1 //===- PassManager.h - Pass management infrastructure -----------*- C++ -*-===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 /// \file
9 ///
10 /// This header defines various interfaces for pass management in LLVM. There
11 /// is no "pass" interface in LLVM per se. Instead, an instance of any class
12 /// which supports a method to 'run' it over a unit of IR can be used as
13 /// a pass. A pass manager is generally a tool to collect a sequence of passes
14 /// which run over a particular IR construct, and run each of them in sequence
15 /// over each such construct in the containing IR construct. As there is no
16 /// containing IR construct for a Module, a manager for passes over modules
17 /// forms the base case which runs its managed passes in sequence over the
18 /// single module provided.
19 ///
20 /// The core IR library provides managers for running passes over
21 /// modules and functions.
22 ///
23 /// * FunctionPassManager can run over a Module, runs each pass over
24 /// a Function.
25 /// * ModulePassManager must be directly run, runs each pass over the Module.
26 ///
27 /// Note that the implementations of the pass managers use concept-based
28 /// polymorphism as outlined in the "Value Semantics and Concept-based
29 /// Polymorphism" talk (or its abbreviated sibling "Inheritance Is The Base
30 /// Class of Evil") by Sean Parent:
31 /// * http://github.com/sean-parent/sean-parent.github.com/wiki/Papers-and-Presentations
32 /// * http://www.youtube.com/watch?v=_BpMYeUFXv8
33 /// * http://channel9.msdn.com/Events/GoingNative/2013/Inheritance-Is-The-Base-Class-of-Evil
34 ///
35 //===----------------------------------------------------------------------===//
36
37 #ifndef LLVM_IR_PASSMANAGER_H
38 #define LLVM_IR_PASSMANAGER_H
39
40 #include "llvm/ADT/DenseMap.h"
41 #include "llvm/ADT/SmallPtrSet.h"
42 #include "llvm/ADT/StringRef.h"
43 #include "llvm/ADT/TinyPtrVector.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/Module.h"
46 #include "llvm/IR/PassInstrumentation.h"
47 #include "llvm/IR/PassManagerInternal.h"
48 #include "llvm/Pass.h"
49 #include "llvm/Support/Debug.h"
50 #include "llvm/Support/TypeName.h"
51 #include "llvm/Support/raw_ostream.h"
52 #include <algorithm>
53 #include <cassert>
54 #include <cstring>
55 #include <iterator>
56 #include <list>
57 #include <memory>
58 #include <tuple>
59 #include <type_traits>
60 #include <utility>
61 #include <vector>
62
63 namespace llvm {
64
65 /// A special type used by analysis passes to provide an address that
66 /// identifies that particular analysis pass type.
67 ///
68 /// Analysis passes should have a static data member of this type and derive
69 /// from the \c AnalysisInfoMixin to get a static ID method used to identify
70 /// the analysis in the pass management infrastructure.
71 struct alignas(8) AnalysisKey {};
72
73 /// A special type used to provide an address that identifies a set of related
74 /// analyses. These sets are primarily used below to mark sets of analyses as
75 /// preserved.
76 ///
77 /// For example, a transformation can indicate that it preserves the CFG of a
78 /// function by preserving the appropriate AnalysisSetKey. An analysis that
79 /// depends only on the CFG can then check if that AnalysisSetKey is preserved;
80 /// if it is, the analysis knows that it itself is preserved.
81 struct alignas(8) AnalysisSetKey {};
82
83 /// This templated class represents "all analyses that operate over \<a
84 /// particular IR unit\>" (e.g. a Function or a Module) in instances of
85 /// PreservedAnalysis.
86 ///
87 /// This lets a transformation say e.g. "I preserved all function analyses".
88 ///
89 /// Note that you must provide an explicit instantiation declaration and
90 /// definition for this template in order to get the correct behavior on
91 /// Windows. Otherwise, the address of SetKey will not be stable.
92 template <typename IRUnitT> class AllAnalysesOn {
93 public:
ID()94 static AnalysisSetKey *ID() { return &SetKey; }
95
96 private:
97 static AnalysisSetKey SetKey;
98 };
99
100 template <typename IRUnitT> AnalysisSetKey AllAnalysesOn<IRUnitT>::SetKey;
101
102 extern template class AllAnalysesOn<Module>;
103 extern template class AllAnalysesOn<Function>;
104
105 /// Represents analyses that only rely on functions' control flow.
106 ///
107 /// This can be used with \c PreservedAnalyses to mark the CFG as preserved and
108 /// to query whether it has been preserved.
109 ///
110 /// The CFG of a function is defined as the set of basic blocks and the edges
111 /// between them. Changing the set of basic blocks in a function is enough to
112 /// mutate the CFG. Mutating the condition of a branch or argument of an
113 /// invoked function does not mutate the CFG, but changing the successor labels
114 /// of those instructions does.
115 class CFGAnalyses {
116 public:
ID()117 static AnalysisSetKey *ID() { return &SetKey; }
118
119 private:
120 static AnalysisSetKey SetKey;
121 };
122
123 /// A set of analyses that are preserved following a run of a transformation
124 /// pass.
125 ///
126 /// Transformation passes build and return these objects to communicate which
127 /// analyses are still valid after the transformation. For most passes this is
128 /// fairly simple: if they don't change anything all analyses are preserved,
129 /// otherwise only a short list of analyses that have been explicitly updated
130 /// are preserved.
131 ///
132 /// This class also lets transformation passes mark abstract *sets* of analyses
133 /// as preserved. A transformation that (say) does not alter the CFG can
134 /// indicate such by marking a particular AnalysisSetKey as preserved, and
135 /// then analyses can query whether that AnalysisSetKey is preserved.
136 ///
137 /// Finally, this class can represent an "abandoned" analysis, which is
138 /// not preserved even if it would be covered by some abstract set of analyses.
139 ///
140 /// Given a `PreservedAnalyses` object, an analysis will typically want to
141 /// figure out whether it is preserved. In the example below, MyAnalysisType is
142 /// preserved if it's not abandoned, and (a) it's explicitly marked as
143 /// preserved, (b), the set AllAnalysesOn<MyIRUnit> is preserved, or (c) both
144 /// AnalysisSetA and AnalysisSetB are preserved.
145 ///
146 /// ```
147 /// auto PAC = PA.getChecker<MyAnalysisType>();
148 /// if (PAC.preserved() || PAC.preservedSet<AllAnalysesOn<MyIRUnit>>() ||
149 /// (PAC.preservedSet<AnalysisSetA>() &&
150 /// PAC.preservedSet<AnalysisSetB>())) {
151 /// // The analysis has been successfully preserved ...
152 /// }
153 /// ```
154 class PreservedAnalyses {
155 public:
156 /// Convenience factory function for the empty preserved set.
none()157 static PreservedAnalyses none() { return PreservedAnalyses(); }
158
159 /// Construct a special preserved set that preserves all passes.
all()160 static PreservedAnalyses all() {
161 PreservedAnalyses PA;
162 PA.PreservedIDs.insert(&AllAnalysesKey);
163 return PA;
164 }
165
166 /// Construct a preserved analyses object with a single preserved set.
167 template <typename AnalysisSetT>
allInSet()168 static PreservedAnalyses allInSet() {
169 PreservedAnalyses PA;
170 PA.preserveSet<AnalysisSetT>();
171 return PA;
172 }
173
174 /// Mark an analysis as preserved.
preserve()175 template <typename AnalysisT> void preserve() { preserve(AnalysisT::ID()); }
176
177 /// Given an analysis's ID, mark the analysis as preserved, adding it
178 /// to the set.
preserve(AnalysisKey * ID)179 void preserve(AnalysisKey *ID) {
180 // Clear this ID from the explicit not-preserved set if present.
181 NotPreservedAnalysisIDs.erase(ID);
182
183 // If we're not already preserving all analyses (other than those in
184 // NotPreservedAnalysisIDs).
185 if (!areAllPreserved())
186 PreservedIDs.insert(ID);
187 }
188
189 /// Mark an analysis set as preserved.
preserveSet()190 template <typename AnalysisSetT> void preserveSet() {
191 preserveSet(AnalysisSetT::ID());
192 }
193
194 /// Mark an analysis set as preserved using its ID.
preserveSet(AnalysisSetKey * ID)195 void preserveSet(AnalysisSetKey *ID) {
196 // If we're not already in the saturated 'all' state, add this set.
197 if (!areAllPreserved())
198 PreservedIDs.insert(ID);
199 }
200
201 /// Mark an analysis as abandoned.
202 ///
203 /// An abandoned analysis is not preserved, even if it is nominally covered
204 /// by some other set or was previously explicitly marked as preserved.
205 ///
206 /// Note that you can only abandon a specific analysis, not a *set* of
207 /// analyses.
abandon()208 template <typename AnalysisT> void abandon() { abandon(AnalysisT::ID()); }
209
210 /// Mark an analysis as abandoned using its ID.
211 ///
212 /// An abandoned analysis is not preserved, even if it is nominally covered
213 /// by some other set or was previously explicitly marked as preserved.
214 ///
215 /// Note that you can only abandon a specific analysis, not a *set* of
216 /// analyses.
abandon(AnalysisKey * ID)217 void abandon(AnalysisKey *ID) {
218 PreservedIDs.erase(ID);
219 NotPreservedAnalysisIDs.insert(ID);
220 }
221
222 /// Intersect this set with another in place.
223 ///
224 /// This is a mutating operation on this preserved set, removing all
225 /// preserved passes which are not also preserved in the argument.
intersect(const PreservedAnalyses & Arg)226 void intersect(const PreservedAnalyses &Arg) {
227 if (Arg.areAllPreserved())
228 return;
229 if (areAllPreserved()) {
230 *this = Arg;
231 return;
232 }
233 // The intersection requires the *union* of the explicitly not-preserved
234 // IDs and the *intersection* of the preserved IDs.
235 for (auto ID : Arg.NotPreservedAnalysisIDs) {
236 PreservedIDs.erase(ID);
237 NotPreservedAnalysisIDs.insert(ID);
238 }
239 for (auto ID : PreservedIDs)
240 if (!Arg.PreservedIDs.count(ID))
241 PreservedIDs.erase(ID);
242 }
243
244 /// Intersect this set with a temporary other set in place.
245 ///
246 /// This is a mutating operation on this preserved set, removing all
247 /// preserved passes which are not also preserved in the argument.
intersect(PreservedAnalyses && Arg)248 void intersect(PreservedAnalyses &&Arg) {
249 if (Arg.areAllPreserved())
250 return;
251 if (areAllPreserved()) {
252 *this = std::move(Arg);
253 return;
254 }
255 // The intersection requires the *union* of the explicitly not-preserved
256 // IDs and the *intersection* of the preserved IDs.
257 for (auto ID : Arg.NotPreservedAnalysisIDs) {
258 PreservedIDs.erase(ID);
259 NotPreservedAnalysisIDs.insert(ID);
260 }
261 for (auto ID : PreservedIDs)
262 if (!Arg.PreservedIDs.count(ID))
263 PreservedIDs.erase(ID);
264 }
265
266 /// A checker object that makes it easy to query for whether an analysis or
267 /// some set covering it is preserved.
268 class PreservedAnalysisChecker {
269 friend class PreservedAnalyses;
270
271 const PreservedAnalyses &PA;
272 AnalysisKey *const ID;
273 const bool IsAbandoned;
274
275 /// A PreservedAnalysisChecker is tied to a particular Analysis because
276 /// `preserved()` and `preservedSet()` both return false if the Analysis
277 /// was abandoned.
PreservedAnalysisChecker(const PreservedAnalyses & PA,AnalysisKey * ID)278 PreservedAnalysisChecker(const PreservedAnalyses &PA, AnalysisKey *ID)
279 : PA(PA), ID(ID), IsAbandoned(PA.NotPreservedAnalysisIDs.count(ID)) {}
280
281 public:
282 /// Returns true if the checker's analysis was not abandoned and either
283 /// - the analysis is explicitly preserved or
284 /// - all analyses are preserved.
preserved()285 bool preserved() {
286 return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
287 PA.PreservedIDs.count(ID));
288 }
289
290 /// Return true if the checker's analysis was not abandoned, i.e. it was not
291 /// explicitly invalidated. Even if the analysis is not explicitly
292 /// preserved, if the analysis is known stateless, then it is preserved.
preservedWhenStateless()293 bool preservedWhenStateless() {
294 return !IsAbandoned;
295 }
296
297 /// Returns true if the checker's analysis was not abandoned and either
298 /// - \p AnalysisSetT is explicitly preserved or
299 /// - all analyses are preserved.
preservedSet()300 template <typename AnalysisSetT> bool preservedSet() {
301 AnalysisSetKey *SetID = AnalysisSetT::ID();
302 return !IsAbandoned && (PA.PreservedIDs.count(&AllAnalysesKey) ||
303 PA.PreservedIDs.count(SetID));
304 }
305 };
306
307 /// Build a checker for this `PreservedAnalyses` and the specified analysis
308 /// type.
309 ///
310 /// You can use the returned object to query whether an analysis was
311 /// preserved. See the example in the comment on `PreservedAnalysis`.
getChecker()312 template <typename AnalysisT> PreservedAnalysisChecker getChecker() const {
313 return PreservedAnalysisChecker(*this, AnalysisT::ID());
314 }
315
316 /// Build a checker for this `PreservedAnalyses` and the specified analysis
317 /// ID.
318 ///
319 /// You can use the returned object to query whether an analysis was
320 /// preserved. See the example in the comment on `PreservedAnalysis`.
getChecker(AnalysisKey * ID)321 PreservedAnalysisChecker getChecker(AnalysisKey *ID) const {
322 return PreservedAnalysisChecker(*this, ID);
323 }
324
325 /// Test whether all analyses are preserved (and none are abandoned).
326 ///
327 /// This is used primarily to optimize for the common case of a transformation
328 /// which makes no changes to the IR.
areAllPreserved()329 bool areAllPreserved() const {
330 return NotPreservedAnalysisIDs.empty() &&
331 PreservedIDs.count(&AllAnalysesKey);
332 }
333
334 /// Directly test whether a set of analyses is preserved.
335 ///
336 /// This is only true when no analyses have been explicitly abandoned.
allAnalysesInSetPreserved()337 template <typename AnalysisSetT> bool allAnalysesInSetPreserved() const {
338 return allAnalysesInSetPreserved(AnalysisSetT::ID());
339 }
340
341 /// Directly test whether a set of analyses is preserved.
342 ///
343 /// This is only true when no analyses have been explicitly abandoned.
allAnalysesInSetPreserved(AnalysisSetKey * SetID)344 bool allAnalysesInSetPreserved(AnalysisSetKey *SetID) const {
345 return NotPreservedAnalysisIDs.empty() &&
346 (PreservedIDs.count(&AllAnalysesKey) || PreservedIDs.count(SetID));
347 }
348
349 private:
350 /// A special key used to indicate all analyses.
351 static AnalysisSetKey AllAnalysesKey;
352
353 /// The IDs of analyses and analysis sets that are preserved.
354 SmallPtrSet<void *, 2> PreservedIDs;
355
356 /// The IDs of explicitly not-preserved analyses.
357 ///
358 /// If an analysis in this set is covered by a set in `PreservedIDs`, we
359 /// consider it not-preserved. That is, `NotPreservedAnalysisIDs` always
360 /// "wins" over analysis sets in `PreservedIDs`.
361 ///
362 /// Also, a given ID should never occur both here and in `PreservedIDs`.
363 SmallPtrSet<AnalysisKey *, 2> NotPreservedAnalysisIDs;
364 };
365
366 // Forward declare the analysis manager template.
367 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager;
368
369 /// A CRTP mix-in to automatically provide informational APIs needed for
370 /// passes.
371 ///
372 /// This provides some boilerplate for types that are passes.
373 template <typename DerivedT> struct PassInfoMixin {
374 /// Gets the name of the pass we are mixed into.
namePassInfoMixin375 static StringRef name() {
376 static_assert(std::is_base_of<PassInfoMixin, DerivedT>::value,
377 "Must pass the derived type as the template argument!");
378 StringRef Name = getTypeName<DerivedT>();
379 if (Name.startswith("llvm::"))
380 Name = Name.drop_front(strlen("llvm::"));
381 return Name;
382 }
383 };
384
385 /// A CRTP mix-in that provides informational APIs needed for analysis passes.
386 ///
387 /// This provides some boilerplate for types that are analysis passes. It
388 /// automatically mixes in \c PassInfoMixin.
389 template <typename DerivedT>
390 struct AnalysisInfoMixin : PassInfoMixin<DerivedT> {
391 /// Returns an opaque, unique ID for this analysis type.
392 ///
393 /// This ID is a pointer type that is guaranteed to be 8-byte aligned and thus
394 /// suitable for use in sets, maps, and other data structures that use the low
395 /// bits of pointers.
396 ///
397 /// Note that this requires the derived type provide a static \c AnalysisKey
398 /// member called \c Key.
399 ///
400 /// FIXME: The only reason the mixin type itself can't declare the Key value
401 /// is that some compilers cannot correctly unique a templated static variable
402 /// so it has the same addresses in each instantiation. The only currently
403 /// known platform with this limitation is Windows DLL builds, specifically
404 /// building each part of LLVM as a DLL. If we ever remove that build
405 /// configuration, this mixin can provide the static key as well.
IDAnalysisInfoMixin406 static AnalysisKey *ID() {
407 static_assert(std::is_base_of<AnalysisInfoMixin, DerivedT>::value,
408 "Must pass the derived type as the template argument!");
409 return &DerivedT::Key;
410 }
411 };
412
413 namespace detail {
414
415 /// Actual unpacker of extra arguments in getAnalysisResult,
416 /// passes only those tuple arguments that are mentioned in index_sequence.
417 template <typename PassT, typename IRUnitT, typename AnalysisManagerT,
418 typename... ArgTs, size_t... Ns>
419 typename PassT::Result
getAnalysisResultUnpackTuple(AnalysisManagerT & AM,IRUnitT & IR,std::tuple<ArgTs...> Args,std::index_sequence<Ns...>)420 getAnalysisResultUnpackTuple(AnalysisManagerT &AM, IRUnitT &IR,
421 std::tuple<ArgTs...> Args,
422 std::index_sequence<Ns...>) {
423 (void)Args;
424 return AM.template getResult<PassT>(IR, std::get<Ns>(Args)...);
425 }
426
427 /// Helper for *partial* unpacking of extra arguments in getAnalysisResult.
428 ///
429 /// Arguments passed in tuple come from PassManager, so they might have extra
430 /// arguments after those AnalysisManager's ExtraArgTs ones that we need to
431 /// pass to getResult.
432 template <typename PassT, typename IRUnitT, typename... AnalysisArgTs,
433 typename... MainArgTs>
434 typename PassT::Result
getAnalysisResult(AnalysisManager<IRUnitT,AnalysisArgTs...> & AM,IRUnitT & IR,std::tuple<MainArgTs...> Args)435 getAnalysisResult(AnalysisManager<IRUnitT, AnalysisArgTs...> &AM, IRUnitT &IR,
436 std::tuple<MainArgTs...> Args) {
437 return (getAnalysisResultUnpackTuple<
438 PassT, IRUnitT>)(AM, IR, Args,
439 std::index_sequence_for<AnalysisArgTs...>{});
440 }
441
442 } // namespace detail
443
444 // Forward declare the pass instrumentation analysis explicitly queried in
445 // generic PassManager code.
446 // FIXME: figure out a way to move PassInstrumentationAnalysis into its own
447 // header.
448 class PassInstrumentationAnalysis;
449
450 /// Manages a sequence of passes over a particular unit of IR.
451 ///
452 /// A pass manager contains a sequence of passes to run over a particular unit
453 /// of IR (e.g. Functions, Modules). It is itself a valid pass over that unit of
454 /// IR, and when run over some given IR will run each of its contained passes in
455 /// sequence. Pass managers are the primary and most basic building block of a
456 /// pass pipeline.
457 ///
458 /// When you run a pass manager, you provide an \c AnalysisManager<IRUnitT>
459 /// argument. The pass manager will propagate that analysis manager to each
460 /// pass it runs, and will call the analysis manager's invalidation routine with
461 /// the PreservedAnalyses of each pass it runs.
462 template <typename IRUnitT,
463 typename AnalysisManagerT = AnalysisManager<IRUnitT>,
464 typename... ExtraArgTs>
465 class PassManager : public PassInfoMixin<
466 PassManager<IRUnitT, AnalysisManagerT, ExtraArgTs...>> {
467 public:
468 /// Construct a pass manager.
469 ///
470 /// If \p DebugLogging is true, we'll log our progress to llvm::dbgs().
DebugLogging(DebugLogging)471 explicit PassManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
472
473 // FIXME: These are equivalent to the default move constructor/move
474 // assignment. However, using = default triggers linker errors due to the
475 // explicit instantiations below. Find away to use the default and remove the
476 // duplicated code here.
PassManager(PassManager && Arg)477 PassManager(PassManager &&Arg)
478 : Passes(std::move(Arg.Passes)),
479 DebugLogging(std::move(Arg.DebugLogging)) {}
480
481 PassManager &operator=(PassManager &&RHS) {
482 Passes = std::move(RHS.Passes);
483 DebugLogging = std::move(RHS.DebugLogging);
484 return *this;
485 }
486
487 /// Run all of the passes in this manager over the given unit of IR.
488 /// ExtraArgs are passed to each pass.
run(IRUnitT & IR,AnalysisManagerT & AM,ExtraArgTs...ExtraArgs)489 PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM,
490 ExtraArgTs... ExtraArgs) {
491 PreservedAnalyses PA = PreservedAnalyses::all();
492
493 // Request PassInstrumentation from analysis manager, will use it to run
494 // instrumenting callbacks for the passes later.
495 // Here we use std::tuple wrapper over getResult which helps to extract
496 // AnalysisManager's arguments out of the whole ExtraArgs set.
497 PassInstrumentation PI =
498 detail::getAnalysisResult<PassInstrumentationAnalysis>(
499 AM, IR, std::tuple<ExtraArgTs...>(ExtraArgs...));
500
501 if (DebugLogging)
502 dbgs() << "Starting " << getTypeName<IRUnitT>() << " pass manager run.\n";
503
504 for (unsigned Idx = 0, Size = Passes.size(); Idx != Size; ++Idx) {
505 auto *P = Passes[Idx].get();
506 if (DebugLogging)
507 dbgs() << "Running pass: " << P->name() << " on " << IR.getName()
508 << "\n";
509
510 // Check the PassInstrumentation's BeforePass callbacks before running the
511 // pass, skip its execution completely if asked to (callback returns
512 // false).
513 if (!PI.runBeforePass<IRUnitT>(*P, IR))
514 continue;
515
516 PreservedAnalyses PassPA = P->run(IR, AM, ExtraArgs...);
517
518 // Call onto PassInstrumentation's AfterPass callbacks immediately after
519 // running the pass.
520 PI.runAfterPass<IRUnitT>(*P, IR);
521
522 // Update the analysis manager as each pass runs and potentially
523 // invalidates analyses.
524 AM.invalidate(IR, PassPA);
525
526 // Finally, intersect the preserved analyses to compute the aggregate
527 // preserved set for this pass manager.
528 PA.intersect(std::move(PassPA));
529
530 // FIXME: Historically, the pass managers all called the LLVM context's
531 // yield function here. We don't have a generic way to acquire the
532 // context and it isn't yet clear what the right pattern is for yielding
533 // in the new pass manager so it is currently omitted.
534 //IR.getContext().yield();
535 }
536
537 // Invalidation was handled after each pass in the above loop for the
538 // current unit of IR. Therefore, the remaining analysis results in the
539 // AnalysisManager are preserved. We mark this with a set so that we don't
540 // need to inspect each one individually.
541 PA.preserveSet<AllAnalysesOn<IRUnitT>>();
542
543 if (DebugLogging)
544 dbgs() << "Finished " << getTypeName<IRUnitT>() << " pass manager run.\n";
545
546 return PA;
547 }
548
addPass(PassT Pass)549 template <typename PassT> void addPass(PassT Pass) {
550 using PassModelT =
551 detail::PassModel<IRUnitT, PassT, PreservedAnalyses, AnalysisManagerT,
552 ExtraArgTs...>;
553
554 Passes.emplace_back(new PassModelT(std::move(Pass)));
555 }
556
557 private:
558 using PassConceptT =
559 detail::PassConcept<IRUnitT, AnalysisManagerT, ExtraArgTs...>;
560
561 std::vector<std::unique_ptr<PassConceptT>> Passes;
562
563 /// Flag indicating whether we should do debug logging.
564 bool DebugLogging;
565 };
566
567 extern template class PassManager<Module>;
568
569 /// Convenience typedef for a pass manager over modules.
570 using ModulePassManager = PassManager<Module>;
571
572 extern template class PassManager<Function>;
573
574 /// Convenience typedef for a pass manager over functions.
575 using FunctionPassManager = PassManager<Function>;
576
577 /// Pseudo-analysis pass that exposes the \c PassInstrumentation to pass
578 /// managers. Goes before AnalysisManager definition to provide its
579 /// internals (e.g PassInstrumentationAnalysis::ID) for use there if needed.
580 /// FIXME: figure out a way to move PassInstrumentationAnalysis into its own
581 /// header.
582 class PassInstrumentationAnalysis
583 : public AnalysisInfoMixin<PassInstrumentationAnalysis> {
584 friend AnalysisInfoMixin<PassInstrumentationAnalysis>;
585 static AnalysisKey Key;
586
587 PassInstrumentationCallbacks *Callbacks;
588
589 public:
590 /// PassInstrumentationCallbacks object is shared, owned by something else,
591 /// not this analysis.
592 PassInstrumentationAnalysis(PassInstrumentationCallbacks *Callbacks = nullptr)
Callbacks(Callbacks)593 : Callbacks(Callbacks) {}
594
595 using Result = PassInstrumentation;
596
597 template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
run(IRUnitT &,AnalysisManagerT &,ExtraArgTs &&...)598 Result run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
599 return PassInstrumentation(Callbacks);
600 }
601 };
602
603 /// A container for analyses that lazily runs them and caches their
604 /// results.
605 ///
606 /// This class can manage analyses for any IR unit where the address of the IR
607 /// unit sufficies as its identity.
608 template <typename IRUnitT, typename... ExtraArgTs> class AnalysisManager {
609 public:
610 class Invalidator;
611
612 private:
613 // Now that we've defined our invalidator, we can define the concept types.
614 using ResultConceptT =
615 detail::AnalysisResultConcept<IRUnitT, PreservedAnalyses, Invalidator>;
616 using PassConceptT =
617 detail::AnalysisPassConcept<IRUnitT, PreservedAnalyses, Invalidator,
618 ExtraArgTs...>;
619
620 /// List of analysis pass IDs and associated concept pointers.
621 ///
622 /// Requires iterators to be valid across appending new entries and arbitrary
623 /// erases. Provides the analysis ID to enable finding iterators to a given
624 /// entry in maps below, and provides the storage for the actual result
625 /// concept.
626 using AnalysisResultListT =
627 std::list<std::pair<AnalysisKey *, std::unique_ptr<ResultConceptT>>>;
628
629 /// Map type from IRUnitT pointer to our custom list type.
630 using AnalysisResultListMapT = DenseMap<IRUnitT *, AnalysisResultListT>;
631
632 /// Map type from a pair of analysis ID and IRUnitT pointer to an
633 /// iterator into a particular result list (which is where the actual analysis
634 /// result is stored).
635 using AnalysisResultMapT =
636 DenseMap<std::pair<AnalysisKey *, IRUnitT *>,
637 typename AnalysisResultListT::iterator>;
638
639 public:
640 /// API to communicate dependencies between analyses during invalidation.
641 ///
642 /// When an analysis result embeds handles to other analysis results, it
643 /// needs to be invalidated both when its own information isn't preserved and
644 /// when any of its embedded analysis results end up invalidated. We pass an
645 /// \c Invalidator object as an argument to \c invalidate() in order to let
646 /// the analysis results themselves define the dependency graph on the fly.
647 /// This lets us avoid building building an explicit representation of the
648 /// dependencies between analysis results.
649 class Invalidator {
650 public:
651 /// Trigger the invalidation of some other analysis pass if not already
652 /// handled and return whether it was in fact invalidated.
653 ///
654 /// This is expected to be called from within a given analysis result's \c
655 /// invalidate method to trigger a depth-first walk of all inter-analysis
656 /// dependencies. The same \p IR unit and \p PA passed to that result's \c
657 /// invalidate method should in turn be provided to this routine.
658 ///
659 /// The first time this is called for a given analysis pass, it will call
660 /// the corresponding result's \c invalidate method. Subsequent calls will
661 /// use a cache of the results of that initial call. It is an error to form
662 /// cyclic dependencies between analysis results.
663 ///
664 /// This returns true if the given analysis's result is invalid. Any
665 /// dependecies on it will become invalid as a result.
666 template <typename PassT>
invalidate(IRUnitT & IR,const PreservedAnalyses & PA)667 bool invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
668 using ResultModelT =
669 detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
670 PreservedAnalyses, Invalidator>;
671
672 return invalidateImpl<ResultModelT>(PassT::ID(), IR, PA);
673 }
674
675 /// A type-erased variant of the above invalidate method with the same core
676 /// API other than passing an analysis ID rather than an analysis type
677 /// parameter.
678 ///
679 /// This is sadly less efficient than the above routine, which leverages
680 /// the type parameter to avoid the type erasure overhead.
invalidate(AnalysisKey * ID,IRUnitT & IR,const PreservedAnalyses & PA)681 bool invalidate(AnalysisKey *ID, IRUnitT &IR, const PreservedAnalyses &PA) {
682 return invalidateImpl<>(ID, IR, PA);
683 }
684
685 private:
686 friend class AnalysisManager;
687
688 template <typename ResultT = ResultConceptT>
invalidateImpl(AnalysisKey * ID,IRUnitT & IR,const PreservedAnalyses & PA)689 bool invalidateImpl(AnalysisKey *ID, IRUnitT &IR,
690 const PreservedAnalyses &PA) {
691 // If we've already visited this pass, return true if it was invalidated
692 // and false otherwise.
693 auto IMapI = IsResultInvalidated.find(ID);
694 if (IMapI != IsResultInvalidated.end())
695 return IMapI->second;
696
697 // Otherwise look up the result object.
698 auto RI = Results.find({ID, &IR});
699 assert(RI != Results.end() &&
700 "Trying to invalidate a dependent result that isn't in the "
701 "manager's cache is always an error, likely due to a stale result "
702 "handle!");
703
704 auto &Result = static_cast<ResultT &>(*RI->second->second);
705
706 // Insert into the map whether the result should be invalidated and return
707 // that. Note that we cannot reuse IMapI and must do a fresh insert here,
708 // as calling invalidate could (recursively) insert things into the map,
709 // making any iterator or reference invalid.
710 bool Inserted;
711 std::tie(IMapI, Inserted) =
712 IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, *this)});
713 (void)Inserted;
714 assert(Inserted && "Should not have already inserted this ID, likely "
715 "indicates a dependency cycle!");
716 return IMapI->second;
717 }
718
Invalidator(SmallDenseMap<AnalysisKey *,bool,8> & IsResultInvalidated,const AnalysisResultMapT & Results)719 Invalidator(SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated,
720 const AnalysisResultMapT &Results)
721 : IsResultInvalidated(IsResultInvalidated), Results(Results) {}
722
723 SmallDenseMap<AnalysisKey *, bool, 8> &IsResultInvalidated;
724 const AnalysisResultMapT &Results;
725 };
726
727 /// Construct an empty analysis manager.
728 ///
729 /// If \p DebugLogging is true, we'll log our progress to llvm::dbgs().
DebugLogging(DebugLogging)730 AnalysisManager(bool DebugLogging = false) : DebugLogging(DebugLogging) {}
731 AnalysisManager(AnalysisManager &&) = default;
732 AnalysisManager &operator=(AnalysisManager &&) = default;
733
734 /// Returns true if the analysis manager has an empty results cache.
empty()735 bool empty() const {
736 assert(AnalysisResults.empty() == AnalysisResultLists.empty() &&
737 "The storage and index of analysis results disagree on how many "
738 "there are!");
739 return AnalysisResults.empty();
740 }
741
742 /// Clear any cached analysis results for a single unit of IR.
743 ///
744 /// This doesn't invalidate, but instead simply deletes, the relevant results.
745 /// It is useful when the IR is being removed and we want to clear out all the
746 /// memory pinned for it.
clear(IRUnitT & IR,llvm::StringRef Name)747 void clear(IRUnitT &IR, llvm::StringRef Name) {
748 if (DebugLogging)
749 dbgs() << "Clearing all analysis results for: " << Name << "\n";
750
751 auto ResultsListI = AnalysisResultLists.find(&IR);
752 if (ResultsListI == AnalysisResultLists.end())
753 return;
754 // Delete the map entries that point into the results list.
755 for (auto &IDAndResult : ResultsListI->second)
756 AnalysisResults.erase({IDAndResult.first, &IR});
757
758 // And actually destroy and erase the results associated with this IR.
759 AnalysisResultLists.erase(ResultsListI);
760 }
761
762 /// Clear all analysis results cached by this AnalysisManager.
763 ///
764 /// Like \c clear(IRUnitT&), this doesn't invalidate the results; it simply
765 /// deletes them. This lets you clean up the AnalysisManager when the set of
766 /// IR units itself has potentially changed, and thus we can't even look up a
767 /// a result and invalidate/clear it directly.
clear()768 void clear() {
769 AnalysisResults.clear();
770 AnalysisResultLists.clear();
771 }
772
773 /// Get the result of an analysis pass for a given IR unit.
774 ///
775 /// Runs the analysis if a cached result is not available.
776 template <typename PassT>
getResult(IRUnitT & IR,ExtraArgTs...ExtraArgs)777 typename PassT::Result &getResult(IRUnitT &IR, ExtraArgTs... ExtraArgs) {
778 assert(AnalysisPasses.count(PassT::ID()) &&
779 "This analysis pass was not registered prior to being queried");
780 ResultConceptT &ResultConcept =
781 getResultImpl(PassT::ID(), IR, ExtraArgs...);
782
783 using ResultModelT =
784 detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
785 PreservedAnalyses, Invalidator>;
786
787 return static_cast<ResultModelT &>(ResultConcept).Result;
788 }
789
790 /// Get the cached result of an analysis pass for a given IR unit.
791 ///
792 /// This method never runs the analysis.
793 ///
794 /// \returns null if there is no cached result.
795 template <typename PassT>
getCachedResult(IRUnitT & IR)796 typename PassT::Result *getCachedResult(IRUnitT &IR) const {
797 assert(AnalysisPasses.count(PassT::ID()) &&
798 "This analysis pass was not registered prior to being queried");
799
800 ResultConceptT *ResultConcept = getCachedResultImpl(PassT::ID(), IR);
801 if (!ResultConcept)
802 return nullptr;
803
804 using ResultModelT =
805 detail::AnalysisResultModel<IRUnitT, PassT, typename PassT::Result,
806 PreservedAnalyses, Invalidator>;
807
808 return &static_cast<ResultModelT *>(ResultConcept)->Result;
809 }
810
811 /// Register an analysis pass with the manager.
812 ///
813 /// The parameter is a callable whose result is an analysis pass. This allows
814 /// passing in a lambda to construct the analysis.
815 ///
816 /// The analysis type to register is the type returned by calling the \c
817 /// PassBuilder argument. If that type has already been registered, then the
818 /// argument will not be called and this function will return false.
819 /// Otherwise, we register the analysis returned by calling \c PassBuilder(),
820 /// and this function returns true.
821 ///
822 /// (Note: Although the return value of this function indicates whether or not
823 /// an analysis was previously registered, there intentionally isn't a way to
824 /// query this directly. Instead, you should just register all the analyses
825 /// you might want and let this class run them lazily. This idiom lets us
826 /// minimize the number of times we have to look up analyses in our
827 /// hashtable.)
828 template <typename PassBuilderT>
registerPass(PassBuilderT && PassBuilder)829 bool registerPass(PassBuilderT &&PassBuilder) {
830 using PassT = decltype(PassBuilder());
831 using PassModelT =
832 detail::AnalysisPassModel<IRUnitT, PassT, PreservedAnalyses,
833 Invalidator, ExtraArgTs...>;
834
835 auto &PassPtr = AnalysisPasses[PassT::ID()];
836 if (PassPtr)
837 // Already registered this pass type!
838 return false;
839
840 // Construct a new model around the instance returned by the builder.
841 PassPtr.reset(new PassModelT(PassBuilder()));
842 return true;
843 }
844
845 /// Invalidate a specific analysis pass for an IR module.
846 ///
847 /// Note that the analysis result can disregard invalidation, if it determines
848 /// it is in fact still valid.
invalidate(IRUnitT & IR)849 template <typename PassT> void invalidate(IRUnitT &IR) {
850 assert(AnalysisPasses.count(PassT::ID()) &&
851 "This analysis pass was not registered prior to being invalidated");
852 invalidateImpl(PassT::ID(), IR);
853 }
854
855 /// Invalidate cached analyses for an IR unit.
856 ///
857 /// Walk through all of the analyses pertaining to this unit of IR and
858 /// invalidate them, unless they are preserved by the PreservedAnalyses set.
invalidate(IRUnitT & IR,const PreservedAnalyses & PA)859 void invalidate(IRUnitT &IR, const PreservedAnalyses &PA) {
860 // We're done if all analyses on this IR unit are preserved.
861 if (PA.allAnalysesInSetPreserved<AllAnalysesOn<IRUnitT>>())
862 return;
863
864 if (DebugLogging)
865 dbgs() << "Invalidating all non-preserved analyses for: " << IR.getName()
866 << "\n";
867
868 // Track whether each analysis's result is invalidated in
869 // IsResultInvalidated.
870 SmallDenseMap<AnalysisKey *, bool, 8> IsResultInvalidated;
871 Invalidator Inv(IsResultInvalidated, AnalysisResults);
872 AnalysisResultListT &ResultsList = AnalysisResultLists[&IR];
873 for (auto &AnalysisResultPair : ResultsList) {
874 // This is basically the same thing as Invalidator::invalidate, but we
875 // can't call it here because we're operating on the type-erased result.
876 // Moreover if we instead called invalidate() directly, it would do an
877 // unnecessary look up in ResultsList.
878 AnalysisKey *ID = AnalysisResultPair.first;
879 auto &Result = *AnalysisResultPair.second;
880
881 auto IMapI = IsResultInvalidated.find(ID);
882 if (IMapI != IsResultInvalidated.end())
883 // This result was already handled via the Invalidator.
884 continue;
885
886 // Try to invalidate the result, giving it the Invalidator so it can
887 // recursively query for any dependencies it has and record the result.
888 // Note that we cannot reuse 'IMapI' here or pre-insert the ID, as
889 // Result.invalidate may insert things into the map, invalidating our
890 // iterator.
891 bool Inserted =
892 IsResultInvalidated.insert({ID, Result.invalidate(IR, PA, Inv)})
893 .second;
894 (void)Inserted;
895 assert(Inserted && "Should never have already inserted this ID, likely "
896 "indicates a cycle!");
897 }
898
899 // Now erase the results that were marked above as invalidated.
900 if (!IsResultInvalidated.empty()) {
901 for (auto I = ResultsList.begin(), E = ResultsList.end(); I != E;) {
902 AnalysisKey *ID = I->first;
903 if (!IsResultInvalidated.lookup(ID)) {
904 ++I;
905 continue;
906 }
907
908 if (DebugLogging)
909 dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name()
910 << " on " << IR.getName() << "\n";
911
912 I = ResultsList.erase(I);
913 AnalysisResults.erase({ID, &IR});
914 }
915 }
916
917 if (ResultsList.empty())
918 AnalysisResultLists.erase(&IR);
919 }
920
921 private:
922 /// Look up a registered analysis pass.
lookUpPass(AnalysisKey * ID)923 PassConceptT &lookUpPass(AnalysisKey *ID) {
924 typename AnalysisPassMapT::iterator PI = AnalysisPasses.find(ID);
925 assert(PI != AnalysisPasses.end() &&
926 "Analysis passes must be registered prior to being queried!");
927 return *PI->second;
928 }
929
930 /// Look up a registered analysis pass.
lookUpPass(AnalysisKey * ID)931 const PassConceptT &lookUpPass(AnalysisKey *ID) const {
932 typename AnalysisPassMapT::const_iterator PI = AnalysisPasses.find(ID);
933 assert(PI != AnalysisPasses.end() &&
934 "Analysis passes must be registered prior to being queried!");
935 return *PI->second;
936 }
937
938 /// Get an analysis result, running the pass if necessary.
getResultImpl(AnalysisKey * ID,IRUnitT & IR,ExtraArgTs...ExtraArgs)939 ResultConceptT &getResultImpl(AnalysisKey *ID, IRUnitT &IR,
940 ExtraArgTs... ExtraArgs) {
941 typename AnalysisResultMapT::iterator RI;
942 bool Inserted;
943 std::tie(RI, Inserted) = AnalysisResults.insert(std::make_pair(
944 std::make_pair(ID, &IR), typename AnalysisResultListT::iterator()));
945
946 // If we don't have a cached result for this function, look up the pass and
947 // run it to produce a result, which we then add to the cache.
948 if (Inserted) {
949 auto &P = this->lookUpPass(ID);
950 if (DebugLogging)
951 dbgs() << "Running analysis: " << P.name() << " on " << IR.getName()
952 << "\n";
953
954 PassInstrumentation PI;
955 if (ID != PassInstrumentationAnalysis::ID()) {
956 PI = getResult<PassInstrumentationAnalysis>(IR, ExtraArgs...);
957 PI.runBeforeAnalysis(P, IR);
958 }
959
960 AnalysisResultListT &ResultList = AnalysisResultLists[&IR];
961 ResultList.emplace_back(ID, P.run(IR, *this, ExtraArgs...));
962
963 PI.runAfterAnalysis(P, IR);
964
965 // P.run may have inserted elements into AnalysisResults and invalidated
966 // RI.
967 RI = AnalysisResults.find({ID, &IR});
968 assert(RI != AnalysisResults.end() && "we just inserted it!");
969
970 RI->second = std::prev(ResultList.end());
971 }
972
973 return *RI->second->second;
974 }
975
976 /// Get a cached analysis result or return null.
getCachedResultImpl(AnalysisKey * ID,IRUnitT & IR)977 ResultConceptT *getCachedResultImpl(AnalysisKey *ID, IRUnitT &IR) const {
978 typename AnalysisResultMapT::const_iterator RI =
979 AnalysisResults.find({ID, &IR});
980 return RI == AnalysisResults.end() ? nullptr : &*RI->second->second;
981 }
982
983 /// Invalidate a function pass result.
invalidateImpl(AnalysisKey * ID,IRUnitT & IR)984 void invalidateImpl(AnalysisKey *ID, IRUnitT &IR) {
985 typename AnalysisResultMapT::iterator RI =
986 AnalysisResults.find({ID, &IR});
987 if (RI == AnalysisResults.end())
988 return;
989
990 if (DebugLogging)
991 dbgs() << "Invalidating analysis: " << this->lookUpPass(ID).name()
992 << " on " << IR.getName() << "\n";
993 AnalysisResultLists[&IR].erase(RI->second);
994 AnalysisResults.erase(RI);
995 }
996
997 /// Map type from module analysis pass ID to pass concept pointer.
998 using AnalysisPassMapT =
999 DenseMap<AnalysisKey *, std::unique_ptr<PassConceptT>>;
1000
1001 /// Collection of module analysis passes, indexed by ID.
1002 AnalysisPassMapT AnalysisPasses;
1003
1004 /// Map from function to a list of function analysis results.
1005 ///
1006 /// Provides linear time removal of all analysis results for a function and
1007 /// the ultimate storage for a particular cached analysis result.
1008 AnalysisResultListMapT AnalysisResultLists;
1009
1010 /// Map from an analysis ID and function to a particular cached
1011 /// analysis result.
1012 AnalysisResultMapT AnalysisResults;
1013
1014 /// Indicates whether we log to \c llvm::dbgs().
1015 bool DebugLogging;
1016 };
1017
1018 extern template class AnalysisManager<Module>;
1019
1020 /// Convenience typedef for the Module analysis manager.
1021 using ModuleAnalysisManager = AnalysisManager<Module>;
1022
1023 extern template class AnalysisManager<Function>;
1024
1025 /// Convenience typedef for the Function analysis manager.
1026 using FunctionAnalysisManager = AnalysisManager<Function>;
1027
1028 /// An analysis over an "outer" IR unit that provides access to an
1029 /// analysis manager over an "inner" IR unit. The inner unit must be contained
1030 /// in the outer unit.
1031 ///
1032 /// For example, InnerAnalysisManagerProxy<FunctionAnalysisManager, Module> is
1033 /// an analysis over Modules (the "outer" unit) that provides access to a
1034 /// Function analysis manager. The FunctionAnalysisManager is the "inner"
1035 /// manager being proxied, and Functions are the "inner" unit. The inner/outer
1036 /// relationship is valid because each Function is contained in one Module.
1037 ///
1038 /// If you're (transitively) within a pass manager for an IR unit U that
1039 /// contains IR unit V, you should never use an analysis manager over V, except
1040 /// via one of these proxies.
1041 ///
1042 /// Note that the proxy's result is a move-only RAII object. The validity of
1043 /// the analyses in the inner analysis manager is tied to its lifetime.
1044 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1045 class InnerAnalysisManagerProxy
1046 : public AnalysisInfoMixin<
1047 InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>> {
1048 public:
1049 class Result {
1050 public:
Result(AnalysisManagerT & InnerAM)1051 explicit Result(AnalysisManagerT &InnerAM) : InnerAM(&InnerAM) {}
1052
Result(Result && Arg)1053 Result(Result &&Arg) : InnerAM(std::move(Arg.InnerAM)) {
1054 // We have to null out the analysis manager in the moved-from state
1055 // because we are taking ownership of the responsibilty to clear the
1056 // analysis state.
1057 Arg.InnerAM = nullptr;
1058 }
1059
~Result()1060 ~Result() {
1061 // InnerAM is cleared in a moved from state where there is nothing to do.
1062 if (!InnerAM)
1063 return;
1064
1065 // Clear out the analysis manager if we're being destroyed -- it means we
1066 // didn't even see an invalidate call when we got invalidated.
1067 InnerAM->clear();
1068 }
1069
1070 Result &operator=(Result &&RHS) {
1071 InnerAM = RHS.InnerAM;
1072 // We have to null out the analysis manager in the moved-from state
1073 // because we are taking ownership of the responsibilty to clear the
1074 // analysis state.
1075 RHS.InnerAM = nullptr;
1076 return *this;
1077 }
1078
1079 /// Accessor for the analysis manager.
getManager()1080 AnalysisManagerT &getManager() { return *InnerAM; }
1081
1082 /// Handler for invalidation of the outer IR unit, \c IRUnitT.
1083 ///
1084 /// If the proxy analysis itself is not preserved, we assume that the set of
1085 /// inner IR objects contained in IRUnit may have changed. In this case,
1086 /// we have to call \c clear() on the inner analysis manager, as it may now
1087 /// have stale pointers to its inner IR objects.
1088 ///
1089 /// Regardless of whether the proxy analysis is marked as preserved, all of
1090 /// the analyses in the inner analysis manager are potentially invalidated
1091 /// based on the set of preserved analyses.
1092 bool invalidate(
1093 IRUnitT &IR, const PreservedAnalyses &PA,
1094 typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv);
1095
1096 private:
1097 AnalysisManagerT *InnerAM;
1098 };
1099
InnerAnalysisManagerProxy(AnalysisManagerT & InnerAM)1100 explicit InnerAnalysisManagerProxy(AnalysisManagerT &InnerAM)
1101 : InnerAM(&InnerAM) {}
1102
1103 /// Run the analysis pass and create our proxy result object.
1104 ///
1105 /// This doesn't do any interesting work; it is primarily used to insert our
1106 /// proxy result object into the outer analysis cache so that we can proxy
1107 /// invalidation to the inner analysis manager.
run(IRUnitT & IR,AnalysisManager<IRUnitT,ExtraArgTs...> & AM,ExtraArgTs...)1108 Result run(IRUnitT &IR, AnalysisManager<IRUnitT, ExtraArgTs...> &AM,
1109 ExtraArgTs...) {
1110 return Result(*InnerAM);
1111 }
1112
1113 private:
1114 friend AnalysisInfoMixin<
1115 InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT>>;
1116
1117 static AnalysisKey Key;
1118
1119 AnalysisManagerT *InnerAM;
1120 };
1121
1122 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1123 AnalysisKey
1124 InnerAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
1125
1126 /// Provide the \c FunctionAnalysisManager to \c Module proxy.
1127 using FunctionAnalysisManagerModuleProxy =
1128 InnerAnalysisManagerProxy<FunctionAnalysisManager, Module>;
1129
1130 /// Specialization of the invalidate method for the \c
1131 /// FunctionAnalysisManagerModuleProxy's result.
1132 template <>
1133 bool FunctionAnalysisManagerModuleProxy::Result::invalidate(
1134 Module &M, const PreservedAnalyses &PA,
1135 ModuleAnalysisManager::Invalidator &Inv);
1136
1137 // Ensure the \c FunctionAnalysisManagerModuleProxy is provided as an extern
1138 // template.
1139 extern template class InnerAnalysisManagerProxy<FunctionAnalysisManager,
1140 Module>;
1141
1142 /// An analysis over an "inner" IR unit that provides access to an
1143 /// analysis manager over a "outer" IR unit. The inner unit must be contained
1144 /// in the outer unit.
1145 ///
1146 /// For example OuterAnalysisManagerProxy<ModuleAnalysisManager, Function> is an
1147 /// analysis over Functions (the "inner" unit) which provides access to a Module
1148 /// analysis manager. The ModuleAnalysisManager is the "outer" manager being
1149 /// proxied, and Modules are the "outer" IR unit. The inner/outer relationship
1150 /// is valid because each Function is contained in one Module.
1151 ///
1152 /// This proxy only exposes the const interface of the outer analysis manager,
1153 /// to indicate that you cannot cause an outer analysis to run from within an
1154 /// inner pass. Instead, you must rely on the \c getCachedResult API.
1155 ///
1156 /// This proxy doesn't manage invalidation in any way -- that is handled by the
1157 /// recursive return path of each layer of the pass manager. A consequence of
1158 /// this is the outer analyses may be stale. We invalidate the outer analyses
1159 /// only when we're done running passes over the inner IR units.
1160 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1161 class OuterAnalysisManagerProxy
1162 : public AnalysisInfoMixin<
1163 OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>> {
1164 public:
1165 /// Result proxy object for \c OuterAnalysisManagerProxy.
1166 class Result {
1167 public:
Result(const AnalysisManagerT & OuterAM)1168 explicit Result(const AnalysisManagerT &OuterAM) : OuterAM(&OuterAM) {}
1169
getManager()1170 const AnalysisManagerT &getManager() const { return *OuterAM; }
1171
1172 /// When invalidation occurs, remove any registered invalidation events.
invalidate(IRUnitT & IRUnit,const PreservedAnalyses & PA,typename AnalysisManager<IRUnitT,ExtraArgTs...>::Invalidator & Inv)1173 bool invalidate(
1174 IRUnitT &IRUnit, const PreservedAnalyses &PA,
1175 typename AnalysisManager<IRUnitT, ExtraArgTs...>::Invalidator &Inv) {
1176 // Loop over the set of registered outer invalidation mappings and if any
1177 // of them map to an analysis that is now invalid, clear it out.
1178 SmallVector<AnalysisKey *, 4> DeadKeys;
1179 for (auto &KeyValuePair : OuterAnalysisInvalidationMap) {
1180 AnalysisKey *OuterID = KeyValuePair.first;
1181 auto &InnerIDs = KeyValuePair.second;
1182 InnerIDs.erase(llvm::remove_if(InnerIDs, [&](AnalysisKey *InnerID) {
1183 return Inv.invalidate(InnerID, IRUnit, PA); }),
1184 InnerIDs.end());
1185 if (InnerIDs.empty())
1186 DeadKeys.push_back(OuterID);
1187 }
1188
1189 for (auto OuterID : DeadKeys)
1190 OuterAnalysisInvalidationMap.erase(OuterID);
1191
1192 // The proxy itself remains valid regardless of anything else.
1193 return false;
1194 }
1195
1196 /// Register a deferred invalidation event for when the outer analysis
1197 /// manager processes its invalidations.
1198 template <typename OuterAnalysisT, typename InvalidatedAnalysisT>
registerOuterAnalysisInvalidation()1199 void registerOuterAnalysisInvalidation() {
1200 AnalysisKey *OuterID = OuterAnalysisT::ID();
1201 AnalysisKey *InvalidatedID = InvalidatedAnalysisT::ID();
1202
1203 auto &InvalidatedIDList = OuterAnalysisInvalidationMap[OuterID];
1204 // Note, this is a linear scan. If we end up with large numbers of
1205 // analyses that all trigger invalidation on the same outer analysis,
1206 // this entire system should be changed to some other deterministic
1207 // data structure such as a `SetVector` of a pair of pointers.
1208 auto InvalidatedIt = std::find(InvalidatedIDList.begin(),
1209 InvalidatedIDList.end(), InvalidatedID);
1210 if (InvalidatedIt == InvalidatedIDList.end())
1211 InvalidatedIDList.push_back(InvalidatedID);
1212 }
1213
1214 /// Access the map from outer analyses to deferred invalidation requiring
1215 /// analyses.
1216 const SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2> &
getOuterInvalidations()1217 getOuterInvalidations() const {
1218 return OuterAnalysisInvalidationMap;
1219 }
1220
1221 private:
1222 const AnalysisManagerT *OuterAM;
1223
1224 /// A map from an outer analysis ID to the set of this IR-unit's analyses
1225 /// which need to be invalidated.
1226 SmallDenseMap<AnalysisKey *, TinyPtrVector<AnalysisKey *>, 2>
1227 OuterAnalysisInvalidationMap;
1228 };
1229
OuterAnalysisManagerProxy(const AnalysisManagerT & OuterAM)1230 OuterAnalysisManagerProxy(const AnalysisManagerT &OuterAM)
1231 : OuterAM(&OuterAM) {}
1232
1233 /// Run the analysis pass and create our proxy result object.
1234 /// Nothing to see here, it just forwards the \c OuterAM reference into the
1235 /// result.
run(IRUnitT &,AnalysisManager<IRUnitT,ExtraArgTs...> &,ExtraArgTs...)1236 Result run(IRUnitT &, AnalysisManager<IRUnitT, ExtraArgTs...> &,
1237 ExtraArgTs...) {
1238 return Result(*OuterAM);
1239 }
1240
1241 private:
1242 friend AnalysisInfoMixin<
1243 OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>>;
1244
1245 static AnalysisKey Key;
1246
1247 const AnalysisManagerT *OuterAM;
1248 };
1249
1250 template <typename AnalysisManagerT, typename IRUnitT, typename... ExtraArgTs>
1251 AnalysisKey
1252 OuterAnalysisManagerProxy<AnalysisManagerT, IRUnitT, ExtraArgTs...>::Key;
1253
1254 extern template class OuterAnalysisManagerProxy<ModuleAnalysisManager,
1255 Function>;
1256 /// Provide the \c ModuleAnalysisManager to \c Function proxy.
1257 using ModuleAnalysisManagerFunctionProxy =
1258 OuterAnalysisManagerProxy<ModuleAnalysisManager, Function>;
1259
1260 /// Trivial adaptor that maps from a module to its functions.
1261 ///
1262 /// Designed to allow composition of a FunctionPass(Manager) and
1263 /// a ModulePassManager, by running the FunctionPass(Manager) over every
1264 /// function in the module.
1265 ///
1266 /// Function passes run within this adaptor can rely on having exclusive access
1267 /// to the function they are run over. They should not read or modify any other
1268 /// functions! Other threads or systems may be manipulating other functions in
1269 /// the module, and so their state should never be relied on.
1270 /// FIXME: Make the above true for all of LLVM's actual passes, some still
1271 /// violate this principle.
1272 ///
1273 /// Function passes can also read the module containing the function, but they
1274 /// should not modify that module outside of the use lists of various globals.
1275 /// For example, a function pass is not permitted to add functions to the
1276 /// module.
1277 /// FIXME: Make the above true for all of LLVM's actual passes, some still
1278 /// violate this principle.
1279 ///
1280 /// Note that although function passes can access module analyses, module
1281 /// analyses are not invalidated while the function passes are running, so they
1282 /// may be stale. Function analyses will not be stale.
1283 template <typename FunctionPassT>
1284 class ModuleToFunctionPassAdaptor
1285 : public PassInfoMixin<ModuleToFunctionPassAdaptor<FunctionPassT>> {
1286 public:
ModuleToFunctionPassAdaptor(FunctionPassT Pass)1287 explicit ModuleToFunctionPassAdaptor(FunctionPassT Pass)
1288 : Pass(std::move(Pass)) {}
1289
1290 /// Runs the function pass across every function in the module.
run(Module & M,ModuleAnalysisManager & AM)1291 PreservedAnalyses run(Module &M, ModuleAnalysisManager &AM) {
1292 FunctionAnalysisManager &FAM =
1293 AM.getResult<FunctionAnalysisManagerModuleProxy>(M).getManager();
1294
1295 // Request PassInstrumentation from analysis manager, will use it to run
1296 // instrumenting callbacks for the passes later.
1297 PassInstrumentation PI = AM.getResult<PassInstrumentationAnalysis>(M);
1298
1299 PreservedAnalyses PA = PreservedAnalyses::all();
1300 for (Function &F : M) {
1301 if (F.isDeclaration())
1302 continue;
1303
1304 // Check the PassInstrumentation's BeforePass callbacks before running the
1305 // pass, skip its execution completely if asked to (callback returns
1306 // false).
1307 if (!PI.runBeforePass<Function>(Pass, F))
1308 continue;
1309 PreservedAnalyses PassPA = Pass.run(F, FAM);
1310
1311 PI.runAfterPass(Pass, F);
1312
1313 // We know that the function pass couldn't have invalidated any other
1314 // function's analyses (that's the contract of a function pass), so
1315 // directly handle the function analysis manager's invalidation here.
1316 FAM.invalidate(F, PassPA);
1317
1318 // Then intersect the preserved set so that invalidation of module
1319 // analyses will eventually occur when the module pass completes.
1320 PA.intersect(std::move(PassPA));
1321 }
1322
1323 // The FunctionAnalysisManagerModuleProxy is preserved because (we assume)
1324 // the function passes we ran didn't add or remove any functions.
1325 //
1326 // We also preserve all analyses on Functions, because we did all the
1327 // invalidation we needed to do above.
1328 PA.preserveSet<AllAnalysesOn<Function>>();
1329 PA.preserve<FunctionAnalysisManagerModuleProxy>();
1330 return PA;
1331 }
1332
1333 private:
1334 FunctionPassT Pass;
1335 };
1336
1337 /// A function to deduce a function pass type and wrap it in the
1338 /// templated adaptor.
1339 template <typename FunctionPassT>
1340 ModuleToFunctionPassAdaptor<FunctionPassT>
createModuleToFunctionPassAdaptor(FunctionPassT Pass)1341 createModuleToFunctionPassAdaptor(FunctionPassT Pass) {
1342 return ModuleToFunctionPassAdaptor<FunctionPassT>(std::move(Pass));
1343 }
1344
1345 /// A utility pass template to force an analysis result to be available.
1346 ///
1347 /// If there are extra arguments at the pass's run level there may also be
1348 /// extra arguments to the analysis manager's \c getResult routine. We can't
1349 /// guess how to effectively map the arguments from one to the other, and so
1350 /// this specialization just ignores them.
1351 ///
1352 /// Specific patterns of run-method extra arguments and analysis manager extra
1353 /// arguments will have to be defined as appropriate specializations.
1354 template <typename AnalysisT, typename IRUnitT,
1355 typename AnalysisManagerT = AnalysisManager<IRUnitT>,
1356 typename... ExtraArgTs>
1357 struct RequireAnalysisPass
1358 : PassInfoMixin<RequireAnalysisPass<AnalysisT, IRUnitT, AnalysisManagerT,
1359 ExtraArgTs...>> {
1360 /// Run this pass over some unit of IR.
1361 ///
1362 /// This pass can be run over any unit of IR and use any analysis manager
1363 /// provided they satisfy the basic API requirements. When this pass is
1364 /// created, these methods can be instantiated to satisfy whatever the
1365 /// context requires.
runRequireAnalysisPass1366 PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM,
1367 ExtraArgTs &&... Args) {
1368 (void)AM.template getResult<AnalysisT>(Arg,
1369 std::forward<ExtraArgTs>(Args)...);
1370
1371 return PreservedAnalyses::all();
1372 }
1373 };
1374
1375 /// A no-op pass template which simply forces a specific analysis result
1376 /// to be invalidated.
1377 template <typename AnalysisT>
1378 struct InvalidateAnalysisPass
1379 : PassInfoMixin<InvalidateAnalysisPass<AnalysisT>> {
1380 /// Run this pass over some unit of IR.
1381 ///
1382 /// This pass can be run over any unit of IR and use any analysis manager,
1383 /// provided they satisfy the basic API requirements. When this pass is
1384 /// created, these methods can be instantiated to satisfy whatever the
1385 /// context requires.
1386 template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
runInvalidateAnalysisPass1387 PreservedAnalyses run(IRUnitT &Arg, AnalysisManagerT &AM, ExtraArgTs &&...) {
1388 auto PA = PreservedAnalyses::all();
1389 PA.abandon<AnalysisT>();
1390 return PA;
1391 }
1392 };
1393
1394 /// A utility pass that does nothing, but preserves no analyses.
1395 ///
1396 /// Because this preserves no analyses, any analysis passes queried after this
1397 /// pass runs will recompute fresh results.
1398 struct InvalidateAllAnalysesPass : PassInfoMixin<InvalidateAllAnalysesPass> {
1399 /// Run this pass over some unit of IR.
1400 template <typename IRUnitT, typename AnalysisManagerT, typename... ExtraArgTs>
runInvalidateAllAnalysesPass1401 PreservedAnalyses run(IRUnitT &, AnalysisManagerT &, ExtraArgTs &&...) {
1402 return PreservedAnalyses::none();
1403 }
1404 };
1405
1406 /// A utility pass template that simply runs another pass multiple times.
1407 ///
1408 /// This can be useful when debugging or testing passes. It also serves as an
1409 /// example of how to extend the pass manager in ways beyond composition.
1410 template <typename PassT>
1411 class RepeatedPass : public PassInfoMixin<RepeatedPass<PassT>> {
1412 public:
RepeatedPass(int Count,PassT P)1413 RepeatedPass(int Count, PassT P) : Count(Count), P(std::move(P)) {}
1414
1415 template <typename IRUnitT, typename AnalysisManagerT, typename... Ts>
run(IRUnitT & IR,AnalysisManagerT & AM,Ts &&...Args)1416 PreservedAnalyses run(IRUnitT &IR, AnalysisManagerT &AM, Ts &&... Args) {
1417
1418 // Request PassInstrumentation from analysis manager, will use it to run
1419 // instrumenting callbacks for the passes later.
1420 // Here we use std::tuple wrapper over getResult which helps to extract
1421 // AnalysisManager's arguments out of the whole Args set.
1422 PassInstrumentation PI =
1423 detail::getAnalysisResult<PassInstrumentationAnalysis>(
1424 AM, IR, std::tuple<Ts...>(Args...));
1425
1426 auto PA = PreservedAnalyses::all();
1427 for (int i = 0; i < Count; ++i) {
1428 // Check the PassInstrumentation's BeforePass callbacks before running the
1429 // pass, skip its execution completely if asked to (callback returns
1430 // false).
1431 if (!PI.runBeforePass<IRUnitT>(P, IR))
1432 continue;
1433 PA.intersect(P.run(IR, AM, std::forward<Ts>(Args)...));
1434 PI.runAfterPass(P, IR);
1435 }
1436 return PA;
1437 }
1438
1439 private:
1440 int Count;
1441 PassT P;
1442 };
1443
1444 template <typename PassT>
createRepeatedPass(int Count,PassT P)1445 RepeatedPass<PassT> createRepeatedPass(int Count, PassT P) {
1446 return RepeatedPass<PassT>(Count, std::move(P));
1447 }
1448
1449 } // end namespace llvm
1450
1451 #endif // LLVM_IR_PASSMANAGER_H
1452