• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This header defines various interfaces for pass management in LLVM. There
11 /// is no "pass" interface in LLVM per se. Instead, an instance of any class
12 /// which supports a method to 'run' it over a unit of IR can be used as
13 /// a pass. A pass manager is generally a tool to collect a sequence of passes
14 /// which run over a particular IR construct, and run each of them in sequence
15 /// over each such construct in the containing IR construct. As there is no
16 /// containing IR construct for a Module, a manager for passes over modules
17 /// forms the base case which runs its managed passes in sequence over the
18 /// single module provided.
19 ///
20 /// The core IR library provides managers for running passes over
21 /// modules and functions.
22 ///
23 /// * FunctionPassManager can run over a Module, runs each pass over
24 ///   a Function.
25 /// * ModulePassManager must be directly run, runs each pass over the Module.
26 ///
27 /// Note that the implementations of the pass managers use concept-based
28 /// polymorphism as outlined in the "Value Semantics and Concept-based
29 /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
30 /// Class of Evil") by Sean Parent:
31 /// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
32 /// * http://www.youtube.com/watch?v=_BpMYeUFXv8
33 /// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
34 ///
35 //===----------------------------------------------------------------------===//
36 
37 #ifndef LLVM_IR_PASSMANAGER_H
38 #define LLVM_IR_PASSMANAGER_H
39 
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/SmallPtrSet.h"
42 #include "llvm/ADT/StringRef.h"
43 #include "llvm/ADT/TinyPtrVector.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassInstrumentation.h"
47 #include "llvm/IR/PassManagerInternal.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/TypeName.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstring>
55 #include <iterator>
56 #include <list>
57 #include <memory>
58 #include <tuple>
59 #include <type_traits>
60 #include <utility>
61 #include <vector>
62 
63 namespace llvm {
64 
65 /// A special type used by analysis passes to provide an address that
66 /// identifies that particular analysis pass type.
67 ///
68 /// Analysis passes should have a static data member of this type and derive
69 /// from the \c AnalysisInfoMixin to get a static ID method used to identify
70 /// the analysis in the pass management infrastructure.
71 struct alignas(8) AnalysisKey {};
72 
73 /// A special type used to provide an address that identifies a set of related
74 /// analyses.  These sets are primarily used below to mark sets of analyses as
75 /// preserved.
76 ///
77 /// For example, a transformation can indicate that it preserves the CFG of a
78 /// function by preserving the appropriate AnalysisSetKey.  An analysis that
79 /// depends only on the CFG can then check if that AnalysisSetKey is preserved;
80 /// if it is, the analysis knows that it itself is preserved.
81 struct alignas(8) AnalysisSetKey {};
82 
83 /// This templated class represents "all analyses that operate over \<a
84 /// particular IR unit\>" (e.g. a Function or a Module) in instances of
85 /// PreservedAnalysis.
86 ///
87 /// This lets a transformation say e.g. "I preserved all function analyses".
88 ///
89 /// Note that you must provide an explicit instantiation declaration and
90 /// definition for this template in order to get the correct behavior on
91 /// Windows. Otherwise, the address of SetKey will not be stable.
92 template <typename IRUnitT> class AllAnalysesOn {
93 public:
ID()94   static AnalysisSetKey *ID() { return &SetKey; }
95 
96 private:
97   static AnalysisSetKey SetKey;
98 };
99 
100 template <typename IRUnitT> AnalysisSetKey AllAnalysesOn<IRUnitT>::SetKey;
101 
102 extern template class AllAnalysesOn<Module>;
103 extern template class AllAnalysesOn<Function>;
104 
105 /// Represents analyses that only rely on functions' control flow.
106 ///
107 /// This can be used with \c PreservedAnalyses to mark the CFG as preserved and
108 /// to query whether it has been preserved.
109 ///
110 /// The CFG of a function is defined as the set of basic blocks and the edges
111 /// between them. Changing the set of basic blocks in a function is enough to
112 /// mutate the CFG. Mutating the condition of a branch or argument of an
113 /// invoked function does not mutate the CFG, but changing the successor labels
114 /// of those instructions does.
115 class CFGAnalyses {
116 public:
ID()117   static AnalysisSetKey *ID() { return &SetKey; }
118 
119 private:
120   static AnalysisSetKey SetKey;
121 };
122 
123 /// A set of analyses that are preserved following a run of a transformation
124 /// pass.
125 ///
126 /// Transformation passes build and return these objects to communicate which
127 /// analyses are still valid after the transformation. For most passes this is
128 /// fairly simple: if they don't change anything all analyses are preserved,
129 /// otherwise only a short list of analyses that have been explicitly updated
130 /// are preserved.
131 ///
132 /// This class also lets transformation passes mark abstract *sets* of analyses
133 /// as preserved. A transformation that (say) does not alter the CFG can
134 /// indicate such by marking a particular AnalysisSetKey as preserved, and
135 /// then analyses can query whether that AnalysisSetKey is preserved.
136 ///
137 /// Finally, this class can represent an "abandoned" analysis, which is
138 /// not preserved even if it would be covered by some abstract set of analyses.
139 ///
140 /// Given a `PreservedAnalyses` object, an analysis will typically want to
141 /// figure out whether it is preserved. In the example below, MyAnalysisType is
142 /// preserved if it's not abandoned, and (a) it's explicitly marked as
143 /// preserved, (b), the set AllAnalysesOn<MyIRUnit> is preserved, or (c) both
144 /// AnalysisSetA and AnalysisSetB are preserved.
145 ///
146 /// ```
147 ///   auto PAC = PA.getChecker<MyAnalysisType>();
148 ///   if (PAC.preserved() || PAC.preservedSet<AllAnalysesOn<MyIRUnit>>() ||
149 ///       (PAC.preservedSet<AnalysisSetA>() &&
150 ///        PAC.preservedSet<AnalysisSetB>())) {
151 ///     // The analysis has been successfully preserved ...
152 ///   }
153 /// ```
154 class PreservedAnalyses {
155 public:
156   /// Convenience factory function for the empty preserved set.
none()157   static PreservedAnalyses none() { return PreservedAnalyses(); }
158 
159   /// Construct a special preserved set that preserves all passes.
all()160   static PreservedAnalyses all() {
161     PreservedAnalyses PA;
162     PA.PreservedIDs.insert(&AllAnalysesKey);
163     return PA;
164   }
165 
166   /// Construct a preserved analyses object with a single preserved set.
167   template <typename AnalysisSetT>
allInSet()168   static PreservedAnalyses allInSet() {
169     PreservedAnalyses PA;
170     PA.preserveSet<AnalysisSetT>();
171     return PA;
172   }
173 
174   /// Mark an analysis as preserved.
preserve()175   template <typename AnalysisT> void preserve() { preserve(AnalysisT::ID()); }
176 
177   /// Given an analysis's ID, mark the analysis as preserved, adding it
178   /// to the set.
preserve(AnalysisKey * ID)179   void preserve(AnalysisKey *ID) {
180     // Clear this ID from the explicit not-preserved set if present.
181     NotPreservedAnalysisIDs.erase(ID);
182 
183     // If we're not already preserving all analyses (other than those in
184     // NotPreservedAnalysisIDs).
185     if (!areAllPreserved())
186       PreservedIDs.insert(ID);
187   }
188 
189   /// Mark an analysis set as preserved.
preserveSet()190   template <typename AnalysisSetT> void preserveSet() {
191     preserveSet(AnalysisSetT::ID());
192   }
193 
194   /// Mark an analysis set as preserved using its ID.
preserveSet(AnalysisSetKey * ID)195   void preserveSet(AnalysisSetKey *ID) {
196     // If we're not already in the saturated 'all' state, add this set.
197     if (!areAllPreserved())
198       PreservedIDs.insert(ID);
199   }
200 
201   /// Mark an analysis as abandoned.
202   ///
203   /// An abandoned analysis is not preserved, even if it is nominally covered
204   /// by some other set or was previously explicitly marked as preserved.
205   ///
206   /// Note that you can only abandon a specific analysis, not a *set* of
207   /// analyses.
abandon()208   template <typename AnalysisT> void abandon() { abandon(AnalysisT::ID()); }
209 
210   /// Mark an analysis as abandoned using its ID.
211   ///
212   /// An abandoned analysis is not preserved, even if it is nominally covered
213   /// by some other set or was previously explicitly marked as preserved.
214   ///
215   /// Note that you can only abandon a specific analysis, not a *set* of
216   /// analyses.
abandon(AnalysisKey * ID)217   void abandon(AnalysisKey *ID) {
218     PreservedIDs.erase(ID);
219     NotPreservedAnalysisIDs.insert(ID);
220   }
221 
222   /// Intersect this set with another in place.
223   ///
224   /// This is a mutating operation on this preserved set, removing all
225   /// preserved passes which are not also preserved in the argument.
intersect(const PreservedAnalyses & Arg)226   void intersect(const PreservedAnalyses &Arg) {
227     if (Arg.areAllPreserved())
228       return;
229     if (areAllPreserved()) {
230       *this = Arg;
231       return;
232     }
233     // The intersection requires the *union* of the explicitly not-preserved
234     // IDs and the *intersection* of the preserved IDs.
235     for (auto ID : Arg.NotPreservedAnalysisIDs) {
236       PreservedIDs.erase(ID);
237       NotPreservedAnalysisIDs.insert(ID);
238     }
239     for (auto ID : PreservedIDs)
240       if (!Arg.PreservedIDs.count(ID))
241         PreservedIDs.erase(ID);
242   }
243 
244   /// Intersect this set with a temporary other set in place.
245   ///
246   /// This is a mutating operation on this preserved set, removing all
247   /// preserved passes which are not also preserved in the argument.
intersect(PreservedAnalyses && Arg)248   void intersect(PreservedAnalyses &&Arg) {
249     if (Arg.areAllPreserved())
250       return;
251     if (areAllPreserved()) {
252       *this = std::move(Arg);
253       return;
254     }
255     // The intersection requires the *union* of the explicitly not-preserved
256     // IDs and the *intersection* of the preserved IDs.
257     for (auto ID : Arg.NotPreservedAnalysisIDs) {
258       PreservedIDs.erase(ID);
259       NotPreservedAnalysisIDs.insert(ID);
260     }
261     for (auto ID : PreservedIDs)
262       if (!Arg.PreservedIDs.count(ID))
263         PreservedIDs.erase(ID);
264   }
265 
266   /// A checker object that makes it easy to query for whether an analysis or
267   /// some set covering it is preserved.
268   class PreservedAnalysisChecker {
269     friend class PreservedAnalyses;
270 
271     const PreservedAnalyses &PA;
272     AnalysisKey *const ID;
273     const bool IsAbandoned;
274 
275     /// A PreservedAnalysisChecker is tied to a particular Analysis because
276     /// `preserved()` and `preservedSet()` both return false if the Analysis
277     /// was abandoned.
PreservedAnalysisChecker(const PreservedAnalyses & PA,AnalysisKey * ID)278     PreservedAnalysisChecker(const PreservedAnalyses &PA, AnalysisKey *ID)
279         : PA(PA), ID(ID), IsAbandoned(PA.NotPreservedAnalysisIDs.count(ID)) {}
280 
281   public:
282     /// Returns true if the checker's analysis was not abandoned and either
283     ///  - the analysis is explicitly preserved or
284     ///  - all analyses are preserved.
preserved()285     bool preserved() {
286       return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
287                               PA.PreservedIDs.count(ID));
288     }
289 
290     /// Return true if the checker's analysis was not abandoned, i.e. it was not
291     /// explicitly invalidated. Even if the analysis is not explicitly
292     /// preserved, if the analysis is known stateless, then it is preserved.
preservedWhenStateless()293     bool preservedWhenStateless() {
294       return !IsAbandoned;
295     }
296 
297     /// Returns true if the checker's analysis was not abandoned and either
298     ///  - \p AnalysisSetT is explicitly preserved or
299     ///  - all analyses are preserved.
preservedSet()300     template <typename AnalysisSetT> bool preservedSet() {
301       AnalysisSetKey *SetID = AnalysisSetT::ID();
302       return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
303                               PA.PreservedIDs.count(SetID));
304     }
305   };
306 
307   /// Build a checker for this `PreservedAnalyses` and the specified analysis
308   /// type.
309   ///
310   /// You can use the returned object to query whether an analysis was
311   /// preserved. See the example in the comment on `PreservedAnalysis`.
getChecker()312   template <typename AnalysisT> PreservedAnalysisChecker getChecker() const {
313     return PreservedAnalysisChecker(*this, AnalysisT::ID());
314   }
315 
316   /// Build a checker for this `PreservedAnalyses` and the specified analysis
317   /// ID.
318   ///
319   /// You can use the returned object to query whether an analysis was
320   /// preserved. See the example in the comment on `PreservedAnalysis`.
getChecker(AnalysisKey * ID)321   PreservedAnalysisChecker getChecker(AnalysisKey *ID) const {
322     return PreservedAnalysisChecker(*this, ID);
323   }
324 
325   /// Test whether all analyses are preserved (and none are abandoned).
326   ///
327   /// This is used primarily to optimize for the common case of a transformation
328   /// which makes no changes to the IR.
areAllPreserved()329   bool areAllPreserved() const {
330     return NotPreservedAnalysisIDs.empty() &&
331            PreservedIDs.count(&AllAnalysesKey);
332   }
333 
334   /// Directly test whether a set of analyses is preserved.
335   ///
336   /// This is only true when no analyses have been explicitly abandoned.
allAnalysesInSetPreserved()337   template <typename AnalysisSetT> bool allAnalysesInSetPreserved() const {
338     return allAnalysesInSetPreserved(AnalysisSetT::ID());
339   }
340 
341   /// Directly test whether a set of analyses is preserved.
342   ///
343   /// This is only true when no analyses have been explicitly abandoned.
allAnalysesInSetPreserved(AnalysisSetKey * SetID)344   bool allAnalysesInSetPreserved(AnalysisSetKey *SetID) const {
345     return NotPreservedAnalysisIDs.empty() &&
346            (PreservedIDs.count(&AllAnalysesKey) || PreservedIDs.count(SetID));
347   }
348 
349 private:
350   /// A special key used to indicate all analyses.
351   static AnalysisSetKey AllAnalysesKey;
352 
353   /// The IDs of analyses and analysis sets that are preserved.
354   SmallPtrSet<void *, 2> PreservedIDs;
355 
356   /// The IDs of explicitly not-preserved analyses.
357   ///
358   /// If an analysis in this set is covered by a set in `PreservedIDs`, we
359   /// consider it not-preserved. That is, `NotPreservedAnalysisIDs` always
360   /// "wins" over analysis sets in `PreservedIDs`.
361   ///
362   /// Also, a given ID should never occur both here and in `PreservedIDs`.
363   SmallPtrSet<AnalysisKey *, 2> NotPreservedAnalysisIDs;
364 };
365 
366 // Forward declare the analysis manager template.
367 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
368 
369 /// A CRTP mix-in to automatically provide informational APIs needed for
370 /// passes.
371 ///
372 /// This provides some boilerplate for types that are passes.
373 template <typename DerivedT> struct PassInfoMixin {
374   /// Gets the name of the pass we are mixed into.
namePassInfoMixin375   static StringRef name() {
376     static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value,
377                   "Must pass the derived type as the template argument!");
378     StringRef Name = getTypeName<DerivedT>();
379     if (Name.startswith("llvm::"))
380       Name = Name.drop_front(strlen("llvm::"));
381     return Name;
382   }
383 };
384 
385 /// A CRTP mix-in that provides informational APIs needed for analysis passes.
386 ///
387 /// This provides some boilerplate for types that are analysis passes. It
388 /// automatically mixes in \c PassInfoMixin.
389 template <typename DerivedT>
390 struct AnalysisInfoMixin : PassInfoMixin<DerivedT> {
391   /// Returns an opaque, unique ID for this analysis type.
392   ///
393   /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus
394   /// suitable for use in sets, maps, and other data structures that use the low
395   /// bits of pointers.
396   ///
397   /// Note that this requires the derived type provide a static \c AnalysisKey
398   /// member called \c Key.
399   ///
400   /// FIXME: The only reason the mixin type itself can't declare the Key value
401   /// is that some compilers cannot correctly unique a templated static variable
402   /// so it has the same addresses in each instantiation. The only currently
403   /// known platform with this limitation is Windows DLL builds, specifically
404   /// building each part of LLVM as a DLL. If we ever remove that build
405   /// configuration, this mixin can provide the static key as well.
IDAnalysisInfoMixin406   static AnalysisKey *ID() {
407     static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value,
408                   "Must pass the derived type as the template argument!");
409     return &DerivedT::Key;
410   }
411 };
412 
413 namespace detail {
414 
415 /// Actual unpacker of extra arguments in getAnalysisResult,
416 /// passes only those tuple arguments that are mentioned in index_sequence.
417 template <typename PassT, typename IRUnitT, typename AnalysisManagerT,
418           typename... ArgTs, size_t... Ns>
419 typename PassT::Result
getAnalysisResultUnpackTuple(AnalysisManagerT & AM,IRUnitT & IR,std::tuple<ArgTs...> Args,std::index_sequence<Ns...>)420 getAnalysisResultUnpackTuple(AnalysisManagerT &AM, IRUnitT &IR,
421                              std::tuple<ArgTs...> Args,
422                              std::index_sequence<Ns...>) {
423   (void)Args;
424   return AM.template getResult<PassT>(IR, std::get<Ns>(Args)...);
425 }
426 
427 /// Helper for *partial* unpacking of extra arguments in getAnalysisResult.
428 ///
429 /// Arguments passed in tuple come from PassManager, so they might have extra
430 /// arguments after those AnalysisManager's ExtraArgTs ones that we need to
431 /// pass to getResult.
432 template <typename PassT, typename IRUnitT, typename... AnalysisArgTs,
433           typename... MainArgTs>
434 typename PassT::Result
getAnalysisResult(AnalysisManager<IRUnitT,AnalysisArgTs...> & AM,IRUnitT & IR,std::tuple<MainArgTs...> Args)435 getAnalysisResult(AnalysisManager<IRUnitT, AnalysisArgTs...> &AM, IRUnitT &IR,
436                   std::tuple<MainArgTs...> Args) {
437   return (getAnalysisResultUnpackTuple<
438           PassT, IRUnitT>)(AM, IR, Args,
439                            std::index_sequence_for<AnalysisArgTs...>{});
440 }
441 
442 } // namespace detail
443 
444 // Forward declare the pass instrumentation analysis explicitly queried in
445 // generic PassManager code.
446 // FIXME: figure out a way to move PassInstrumentationAnalysis into its own
447 // header.
448 class PassInstrumentationAnalysis;
449 
450 /// Manages a sequence of passes over a particular unit of IR.
451 ///
452 /// A pass manager contains a sequence of passes to run over a particular unit
453 /// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of
454 /// IR, and when run over some given IR will run each of its contained passes in
455 /// sequence. Pass managers are the primary and most basic building block of a
456 /// pass pipeline.
457 ///
458 /// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT>
459 /// argument. The pass manager will propagate that analysis manager to each
460 /// pass it runs, and will call the analysis manager's invalidation routine with
461 /// the PreservedAnalyses of each pass it runs.
462 template <typename IRUnitT,
463           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
464           typename... ExtraArgTs>
465 class PassManager : public PassInfoMixin<
466                         PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> {
467 public:
468   /// Construct a pass manager.
469   ///
470   /// If \p DebugLogging is true, we'll log our progress to llvm::dbgs().
DebugLogging(DebugLogging)471   explicit PassManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
472 
473   // FIXME: These are equivalent to the default move constructor/move
474   // assignment. However, using = default triggers linker errors due to the
475   // explicit instantiations below. Find away to use the default and remove the
476   // duplicated code here.
PassManager(PassManager && Arg)477   PassManager(PassManager &&Arg)
478       : Passes(std::move(Arg.Passes)),
479         DebugLogging(std::move(Arg.DebugLogging)) {}
480 
481   PassManager &operator=(PassManager &&RHS) {
482     Passes = std::move(RHS.Passes);
483     DebugLogging = std::move(RHS.DebugLogging);
484     return *this;
485   }
486 
487   /// Run all of the passes in this manager over the given unit of IR.
488   /// ExtraArgs are passed to each pass.
run(IRUnitT & IR,AnalysisManagerT & AM,ExtraArgTs...ExtraArgs)489   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
490                         ExtraArgTs... ExtraArgs) {
491     PreservedAnalyses PA = PreservedAnalyses::all();
492 
493     // Request PassInstrumentation from analysis manager, will use it to run
494     // instrumenting callbacks for the passes later.
495     // Here we use std::tuple wrapper over getResult which helps to extract
496     // AnalysisManager's arguments out of the whole ExtraArgs set.
497     PassInstrumentation PI =
498         detail::getAnalysisResult<PassInstrumentationAnalysis>(
499             AM, IR, std::tuple<ExtraArgTs...>(ExtraArgs...));
500 
501     if (DebugLogging)
502       dbgs() << "Starting " << getTypeName<IRUnitT>() << " pass manager run.\n";
503 
504     for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
505       auto *P = Passes[Idx].get();
506       if (DebugLogging)
507         dbgs() << "Running pass: " << P->name() << " on " << IR.getName()
508                << "\n";
509 
510       // Check the PassInstrumentation's BeforePass callbacks before running the
511       // pass, skip its execution completely if asked to (callback returns
512       // false).
513       if (!PI.runBeforePass<IRUnitT>(*P, IR))
514         continue;
515 
516       PreservedAnalyses PassPA = P->run(IR, AM, ExtraArgs...);
517 
518       // Call onto PassInstrumentation's AfterPass callbacks immediately after
519       // running the pass.
520       PI.runAfterPass<IRUnitT>(*P, IR);
521 
522       // Update the analysis manager as each pass runs and potentially
523       // invalidates analyses.
524       AM.invalidate(IR, PassPA);
525 
526       // Finally, intersect the preserved analyses to compute the aggregate
527       // preserved set for this pass manager.
528       PA.intersect(std::move(PassPA));
529 
530       // FIXME: Historically, the pass managers all called the LLVM context's
531       // yield function here. We don't have a generic way to acquire the
532       // context and it isn't yet clear what the right pattern is for yielding
533       // in the new pass manager so it is currently omitted.
534       //IR.getContext().yield();
535     }
536 
537     // Invalidation was handled after each pass in the above loop for the
538     // current unit of IR. Therefore, the remaining analysis results in the
539     // AnalysisManager are preserved. We mark this with a set so that we don't
540     // need to inspect each one individually.
541     PA.preserveSet<AllAnalysesOn<IRUnitT>>();
542 
543     if (DebugLogging)
544       dbgs() << "Finished " << getTypeName<IRUnitT>() << " pass manager run.\n";
545 
546     return PA;
547   }
548 
addPass(PassT Pass)549   template <typename PassT> void addPass(PassT Pass) {
550     using PassModelT =
551         detail::PassModel<IRUnitT, PassT, PreservedAnalyses, AnalysisManagerT,
552                           ExtraArgTs...>;
553 
554     Passes.emplace_back(new PassModelT(std::move(Pass)));
555   }
556 
557 private:
558   using PassConceptT =
559       detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>;
560 
561   std::vector<std::unique_ptr<PassConceptT>> Passes;
562 
563   /// Flag indicating whether we should do debug logging.
564   bool DebugLogging;
565 };
566 
567 extern template class PassManager<Module>;
568 
569 /// Convenience typedef for a pass manager over modules.
570 using ModulePassManager = PassManager<Module>;
571 
572 extern template class PassManager<Function>;
573 
574 /// Convenience typedef for a pass manager over functions.
575 using FunctionPassManager = PassManager<Function>;
576 
577 /// Pseudo-analysis pass that exposes the \c PassInstrumentation to pass
578 /// managers. Goes before AnalysisManager definition to provide its
579 /// internals (e.g PassInstrumentationAnalysis::ID) for use there if needed.
580 /// FIXME: figure out a way to move PassInstrumentationAnalysis into its own
581 /// header.
582 class PassInstrumentationAnalysis
583     : public AnalysisInfoMixin<PassInstrumentationAnalysis> {
584   friend AnalysisInfoMixin<PassInstrumentationAnalysis>;
585   static AnalysisKey Key;
586 
587   PassInstrumentationCallbacks *Callbacks;
588 
589 public:
590   /// PassInstrumentationCallbacks object is shared, owned by something else,
591   /// not this analysis.
592   PassInstrumentationAnalysis(PassInstrumentationCallbacks *Callbacks = nullptr)
Callbacks(Callbacks)593       : Callbacks(Callbacks) {}
594 
595   using Result = PassInstrumentation;
596 
597   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
run(IRUnitT &,AnalysisManagerT &,ExtraArgTs &&...)598   Result run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
599     return PassInstrumentation(Callbacks);
600   }
601 };
602 
603 /// A container for analyses that lazily runs them and caches their
604 /// results.
605 ///
606 /// This class can manage analyses for any IR unit where the address of the IR
607 /// unit sufficies as its identity.
608 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager {
609 public:
610   class Invalidator;
611 
612 private:
613   // Now that we've defined our invalidator, we can define the concept types.
614   using ResultConceptT =
615       detail::AnalysisResultConcept<IRUnitT, PreservedAnalyses, Invalidator>;
616   using PassConceptT =
617       detail::AnalysisPassConcept<IRUnitT, PreservedAnalyses, Invalidator,
618                                   ExtraArgTs...>;
619 
620   /// List of analysis pass IDs and associated concept pointers.
621   ///
622   /// Requires iterators to be valid across appending new entries and arbitrary
623   /// erases. Provides the analysis ID to enable finding iterators to a given
624   /// entry in maps below, and provides the storage for the actual result
625   /// concept.
626   using AnalysisResultListT =
627       std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>;
628 
629   /// Map type from IRUnitT pointer to our custom list type.
630   using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>;
631 
632   /// Map type from a pair of analysis ID and IRUnitT pointer to an
633   /// iterator into a particular result list (which is where the actual analysis
634   /// result is stored).
635   using AnalysisResultMapT =
636       DenseMap<std::pair<AnalysisKey *, IRUnitT *>,
637                typename AnalysisResultListT::iterator>;
638 
639 public:
640   /// API to communicate dependencies between analyses during invalidation.
641   ///
642   /// When an analysis result embeds handles to other analysis results, it
643   /// needs to be invalidated both when its own information isn't preserved and
644   /// when any of its embedded analysis results end up invalidated. We pass an
645   /// \c Invalidator object as an argument to \c invalidate() in order to let
646   /// the analysis results themselves define the dependency graph on the fly.
647   /// This lets us avoid building building an explicit representation of the
648   /// dependencies between analysis results.
649   class Invalidator {
650   public:
651     /// Trigger the invalidation of some other analysis pass if not already
652     /// handled and return whether it was in fact invalidated.
653     ///
654     /// This is expected to be called from within a given analysis result's \c
655     /// invalidate method to trigger a depth-first walk of all inter-analysis
656     /// dependencies. The same \p IR unit and \p PA passed to that result's \c
657     /// invalidate method should in turn be provided to this routine.
658     ///
659     /// The first time this is called for a given analysis pass, it will call
660     /// the corresponding result's \c invalidate method.  Subsequent calls will
661     /// use a cache of the results of that initial call.  It is an error to form
662     /// cyclic dependencies between analysis results.
663     ///
664     /// This returns true if the given analysis's result is invalid. Any
665     /// dependecies on it will become invalid as a result.
666     template <typename PassT>
invalidate(IRUnitT & IR,const PreservedAnalyses & PA)667     bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
668       using ResultModelT =
669           detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
670                                       PreservedAnalyses, Invalidator>;
671 
672       return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA);
673     }
674 
675     /// A type-erased variant of the above invalidate method with the same core
676     /// API other than passing an analysis ID rather than an analysis type
677     /// parameter.
678     ///
679     /// This is sadly less efficient than the above routine, which leverages
680     /// the type parameter to avoid the type erasure overhead.
invalidate(AnalysisKey * ID,IRUnitT & IR,const PreservedAnalyses & PA)681     bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) {
682       return invalidateImpl<>(ID, IR, PA);
683     }
684 
685   private:
686     friend class AnalysisManager;
687 
688     template <typename ResultT = ResultConceptT>
invalidateImpl(AnalysisKey * ID,IRUnitT & IR,const PreservedAnalyses & PA)689     bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR,
690                         const PreservedAnalyses &PA) {
691       // If we've already visited this pass, return true if it was invalidated
692       // and false otherwise.
693       auto IMapI = IsResultInvalidated.find(ID);
694       if (IMapI != IsResultInvalidated.end())
695         return IMapI->second;
696 
697       // Otherwise look up the result object.
698       auto RI = Results.find({ID, &IR});
699       assert(RI != Results.end() &&
700              "Trying to invalidate a dependent result that isn't in the "
701              "manager's cache is always an error, likely due to a stale result "
702              "handle!");
703 
704       auto &Result = static_cast<ResultT &>(*RI->second->second);
705 
706       // Insert into the map whether the result should be invalidated and return
707       // that. Note that we cannot reuse IMapI and must do a fresh insert here,
708       // as calling invalidate could (recursively) insert things into the map,
709       // making any iterator or reference invalid.
710       bool Inserted;
711       std::tie(IMapI, Inserted) =
712           IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)});
713       (void)Inserted;
714       assert(Inserted && "Should not have already inserted this ID, likely "
715                          "indicates a dependency cycle!");
716       return IMapI->second;
717     }
718 
Invalidator(SmallDenseMap<AnalysisKey *,bool,8> & IsResultInvalidated,const AnalysisResultMapT & Results)719     Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated,
720                 const AnalysisResultMapT &Results)
721         : IsResultInvalidated(IsResultInvalidated), Results(Results) {}
722 
723     SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated;
724     const AnalysisResultMapT &Results;
725   };
726 
727   /// Construct an empty analysis manager.
728   ///
729   /// If \p DebugLogging is true, we'll log our progress to llvm::dbgs().
DebugLogging(DebugLogging)730   AnalysisManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
731   AnalysisManager(AnalysisManager &&) = default;
732   AnalysisManager &operator=(AnalysisManager &&) = default;
733 
734   /// Returns true if the analysis manager has an empty results cache.
empty()735   bool empty() const {
736     assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
737            "The storage and index of analysis results disagree on how many "
738            "there are!");
739     return AnalysisResults.empty();
740   }
741 
742   /// Clear any cached analysis results for a single unit of IR.
743   ///
744   /// This doesn't invalidate, but instead simply deletes, the relevant results.
745   /// It is useful when the IR is being removed and we want to clear out all the
746   /// memory pinned for it.
clear(IRUnitT & IR,llvm::StringRef Name)747   void clear(IRUnitT &IR, llvm::StringRef Name) {
748     if (DebugLogging)
749       dbgs() << "Clearing all analysis results for: " << Name << "\n";
750 
751     auto ResultsListI = AnalysisResultLists.find(&IR);
752     if (ResultsListI == AnalysisResultLists.end())
753       return;
754     // Delete the map entries that point into the results list.
755     for (auto &IDAndResult : ResultsListI->second)
756       AnalysisResults.erase({IDAndResult.first, &IR});
757 
758     // And actually destroy and erase the results associated with this IR.
759     AnalysisResultLists.erase(ResultsListI);
760   }
761 
762   /// Clear all analysis results cached by this AnalysisManager.
763   ///
764   /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply
765   /// deletes them.  This lets you clean up the AnalysisManager when the set of
766   /// IR units itself has potentially changed, and thus we can't even look up a
767   /// a result and invalidate/clear it directly.
clear()768   void clear() {
769     AnalysisResults.clear();
770     AnalysisResultLists.clear();
771   }
772 
773   /// Get the result of an analysis pass for a given IR unit.
774   ///
775   /// Runs the analysis if a cached result is not available.
776   template <typename PassT>
getResult(IRUnitT & IR,ExtraArgTs...ExtraArgs)777   typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) {
778     assert(AnalysisPasses.count(PassT::ID()) &&
779            "This analysis pass was not registered prior to being queried");
780     ResultConceptT &ResultConcept =
781         getResultImpl(PassT::ID(), IR, ExtraArgs...);
782 
783     using ResultModelT =
784         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
785                                     PreservedAnalyses, Invalidator>;
786 
787     return static_cast<ResultModelT &>(ResultConcept).Result;
788   }
789 
790   /// Get the cached result of an analysis pass for a given IR unit.
791   ///
792   /// This method never runs the analysis.
793   ///
794   /// \returns null if there is no cached result.
795   template <typename PassT>
getCachedResult(IRUnitT & IR)796   typename PassT::Result *getCachedResult(IRUnitT &IR) const {
797     assert(AnalysisPasses.count(PassT::ID()) &&
798            "This analysis pass was not registered prior to being queried");
799 
800     ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR);
801     if (!ResultConcept)
802       return nullptr;
803 
804     using ResultModelT =
805         detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
806                                     PreservedAnalyses, Invalidator>;
807 
808     return &static_cast<ResultModelT *>(ResultConcept)->Result;
809   }
810 
811   /// Register an analysis pass with the manager.
812   ///
813   /// The parameter is a callable whose result is an analysis pass. This allows
814   /// passing in a lambda to construct the analysis.
815   ///
816   /// The analysis type to register is the type returned by calling the \c
817   /// PassBuilder argument. If that type has already been registered, then the
818   /// argument will not be called and this function will return false.
819   /// Otherwise, we register the analysis returned by calling \c PassBuilder(),
820   /// and this function returns true.
821   ///
822   /// (Note: Although the return value of this function indicates whether or not
823   /// an analysis was previously registered, there intentionally isn't a way to
824   /// query this directly.  Instead, you should just register all the analyses
825   /// you might want and let this class run them lazily.  This idiom lets us
826   /// minimize the number of times we have to look up analyses in our
827   /// hashtable.)
828   template <typename PassBuilderT>
registerPass(PassBuilderT && PassBuilder)829   bool registerPass(PassBuilderT &&PassBuilder) {
830     using PassT = decltype(PassBuilder());
831     using PassModelT =
832         detail::AnalysisPassModel<IRUnitT, PassT, PreservedAnalyses,
833                                   Invalidator, ExtraArgTs...>;
834 
835     auto &PassPtr = AnalysisPasses[PassT::ID()];
836     if (PassPtr)
837       // Already registered this pass type!
838       return false;
839 
840     // Construct a new model around the instance returned by the builder.
841     PassPtr.reset(new PassModelT(PassBuilder()));
842     return true;
843   }
844 
845   /// Invalidate a specific analysis pass for an IR module.
846   ///
847   /// Note that the analysis result can disregard invalidation, if it determines
848   /// it is in fact still valid.
invalidate(IRUnitT & IR)849   template <typename PassT> void invalidate(IRUnitT &IR) {
850     assert(AnalysisPasses.count(PassT::ID()) &&
851            "This analysis pass was not registered prior to being invalidated");
852     invalidateImpl(PassT::ID(), IR);
853   }
854 
855   /// Invalidate cached analyses for an IR unit.
856   ///
857   /// Walk through all of the analyses pertaining to this unit of IR and
858   /// invalidate them, unless they are preserved by the PreservedAnalyses set.
invalidate(IRUnitT & IR,const PreservedAnalyses & PA)859   void invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
860     // We're done if all analyses on this IR unit are preserved.
861     if (PA.allAnalysesInSetPreserved<AllAnalysesOn<IRUnitT>>())
862       return;
863 
864     if (DebugLogging)
865       dbgs() << "Invalidating all non-preserved analyses for: " << IR.getName()
866              << "\n";
867 
868     // Track whether each analysis's result is invalidated in
869     // IsResultInvalidated.
870     SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated;
871     Invalidator Inv(IsResultInvalidated, AnalysisResults);
872     AnalysisResultListT &ResultsList = AnalysisResultLists[&IR];
873     for (auto &AnalysisResultPair : ResultsList) {
874       // This is basically the same thing as Invalidator::invalidate, but we
875       // can't call it here because we're operating on the type-erased result.
876       // Moreover if we instead called invalidate() directly, it would do an
877       // unnecessary look up in ResultsList.
878       AnalysisKey *ID = AnalysisResultPair.first;
879       auto &Result = *AnalysisResultPair.second;
880 
881       auto IMapI = IsResultInvalidated.find(ID);
882       if (IMapI != IsResultInvalidated.end())
883         // This result was already handled via the Invalidator.
884         continue;
885 
886       // Try to invalidate the result, giving it the Invalidator so it can
887       // recursively query for any dependencies it has and record the result.
888       // Note that we cannot reuse 'IMapI' here or pre-insert the ID, as
889       // Result.invalidate may insert things into the map, invalidating our
890       // iterator.
891       bool Inserted =
892           IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, Inv)})
893               .second;
894       (void)Inserted;
895       assert(Inserted && "Should never have already inserted this ID, likely "
896                          "indicates a cycle!");
897     }
898 
899     // Now erase the results that were marked above as invalidated.
900     if (!IsResultInvalidated.empty()) {
901       for (auto I = ResultsList.begin(), E = ResultsList.end(); I != E;) {
902         AnalysisKey *ID = I->first;
903         if (!IsResultInvalidated.lookup(ID)) {
904           ++I;
905           continue;
906         }
907 
908         if (DebugLogging)
909           dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name()
910                  << " on " << IR.getName() << "\n";
911 
912         I = ResultsList.erase(I);
913         AnalysisResults.erase({ID, &IR});
914       }
915     }
916 
917     if (ResultsList.empty())
918       AnalysisResultLists.erase(&IR);
919   }
920 
921 private:
922   /// Look up a registered analysis pass.
lookUpPass(AnalysisKey * ID)923   PassConceptT &lookUpPass(AnalysisKey *ID) {
924     typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID);
925     assert(PI != AnalysisPasses.end() &&
926            "Analysis passes must be registered prior to being queried!");
927     return *PI->second;
928   }
929 
930   /// Look up a registered analysis pass.
lookUpPass(AnalysisKey * ID)931   const PassConceptT &lookUpPass(AnalysisKey *ID) const {
932     typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID);
933     assert(PI != AnalysisPasses.end() &&
934            "Analysis passes must be registered prior to being queried!");
935     return *PI->second;
936   }
937 
938   /// Get an analysis result, running the pass if necessary.
getResultImpl(AnalysisKey * ID,IRUnitT & IR,ExtraArgTs...ExtraArgs)939   ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR,
940                                 ExtraArgTs... ExtraArgs) {
941     typename AnalysisResultMapT::iterator RI;
942     bool Inserted;
943     std::tie(RI, Inserted) = AnalysisResults.insert(std::make_pair(
944         std::make_pair(ID, &IR), typename AnalysisResultListT::iterator()));
945 
946     // If we don't have a cached result for this function, look up the pass and
947     // run it to produce a result, which we then add to the cache.
948     if (Inserted) {
949       auto &P = this->lookUpPass(ID);
950       if (DebugLogging)
951         dbgs() << "Running analysis: " << P.name() << " on " << IR.getName()
952                << "\n";
953 
954       PassInstrumentation PI;
955       if (ID != PassInstrumentationAnalysis::ID()) {
956         PI = getResult<PassInstrumentationAnalysis>(IR, ExtraArgs...);
957         PI.runBeforeAnalysis(P, IR);
958       }
959 
960       AnalysisResultListT &ResultList = AnalysisResultLists[&IR];
961       ResultList.emplace_back(ID, P.run(IR, *this, ExtraArgs...));
962 
963       PI.runAfterAnalysis(P, IR);
964 
965       // P.run may have inserted elements into AnalysisResults and invalidated
966       // RI.
967       RI = AnalysisResults.find({ID, &IR});
968       assert(RI != AnalysisResults.end() && "we just inserted it!");
969 
970       RI->second = std::prev(ResultList.end());
971     }
972 
973     return *RI->second->second;
974   }
975 
976   /// Get a cached analysis result or return null.
getCachedResultImpl(AnalysisKey * ID,IRUnitT & IR)977   ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const {
978     typename AnalysisResultMapT::const_iterator RI =
979         AnalysisResults.find({ID, &IR});
980     return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
981   }
982 
983   /// Invalidate a function pass result.
invalidateImpl(AnalysisKey * ID,IRUnitT & IR)984   void invalidateImpl(AnalysisKey *ID, IRUnitT &IR) {
985     typename AnalysisResultMapT::iterator RI =
986         AnalysisResults.find({ID, &IR});
987     if (RI == AnalysisResults.end())
988       return;
989 
990     if (DebugLogging)
991       dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name()
992              << " on " << IR.getName() << "\n";
993     AnalysisResultLists[&IR].erase(RI->second);
994     AnalysisResults.erase(RI);
995   }
996 
997   /// Map type from module analysis pass ID to pass concept pointer.
998   using AnalysisPassMapT =
999       DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>;
1000 
1001   /// Collection of module analysis passes, indexed by ID.
1002   AnalysisPassMapT AnalysisPasses;
1003 
1004   /// Map from function to a list of function analysis results.
1005   ///
1006   /// Provides linear time removal of all analysis results for a function and
1007   /// the ultimate storage for a particular cached analysis result.
1008   AnalysisResultListMapT AnalysisResultLists;
1009 
1010   /// Map from an analysis ID and function to a particular cached
1011   /// analysis result.
1012   AnalysisResultMapT AnalysisResults;
1013 
1014   /// Indicates whether we log to \c llvm::dbgs().
1015   bool DebugLogging;
1016 };
1017 
1018 extern template class AnalysisManager<Module>;
1019 
1020 /// Convenience typedef for the Module analysis manager.
1021 using ModuleAnalysisManager = AnalysisManager<Module>;
1022 
1023 extern template class AnalysisManager<Function>;
1024 
1025 /// Convenience typedef for the Function analysis manager.
1026 using FunctionAnalysisManager = AnalysisManager<Function>;
1027 
1028 /// An analysis over an "outer" IR unit that provides access to an
1029 /// analysis manager over an "inner" IR unit.  The inner unit must be contained
1030 /// in the outer unit.
1031 ///
1032 /// For example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is
1033 /// an analysis over Modules (the "outer" unit) that provides access to a
1034 /// Function analysis manager.  The FunctionAnalysisManager is the "inner"
1035 /// manager being proxied, and Functions are the "inner" unit.  The inner/outer
1036 /// relationship is valid because each Function is contained in one Module.
1037 ///
1038 /// If you're (transitively) within a pass manager for an IR unit U that
1039 /// contains IR unit V, you should never use an analysis manager over V, except
1040 /// via one of these proxies.
1041 ///
1042 /// Note that the proxy's result is a move-only RAII object.  The validity of
1043 /// the analyses in the inner analysis manager is tied to its lifetime.
1044 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1045 class InnerAnalysisManagerProxy
1046     : public AnalysisInfoMixin<
1047           InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
1048 public:
1049   class Result {
1050   public:
Result(AnalysisManagerT & InnerAM)1051     explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {}
1052 
Result(Result && Arg)1053     Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) {
1054       // We have to null out the analysis manager in the moved-from state
1055       // because we are taking ownership of the responsibilty to clear the
1056       // analysis state.
1057       Arg.InnerAM = nullptr;
1058     }
1059 
~Result()1060     ~Result() {
1061       // InnerAM is cleared in a moved from state where there is nothing to do.
1062       if (!InnerAM)
1063         return;
1064 
1065       // Clear out the analysis manager if we're being destroyed -- it means we
1066       // didn't even see an invalidate call when we got invalidated.
1067       InnerAM->clear();
1068     }
1069 
1070     Result &operator=(Result &&RHS) {
1071       InnerAM = RHS.InnerAM;
1072       // We have to null out the analysis manager in the moved-from state
1073       // because we are taking ownership of the responsibilty to clear the
1074       // analysis state.
1075       RHS.InnerAM = nullptr;
1076       return *this;
1077     }
1078 
1079     /// Accessor for the analysis manager.
getManager()1080     AnalysisManagerT &getManager() { return *InnerAM; }
1081 
1082     /// Handler for invalidation of the outer IR unit, \c IRUnitT.
1083     ///
1084     /// If the proxy analysis itself is not preserved, we assume that the set of
1085     /// inner IR objects contained in IRUnit may have changed.  In this case,
1086     /// we have to call \c clear() on the inner analysis manager, as it may now
1087     /// have stale pointers to its inner IR objects.
1088     ///
1089     /// Regardless of whether the proxy analysis is marked as preserved, all of
1090     /// the analyses in the inner analysis manager are potentially invalidated
1091     /// based on the set of preserved analyses.
1092     bool invalidate(
1093         IRUnitT &IR, const PreservedAnalyses &PA,
1094         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv);
1095 
1096   private:
1097     AnalysisManagerT *InnerAM;
1098   };
1099 
InnerAnalysisManagerProxy(AnalysisManagerT & InnerAM)1100   explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM)
1101       : InnerAM(&InnerAM) {}
1102 
1103   /// Run the analysis pass and create our proxy result object.
1104   ///
1105   /// This doesn't do any interesting work; it is primarily used to insert our
1106   /// proxy result object into the outer analysis cache so that we can proxy
1107   /// invalidation to the inner analysis manager.
run(IRUnitT & IR,AnalysisManager<IRUnitT,ExtraArgTs...> & AM,ExtraArgTs...)1108   Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
1109              ExtraArgTs...) {
1110     return Result(*InnerAM);
1111   }
1112 
1113 private:
1114   friend AnalysisInfoMixin<
1115       InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
1116 
1117   static AnalysisKey Key;
1118 
1119   AnalysisManagerT *InnerAM;
1120 };
1121 
1122 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1123 AnalysisKey
1124     InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
1125 
1126 /// Provide the \c FunctionAnalysisManager to \c Module proxy.
1127 using FunctionAnalysisManagerModuleProxy =
1128     InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>;
1129 
1130 /// Specialization of the invalidate method for the \c
1131 /// FunctionAnalysisManagerModuleProxy's result.
1132 template <>
1133 bool FunctionAnalysisManagerModuleProxy::Result::invalidate(
1134     Module &M, const PreservedAnalyses &PA,
1135     ModuleAnalysisManager::Invalidator &Inv);
1136 
1137 // Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern
1138 // template.
1139 extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
1140                                                 Module>;
1141 
1142 /// An analysis over an "inner" IR unit that provides access to an
1143 /// analysis manager over a "outer" IR unit.  The inner unit must be contained
1144 /// in the outer unit.
1145 ///
1146 /// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an
1147 /// analysis over Functions (the "inner" unit) which provides access to a Module
1148 /// analysis manager.  The ModuleAnalysisManager is the "outer" manager being
1149 /// proxied, and Modules are the "outer" IR unit.  The inner/outer relationship
1150 /// is valid because each Function is contained in one Module.
1151 ///
1152 /// This proxy only exposes the const interface of the outer analysis manager,
1153 /// to indicate that you cannot cause an outer analysis to run from within an
1154 /// inner pass.  Instead, you must rely on the \c getCachedResult API.
1155 ///
1156 /// This proxy doesn't manage invalidation in any way -- that is handled by the
1157 /// recursive return path of each layer of the pass manager.  A consequence of
1158 /// this is the outer analyses may be stale.  We invalidate the outer analyses
1159 /// only when we're done running passes over the inner IR units.
1160 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1161 class OuterAnalysisManagerProxy
1162     : public AnalysisInfoMixin<
1163           OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> {
1164 public:
1165   /// Result proxy object for \c OuterAnalysisManagerProxy.
1166   class Result {
1167   public:
Result(const AnalysisManagerT & OuterAM)1168     explicit Result(const AnalysisManagerT &OuterAM) : OuterAM(&OuterAM) {}
1169 
getManager()1170     const AnalysisManagerT &getManager() const { return *OuterAM; }
1171 
1172     /// When invalidation occurs, remove any registered invalidation events.
invalidate(IRUnitT & IRUnit,const PreservedAnalyses & PA,typename AnalysisManager<IRUnitT,ExtraArgTs...>::Invalidator & Inv)1173     bool invalidate(
1174         IRUnitT &IRUnit, const PreservedAnalyses &PA,
1175         typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv) {
1176       // Loop over the set of registered outer invalidation mappings and if any
1177       // of them map to an analysis that is now invalid, clear it out.
1178       SmallVector<AnalysisKey *, 4> DeadKeys;
1179       for (auto &KeyValuePair : OuterAnalysisInvalidationMap) {
1180         AnalysisKey *OuterID = KeyValuePair.first;
1181         auto &InnerIDs = KeyValuePair.second;
1182         InnerIDs.erase(llvm::remove_if(InnerIDs, [&](AnalysisKey *InnerID) {
1183           return Inv.invalidate(InnerID, IRUnit, PA); }),
1184                        InnerIDs.end());
1185         if (InnerIDs.empty())
1186           DeadKeys.push_back(OuterID);
1187       }
1188 
1189       for (auto OuterID : DeadKeys)
1190         OuterAnalysisInvalidationMap.erase(OuterID);
1191 
1192       // The proxy itself remains valid regardless of anything else.
1193       return false;
1194     }
1195 
1196     /// Register a deferred invalidation event for when the outer analysis
1197     /// manager processes its invalidations.
1198     template <typename OuterAnalysisT, typename InvalidatedAnalysisT>
registerOuterAnalysisInvalidation()1199     void registerOuterAnalysisInvalidation() {
1200       AnalysisKey *OuterID = OuterAnalysisT::ID();
1201       AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID();
1202 
1203       auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID];
1204       // Note, this is a linear scan. If we end up with large numbers of
1205       // analyses that all trigger invalidation on the same outer analysis,
1206       // this entire system should be changed to some other deterministic
1207       // data structure such as a `SetVector` of a pair of pointers.
1208       auto InvalidatedIt = std::find(InvalidatedIDList.begin(),
1209                                      InvalidatedIDList.end(), InvalidatedID);
1210       if (InvalidatedIt == InvalidatedIDList.end())
1211         InvalidatedIDList.push_back(InvalidatedID);
1212     }
1213 
1214     /// Access the map from outer analyses to deferred invalidation requiring
1215     /// analyses.
1216     const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> &
getOuterInvalidations()1217     getOuterInvalidations() const {
1218       return OuterAnalysisInvalidationMap;
1219     }
1220 
1221   private:
1222     const AnalysisManagerT *OuterAM;
1223 
1224     /// A map from an outer analysis ID to the set of this IR-unit's analyses
1225     /// which need to be invalidated.
1226     SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2>
1227         OuterAnalysisInvalidationMap;
1228   };
1229 
OuterAnalysisManagerProxy(const AnalysisManagerT & OuterAM)1230   OuterAnalysisManagerProxy(const AnalysisManagerT &OuterAM)
1231       : OuterAM(&OuterAM) {}
1232 
1233   /// Run the analysis pass and create our proxy result object.
1234   /// Nothing to see here, it just forwards the \c OuterAM reference into the
1235   /// result.
run(IRUnitT &,AnalysisManager<IRUnitT,ExtraArgTs...> &,ExtraArgTs...)1236   Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &,
1237              ExtraArgTs...) {
1238     return Result(*OuterAM);
1239   }
1240 
1241 private:
1242   friend AnalysisInfoMixin<
1243       OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>;
1244 
1245   static AnalysisKey Key;
1246 
1247   const AnalysisManagerT *OuterAM;
1248 };
1249 
1250 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1251 AnalysisKey
1252     OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
1253 
1254 extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
1255                                                 Function>;
1256 /// Provide the \c ModuleAnalysisManager to \c Function proxy.
1257 using ModuleAnalysisManagerFunctionProxy =
1258     OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>;
1259 
1260 /// Trivial adaptor that maps from a module to its functions.
1261 ///
1262 /// Designed to allow composition of a FunctionPass(Manager) and
1263 /// a ModulePassManager, by running the FunctionPass(Manager) over every
1264 /// function in the module.
1265 ///
1266 /// Function passes run within this adaptor can rely on having exclusive access
1267 /// to the function they are run over. They should not read or modify any other
1268 /// functions! Other threads or systems may be manipulating other functions in
1269 /// the module, and so their state should never be relied on.
1270 /// FIXME: Make the above true for all of LLVM's actual passes, some still
1271 /// violate this principle.
1272 ///
1273 /// Function passes can also read the module containing the function, but they
1274 /// should not modify that module outside of the use lists of various globals.
1275 /// For example, a function pass is not permitted to add functions to the
1276 /// module.
1277 /// FIXME: Make the above true for all of LLVM's actual passes, some still
1278 /// violate this principle.
1279 ///
1280 /// Note that although function passes can access module analyses, module
1281 /// analyses are not invalidated while the function passes are running, so they
1282 /// may be stale.  Function analyses will not be stale.
1283 template <typename FunctionPassT>
1284 class ModuleToFunctionPassAdaptor
1285     : public PassInfoMixin<ModuleToFunctionPassAdaptor<FunctionPassT>> {
1286 public:
ModuleToFunctionPassAdaptor(FunctionPassT Pass)1287   explicit ModuleToFunctionPassAdaptor(FunctionPassT Pass)
1288       : Pass(std::move(Pass)) {}
1289 
1290   /// Runs the function pass across every function in the module.
run(Module & M,ModuleAnalysisManager & AM)1291   PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM) {
1292     FunctionAnalysisManager &FAM =
1293         AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1294 
1295     // Request PassInstrumentation from analysis manager, will use it to run
1296     // instrumenting callbacks for the passes later.
1297     PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M);
1298 
1299     PreservedAnalyses PA = PreservedAnalyses::all();
1300     for (Function &F : M) {
1301       if (F.isDeclaration())
1302         continue;
1303 
1304       // Check the PassInstrumentation's BeforePass callbacks before running the
1305       // pass, skip its execution completely if asked to (callback returns
1306       // false).
1307       if (!PI.runBeforePass<Function>(Pass, F))
1308         continue;
1309       PreservedAnalyses PassPA = Pass.run(F, FAM);
1310 
1311       PI.runAfterPass(Pass, F);
1312 
1313       // We know that the function pass couldn't have invalidated any other
1314       // function's analyses (that's the contract of a function pass), so
1315       // directly handle the function analysis manager's invalidation here.
1316       FAM.invalidate(F, PassPA);
1317 
1318       // Then intersect the preserved set so that invalidation of module
1319       // analyses will eventually occur when the module pass completes.
1320       PA.intersect(std::move(PassPA));
1321     }
1322 
1323     // The FunctionAnalysisManagerModuleProxy is preserved because (we assume)
1324     // the function passes we ran didn't add or remove any functions.
1325     //
1326     // We also preserve all analyses on Functions, because we did all the
1327     // invalidation we needed to do above.
1328     PA.preserveSet<AllAnalysesOn<Function>>();
1329     PA.preserve<FunctionAnalysisManagerModuleProxy>();
1330     return PA;
1331   }
1332 
1333 private:
1334   FunctionPassT Pass;
1335 };
1336 
1337 /// A function to deduce a function pass type and wrap it in the
1338 /// templated adaptor.
1339 template <typename FunctionPassT>
1340 ModuleToFunctionPassAdaptor<FunctionPassT>
createModuleToFunctionPassAdaptor(FunctionPassT Pass)1341 createModuleToFunctionPassAdaptor(FunctionPassT Pass) {
1342   return ModuleToFunctionPassAdaptor<FunctionPassT>(std::move(Pass));
1343 }
1344 
1345 /// A utility pass template to force an analysis result to be available.
1346 ///
1347 /// If there are extra arguments at the pass's run level there may also be
1348 /// extra arguments to the analysis manager's \c getResult routine. We can't
1349 /// guess how to effectively map the arguments from one to the other, and so
1350 /// this specialization just ignores them.
1351 ///
1352 /// Specific patterns of run-method extra arguments and analysis manager extra
1353 /// arguments will have to be defined as appropriate specializations.
1354 template <typename AnalysisT, typename IRUnitT,
1355           typename AnalysisManagerT = AnalysisManager<IRUnitT>,
1356           typename... ExtraArgTs>
1357 struct RequireAnalysisPass
1358     : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT,
1359                                         ExtraArgTs...>> {
1360   /// Run this pass over some unit of IR.
1361   ///
1362   /// This pass can be run over any unit of IR and use any analysis manager
1363   /// provided they satisfy the basic API requirements. When this pass is
1364   /// created, these methods can be instantiated to satisfy whatever the
1365   /// context requires.
runRequireAnalysisPass1366   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM,
1367                         ExtraArgTs &&... Args) {
1368     (void)AM.template getResult<AnalysisT>(Arg,
1369                                            std::forward<ExtraArgTs>(Args)...);
1370 
1371     return PreservedAnalyses::all();
1372   }
1373 };
1374 
1375 /// A no-op pass template which simply forces a specific analysis result
1376 /// to be invalidated.
1377 template <typename AnalysisT>
1378 struct InvalidateAnalysisPass
1379     : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> {
1380   /// Run this pass over some unit of IR.
1381   ///
1382   /// This pass can be run over any unit of IR and use any analysis manager,
1383   /// provided they satisfy the basic API requirements. When this pass is
1384   /// created, these methods can be instantiated to satisfy whatever the
1385   /// context requires.
1386   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
runInvalidateAnalysisPass1387   PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) {
1388     auto PA = PreservedAnalyses::all();
1389     PA.abandon<AnalysisT>();
1390     return PA;
1391   }
1392 };
1393 
1394 /// A utility pass that does nothing, but preserves no analyses.
1395 ///
1396 /// Because this preserves no analyses, any analysis passes queried after this
1397 /// pass runs will recompute fresh results.
1398 struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> {
1399   /// Run this pass over some unit of IR.
1400   template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
runInvalidateAllAnalysesPass1401   PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
1402     return PreservedAnalyses::none();
1403   }
1404 };
1405 
1406 /// A utility pass template that simply runs another pass multiple times.
1407 ///
1408 /// This can be useful when debugging or testing passes. It also serves as an
1409 /// example of how to extend the pass manager in ways beyond composition.
1410 template <typename PassT>
1411 class RepeatedPass : public PassInfoMixin<RepeatedPass<PassT>> {
1412 public:
RepeatedPass(int Count,PassT P)1413   RepeatedPass(int Count, PassT P) : Count(Count), P(std::move(P)) {}
1414 
1415   template <typename IRUnitT, typename AnalysisManagerT, typename... Ts>
run(IRUnitT & IR,AnalysisManagerT & AM,Ts &&...Args)1416   PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM, Ts &&... Args) {
1417 
1418     // Request PassInstrumentation from analysis manager, will use it to run
1419     // instrumenting callbacks for the passes later.
1420     // Here we use std::tuple wrapper over getResult which helps to extract
1421     // AnalysisManager's arguments out of the whole Args set.
1422     PassInstrumentation PI =
1423         detail::getAnalysisResult<PassInstrumentationAnalysis>(
1424             AM, IR, std::tuple<Ts...>(Args...));
1425 
1426     auto PA = PreservedAnalyses::all();
1427     for (int i = 0; i < Count; ++i) {
1428       // Check the PassInstrumentation's BeforePass callbacks before running the
1429       // pass, skip its execution completely if asked to (callback returns
1430       // false).
1431       if (!PI.runBeforePass<IRUnitT>(P, IR))
1432         continue;
1433       PA.intersect(P.run(IR, AM, std::forward<Ts>(Args)...));
1434       PI.runAfterPass(P, IR);
1435     }
1436     return PA;
1437   }
1438 
1439 private:
1440   int Count;
1441   PassT P;
1442 };
1443 
1444 template <typename PassT>
createRepeatedPass(int Count,PassT P)1445 RepeatedPass<PassT> createRepeatedPass(int Count, PassT P) {
1446   return RepeatedPass<PassT>(Count, std::move(P));
1447 }
1448 
1449 } // end namespace llvm
1450 
1451 #endif // LLVM_IR_PASSMANAGER_H
1452