• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright © 2015 Thomas Helland
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  */
23 
24 #include "nir.h"
25 #include "nir_constant_expressions.h"
26 #include "nir_loop_analyze.h"
27 #include "util/bitset.h"
28 
29 typedef enum {
30    undefined,
31    invariant,
32    not_invariant,
33    basic_induction
34 } nir_loop_variable_type;
35 
36 typedef struct nir_basic_induction_var {
37    nir_alu_instr *alu;                      /* The def of the alu-operation */
38    nir_ssa_def *def_outside_loop;           /* The phi-src outside the loop */
39 } nir_basic_induction_var;
40 
41 typedef struct {
42    /* A link for the work list */
43    struct list_head process_link;
44 
45    bool in_loop;
46 
47    /* The ssa_def associated with this info */
48    nir_ssa_def *def;
49 
50    /* The type of this ssa_def */
51    nir_loop_variable_type type;
52 
53    /* If this is of type basic_induction */
54    struct nir_basic_induction_var *ind;
55 
56    /* True if variable is in an if branch */
57    bool in_if_branch;
58 
59    /* True if variable is in a nested loop */
60    bool in_nested_loop;
61 
62    /* Could be a basic_induction if following uniforms are inlined */
63    nir_src *init_src;
64    nir_alu_src *update_src;
65 } nir_loop_variable;
66 
67 typedef struct {
68    /* The loop we store information for */
69    nir_loop *loop;
70 
71    /* Loop_variable for all ssa_defs in function */
72    nir_loop_variable *loop_vars;
73    BITSET_WORD *loop_vars_init;
74 
75    /* A list of the loop_vars to analyze */
76    struct list_head process_list;
77 
78    nir_variable_mode indirect_mask;
79 
80    bool force_unroll_sampler_indirect;
81 } loop_info_state;
82 
83 static nir_loop_variable *
get_loop_var(nir_ssa_def * value,loop_info_state * state)84 get_loop_var(nir_ssa_def *value, loop_info_state *state)
85 {
86    nir_loop_variable *var = &(state->loop_vars[value->index]);
87 
88    if (!BITSET_TEST(state->loop_vars_init, value->index)) {
89       var->in_loop = false;
90       var->def = value;
91       var->in_if_branch = false;
92       var->in_nested_loop = false;
93       var->init_src = NULL;
94       var->update_src = NULL;
95       if (value->parent_instr->type == nir_instr_type_load_const)
96          var->type = invariant;
97       else
98          var->type = undefined;
99 
100       BITSET_SET(state->loop_vars_init, value->index);
101    }
102 
103    return var;
104 }
105 
106 typedef struct {
107    loop_info_state *state;
108    bool in_if_branch;
109    bool in_nested_loop;
110 } init_loop_state;
111 
112 static bool
init_loop_def(nir_ssa_def * def,void * void_init_loop_state)113 init_loop_def(nir_ssa_def *def, void *void_init_loop_state)
114 {
115    init_loop_state *loop_init_state = void_init_loop_state;
116    nir_loop_variable *var = get_loop_var(def, loop_init_state->state);
117 
118    if (loop_init_state->in_nested_loop) {
119       var->in_nested_loop = true;
120    } else if (loop_init_state->in_if_branch) {
121       var->in_if_branch = true;
122    } else {
123       /* Add to the tail of the list. That way we start at the beginning of
124        * the defs in the loop instead of the end when walking the list. This
125        * means less recursive calls. Only add defs that are not in nested
126        * loops or conditional blocks.
127        */
128       list_addtail(&var->process_link, &loop_init_state->state->process_list);
129    }
130 
131    var->in_loop = true;
132 
133    return true;
134 }
135 
136 /** Calculate an estimated cost in number of instructions
137  *
138  * We do this so that we don't unroll loops which will later get massively
139  * inflated due to int64 or fp64 lowering.  The estimates provided here don't
140  * have to be massively accurate; they just have to be good enough that loop
141  * unrolling doesn't cause things to blow up too much.
142  */
143 static unsigned
instr_cost(nir_instr * instr,const nir_shader_compiler_options * options)144 instr_cost(nir_instr *instr, const nir_shader_compiler_options *options)
145 {
146    if (instr->type == nir_instr_type_intrinsic ||
147        instr->type == nir_instr_type_tex)
148       return 1;
149 
150    if (instr->type != nir_instr_type_alu)
151       return 0;
152 
153    nir_alu_instr *alu = nir_instr_as_alu(instr);
154    const nir_op_info *info = &nir_op_infos[alu->op];
155    unsigned cost = 1;
156 
157    if (alu->op == nir_op_flrp) {
158       if ((options->lower_flrp16 && nir_dest_bit_size(alu->dest.dest) == 16) ||
159           (options->lower_flrp32 && nir_dest_bit_size(alu->dest.dest) == 32) ||
160           (options->lower_flrp64 && nir_dest_bit_size(alu->dest.dest) == 64))
161          cost *= 3;
162    }
163 
164    /* Assume everything 16 or 32-bit is cheap.
165     *
166     * There are no 64-bit ops that don't have a 64-bit thing as their
167     * destination or first source.
168     */
169    if (nir_dest_bit_size(alu->dest.dest) < 64 &&
170        nir_src_bit_size(alu->src[0].src) < 64)
171       return cost;
172 
173    bool is_fp64 = nir_dest_bit_size(alu->dest.dest) == 64 &&
174       nir_alu_type_get_base_type(info->output_type) == nir_type_float;
175    for (unsigned i = 0; i < info->num_inputs; i++) {
176       if (nir_src_bit_size(alu->src[i].src) == 64 &&
177           nir_alu_type_get_base_type(info->input_types[i]) == nir_type_float)
178          is_fp64 = true;
179    }
180 
181    if (is_fp64) {
182       /* If it's something lowered normally, it's expensive. */
183       if (options->lower_doubles_options &
184           nir_lower_doubles_op_to_options_mask(alu->op))
185          cost *= 20;
186 
187       /* If it's full software, it's even more expensive */
188       if (options->lower_doubles_options & nir_lower_fp64_full_software)
189          cost *= 100;
190 
191       return cost;
192    } else {
193       if (options->lower_int64_options &
194           nir_lower_int64_op_to_options_mask(alu->op)) {
195          /* These require a doing the division algorithm. */
196          if (alu->op == nir_op_idiv || alu->op == nir_op_udiv ||
197              alu->op == nir_op_imod || alu->op == nir_op_umod ||
198              alu->op == nir_op_irem)
199             return cost * 100;
200 
201          /* Other int64 lowering isn't usually all that expensive */
202          return cost * 5;
203       }
204 
205       return cost;
206    }
207 }
208 
209 static bool
init_loop_block(nir_block * block,loop_info_state * state,bool in_if_branch,bool in_nested_loop,const nir_shader_compiler_options * options)210 init_loop_block(nir_block *block, loop_info_state *state,
211                 bool in_if_branch, bool in_nested_loop,
212                 const nir_shader_compiler_options *options)
213 {
214    init_loop_state init_state = {.in_if_branch = in_if_branch,
215                                  .in_nested_loop = in_nested_loop,
216                                  .state = state };
217 
218    nir_foreach_instr(instr, block) {
219       state->loop->info->instr_cost += instr_cost(instr, options);
220       nir_foreach_ssa_def(instr, init_loop_def, &init_state);
221    }
222 
223    return true;
224 }
225 
226 static inline bool
is_var_alu(nir_loop_variable * var)227 is_var_alu(nir_loop_variable *var)
228 {
229    return var->def->parent_instr->type == nir_instr_type_alu;
230 }
231 
232 static inline bool
is_var_phi(nir_loop_variable * var)233 is_var_phi(nir_loop_variable *var)
234 {
235    return var->def->parent_instr->type == nir_instr_type_phi;
236 }
237 
238 static inline bool
mark_invariant(nir_ssa_def * def,loop_info_state * state)239 mark_invariant(nir_ssa_def *def, loop_info_state *state)
240 {
241    nir_loop_variable *var = get_loop_var(def, state);
242 
243    if (var->type == invariant)
244       return true;
245 
246    if (!var->in_loop) {
247       var->type = invariant;
248       return true;
249    }
250 
251    if (var->type == not_invariant)
252       return false;
253 
254    if (is_var_alu(var)) {
255       nir_alu_instr *alu = nir_instr_as_alu(def->parent_instr);
256 
257       for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
258          if (!mark_invariant(alu->src[i].src.ssa, state)) {
259             var->type = not_invariant;
260             return false;
261          }
262       }
263       var->type = invariant;
264       return true;
265    }
266 
267    /* Phis shouldn't be invariant except if one operand is invariant, and the
268     * other is the phi itself. These should be removed by opt_remove_phis.
269     * load_consts are already set to invariant and constant during init,
270     * and so should return earlier. Remaining op_codes are set undefined.
271     */
272    var->type = not_invariant;
273    return false;
274 }
275 
276 static void
compute_invariance_information(loop_info_state * state)277 compute_invariance_information(loop_info_state *state)
278 {
279    /* An expression is invariant in a loop L if:
280     *  (base cases)
281     *    – it’s a constant
282     *    – it’s a variable use, all of whose single defs are outside of L
283     *  (inductive cases)
284     *    – it’s a pure computation all of whose args are loop invariant
285     *    – it’s a variable use whose single reaching def, and the
286     *      rhs of that def is loop-invariant
287     */
288    list_for_each_entry_safe(nir_loop_variable, var, &state->process_list,
289                             process_link) {
290       assert(!var->in_if_branch && !var->in_nested_loop);
291 
292       if (mark_invariant(var->def, state))
293          list_del(&var->process_link);
294    }
295 }
296 
297 /* If all of the instruction sources point to identical ALU instructions (as
298  * per nir_instrs_equal), return one of the ALU instructions.  Otherwise,
299  * return NULL.
300  */
301 static nir_alu_instr *
phi_instr_as_alu(nir_phi_instr * phi)302 phi_instr_as_alu(nir_phi_instr *phi)
303 {
304    nir_alu_instr *first = NULL;
305    nir_foreach_phi_src(src, phi) {
306       assert(src->src.is_ssa);
307       if (src->src.ssa->parent_instr->type != nir_instr_type_alu)
308          return NULL;
309 
310       nir_alu_instr *alu = nir_instr_as_alu(src->src.ssa->parent_instr);
311       if (first == NULL) {
312          first = alu;
313       } else {
314          if (!nir_instrs_equal(&first->instr, &alu->instr))
315             return NULL;
316       }
317    }
318 
319    return first;
320 }
321 
322 static bool
alu_src_has_identity_swizzle(nir_alu_instr * alu,unsigned src_idx)323 alu_src_has_identity_swizzle(nir_alu_instr *alu, unsigned src_idx)
324 {
325    assert(nir_op_infos[alu->op].input_sizes[src_idx] == 0);
326    assert(alu->dest.dest.is_ssa);
327    for (unsigned i = 0; i < alu->dest.dest.ssa.num_components; i++) {
328       if (alu->src[src_idx].swizzle[i] != i)
329          return false;
330    }
331 
332    return true;
333 }
334 
335 static bool
is_only_uniform_src(nir_src * src)336 is_only_uniform_src(nir_src *src)
337 {
338    if (!src->is_ssa)
339       return false;
340 
341    nir_instr *instr = src->ssa->parent_instr;
342 
343    switch (instr->type) {
344    case nir_instr_type_alu: {
345       /* Return true if all sources return true. */
346       nir_alu_instr *alu = nir_instr_as_alu(instr);
347       for (unsigned i = 0; i < nir_op_infos[alu->op].num_inputs; i++) {
348          if (!is_only_uniform_src(&alu->src[i].src))
349              return false;
350       }
351       return true;
352    }
353 
354    case nir_instr_type_intrinsic: {
355       nir_intrinsic_instr *inst = nir_instr_as_intrinsic(instr);
356       /* current uniform inline only support load ubo */
357       return inst->intrinsic == nir_intrinsic_load_ubo;
358    }
359 
360    case nir_instr_type_load_const:
361       /* Always return true for constants. */
362       return true;
363 
364    default:
365       return false;
366    }
367 }
368 
369 static bool
compute_induction_information(loop_info_state * state)370 compute_induction_information(loop_info_state *state)
371 {
372    bool found_induction_var = false;
373    unsigned num_induction_vars = 0;
374 
375    list_for_each_entry_safe(nir_loop_variable, var, &state->process_list,
376                             process_link) {
377 
378       /* It can't be an induction variable if it is invariant. Invariants and
379        * things in nested loops or conditionals should have been removed from
380        * the list by compute_invariance_information().
381        */
382       assert(!var->in_if_branch && !var->in_nested_loop &&
383              var->type != invariant);
384 
385       /* We are only interested in checking phis for the basic induction
386        * variable case as its simple to detect. All basic induction variables
387        * have a phi node
388        */
389       if (!is_var_phi(var))
390          continue;
391 
392       nir_phi_instr *phi = nir_instr_as_phi(var->def->parent_instr);
393       nir_basic_induction_var *biv = rzalloc(state, nir_basic_induction_var);
394 
395       nir_src *init_src = NULL;
396       nir_loop_variable *alu_src_var = NULL;
397       nir_foreach_phi_src(src, phi) {
398          nir_loop_variable *src_var = get_loop_var(src->src.ssa, state);
399 
400          /* If one of the sources is in an if branch or nested loop then don't
401           * attempt to go any further.
402           */
403          if (src_var->in_if_branch || src_var->in_nested_loop)
404             break;
405 
406          /* Detect inductions variables that are incremented in both branches
407           * of an unnested if rather than in a loop block.
408           */
409          if (is_var_phi(src_var)) {
410             nir_phi_instr *src_phi =
411                nir_instr_as_phi(src_var->def->parent_instr);
412             nir_alu_instr *src_phi_alu = phi_instr_as_alu(src_phi);
413             if (src_phi_alu) {
414                src_var = get_loop_var(&src_phi_alu->dest.dest.ssa, state);
415                if (!src_var->in_if_branch)
416                   break;
417             }
418          }
419 
420          if (!src_var->in_loop && !biv->def_outside_loop) {
421             biv->def_outside_loop = src_var->def;
422             init_src = &src->src;
423          } else if (is_var_alu(src_var) && !biv->alu) {
424             alu_src_var = src_var;
425             nir_alu_instr *alu = nir_instr_as_alu(src_var->def->parent_instr);
426 
427             /* Check for unsupported alu operations */
428             if (alu->op != nir_op_iadd && alu->op != nir_op_fadd)
429                break;
430 
431             if (nir_op_infos[alu->op].num_inputs == 2) {
432                for (unsigned i = 0; i < 2; i++) {
433                   /* Is one of the operands const or uniform, and the other the phi.
434                    * The phi source can't be swizzled in any way.
435                    */
436                   if (alu->src[1-i].src.ssa == &phi->dest.ssa &&
437                       alu_src_has_identity_swizzle(alu, 1 - i)) {
438                      nir_src *src = &alu->src[i].src;
439                      if (nir_src_is_const(*src))
440                         biv->alu = alu;
441                      else if (is_only_uniform_src(src)) {
442                         /* Update value of induction variable is a statement
443                          * contains only uniform and constant
444                          */
445                         var->update_src = alu->src + i;
446                         biv->alu = alu;
447                      }
448                   }
449                }
450             }
451 
452             if (!biv->alu)
453                break;
454          } else {
455             biv->alu = NULL;
456             break;
457          }
458       }
459 
460       if (biv->alu && biv->def_outside_loop) {
461          nir_instr *inst = biv->def_outside_loop->parent_instr;
462          if (inst->type == nir_instr_type_load_const)  {
463             /* Initial value of induction variable is a constant */
464             if (var->update_src) {
465                alu_src_var->update_src = var->update_src;
466                ralloc_free(biv);
467             } else {
468                alu_src_var->type = basic_induction;
469                alu_src_var->ind = biv;
470                var->type = basic_induction;
471                var->ind = biv;
472 
473                found_induction_var = true;
474             }
475             num_induction_vars += 2;
476          } else if (is_only_uniform_src(init_src)) {
477             /* Initial value of induction variable is a uniform */
478             var->init_src = init_src;
479 
480             alu_src_var->init_src = var->init_src;
481             alu_src_var->update_src = var->update_src;
482 
483             num_induction_vars += 2;
484             ralloc_free(biv);
485          } else {
486             var->update_src = NULL;
487             ralloc_free(biv);
488          }
489       } else {
490          var->update_src = NULL;
491          ralloc_free(biv);
492       }
493    }
494 
495    nir_loop_info *info = state->loop->info;
496    ralloc_free(info->induction_vars);
497    info->num_induction_vars = 0;
498 
499    /* record induction variables into nir_loop_info */
500    if (num_induction_vars) {
501       info->induction_vars = ralloc_array(info, nir_loop_induction_variable,
502                                           num_induction_vars);
503 
504       list_for_each_entry(nir_loop_variable, var, &state->process_list,
505                           process_link) {
506          if (var->type == basic_induction || var->init_src || var->update_src) {
507             nir_loop_induction_variable *ivar =
508                &info->induction_vars[info->num_induction_vars++];
509              ivar->def = var->def;
510              ivar->init_src = var->init_src;
511              ivar->update_src = var->update_src;
512          }
513       }
514       /* don't overflow */
515       assert(info->num_induction_vars <= num_induction_vars);
516    }
517 
518    return found_induction_var;
519 }
520 
521 static bool
find_loop_terminators(loop_info_state * state)522 find_loop_terminators(loop_info_state *state)
523 {
524    bool success = false;
525    foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
526       if (node->type == nir_cf_node_if) {
527          nir_if *nif = nir_cf_node_as_if(node);
528 
529          nir_block *break_blk = NULL;
530          nir_block *continue_from_blk = NULL;
531          bool continue_from_then = true;
532 
533          nir_block *last_then = nir_if_last_then_block(nif);
534          nir_block *last_else = nir_if_last_else_block(nif);
535          if (nir_block_ends_in_break(last_then)) {
536             break_blk = last_then;
537             continue_from_blk = last_else;
538             continue_from_then = false;
539          } else if (nir_block_ends_in_break(last_else)) {
540             break_blk = last_else;
541             continue_from_blk = last_then;
542          }
543 
544          /* If there is a break then we should find a terminator. If we can
545           * not find a loop terminator, but there is a break-statement then
546           * we should return false so that we do not try to find trip-count
547           */
548          if (!nir_is_trivial_loop_if(nif, break_blk)) {
549             state->loop->info->complex_loop = true;
550             return false;
551          }
552 
553          /* Continue if the if contained no jumps at all */
554          if (!break_blk)
555             continue;
556 
557          if (nif->condition.ssa->parent_instr->type == nir_instr_type_phi) {
558             state->loop->info->complex_loop = true;
559             return false;
560          }
561 
562          nir_loop_terminator *terminator =
563             rzalloc(state->loop->info, nir_loop_terminator);
564 
565          list_addtail(&terminator->loop_terminator_link,
566                       &state->loop->info->loop_terminator_list);
567 
568          terminator->nif = nif;
569          terminator->break_block = break_blk;
570          terminator->continue_from_block = continue_from_blk;
571          terminator->continue_from_then = continue_from_then;
572          terminator->conditional_instr = nif->condition.ssa->parent_instr;
573 
574          success = true;
575       }
576    }
577 
578    return success;
579 }
580 
581 /* This function looks for an array access within a loop that uses an
582  * induction variable for the array index. If found it returns the size of the
583  * array, otherwise 0 is returned. If we find an induction var we pass it back
584  * to the caller via array_index_out.
585  */
586 static unsigned
find_array_access_via_induction(loop_info_state * state,nir_deref_instr * deref,nir_loop_variable ** array_index_out)587 find_array_access_via_induction(loop_info_state *state,
588                                 nir_deref_instr *deref,
589                                 nir_loop_variable **array_index_out)
590 {
591    for (nir_deref_instr *d = deref; d; d = nir_deref_instr_parent(d)) {
592       if (d->deref_type != nir_deref_type_array)
593          continue;
594 
595       assert(d->arr.index.is_ssa);
596       nir_loop_variable *array_index = get_loop_var(d->arr.index.ssa, state);
597 
598       if (array_index->type != basic_induction)
599          continue;
600 
601       if (array_index_out)
602          *array_index_out = array_index;
603 
604       nir_deref_instr *parent = nir_deref_instr_parent(d);
605 
606       if (glsl_type_is_array_or_matrix(parent->type)) {
607          return glsl_get_length(parent->type);
608       } else {
609          assert(glsl_type_is_vector(parent->type));
610          return glsl_get_vector_elements(parent->type);
611       }
612    }
613 
614    return 0;
615 }
616 
617 static bool
guess_loop_limit(loop_info_state * state,nir_const_value * limit_val,nir_ssa_scalar basic_ind)618 guess_loop_limit(loop_info_state *state, nir_const_value *limit_val,
619                  nir_ssa_scalar basic_ind)
620 {
621    unsigned min_array_size = 0;
622 
623    nir_foreach_block_in_cf_node(block, &state->loop->cf_node) {
624       nir_foreach_instr(instr, block) {
625          if (instr->type != nir_instr_type_intrinsic)
626             continue;
627 
628          nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
629 
630          /* Check for arrays variably-indexed by a loop induction variable. */
631          if (intrin->intrinsic == nir_intrinsic_load_deref ||
632              intrin->intrinsic == nir_intrinsic_store_deref ||
633              intrin->intrinsic == nir_intrinsic_copy_deref) {
634 
635             nir_loop_variable *array_idx = NULL;
636             unsigned array_size =
637                find_array_access_via_induction(state,
638                                                nir_src_as_deref(intrin->src[0]),
639                                                &array_idx);
640             if (array_idx && basic_ind.def == array_idx->def &&
641                 (min_array_size == 0 || min_array_size > array_size)) {
642                /* Array indices are scalars */
643                assert(basic_ind.def->num_components == 1);
644                min_array_size = array_size;
645             }
646 
647             if (intrin->intrinsic != nir_intrinsic_copy_deref)
648                continue;
649 
650             array_size =
651                find_array_access_via_induction(state,
652                                                nir_src_as_deref(intrin->src[1]),
653                                                &array_idx);
654             if (array_idx && basic_ind.def == array_idx->def &&
655                 (min_array_size == 0 || min_array_size > array_size)) {
656                /* Array indices are scalars */
657                assert(basic_ind.def->num_components == 1);
658                min_array_size = array_size;
659             }
660          }
661       }
662    }
663 
664    if (min_array_size) {
665       *limit_val = nir_const_value_for_uint(min_array_size,
666                                             basic_ind.def->bit_size);
667       return true;
668    }
669 
670    return false;
671 }
672 
673 static bool
try_find_limit_of_alu(nir_ssa_scalar limit,nir_const_value * limit_val,nir_loop_terminator * terminator,loop_info_state * state)674 try_find_limit_of_alu(nir_ssa_scalar limit, nir_const_value *limit_val,
675                       nir_loop_terminator *terminator, loop_info_state *state)
676 {
677    if (!nir_ssa_scalar_is_alu(limit))
678       return false;
679 
680    nir_op limit_op = nir_ssa_scalar_alu_op(limit);
681    if (limit_op == nir_op_imin || limit_op == nir_op_fmin) {
682       for (unsigned i = 0; i < 2; i++) {
683          nir_ssa_scalar src = nir_ssa_scalar_chase_alu_src(limit, i);
684          if (nir_ssa_scalar_is_const(src)) {
685             *limit_val = nir_ssa_scalar_as_const_value(src);
686             terminator->exact_trip_count_unknown = true;
687             return true;
688          }
689       }
690    }
691 
692    return false;
693 }
694 
695 static nir_const_value
eval_const_unop(nir_op op,unsigned bit_size,nir_const_value src0,unsigned execution_mode)696 eval_const_unop(nir_op op, unsigned bit_size, nir_const_value src0,
697                 unsigned execution_mode)
698 {
699    assert(nir_op_infos[op].num_inputs == 1);
700    nir_const_value dest;
701    nir_const_value *src[1] = { &src0 };
702    nir_eval_const_opcode(op, &dest, 1, bit_size, src, execution_mode);
703    return dest;
704 }
705 
706 static nir_const_value
eval_const_binop(nir_op op,unsigned bit_size,nir_const_value src0,nir_const_value src1,unsigned execution_mode)707 eval_const_binop(nir_op op, unsigned bit_size,
708                  nir_const_value src0, nir_const_value src1,
709                  unsigned execution_mode)
710 {
711    assert(nir_op_infos[op].num_inputs == 2);
712    nir_const_value dest;
713    nir_const_value *src[2] = { &src0, &src1 };
714    nir_eval_const_opcode(op, &dest, 1, bit_size, src, execution_mode);
715    return dest;
716 }
717 
718 static int32_t
get_iteration(nir_op cond_op,nir_const_value initial,nir_const_value step,nir_const_value limit,unsigned bit_size,unsigned execution_mode)719 get_iteration(nir_op cond_op, nir_const_value initial, nir_const_value step,
720               nir_const_value limit, unsigned bit_size,
721               unsigned execution_mode)
722 {
723    nir_const_value span, iter;
724 
725    switch (cond_op) {
726    case nir_op_ige:
727    case nir_op_ilt:
728    case nir_op_ieq:
729    case nir_op_ine:
730       span = eval_const_binop(nir_op_isub, bit_size, limit, initial,
731                               execution_mode);
732       iter = eval_const_binop(nir_op_idiv, bit_size, span, step,
733                               execution_mode);
734       break;
735 
736    case nir_op_uge:
737    case nir_op_ult:
738       span = eval_const_binop(nir_op_isub, bit_size, limit, initial,
739                               execution_mode);
740       iter = eval_const_binop(nir_op_udiv, bit_size, span, step,
741                               execution_mode);
742       break;
743 
744    case nir_op_fge:
745    case nir_op_flt:
746    case nir_op_feq:
747    case nir_op_fneu:
748       span = eval_const_binop(nir_op_fsub, bit_size, limit, initial,
749                               execution_mode);
750       iter = eval_const_binop(nir_op_fdiv, bit_size, span,
751                               step, execution_mode);
752       iter = eval_const_unop(nir_op_f2i64, bit_size, iter, execution_mode);
753       break;
754 
755    default:
756       return -1;
757    }
758 
759    uint64_t iter_u64 = nir_const_value_as_uint(iter, bit_size);
760    return iter_u64 > INT_MAX ? -1 : (int)iter_u64;
761 }
762 
763 static bool
will_break_on_first_iteration(nir_const_value step,nir_alu_type induction_base_type,unsigned trip_offset,nir_op cond_op,unsigned bit_size,nir_const_value initial,nir_const_value limit,bool limit_rhs,bool invert_cond,unsigned execution_mode)764 will_break_on_first_iteration(nir_const_value step,
765                               nir_alu_type induction_base_type,
766                               unsigned trip_offset,
767                               nir_op cond_op, unsigned bit_size,
768                               nir_const_value initial,
769                               nir_const_value limit,
770                               bool limit_rhs, bool invert_cond,
771                               unsigned execution_mode)
772 {
773    if (trip_offset == 1) {
774       nir_op add_op;
775       switch (induction_base_type) {
776       case nir_type_float:
777          add_op = nir_op_fadd;
778          break;
779       case nir_type_int:
780       case nir_type_uint:
781          add_op = nir_op_iadd;
782          break;
783       default:
784          unreachable("Unhandled induction variable base type!");
785       }
786 
787       initial = eval_const_binop(add_op, bit_size, initial, step,
788                                  execution_mode);
789    }
790 
791    nir_const_value *src[2];
792    src[limit_rhs ? 0 : 1] = &initial;
793    src[limit_rhs ? 1 : 0] = &limit;
794 
795    /* Evaluate the loop exit condition */
796    nir_const_value result;
797    nir_eval_const_opcode(cond_op, &result, 1, bit_size, src, execution_mode);
798 
799    return invert_cond ? !result.b : result.b;
800 }
801 
802 static bool
test_iterations(int32_t iter_int,nir_const_value step,nir_const_value limit,nir_op cond_op,unsigned bit_size,nir_alu_type induction_base_type,nir_const_value initial,bool limit_rhs,bool invert_cond,unsigned execution_mode)803 test_iterations(int32_t iter_int, nir_const_value step,
804                 nir_const_value limit, nir_op cond_op, unsigned bit_size,
805                 nir_alu_type induction_base_type,
806                 nir_const_value initial, bool limit_rhs, bool invert_cond,
807                 unsigned execution_mode)
808 {
809    assert(nir_op_infos[cond_op].num_inputs == 2);
810 
811    nir_const_value iter_src;
812    nir_op mul_op;
813    nir_op add_op;
814    switch (induction_base_type) {
815    case nir_type_float:
816       iter_src = nir_const_value_for_float(iter_int, bit_size);
817       mul_op = nir_op_fmul;
818       add_op = nir_op_fadd;
819       break;
820    case nir_type_int:
821    case nir_type_uint:
822       iter_src = nir_const_value_for_int(iter_int, bit_size);
823       mul_op = nir_op_imul;
824       add_op = nir_op_iadd;
825       break;
826    default:
827       unreachable("Unhandled induction variable base type!");
828    }
829 
830    /* Multiple the iteration count we are testing by the number of times we
831     * step the induction variable each iteration.
832     */
833    nir_const_value mul_result =
834       eval_const_binop(mul_op, bit_size, iter_src, step, execution_mode);
835 
836    /* Add the initial value to the accumulated induction variable total */
837    nir_const_value add_result =
838       eval_const_binop(add_op, bit_size, mul_result, initial, execution_mode);
839 
840    nir_const_value *src[2];
841    src[limit_rhs ? 0 : 1] = &add_result;
842    src[limit_rhs ? 1 : 0] = &limit;
843 
844    /* Evaluate the loop exit condition */
845    nir_const_value result;
846    nir_eval_const_opcode(cond_op, &result, 1, bit_size, src, execution_mode);
847 
848    return invert_cond ? !result.b : result.b;
849 }
850 
851 static int
calculate_iterations(nir_const_value initial,nir_const_value step,nir_const_value limit,nir_alu_instr * alu,nir_ssa_scalar cond,nir_op alu_op,bool limit_rhs,bool invert_cond,unsigned execution_mode)852 calculate_iterations(nir_const_value initial, nir_const_value step,
853                      nir_const_value limit, nir_alu_instr *alu,
854                      nir_ssa_scalar cond, nir_op alu_op, bool limit_rhs,
855                      bool invert_cond, unsigned execution_mode)
856 {
857    /* nir_op_isub should have been lowered away by this point */
858    assert(alu->op != nir_op_isub);
859 
860    /* Make sure the alu type for our induction variable is compatible with the
861     * conditional alus input type. If its not something has gone really wrong.
862     */
863    nir_alu_type induction_base_type =
864       nir_alu_type_get_base_type(nir_op_infos[alu->op].output_type);
865    if (induction_base_type == nir_type_int || induction_base_type == nir_type_uint) {
866       assert(nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[1]) == nir_type_int ||
867              nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[1]) == nir_type_uint);
868    } else {
869       assert(nir_alu_type_get_base_type(nir_op_infos[alu_op].input_types[0]) ==
870              induction_base_type);
871    }
872 
873    /* Only variable with these update ops were marked as induction. */
874    assert(alu->op == nir_op_iadd || alu->op == nir_op_fadd);
875 
876    /* do-while loops can increment the starting value before the condition is
877     * checked. e.g.
878     *
879     *    do {
880     *        ndx++;
881     *     } while (ndx < 3);
882     *
883     * Here we check if the induction variable is used directly by the loop
884     * condition and if so we assume we need to step the initial value.
885     */
886    unsigned trip_offset = 0;
887    nir_alu_instr *cond_alu = nir_instr_as_alu(cond.def->parent_instr);
888    if (cond_alu->src[0].src.ssa == &alu->dest.dest.ssa ||
889        cond_alu->src[1].src.ssa == &alu->dest.dest.ssa) {
890       trip_offset = 1;
891    }
892 
893    assert(nir_src_bit_size(alu->src[0].src) ==
894           nir_src_bit_size(alu->src[1].src));
895    unsigned bit_size = nir_src_bit_size(alu->src[0].src);
896 
897    /* get_iteration works under assumption that iterator will be
898     * incremented or decremented until it hits the limit,
899     * however if the loop condition is false on the first iteration
900     * get_iteration's assumption is broken. Handle such loops first.
901     */
902    if (will_break_on_first_iteration(step, induction_base_type, trip_offset,
903                                      alu_op, bit_size, initial,
904                                      limit, limit_rhs, invert_cond,
905                                      execution_mode)) {
906       return 0;
907    }
908 
909    int iter_int = get_iteration(alu_op, initial, step, limit, bit_size,
910                                 execution_mode);
911 
912    /* If iter_int is negative the loop is ill-formed or is the conditional is
913     * unsigned with a huge iteration count so don't bother going any further.
914     */
915    if (iter_int < 0)
916       return -1;
917 
918    /* An explanation from the GLSL unrolling pass:
919     *
920     * Make sure that the calculated number of iterations satisfies the exit
921     * condition.  This is needed to catch off-by-one errors and some types of
922     * ill-formed loops.  For example, we need to detect that the following
923     * loop does not have a maximum iteration count.
924     *
925     *    for (float x = 0.0; x != 0.9; x += 0.2);
926     */
927    for (int bias = -1; bias <= 1; bias++) {
928       const int iter_bias = iter_int + bias;
929 
930       if (test_iterations(iter_bias, step, limit, alu_op, bit_size,
931                           induction_base_type, initial,
932                           limit_rhs, invert_cond, execution_mode)) {
933          return iter_bias > 0 ? iter_bias - trip_offset : iter_bias;
934       }
935    }
936 
937    return -1;
938 }
939 
940 static nir_op
inverse_comparison(nir_op alu_op)941 inverse_comparison(nir_op alu_op)
942 {
943    switch (alu_op) {
944    case nir_op_fge:
945       return nir_op_flt;
946    case nir_op_ige:
947       return nir_op_ilt;
948    case nir_op_uge:
949       return nir_op_ult;
950    case nir_op_flt:
951       return nir_op_fge;
952    case nir_op_ilt:
953       return nir_op_ige;
954    case nir_op_ult:
955       return nir_op_uge;
956    case nir_op_feq:
957       return nir_op_fneu;
958    case nir_op_ieq:
959       return nir_op_ine;
960    case nir_op_fneu:
961       return nir_op_feq;
962    case nir_op_ine:
963       return nir_op_ieq;
964    default:
965       unreachable("Unsuported comparison!");
966    }
967 }
968 
969 static bool
get_induction_and_limit_vars(nir_ssa_scalar cond,nir_ssa_scalar * ind,nir_ssa_scalar * limit,bool * limit_rhs,loop_info_state * state)970 get_induction_and_limit_vars(nir_ssa_scalar cond,
971                              nir_ssa_scalar *ind,
972                              nir_ssa_scalar *limit,
973                              bool *limit_rhs,
974                              loop_info_state *state)
975 {
976    nir_ssa_scalar rhs, lhs;
977    lhs = nir_ssa_scalar_chase_alu_src(cond, 0);
978    rhs = nir_ssa_scalar_chase_alu_src(cond, 1);
979 
980    if (get_loop_var(lhs.def, state)->type == basic_induction) {
981       *ind = lhs;
982       *limit = rhs;
983       *limit_rhs = true;
984       return true;
985    } else if (get_loop_var(rhs.def, state)->type == basic_induction) {
986       *ind = rhs;
987       *limit = lhs;
988       *limit_rhs = false;
989       return true;
990    } else {
991       return false;
992    }
993 }
994 
995 static bool
try_find_trip_count_vars_in_iand(nir_ssa_scalar * cond,nir_ssa_scalar * ind,nir_ssa_scalar * limit,bool * limit_rhs,loop_info_state * state)996 try_find_trip_count_vars_in_iand(nir_ssa_scalar *cond,
997                                  nir_ssa_scalar *ind,
998                                  nir_ssa_scalar *limit,
999                                  bool *limit_rhs,
1000                                  loop_info_state *state)
1001 {
1002    const nir_op alu_op = nir_ssa_scalar_alu_op(*cond);
1003    assert(alu_op == nir_op_ieq || alu_op == nir_op_inot);
1004 
1005    nir_ssa_scalar iand = nir_ssa_scalar_chase_alu_src(*cond, 0);
1006 
1007    if (alu_op == nir_op_ieq) {
1008       nir_ssa_scalar zero = nir_ssa_scalar_chase_alu_src(*cond, 1);
1009 
1010       if (!nir_ssa_scalar_is_alu(iand) || !nir_ssa_scalar_is_const(zero)) {
1011          /* Maybe we had it the wrong way, flip things around */
1012          nir_ssa_scalar tmp = zero;
1013          zero = iand;
1014          iand = tmp;
1015 
1016          /* If we still didn't find what we need then return */
1017          if (!nir_ssa_scalar_is_const(zero))
1018             return false;
1019       }
1020 
1021       /* If the loop is not breaking on (x && y) == 0 then return */
1022       if (nir_ssa_scalar_as_uint(zero) != 0)
1023          return false;
1024    }
1025 
1026    if (!nir_ssa_scalar_is_alu(iand))
1027       return false;
1028 
1029    if (nir_ssa_scalar_alu_op(iand) != nir_op_iand)
1030       return false;
1031 
1032    /* Check if iand src is a terminator condition and try get induction var
1033     * and trip limit var.
1034     */
1035    bool found_induction_var = false;
1036    for (unsigned i = 0; i < 2; i++) {
1037       nir_ssa_scalar src = nir_ssa_scalar_chase_alu_src(iand, i);
1038       if (nir_is_supported_terminator_condition(src) &&
1039           get_induction_and_limit_vars(src, ind, limit, limit_rhs, state)) {
1040          *cond = src;
1041          found_induction_var = true;
1042 
1043          /* If we've found one with a constant limit, stop. */
1044          if (nir_ssa_scalar_is_const(*limit))
1045             return true;
1046       }
1047    }
1048 
1049    return found_induction_var;
1050 }
1051 
1052 /* Run through each of the terminators of the loop and try to infer a possible
1053  * trip-count. We need to check them all, and set the lowest trip-count as the
1054  * trip-count of our loop. If one of the terminators has an undecidable
1055  * trip-count we can not safely assume anything about the duration of the
1056  * loop.
1057  */
1058 static void
find_trip_count(loop_info_state * state,unsigned execution_mode)1059 find_trip_count(loop_info_state *state, unsigned execution_mode)
1060 {
1061    bool trip_count_known = true;
1062    bool guessed_trip_count = false;
1063    nir_loop_terminator *limiting_terminator = NULL;
1064    int max_trip_count = -1;
1065 
1066    list_for_each_entry(nir_loop_terminator, terminator,
1067                        &state->loop->info->loop_terminator_list,
1068                        loop_terminator_link) {
1069       assert(terminator->nif->condition.is_ssa);
1070       nir_ssa_scalar cond = { terminator->nif->condition.ssa, 0 };
1071 
1072       if (!nir_ssa_scalar_is_alu(cond)) {
1073          /* If we get here the loop is dead and will get cleaned up by the
1074           * nir_opt_dead_cf pass.
1075           */
1076          trip_count_known = false;
1077          terminator->exact_trip_count_unknown = true;
1078          continue;
1079       }
1080 
1081       nir_op alu_op = nir_ssa_scalar_alu_op(cond);
1082 
1083       bool limit_rhs;
1084       nir_ssa_scalar basic_ind = { NULL, 0 };
1085       nir_ssa_scalar limit;
1086       if ((alu_op == nir_op_inot || alu_op == nir_op_ieq) &&
1087           try_find_trip_count_vars_in_iand(&cond, &basic_ind, &limit,
1088                                            &limit_rhs, state)) {
1089 
1090          /* The loop is exiting on (x && y) == 0 so we need to get the
1091           * inverse of x or y (i.e. which ever contained the induction var) in
1092           * order to compute the trip count.
1093           */
1094          alu_op = inverse_comparison(nir_ssa_scalar_alu_op(cond));
1095          trip_count_known = false;
1096          terminator->exact_trip_count_unknown = true;
1097       }
1098 
1099       if (!basic_ind.def) {
1100          if (nir_is_supported_terminator_condition(cond)) {
1101             get_induction_and_limit_vars(cond, &basic_ind,
1102                                          &limit, &limit_rhs, state);
1103          }
1104       }
1105 
1106       /* The comparison has to have a basic induction variable for us to be
1107        * able to find trip counts.
1108        */
1109       if (!basic_ind.def) {
1110          trip_count_known = false;
1111          terminator->exact_trip_count_unknown = true;
1112          continue;
1113       }
1114 
1115       terminator->induction_rhs = !limit_rhs;
1116 
1117       /* Attempt to find a constant limit for the loop */
1118       nir_const_value limit_val;
1119       if (nir_ssa_scalar_is_const(limit)) {
1120          limit_val = nir_ssa_scalar_as_const_value(limit);
1121       } else {
1122          trip_count_known = false;
1123 
1124          if (!try_find_limit_of_alu(limit, &limit_val, terminator, state)) {
1125             /* Guess loop limit based on array access */
1126             if (!guess_loop_limit(state, &limit_val, basic_ind)) {
1127                terminator->exact_trip_count_unknown = true;
1128                continue;
1129             }
1130 
1131             guessed_trip_count = true;
1132          }
1133       }
1134 
1135       /* We have determined that we have the following constants:
1136        * (With the typical int i = 0; i < x; i++; as an example)
1137        *    - Upper limit.
1138        *    - Starting value
1139        *    - Step / iteration size
1140        * Thats all thats needed to calculate the trip-count
1141        */
1142 
1143       nir_basic_induction_var *ind_var =
1144          get_loop_var(basic_ind.def, state)->ind;
1145 
1146       /* The basic induction var might be a vector but, because we guarantee
1147        * earlier that the phi source has a scalar swizzle, we can take the
1148        * component from basic_ind.
1149        */
1150       nir_ssa_scalar initial_s = { ind_var->def_outside_loop, basic_ind.comp };
1151       nir_ssa_scalar alu_s = { &ind_var->alu->dest.dest.ssa, basic_ind.comp };
1152 
1153       nir_const_value initial_val = nir_ssa_scalar_as_const_value(initial_s);
1154 
1155       /* We are guaranteed by earlier code that at least one of these sources
1156        * is a constant but we don't know which.
1157        */
1158       nir_const_value step_val;
1159       memset(&step_val, 0, sizeof(step_val));
1160       UNUSED bool found_step_value = false;
1161       assert(nir_op_infos[ind_var->alu->op].num_inputs == 2);
1162       for (unsigned i = 0; i < 2; i++) {
1163          nir_ssa_scalar alu_src = nir_ssa_scalar_chase_alu_src(alu_s, i);
1164          if (nir_ssa_scalar_is_const(alu_src)) {
1165             found_step_value = true;
1166             step_val = nir_ssa_scalar_as_const_value(alu_src);
1167             break;
1168          }
1169       }
1170       assert(found_step_value);
1171 
1172       int iterations = calculate_iterations(initial_val, step_val, limit_val,
1173                                             ind_var->alu, cond,
1174                                             alu_op, limit_rhs,
1175                                             terminator->continue_from_then,
1176                                             execution_mode);
1177 
1178       /* Where we not able to calculate the iteration count */
1179       if (iterations == -1) {
1180          trip_count_known = false;
1181          guessed_trip_count = false;
1182          terminator->exact_trip_count_unknown = true;
1183          continue;
1184       }
1185 
1186       if (guessed_trip_count) {
1187          guessed_trip_count = false;
1188          terminator->exact_trip_count_unknown = true;
1189          if (state->loop->info->guessed_trip_count == 0 ||
1190              state->loop->info->guessed_trip_count > iterations)
1191             state->loop->info->guessed_trip_count = iterations;
1192 
1193          continue;
1194       }
1195 
1196       /* If this is the first run or we have found a smaller amount of
1197        * iterations than previously (we have identified a more limiting
1198        * terminator) set the trip count and limiting terminator.
1199        */
1200       if (max_trip_count == -1 || iterations < max_trip_count) {
1201          max_trip_count = iterations;
1202          limiting_terminator = terminator;
1203       }
1204    }
1205 
1206    state->loop->info->exact_trip_count_known = trip_count_known;
1207    if (max_trip_count > -1)
1208       state->loop->info->max_trip_count = max_trip_count;
1209    state->loop->info->limiting_terminator = limiting_terminator;
1210 }
1211 
1212 static bool
force_unroll_array_access(loop_info_state * state,nir_deref_instr * deref,bool contains_sampler)1213 force_unroll_array_access(loop_info_state *state, nir_deref_instr *deref,
1214                           bool contains_sampler)
1215 {
1216    unsigned array_size = find_array_access_via_induction(state, deref, NULL);
1217    if (array_size) {
1218       if ((array_size == state->loop->info->max_trip_count) &&
1219           nir_deref_mode_must_be(deref, nir_var_shader_in |
1220                                         nir_var_shader_out |
1221                                         nir_var_shader_temp |
1222                                         nir_var_function_temp))
1223          return true;
1224 
1225       if (nir_deref_mode_must_be(deref, state->indirect_mask))
1226          return true;
1227 
1228       if (contains_sampler && state->force_unroll_sampler_indirect)
1229          return true;
1230    }
1231 
1232    return false;
1233 }
1234 
1235 static bool
force_unroll_heuristics(loop_info_state * state,nir_block * block)1236 force_unroll_heuristics(loop_info_state *state, nir_block *block)
1237 {
1238    nir_foreach_instr(instr, block) {
1239       if (instr->type == nir_instr_type_tex) {
1240          nir_tex_instr *tex_instr = nir_instr_as_tex(instr);
1241          int sampler_idx =
1242             nir_tex_instr_src_index(tex_instr,
1243                                     nir_tex_src_sampler_deref);
1244 
1245 
1246          if (sampler_idx >= 0) {
1247             nir_deref_instr *deref =
1248                nir_instr_as_deref(tex_instr->src[sampler_idx].src.ssa->parent_instr);
1249             if (force_unroll_array_access(state, deref, true))
1250                return true;
1251          }
1252       }
1253 
1254 
1255       if (instr->type != nir_instr_type_intrinsic)
1256          continue;
1257 
1258       nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr);
1259 
1260       /* Check for arrays variably-indexed by a loop induction variable.
1261        * Unrolling the loop may convert that access into constant-indexing.
1262        */
1263       if (intrin->intrinsic == nir_intrinsic_load_deref ||
1264           intrin->intrinsic == nir_intrinsic_store_deref ||
1265           intrin->intrinsic == nir_intrinsic_copy_deref) {
1266          if (force_unroll_array_access(state,
1267                                        nir_src_as_deref(intrin->src[0]),
1268                                        false))
1269             return true;
1270 
1271          if (intrin->intrinsic == nir_intrinsic_copy_deref &&
1272              force_unroll_array_access(state,
1273                                        nir_src_as_deref(intrin->src[1]),
1274                                        false))
1275             return true;
1276       }
1277    }
1278 
1279    return false;
1280 }
1281 
1282 static void
get_loop_info(loop_info_state * state,nir_function_impl * impl)1283 get_loop_info(loop_info_state *state, nir_function_impl *impl)
1284 {
1285    nir_shader *shader = impl->function->shader;
1286    const nir_shader_compiler_options *options = shader->options;
1287 
1288    /* Add all entries in the outermost part of the loop to the processing list
1289     * Mark the entries in conditionals or in nested loops accordingly
1290     */
1291    foreach_list_typed_safe(nir_cf_node, node, node, &state->loop->body) {
1292       switch (node->type) {
1293 
1294       case nir_cf_node_block:
1295          init_loop_block(nir_cf_node_as_block(node), state,
1296                          false, false, options);
1297          break;
1298 
1299       case nir_cf_node_if:
1300          nir_foreach_block_in_cf_node(block, node)
1301             init_loop_block(block, state, true, false, options);
1302          break;
1303 
1304       case nir_cf_node_loop:
1305          nir_foreach_block_in_cf_node(block, node) {
1306             init_loop_block(block, state, false, true, options);
1307          }
1308          break;
1309 
1310       case nir_cf_node_function:
1311          break;
1312       }
1313    }
1314 
1315    /* Try to find all simple terminators of the loop. If we can't find any,
1316     * or we find possible terminators that have side effects then bail.
1317     */
1318    if (!find_loop_terminators(state)) {
1319       list_for_each_entry_safe(nir_loop_terminator, terminator,
1320                                &state->loop->info->loop_terminator_list,
1321                                loop_terminator_link) {
1322          list_del(&terminator->loop_terminator_link);
1323          ralloc_free(terminator);
1324       }
1325       return;
1326    }
1327 
1328    /* Induction analysis needs invariance information so get that first */
1329    compute_invariance_information(state);
1330 
1331    /* We have invariance information so try to find induction variables */
1332    if (!compute_induction_information(state))
1333       return;
1334 
1335    /* Run through each of the terminators and try to compute a trip-count */
1336    find_trip_count(state, impl->function->shader->info.float_controls_execution_mode);
1337 
1338    nir_foreach_block_in_cf_node(block, &state->loop->cf_node) {
1339       if (force_unroll_heuristics(state, block)) {
1340          state->loop->info->force_unroll = true;
1341          break;
1342       }
1343    }
1344 }
1345 
1346 static loop_info_state *
initialize_loop_info_state(nir_loop * loop,void * mem_ctx,nir_function_impl * impl)1347 initialize_loop_info_state(nir_loop *loop, void *mem_ctx,
1348                            nir_function_impl *impl)
1349 {
1350    loop_info_state *state = rzalloc(mem_ctx, loop_info_state);
1351    state->loop_vars = ralloc_array(mem_ctx, nir_loop_variable,
1352                                    impl->ssa_alloc);
1353    state->loop_vars_init = rzalloc_array(mem_ctx, BITSET_WORD,
1354                                          BITSET_WORDS(impl->ssa_alloc));
1355    state->loop = loop;
1356 
1357    list_inithead(&state->process_list);
1358 
1359    if (loop->info)
1360      ralloc_free(loop->info);
1361 
1362    loop->info = rzalloc(loop, nir_loop_info);
1363 
1364    list_inithead(&loop->info->loop_terminator_list);
1365 
1366    return state;
1367 }
1368 
1369 static void
process_loops(nir_cf_node * cf_node,nir_variable_mode indirect_mask,bool force_unroll_sampler_indirect)1370 process_loops(nir_cf_node *cf_node, nir_variable_mode indirect_mask,
1371               bool force_unroll_sampler_indirect)
1372 {
1373    switch (cf_node->type) {
1374    case nir_cf_node_block:
1375       return;
1376    case nir_cf_node_if: {
1377       nir_if *if_stmt = nir_cf_node_as_if(cf_node);
1378       foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->then_list)
1379          process_loops(nested_node, indirect_mask, force_unroll_sampler_indirect);
1380       foreach_list_typed(nir_cf_node, nested_node, node, &if_stmt->else_list)
1381          process_loops(nested_node, indirect_mask, force_unroll_sampler_indirect);
1382       return;
1383    }
1384    case nir_cf_node_loop: {
1385       nir_loop *loop = nir_cf_node_as_loop(cf_node);
1386       foreach_list_typed(nir_cf_node, nested_node, node, &loop->body)
1387          process_loops(nested_node, indirect_mask, force_unroll_sampler_indirect);
1388       break;
1389    }
1390    default:
1391       unreachable("unknown cf node type");
1392    }
1393 
1394    nir_loop *loop = nir_cf_node_as_loop(cf_node);
1395    nir_function_impl *impl = nir_cf_node_get_function(cf_node);
1396    void *mem_ctx = ralloc_context(NULL);
1397 
1398    loop_info_state *state = initialize_loop_info_state(loop, mem_ctx, impl);
1399    state->indirect_mask = indirect_mask;
1400    state->force_unroll_sampler_indirect = force_unroll_sampler_indirect;
1401 
1402    get_loop_info(state, impl);
1403 
1404    ralloc_free(mem_ctx);
1405 }
1406 
1407 void
nir_loop_analyze_impl(nir_function_impl * impl,nir_variable_mode indirect_mask,bool force_unroll_sampler_indirect)1408 nir_loop_analyze_impl(nir_function_impl *impl,
1409                       nir_variable_mode indirect_mask,
1410                       bool force_unroll_sampler_indirect)
1411 {
1412    nir_index_ssa_defs(impl);
1413    foreach_list_typed(nir_cf_node, node, node, &impl->body)
1414       process_loops(node, indirect_mask, force_unroll_sampler_indirect);
1415 }
1416