_flags |= mm->def_flags;
814  	vm_flags |= VM_STACK_INCOMPLETE_SETUP;
815  
816  	ret = mprotect_fixup(vma, &prev, vma->vm_start, vma->vm_end,
817  			vm_flags);
818  	if (ret)
819  		goto out_unlock;
820  	BUG_ON(prev != vma);
821  
822  	if (unlikely(vm_flags & VM_EXEC)) {
823  		pr_warn_once("process '%pD4' started with executable stack\n",
824  			     bprm->file);
825  	}
826  
827  	/* Move stack pages down in memory. */
828  	if (stack_shift) {
829  		ret = shift_arg_pages(vma, stack_shift);
830  		if (ret)
831  			goto out_unlock;
832  	}
833  
834  	/* mprotect_fixup is overkill to remove the temporary stack flags */
835  	vma->vm_flags &= ~VM_STACK_INCOMPLETE_SETUP;
836  
837  	stack_expand = 131072UL; /* randomly 32*4k (or 2*64k) pages */
838  	stack_size = vma->vm_end - vma->vm_start;
839  	/*
840  	 * Align this down to a page boundary as expand_stack
841  	 * will align it up.
842  	 */
843  	rlim_stack = bprm->rlim_stack.rlim_cur & PAGE_MASK;
844  #ifdef CONFIG_STACK_GROWSUP
845  	if (stack_size + stack_expand > rlim_stack)
846  		stack_base = vma->vm_start + rlim_stack;
847  	else
848  		stack_base = vma->vm_end + stack_expand;
849  #else
850  	if (stack_size + stack_expand > rlim_stack)
851  		stack_base = vma->vm_end - rlim_stack;
852  	else
853  		stack_base = vma->vm_start - stack_expand;
854  #endif
855  	current->mm->start_stack = bprm->p;
856  	ret = expand_stack(vma, stack_base);
857  	if (ret)
858  		ret = -EFAULT;
859  
860  out_unlock:
861  	mmap_write_unlock(mm);
862  	return ret;
863  }
864  EXPORT_SYMBOL(setup_arg_pages);
865  
866  #else
867  
868  /*
869   * Transfer the program arguments and environment from the holding pages
870   * onto the stack. The provided stack pointer is adjusted accordingly.
871   */
transfer_args_to_stack(struct linux_binprm * bprm,unsigned long * sp_location)872  int transfer_args_to_stack(struct linux_binprm *bprm,
873  			   unsigned long *sp_location)
874  {
875  	unsigned long index, stop, sp;
876  	int ret = 0;
877  
878  	stop = bprm->p >> PAGE_SHIFT;
879  	sp = *sp_location;
880  
881  	for (index = MAX_ARG_PAGES - 1; index >= stop; index--) {
882  		unsigned int offset = index == stop ? bprm->p & ~PAGE_MASK : 0;
883  		char *src = kmap(bprm->page[index]) + offset;
884  		sp -= PAGE_SIZE - offset;
885  		if (copy_to_user((void *) sp, src, PAGE_SIZE - offset) != 0)
886  			ret = -EFAULT;
887  		kunmap(bprm->page[index]);
888  		if (ret)
889  			goto out;
890  	}
891  
892  	*sp_location = sp;
893  
894  out:
895  	return ret;
896  }
897  EXPORT_SYMBOL(transfer_args_to_stack);
898  
899  #endif /* CONFIG_MMU */
900  
do_open_execat(int fd,struct filename * name,int flags)901  static struct file *do_open_execat(int fd, struct filename *name, int flags)
902  {
903  	struct file *file;
904  	int err;
905  	struct open_flags open_exec_flags = {
906  		.open_flag = O_LARGEFILE | O_RDONLY | __FMODE_EXEC,
907  		.acc_mode = MAY_EXEC,
908  		.intent = LOOKUP_OPEN,
909  		.lookup_flags = LOOKUP_FOLLOW,
910  	};
911  
912  	if ((flags & ~(AT_SYMLINK_NOFOLLOW | AT_EMPTY_PATH)) != 0)
913  		return ERR_PTR(-EINVAL);
914  	if (flags & AT_SYMLINK_NOFOLLOW)
915  		open_exec_flags.lookup_flags &= ~LOOKUP_FOLLOW;
916  	if (flags & AT_EMPTY_PATH)
917  		open_exec_flags.lookup_flags |= LOOKUP_EMPTY;
918  
919  	file = do_filp_open(fd, name, &open_exec_flags);
920  	if (IS_ERR(file))
921  		goto out;
922  
923  	/*
924  	 * may_open() has already checked for this, so it should be
925  	 * impossible to trip now. But we need to be extra cautious
926  	 * and check again at the very end too.
927  	 */
928  	err = -EACCES;
929  	if (WARN_ON_ONCE(!S_ISREG(file_inode(file)->i_mode) ||
930  			 path_noexec(&file->f_path)))
931  		goto exit;
932  
933  	err = deny_write_access(file);
934  	if (err)
935  		goto exit;
936  
937  	if (name->name[0] != '\0')
938  		fsnotify_open(file);
939  
940  out:
941  	return file;
942  
943  exit:
944  	fput(file);
945  	return ERR_PTR(err);
946  }
947  
open_exec(const char * name)948  struct file *open_exec(const char *name)
949  {
950  	struct filename *filename = getname_kernel(name);
951  	struct file *f = ERR_CAST(filename);
952  
953  	if (!IS_ERR(filename)) {
954  		f = do_open_execat(AT_FDCWD, filename, 0);
955  		putname(filename);
956  	}
957  	return f;
958  }
959  EXPORT_SYMBOL(open_exec);
960  
961  #if defined(CONFIG_HAVE_AOUT) || defined(CONFIG_BINFMT_FLAT) || \
962      defined(CONFIG_BINFMT_ELF_FDPIC)
read_code(struct file * file,unsigned long addr,loff_t pos,size_t len)963  ssize_t read_code(struct file *file, unsigned long addr, loff_t pos, size_t len)
964  {
965  	ssize_t res = vfs_read(file, (void __user *)addr, len, &pos);
966  	if (res > 0)
967  		flush_icache_user_range(addr, addr + len);
968  	return res;
969  }
970  EXPORT_SYMBOL(read_code);
971  #endif
972  
973  /*
974   * Maps the mm_struct mm into the current task struct.
975   * On success, this function returns with exec_update_lock
976   * held for writing.
977   */
exec_mmap(struct mm_struct * mm)978  static int exec_mmap(struct mm_struct *mm)
979  {
980  	struct task_struct *tsk;
981  	struct mm_struct *old_mm, *active_mm;
982  	int ret;
983  
984  	/* Notify parent that we're no longer interested in the old VM */
985  	tsk = current;
986  	old_mm = current->mm;
987  	exec_mm_release(tsk, old_mm);
988  	if (old_mm)
989  		sync_mm_rss(old_mm);
990  
991  	ret = down_write_killable(&tsk->signal->exec_update_lock);
992  	if (ret)
993  		return ret;
994  
995  	if (old_mm) {
996  		/*
997  		 * Make sure that if there is a core dump in progress
998  		 * for the old mm, we get out and die instead of going
999  		 * through with the exec.  We must hold mmap_lock around
1000  		 * checking core_state and changing tsk->mm.
1001  		 */
1002  		mmap_read_lock(old_mm);
1003  		if (unlikely(old_mm->core_state)) {
1004  			mmap_read_unlock(old_mm);
1005  			up_write(&tsk->signal->exec_update_lock);
1006  			return -EINTR;
1007  		}
1008  	}
1009  
1010  	task_lock(tsk);
1011  	membarrier_exec_mmap(mm);
1012  
1013  	local_irq_disable();
1014  	active_mm = tsk->active_mm;
1015  	tsk->active_mm = mm;
1016  	tsk->mm = mm;
1017  	/*
1018  	 * This prevents preemption while active_mm is being loaded and
1019  	 * it and mm are being updated, which could cause problems for
1020  	 * lazy tlb mm refcounting when these are updated by context
1021  	 * switches. Not all architectures can handle irqs off over
1022  	 * activate_mm yet.
1023  	 */
1024  	if (!IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1025  		local_irq_enable();
1026  	activate_mm(active_mm, mm);
1027  	if (IS_ENABLED(CONFIG_ARCH_WANT_IRQS_OFF_ACTIVATE_MM))
1028  		local_irq_enable();
1029  	tsk->mm->vmacache_seqnum = 0;
1030  	vmacache_flush(tsk);
1031  	task_unlock(tsk);
1032  	if (old_mm) {
1033  		mmap_read_unlock(old_mm);
1034  		BUG_ON(active_mm != old_mm);
1035  		setmax_mm_hiwater_rss(&tsk->signal->maxrss, old_mm);
1036  		mm_update_next_owner(old_mm);
1037  		mmput(old_mm);
1038  		return 0;
1039  	}
1040  	mmdrop(active_mm);
1041  	return 0;
1042  }
1043  
de_thread(struct task_struct * tsk)1044  static int de_thread(struct task_struct *tsk)
1045  {
1046  	struct signal_struct *sig = tsk->signal;
1047  	struct sighand_struct *oldsighand = tsk->sighand;
1048  	spinlock_t *lock = &oldsighand->siglock;
1049  
1050  	if (thread_group_empty(tsk))
1051  		goto no_thread_group;
1052  
1053  	/*
1054  	 * Kill all other threads in the thread group.
1055  	 */
1056  	spin_lock_irq(lock);
1057  	if (signal_group_exit(sig)) {
1058  		/*
1059  		 * Another group action in progress, just
1060  		 * return so that the signal is processed.
1061  		 */
1062  		spin_unlock_irq(lock);
1063  		return -EAGAIN;
1064  	}
1065  
1066  	sig->group_exit_task = tsk;
1067  	sig->notify_count = zap_other_threads(tsk);
1068  	if (!thread_group_leader(tsk))
1069  		sig->notify_count--;
1070  
1071  	while (sig->notify_count) {
1072  		__set_current_state(TASK_KILLABLE);
1073  		spin_unlock_irq(lock);
1074  		schedule();
1075  		if (__fatal_signal_pending(tsk))
1076  			goto killed;
1077  		spin_lock_irq(lock);
1078  	}
1079  	spin_unlock_irq(lock);
1080  
1081  	/*
1082  	 * At this point all other threads have exited, all we have to
1083  	 * do is to wait for the thread group leader to become inactive,
1084  	 * and to assume its PID:
1085  	 */
1086  	if (!thread_group_leader(tsk)) {
1087  		struct task_struct *leader = tsk->group_leader;
1088  
1089  		for (;;) {
1090  			cgroup_threadgroup_change_begin(tsk);
1091  			write_lock_irq(&tasklist_lock);
1092  			/*
1093  			 * Do this under tasklist_lock to ensure that
1094  			 * exit_notify() can't miss ->group_exit_task
1095  			 */
1096  			sig->notify_count = -1;
1097  			if (likely(leader->exit_state))
1098  				break;
1099  			__set_current_state(TASK_KILLABLE);
1100  			write_unlock_irq(&tasklist_lock);
1101  			cgroup_threadgroup_change_end(tsk);
1102  			schedule();
1103  			if (__fatal_signal_pending(tsk))
1104  				goto killed;
1105  		}
1106  
1107  		/*
1108  		 * The only record we have of the real-time age of a
1109  		 * process, regardless of execs it's done, is start_time.
1110  		 * All the past CPU time is accumulated in signal_struct
1111  		 * from sister threads now dead.  But in this non-leader
1112  		 * exec, nothing survives from the original leader thread,
1113  		 * whose birth marks the true age of this process now.
1114  		 * When we take on its identity by switching to its PID, we
1115  		 * also take its birthdate (always earlier than our own).
1116  		 */
1117  		tsk->start_time = leader->start_time;
1118  		tsk->start_boottime = leader->start_boottime;
1119  
1120  		BUG_ON(!same_thread_group(leader, tsk));
1121  		/*
1122  		 * An exec() starts a new thread group with the
1123  		 * TGID of the previous thread group. Rehash the
1124  		 * two threads with a switched PID, and release
1125  		 * the former thread group leader:
1126  		 */
1127  
1128  		/* Become a process group leader with the old leader's pid.
1129  		 * The old leader becomes a thread of the this thread group.
1130  		 */
1131  		exchange_tids(tsk, leader);
1132  		transfer_pid(leader, tsk, PIDTYPE_TGID);
1133  		transfer_pid(leader, tsk, PIDTYPE_PGID);
1134  		transfer_pid(leader, tsk, PIDTYPE_SID);
1135  
1136  		list_replace_rcu(&leader->tasks, &tsk->tasks);
1137  		list_replace_init(&leader->sibling, &tsk->sibling);
1138  
1139  		tsk->group_leader = tsk;
1140  		leader->group_leader = tsk;
1141  
1142  		tsk->exit_signal = SIGCHLD;
1143  		leader->exit_signal = -1;
1144  
1145  		BUG_ON(leader->exit_state != EXIT_ZOMBIE);
1146  		leader->exit_state = EXIT_DEAD;
1147  
1148  		/*
1149  		 * We are going to release_task()->ptrace_unlink() silently,
1150  		 * the tracer can sleep in do_wait(). EXIT_DEAD guarantees
1151  		 * the tracer wont't block again waiting for this thread.
1152  		 */
1153  		if (unlikely(leader->ptrace))
1154  			__wake_up_parent(leader, leader->parent);
1155  		write_unlock_irq(&tasklist_lock);
1156  		cgroup_threadgroup_change_end(tsk);
1157  
1158  		release_task(leader);
1159  	}
1160  
1161  	sig->group_exit_task = NULL;
1162  	sig->notify_count = 0;
1163  
1164  no_thread_group:
1165  	/* we have changed execution domain */
1166  	tsk->exit_signal = SIGCHLD;
1167  
1168  	BUG_ON(!thread_group_leader(tsk));
1169  	return 0;
1170  
1171  killed:
1172  	/* protects against exit_notify() and __exit_signal() */
1173  	read_lock(&tasklist_lock);
1174  	sig->group_exit_task = NULL;
1175  	sig->notify_count = 0;
1176  	read_unlock(&tasklist_lock);
1177  	return -EAGAIN;
1178  }
1179  
1180  
1181  /*
1182   * This function makes sure the current process has its own signal table,
1183   * so that flush_signal_handlers can later reset the handlers without
1184   * disturbing other processes.  (Other processes might share the signal
1185   * table via the CLONE_SIGHAND option to clone().)
1186   */
unshare_sighand(struct task_struct * me)1187  static int unshare_sighand(struct task_struct *me)
1188  {
1189  	struct sighand_struct *oldsighand = me->sighand;
1190  
1191  	if (refcount_read(&oldsighand->count) != 1) {
1192  		struct sighand_struct *newsighand;
1193  		/*
1194  		 * This ->sighand is shared with the CLONE_SIGHAND
1195  		 * but not CLONE_THREAD task, switch to the new one.
1196  		 */
1197  		newsighand = kmem_cache_alloc(sighand_cachep, GFP_KERNEL);
1198  		if (!newsighand)
1199  			return -ENOMEM;
1200  
1201  		refcount_set(&newsighand->count, 1);
1202  
1203  		write_lock_irq(&tasklist_lock);
1204  		spin_lock(&oldsighand->siglock);
1205  		memcpy(newsighand->action, oldsighand->action,
1206  		       sizeof(newsighand->action));
1207  		rcu_assign_pointer(me->sighand, newsighand);
1208  		spin_unlock(&oldsighand->siglock);
1209  		write_unlock_irq(&tasklist_lock);
1210  
1211  		__cleanup_sighand(oldsighand);
1212  	}
1213  	return 0;
1214  }
1215  
__get_task_comm(char * buf,size_t buf_size,struct task_struct * tsk)1216  char *__get_task_comm(char *buf, size_t buf_size, struct task_struct *tsk)
1217  {
1218  	task_lock(tsk);
1219  	strncpy(buf, tsk->comm, buf_size);
1220  	task_unlock(tsk);
1221  	return buf;
1222  }
1223  EXPORT_SYMBOL_GPL(__get_task_comm);
1224  
1225  /*
1226   * These functions flushes out all traces of the currently running executable
1227   * so that a new one can be started
1228   */
1229  
__set_task_comm(struct task_struct * tsk,const char * buf,bool exec)1230  void __set_task_comm(struct task_struct *tsk, const char *buf, bool exec)
1231  {
1232  	task_lock(tsk);
1233  	trace_task_rename(tsk, buf);
1234  	strlcpy(tsk->comm, buf, sizeof(tsk->comm));
1235  	task_unlock(tsk);
1236  	perf_event_comm(tsk, exec);
1237  }
1238  
1239  /*
1240   * Calling this is the point of no return. None of the failures will be
1241   * seen by userspace since either the process is already taking a fatal
1242   * signal (via de_thread() or coredump), or will have SEGV raised
1243   * (after exec_mmap()) by search_binary_handler (see below).
1244   */
begin_new_exec(struct linux_binprm * bprm)1245  int begin_new_exec(struct linux_binprm * bprm)
1246  {
1247  	struct task_struct *me = current;
1248  	struct files_struct *displaced;
1249  	int retval;
1250  
1251  	/* Once we are committed compute the creds */
1252  	retval = bprm_creds_from_file(bprm);
1253  	if (retval)
1254  		return retval;
1255  
1256  	/*
1257  	 * Ensure all future errors are fatal.
1258  	 */
1259  	bprm->point_of_no_return = true;
1260  
1261  	/*
1262  	 * Make this the only thread in the thread group.
1263  	 */
1264  	retval = de_thread(me);
1265  	if (retval)
1266  		goto out;
1267  
1268  	/* Ensure the files table is not shared. */
1269  	retval = unshare_files(&displaced);
1270  	if (retval)
1271  		goto out;
1272  	if (displaced)
1273  		put_files_struct(displaced);
1274  
1275  	/*
1276  	 * Must be called _before_ exec_mmap() as bprm->mm is
1277  	 * not visibile until then. This also enables the update
1278  	 * to be lockless.
1279  	 */
1280  	set_mm_exe_file(bprm->mm, bprm->file);
1281  
1282  	/* If the binary is not readable then enforce mm->dumpable=0 */
1283  	would_dump(bprm, bprm->file);
1284  	if (bprm->have_execfd)
1285  		would_dump(bprm, bprm->executable);
1286  
1287  	/*
1288  	 * Release all of the old mmap stuff
1289  	 */
1290  	acct_arg_size(bprm, 0);
1291  	retval = exec_mmap(bprm->mm);
1292  	if (retval)
1293  		goto out;
1294  
1295  	bprm->mm = NULL;
1296  
1297  #ifdef CONFIG_POSIX_TIMERS
1298  	spin_lock_irq(&me->sighand->siglock);
1299  	posix_cpu_timers_exit(me);
1300  	spin_unlock_irq(&me->sighand->siglock);
1301  	exit_itimers(me);
1302  	flush_itimer_signals();
1303  #endif
1304  
1305  	/*
1306  	 * Make the signal table private.
1307  	 */
1308  	retval = unshare_sighand(me);
1309  	if (retval)
1310  		goto out_unlock;
1311  
1312  	/*
1313  	 * Ensure that the uaccess routines can actually operate on userspace
1314  	 * pointers:
1315  	 */
1316  	force_uaccess_begin();
1317  
1318  	me->flags &= ~(PF_RANDOMIZE | PF_FORKNOEXEC | PF_KTHREAD |
1319  					PF_NOFREEZE | PF_NO_SETAFFINITY);
1320  	flush_thread();
1321  	me->personality &= ~bprm->per_clear;
1322  
1323  	/*
1324  	 * We have to apply CLOEXEC before we change whether the process is
1325  	 * dumpable (in setup_new_exec) to avoid a race with a process in userspace
1326  	 * trying to access the should-be-closed file descriptors of a process
1327  	 * undergoing exec(2).
1328  	 */
1329  	do_close_on_exec(me->files);
1330  
1331  	if (bprm->secureexec) {
1332  		/* Make sure parent cannot signal privileged process. */
1333  		me->pdeath_signal = 0;
1334  
1335  		/*
1336  		 * For secureexec, reset the stack limit to sane default to
1337  		 * avoid bad behavior from the prior rlimits. This has to
1338  		 * happen before arch_pick_mmap_layout(), which examines
1339  		 * RLIMIT_STACK, but after the point of no return to avoid
1340  		 * needing to clean up the change on failure.
1341  		 */
1342  		if (bprm->rlim_stack.rlim_cur > _STK_LIM)
1343  			bprm->rlim_stack.rlim_cur = _STK_LIM;
1344  	}
1345  
1346  	me->sas_ss_sp = me->sas_ss_size = 0;
1347  
1348  	/*
1349  	 * Figure out dumpability. Note that this checking only of current
1350  	 * is wrong, but userspace depends on it. This should be testing
1351  	 * bprm->secureexec instead.
1352  	 */
1353  	if (bprm->interp_flags & BINPRM_FLAGS_ENFORCE_NONDUMP ||
1354  	    !(uid_eq(current_euid(), current_uid()) &&
1355  	      gid_eq(current_egid(), current_gid())))
1356  		set_dumpable(current->mm, suid_dumpable);
1357  	else
1358  		set_dumpable(current->mm, SUID_DUMP_USER);
1359  
1360  	perf_event_exec();
1361  	__set_task_comm(me, kbasename(bprm->filename), true);
1362  
1363  	/* An exec changes our domain. We are no longer part of the thread
1364  	   group */
1365  	WRITE_ONCE(me->self_exec_id, me->self_exec_id + 1);
1366  	flush_signal_handlers(me, 0);
1367  
1368  	/*
1369  	 * install the new credentials for this executable
1370  	 */
1371  	security_bprm_committing_creds(bprm);
1372  
1373  	commit_creds(bprm->cred);
1374  	bprm->cred = NULL;
1375  
1376  	/*
1377  	 * Disable monitoring for regular users
1378  	 * when executing setuid binaries. Must
1379  	 * wait until new credentials are committed
1380  	 * by commit_creds() above
1381  	 */
1382  	if (get_dumpable(me->mm) != SUID_DUMP_USER)
1383  		perf_event_exit_task(me);
1384  	/*
1385  	 * cred_guard_mutex must be held at least to this point to prevent
1386  	 * ptrace_attach() from altering our determination of the task's
1387  	 * credentials; any time after this it may be unlocked.
1388  	 */
1389  	security_bprm_committed_creds(bprm);
1390  
1391  	/* Pass the opened binary to the interpreter. */
1392  	if (bprm->have_execfd) {
1393  		retval = get_unused_fd_flags(0);
1394  		if (retval < 0)
1395  			goto out_unlock;
1396  		fd_install(retval, bprm->executable);
1397  		bprm->executable = NULL;
1398  		bprm->execfd = retval;
1399  	}
1400  	return 0;
1401  
1402  out_unlock:
1403  	up_write(&me->signal->exec_update_lock);
1404  out:
1405  	return retval;
1406  }
1407  EXPORT_SYMBOL(begin_new_exec);
1408  
would_dump(struct linux_binprm * bprm,struct file * file)1409  void would_dump(struct linux_binprm *bprm, struct file *file)
1410  {
1411  	struct inode *inode = file_inode(file);
1412  	if (inode_permission(inode, MAY_READ) < 0) {
1413  		struct user_namespace *old, *user_ns;
1414  		bprm->interp_flags |= BINPRM_FLAGS_ENFORCE_NONDUMP;
1415  
1416  		/* Ensure mm->user_ns contains the executable */
1417  		user_ns = old = bprm->mm->user_ns;
1418  		while ((user_ns != &init_user_ns) &&
1419  		       !privileged_wrt_inode_uidgid(user_ns, inode))
1420  			user_ns = user_ns->parent;
1421  
1422  		if (old != user_ns) {
1423  			bprm->mm->user_ns = get_user_ns(user_ns);
1424  			put_user_ns(old);
1425  		}
1426  	}
1427  }
1428  EXPORT_SYMBOL(would_dump);
1429  
setup_new_exec(struct linux_binprm * bprm)1430  void setup_new_exec(struct linux_binprm * bprm)
1431  {
1432  	/* Setup things that can depend upon the personality */
1433  	struct task_struct *me = current;
1434  
1435  	arch_pick_mmap_layout(me->mm, &bprm->rlim_stack);
1436  
1437  	arch_setup_new_exec();
1438  
1439  	/* Set the new mm task size. We have to do that late because it may
1440  	 * depend on TIF_32BIT which is only updated in flush_thread() on
1441  	 * some architectures like powerpc
1442  	 */
1443  	me->mm->task_size = TASK_SIZE;
1444  	up_write(&me->signal->exec_update_lock);
1445  	mutex_unlock(&me->signal->cred_guard_mutex);
1446  }
1447  EXPORT_SYMBOL(setup_new_exec);
1448  
1449  /* Runs immediately before start_thread() takes over. */
finalize_exec(struct linux_binprm * bprm)1450  void finalize_exec(struct linux_binprm *bprm)
1451  {
1452  	/* Store any stack rlimit changes before starting thread. */
1453  	task_lock(current->group_leader);
1454  	current->signal->rlim[RLIMIT_STACK] = bprm->rlim_stack;
1455  	task_unlock(current->group_leader);
1456  }
1457  EXPORT_SYMBOL(finalize_exec);
1458  
1459  /*
1460   * Prepare credentials and lock ->cred_guard_mutex.
1461   * setup_new_exec() commits the new creds and drops the lock.
1462   * Or, if exec fails before, free_bprm() should release ->cred and
1463   * and unlock.
1464   */
prepare_bprm_creds(struct linux_binprm * bprm)1465  static int prepare_bprm_creds(struct linux_binprm *bprm)
1466  {
1467  	if (mutex_lock_interruptible(&current->signal->cred_guard_mutex))
1468  		return -ERESTARTNOINTR;
1469  
1470  	bprm->cred = prepare_exec_creds();
1471  	if (likely(bprm->cred))
1472  		return 0;
1473  
1474  	mutex_unlock(&current->signal->cred_guard_mutex);
1475  	return -ENOMEM;
1476  }
1477  
free_bprm(struct linux_binprm * bprm)1478  static void free_bprm(struct linux_binprm *bprm)
1479  {
1480  	if (bprm->mm) {
1481  		acct_arg_size(bprm, 0);
1482  		mmput(bprm->mm);
1483  	}
1484  	free_arg_pages(bprm);
1485  	if (bprm->cred) {
1486  		mutex_unlock(&current->signal->cred_guard_mutex);
1487  		abort_creds(bprm->cred);
1488  	}
1489  	if (bprm->file) {
1490  		allow_write_access(bprm->file);
1491  		fput(bprm->file);
1492  	}
1493  	if (bprm->executable)
1494  		fput(bprm->executable);
1495  	/* If a binfmt changed the interp, free it. */
1496  	if (bprm->interp != bprm->filename)
1497  		kfree(bprm->interp);
1498  	kfree(bprm->fdpath);
1499  	kfree(bprm);
1500  }
1501  
alloc_bprm(int fd,struct filename * filename)1502  static struct linux_binprm *alloc_bprm(int fd, struct filename *filename)
1503  {
1504  	struct linux_binprm *bprm = kzalloc(sizeof(*bprm), GFP_KERNEL);
1505  	int retval = -ENOMEM;
1506  	if (!bprm)
1507  		goto out;
1508  
1509  	if (fd == AT_FDCWD || filename->name[0] == '/') {
1510  		bprm->filename = filename->name;
1511  	} else {
1512  		if (filename->name[0] == '\0')
1513  			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d", fd);
1514  		else
1515  			bprm->fdpath = kasprintf(GFP_KERNEL, "/dev/fd/%d/%s",
1516  						  fd, filename->name);
1517  		if (!bprm->fdpath)
1518  			goto out_free;
1519  
1520  		bprm->filename = bprm->fdpath;
1521  	}
1522  	bprm->interp = bprm->filename;
1523  
1524  	retval = bprm_mm_init(bprm);
1525  	if (retval)
1526  		goto out_free;
1527  	return bprm;
1528  
1529  out_free:
1530  	free_bprm(bprm);
1531  out:
1532  	return ERR_PTR(retval);
1533  }
1534  
bprm_change_interp(const char * interp,struct linux_binprm * bprm)1535  int bprm_change_interp(const char *interp, struct linux_binprm *bprm)
1536  {
1537  	/* If a binfmt changed the interp, free it first. */
1538  	if (bprm->interp != bprm->filename)
1539  		kfree(bprm->interp);
1540  	bprm->interp = kstrdup(interp, GFP_KERNEL);
1541  	if (!bprm->interp)
1542  		return -ENOMEM;
1543  	return 0;
1544  }
1545  EXPORT_SYMBOL(bprm_change_interp);
1546  
1547  /*
1548   * determine how safe it is to execute the proposed program
1549   * - the caller must hold ->cred_guard_mutex to protect against
1550   *   PTRACE_ATTACH or seccomp thread-sync
1551   */
check_unsafe_exec(struct linux_binprm * bprm)1552  static void check_unsafe_exec(struct linux_binprm *bprm)
1553  {
1554  	struct task_struct *p = current, *t;
1555  	unsigned n_fs;
1556  
1557  	if (p->ptrace)
1558  		bprm->unsafe |= LSM_UNSAFE_PTRACE;
1559  
1560  	/*
1561  	 * This isn't strictly necessary, but it makes it harder for LSMs to
1562  	 * mess up.
1563  	 */
1564  	if (task_no_new_privs(current))
1565  		bprm->unsafe |= LSM_UNSAFE_NO_NEW_PRIVS;
1566  
1567  	t = p;
1568  	n_fs = 1;
1569  	spin_lock(&p->fs->lock);
1570  	rcu_read_lock();
1571  	while_each_thread(p, t) {
1572  		if (t->fs == p->fs)
1573  			n_fs++;
1574  	}
1575  	rcu_read_unlock();
1576  
1577  	if (p->fs->users > n_fs)
1578  		bprm->unsafe |= LSM_UNSAFE_SHARE;
1579  	else
1580  		p->fs->in_exec = 1;
1581  	spin_unlock(&p->fs->lock);
1582  }
1583  
bprm_fill_uid(struct linux_binprm * bprm,struct file * file)1584  static void bprm_fill_uid(struct linux_binprm *bprm, struct file *file)
1585  {
1586  	/* Handle suid and sgid on files */
1587  	struct inode *inode;
1588  	unsigned int mode;
1589  	kuid_t uid;
1590  	kgid_t gid;
1591  
1592  	if (!mnt_may_suid(file->f_path.mnt))
1593  		return;
1594  
1595  	if (task_no_new_privs(current))
1596  		return;
1597  
1598  	inode = file->f_path.dentry->d_inode;
1599  	mode = READ_ONCE(inode->i_mode);
1600  	if (!(mode & (S_ISUID|S_ISGID)))
1601  		return;
1602  
1603  	/* Be careful if suid/sgid is set */
1604  	inode_lock(inode);
1605  
1606  	/* reload atomically mode/uid/gid now that lock held */
1607  	mode = inode->i_mode;
1608  	uid = inode->i_uid;
1609  	gid = inode->i_gid;
1610  	inode_unlock(inode);
1611  
1612  	/* We ignore suid/sgid if there are no mappings for them in the ns */
1613  	if (!kuid_has_mapping(bprm->cred->user_ns, uid) ||
1614  		 !kgid_has_mapping(bprm->cred->user_ns, gid))
1615  		return;
1616  
1617  	if (mode & S_ISUID) {
1618  		bprm->per_clear |= PER_CLEAR_ON_SETID;
1619  		bprm->cred->euid = uid;
1620  	}
1621  
1622  	if ((mode & (S_ISGID | S_IXGRP)) == (S_ISGID | S_IXGRP)) {
1623  		bprm->per_clear |= PER_CLEAR_ON_SETID;
1624  		bprm->cred->egid = gid;
1625  	}
1626  }
1627  
1628  /*
1629   * Compute brpm->cred based upon the final binary.
1630   */
bprm_creds_from_file(struct linux_binprm * bprm)1631  static int bprm_creds_from_file(struct linux_binprm *bprm)
1632  {
1633  	/* Compute creds based on which file? */
1634  	struct file *file = bprm->execfd_creds ? bprm->executable : bprm->file;
1635  
1636  	bprm_fill_uid(bprm, file);
1637  	return security_bprm_creds_from_file(bprm, file);
1638  }
1639  
1640  /*
1641   * Fill the binprm structure from the inode.
1642   * Read the first BINPRM_BUF_SIZE bytes
1643   *
1644   * This may be called multiple times for binary chains (scripts for example).
1645   */
prepare_binprm(struct linux_binprm * bprm)1646  static int prepare_binprm(struct linux_binprm *bprm)
1647  {
1648  	loff_t pos = 0;
1649  
1650  	memset(bprm->buf, 0, BINPRM_BUF_SIZE);
1651  	return kernel_read(bprm->file, bprm->buf, BINPRM_BUF_SIZE, &pos);
1652  }
1653  
1654  /*
1655   * Arguments are '\0' separated strings found at the location bprm->p
1656   * points to; chop off the first by relocating brpm->p to right after
1657   * the first '\0' encountered.
1658   */
remove_arg_zero(struct linux_binprm * bprm)1659  int remove_arg_zero(struct linux_binprm *bprm)
1660  {
1661  	int ret = 0;
1662  	unsigned long offset;
1663  	char *kaddr;
1664  	struct page *page;
1665  
1666  	if (!bprm->argc)
1667  		return 0;
1668  
1669  	do {
1670  		offset = bprm->p & ~PAGE_MASK;
1671  		page = get_arg_page(bprm, bprm->p, 0);
1672  		if (!page) {
1673  			ret = -EFAULT;
1674  			goto out;
1675  		}
1676  		kaddr = kmap_atomic(page);
1677  
1678  		for (; offset < PAGE_SIZE && kaddr[offset];
1679  				offset++, bprm->p++)
1680  			;
1681  
1682  		kunmap_atomic(kaddr);
1683  		put_arg_page(page);
1684  	} while (offset == PAGE_SIZE);
1685  
1686  	bprm->p++;
1687  	bprm->argc--;
1688  	ret = 0;
1689  
1690  out:
1691  	return ret;
1692  }
1693  EXPORT_SYMBOL(remove_arg_zero);
1694  
1695  #define printable(c) (((c)=='\t') || ((c)=='\n') || (0x20<=(c) && (c)<=0x7e))
1696  /*
1697   * cycle the list of binary formats handler, until one recognizes the image
1698   */
search_binary_handler(struct linux_binprm * bprm)1699  static int search_binary_handler(struct linux_binprm *bprm)
1700  {
1701  	bool need_retry = IS_ENABLED(CONFIG_MODULES);
1702  	struct linux_binfmt *fmt;
1703  	int retval;
1704  
1705  	retval = prepare_binprm(bprm);
1706  	if (retval < 0)
1707  		return retval;
1708  
1709  	retval = security_bprm_check(bprm);
1710  	if (retval)
1711  		return retval;
1712  
1713  	retval = -ENOENT;
1714   retry:
1715  	read_lock(&binfmt_lock);
1716  	list_for_each_entry(fmt, &formats, lh) {
1717  		if (!try_module_get(fmt->module))
1718  			continue;
1719  		read_unlock(&binfmt_lock);
1720  
1721  		retval = fmt->load_binary(bprm);
1722  
1723  		read_lock(&binfmt_lock);
1724  		put_binfmt(fmt);
1725  		if (bprm->point_of_no_return || (retval != -ENOEXEC)) {
1726  			read_unlock(&binfmt_lock);
1727  			return retval;
1728  		}
1729  	}
1730  	read_unlock(&binfmt_lock);
1731  
1732  	if (need_retry) {
1733  		if (printable(bprm->buf[0]) && printable(bprm->buf[1]) &&
1734  		    printable(bprm->buf[2]) && printable(bprm->buf[3]))
1735  			return retval;
1736  		if (request_module("binfmt-%04x", *(ushort *)(bprm->buf + 2)) < 0)
1737  			return retval;
1738  		need_retry = false;
1739  		goto retry;
1740  	}
1741  
1742  	return retval;
1743  }
1744  
exec_binprm(struct linux_binprm * bprm)1745  static int exec_binprm(struct linux_binprm *bprm)
1746  {
1747  	pid_t old_pid, old_vpid;
1748  	int ret, depth;
1749  
1750  	/* Need to fetch pid before load_binary changes it */
1751  	old_pid = current->pid;
1752  	rcu_read_lock();
1753  	old_vpid = task_pid_nr_ns(current, task_active_pid_ns(current->parent));
1754  	rcu_read_unlock();
1755  
1756  	/* This allows 4 levels of binfmt rewrites before failing hard. */
1757  	for (depth = 0;; depth++) {
1758  		struct file *exec;
1759  		if (depth > 5)
1760  			return -ELOOP;
1761  
1762  		ret = search_binary_handler(bprm);
1763  		if (ret < 0)
1764  			return ret;
1765  		if (!bprm->interpreter)
1766  			break;
1767  
1768  		exec = bprm->file;
1769  		bprm->file = bprm->interpreter;
1770  		bprm->interpreter = NULL;
1771  
1772  		allow_write_access(exec);
1773  		if (unlikely(bprm->have_execfd)) {
1774  			if (bprm->executable) {
1775  				fput(exec);
1776  				return -ENOEXEC;
1777  			}
1778  			bprm->executable = exec;
1779  		} else
1780  			fput(exec);
1781  	}
1782  
1783  	audit_bprm(bprm);
1784  	trace_sched_process_exec(current, old_pid, bprm);
1785  	ptrace_event(PTRACE_EVENT_EXEC, old_vpid);
1786  	proc_exec_connector(current);
1787  	return 0;
1788  }
1789  
1790  /*
1791   * sys_execve() executes a new program.
1792   */
bprm_execve(struct linux_binprm * bprm,int fd,struct filename * filename,int flags)1793  static int bprm_execve(struct linux_binprm *bprm,
1794  		       int fd, struct filename *filename, int flags)
1795  {
1796  	struct file *file;
1797  	int retval;
1798  
1799  	/*
1800  	 * Cancel any io_uring activity across execve
1801  	 */
1802  	io_uring_task_cancel();
1803  
1804  	retval = prepare_bprm_creds(bprm);
1805  	if (retval)
1806  		return retval;
1807  
1808  	check_unsafe_exec(bprm);
1809  	current->in_execve = 1;
1810  
1811  	file = do_open_execat(fd, filename, flags);
1812  	retval = PTR_ERR(file);
1813  	if (IS_ERR(file))
1814  		goto out_unmark;
1815  
1816  	sched_exec();
1817  
1818  	bprm->file = file;
1819  	/*
1820  	 * Record that a name derived from an O_CLOEXEC fd will be
1821  	 * inaccessible after exec.  This allows the code in exec to
1822  	 * choose to fail when the executable is not mmaped into the
1823  	 * interpreter and an open file descriptor is not passed to
1824  	 * the interpreter.  This makes for a better user experience
1825  	 * than having the interpreter start and then immediately fail
1826  	 * when it finds the executable is inaccessible.
1827  	 */
1828  	if (bprm->fdpath && get_close_on_exec(fd))
1829  		bprm->interp_flags |= BINPRM_FLAGS_PATH_INACCESSIBLE;
1830  
1831  	/* Set the unchanging part of bprm->cred */
1832  	retval = security_bprm_creds_for_exec(bprm);
1833  	if (retval)
1834  		goto out;
1835  
1836  	retval = exec_binprm(bprm);
1837  	if (retval < 0)
1838  		goto out;
1839  
1840  	/* execve succeeded */
1841  	current->fs->in_exec = 0;
1842  	current->in_execve = 0;
1843  	rseq_execve(current);
1844  	acct_update_integrals(current);
1845  	task_numa_free(current, false);
1846  	CALL_HCK_LITE_HOOK(ced_detection_lhck, current);
1847  	return retval;
1848  
1849  out:
1850  	/*
1851  	 * If past the point of no return ensure the the code never
1852  	 * returns to the userspace process.  Use an existing fatal
1853  	 * signal if present otherwise terminate the process with
1854  	 * SIGSEGV.
1855  	 */
1856  	if (bprm->point_of_no_return && !fatal_signal_pending(current))
1857  		force_sigsegv(SIGSEGV);
1858  
1859  out_unmark:
1860  	current->fs->in_exec = 0;
1861  	current->in_execve = 0;
1862  
1863  	return retval;
1864  }
1865  
do_execveat_common(int fd,struct filename * filename,struct user_arg_ptr argv,struct user_arg_ptr envp,int flags)1866  static int do_execveat_common(int fd, struct filename *filename,
1867  			      struct user_arg_ptr argv,
1868  			      struct user_arg_ptr envp,
1869  			      int flags)
1870  {
1871  	struct linux_binprm *bprm;
1872  	int retval;
1873  
1874  	if (IS_ERR(filename))
1875  		return PTR_ERR(filename);
1876  
1877  	/*
1878  	 * We move the actual failure in case of RLIMIT_NPROC excess from
1879  	 * set*uid() to execve() because too many poorly written programs
1880  	 * don't check setuid() return code.  Here we additionally recheck
1881  	 * whether NPROC limit is still exceeded.
1882  	 */
1883  	if ((current->flags & PF_NPROC_EXCEEDED) &&
1884  	    atomic_read(&current_user()->processes) > rlimit(RLIMIT_NPROC)) {
1885  		retval = -EAGAIN;
1886  		goto out_ret;
1887  	}
1888  
1889  	/* We're below the limit (still or again), so we don't want to make
1890  	 * further execve() calls fail. */
1891  	current->flags &= ~PF_NPROC_EXCEEDED;
1892  
1893  	bprm = alloc_bprm(fd, filename);
1894  	if (IS_ERR(bprm)) {
1895  		retval = PTR_ERR(bprm);
1896  		goto out_ret;
1897  	}
1898  
1899  	retval = count(argv, MAX_ARG_STRINGS);
1900  	if (retval == 0)
1901  		pr_warn_once("process '%s' launched '%s' with NULL argv: empty string added\n",
1902  			     current->comm, bprm->filename);
1903  	if (retval < 0)
1904  		goto out_free;
1905  	bprm->argc = retval;
1906  
1907  	retval = count(envp, MAX_ARG_STRINGS);
1908  	if (retval < 0)
1909  		goto out_free;
1910  	bprm->envc = retval;
1911  
1912  	retval = bprm_stack_limits(bprm);
1913  	if (retval < 0)
1914  		goto out_free;
1915  
1916  	retval = copy_string_kernel(bprm->filename, bprm);
1917  	if (retval < 0)
1918  		goto out_free;
1919  	bprm->exec = bprm->p;
1920  
1921  	retval = copy_strings(bprm->envc, envp, bprm);
1922  	if (retval < 0)
1923  		goto out_free;
1924  
1925  	retval = copy_strings(bprm->argc, argv, bprm);
1926  	if (retval < 0)
1927  		goto out_free;
1928  
1929  	/*
1930  	 * When argv is empty, add an empty string ("") as argv[0] to
1931  	 * ensure confused userspace programs that start processing
1932  	 * from argv[1] won't end up walking envp. See also
1933  	 * bprm_stack_limits().
1934  	 */
1935  	if (bprm->argc == 0) {
1936  		retval = copy_string_kernel("", bprm);
1937  		if (retval < 0)
1938  			goto out_free;
1939  		bprm->argc = 1;
1940  	}
1941  
1942  	retval = bprm_execve(bprm, fd, filename, flags);
1943  out_free:
1944  	free_bprm(bprm);
1945  
1946  out_ret:
1947  	putname(filename);
1948  	return retval;
1949  }
1950  
kernel_execve(const char * kernel_filename,const char * const * argv,const char * const * envp)1951  int kernel_execve(const char *kernel_filename,
1952  		  const char *const *argv, const char *const *envp)
1953  {
1954  	struct filename *filename;
1955  	struct linux_binprm *bprm;
1956  	int fd = AT_FDCWD;
1957  	int retval;
1958  
1959  	filename = getname_kernel(kernel_filename);
1960  	if (IS_ERR(filename))
1961  		return PTR_ERR(filename);
1962  
1963  	bprm = alloc_bprm(fd, filename);
1964  	if (IS_ERR(bprm)) {
1965  		retval = PTR_ERR(bprm);
1966  		goto out_ret;
1967  	}
1968  
1969  	retval = count_strings_kernel(argv);
1970  	if (WARN_ON_ONCE(retval == 0))
1971  		retval = -EINVAL;
1972  	if (retval < 0)
1973  		goto out_free;
1974  	bprm->argc = retval;
1975  
1976  	retval = count_strings_kernel(envp);
1977  	if (retval < 0)
1978  		goto out_free;
1979  	bprm->envc = retval;
1980  
1981  	retval = bprm_stack_limits(bprm);
1982  	if (retval < 0)
1983  		goto out_free;
1984  
1985  	retval = copy_string_kernel(bprm->filename, bprm);
1986  	if (retval < 0)
1987  		goto out_free;
1988  	bprm->exec = bprm->p;
1989  
1990  	retval = copy_strings_kernel(bprm->envc, envp, bprm);
1991  	if (retval < 0)
1992  		goto out_free;
1993  
1994  	retval = copy_strings_kernel(bprm->argc, argv, bprm);
1995  	if (retval < 0)
1996  		goto out_free;
1997  
1998  	retval = bprm_execve(bprm, fd, filename, 0);
1999  out_free:
2000  	free_bprm(bprm);
2001  out_ret:
2002  	putname(filename);
2003  	return retval;
2004  }
2005  
do_execve(struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp)2006  static int do_execve(struct filename *filename,
2007  	const char __user *const __user *__argv,
2008  	const char __user *const __user *__envp)
2009  {
2010  	struct user_arg_ptr argv = { .ptr.native = __argv };
2011  	struct user_arg_ptr envp = { .ptr.native = __envp };
2012  	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2013  }
2014  
do_execveat(int fd,struct filename * filename,const char __user * const __user * __argv,const char __user * const __user * __envp,int flags)2015  static int do_execveat(int fd, struct filename *filename,
2016  		const char __user *const __user *__argv,
2017  		const char __user *const __user *__envp,
2018  		int flags)
2019  {
2020  	struct user_arg_ptr argv = { .ptr.native = __argv };
2021  	struct user_arg_ptr envp = { .ptr.native = __envp };
2022  
2023  	return do_execveat_common(fd, filename, argv, envp, flags);
2024  }
2025  
2026  #ifdef CONFIG_COMPAT
compat_do_execve(struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp)2027  static int compat_do_execve(struct filename *filename,
2028  	const compat_uptr_t __user *__argv,
2029  	const compat_uptr_t __user *__envp)
2030  {
2031  	struct user_arg_ptr argv = {
2032  		.is_compat = true,
2033  		.ptr.compat = __argv,
2034  	};
2035  	struct user_arg_ptr envp = {
2036  		.is_compat = true,
2037  		.ptr.compat = __envp,
2038  	};
2039  	return do_execveat_common(AT_FDCWD, filename, argv, envp, 0);
2040  }
2041  
compat_do_execveat(int fd,struct filename * filename,const compat_uptr_t __user * __argv,const compat_uptr_t __user * __envp,int flags)2042  static int compat_do_execveat(int fd, struct filename *filename,
2043  			      const compat_uptr_t __user *__argv,
2044  			      const compat_uptr_t __user *__envp,
2045  			      int flags)
2046  {
2047  	struct user_arg_ptr argv = {
2048  		.is_compat = true,
2049  		.ptr.compat = __argv,
2050  	};
2051  	struct user_arg_ptr envp = {
2052  		.is_compat = true,
2053  		.ptr.compat = __envp,
2054  	};
2055  	return do_execveat_common(fd, filename, argv, envp, flags);
2056  }
2057  #endif
2058  
set_binfmt(struct linux_binfmt * new)2059  void set_binfmt(struct linux_binfmt *new)
2060  {
2061  	struct mm_struct *mm = current->mm;
2062  
2063  	if (mm->binfmt)
2064  		module_put(mm->binfmt->module);
2065  
2066  	mm->binfmt = new;
2067  	if (new)
2068  		__module_get(new->module);
2069  }
2070  EXPORT_SYMBOL(set_binfmt);
2071  
2072  /*
2073   * set_dumpable stores three-value SUID_DUMP_* into mm->flags.
2074   */
set_dumpable(struct mm_struct * mm,int value)2075  void set_dumpable(struct mm_struct *mm, int value)
2076  {
2077  	if (WARN_ON((unsigned)value > SUID_DUMP_ROOT))
2078  		return;
2079  
2080  	set_mask_bits(&mm->flags, MMF_DUMPABLE_MASK, value);
2081  }
2082  
SYSCALL_DEFINE3(execve,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp)2083  SYSCALL_DEFINE3(execve,
2084  		const char __user *, filename,
2085  		const char __user *const __user *, argv,
2086  		const char __user *const __user *, envp)
2087  {
2088  	return do_execve(getname(filename), argv, envp);
2089  }
2090  
SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const char __user * const __user *,argv,const char __user * const __user *,envp,int,flags)2091  SYSCALL_DEFINE5(execveat,
2092  		int, fd, const char __user *, filename,
2093  		const char __user *const __user *, argv,
2094  		const char __user *const __user *, envp,
2095  		int, flags)
2096  {
2097  	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2098  
2099  	return do_execveat(fd,
2100  			   getname_flags(filename, lookup_flags, NULL),
2101  			   argv, envp, flags);
2102  }
2103  
2104  #ifdef CONFIG_COMPAT
COMPAT_SYSCALL_DEFINE3(execve,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp)2105  COMPAT_SYSCALL_DEFINE3(execve, const char __user *, filename,
2106  	const compat_uptr_t __user *, argv,
2107  	const compat_uptr_t __user *, envp)
2108  {
2109  	return compat_do_execve(getname(filename), argv, envp);
2110  }
2111  
COMPAT_SYSCALL_DEFINE5(execveat,int,fd,const char __user *,filename,const compat_uptr_t __user *,argv,const compat_uptr_t __user *,envp,int,flags)2112  COMPAT_SYSCALL_DEFINE5(execveat, int, fd,
2113  		       const char __user *, filename,
2114  		       const compat_uptr_t __user *, argv,
2115  		       const compat_uptr_t __user *, envp,
2116  		       int,  flags)
2117  {
2118  	int lookup_flags = (flags & AT_EMPTY_PATH) ? LOOKUP_EMPTY : 0;
2119  
2120  	return compat_do_execveat(fd,
2121  				  getname_flags(filename, lookup_flags, NULL),
2122  				  argv, envp, flags);
2123  }
2124  #endif
2125