• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  *  linux/mm/page_alloc.c
4  *
5  *  Manages the free list, the system allocates free pages here.
6  *  Note that kmalloc() lives in slab.c
7  *
8  *  Copyright (C) 1991, 1992, 1993, 1994  Linus Torvalds
9  *  Swap reorganised 29.12.95, Stephen Tweedie
10  *  Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
11  *  Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
12  *  Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
13  *  Zone balancing, Kanoj Sarcar, SGI, Jan 2000
14  *  Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
15  *          (lots of bits borrowed from Ingo Molnar & Andrew Morton)
16  */
17 
18 #include <linux/stddef.h>
19 #include <linux/mm.h>
20 #include <linux/highmem.h>
21 #include <linux/swap.h>
22 #include <linux/interrupt.h>
23 #include <linux/pagemap.h>
24 #include <linux/jiffies.h>
25 #include <linux/memblock.h>
26 #include <linux/compiler.h>
27 #include <linux/kernel.h>
28 #include <linux/kasan.h>
29 #include <linux/module.h>
30 #include <linux/suspend.h>
31 #include <linux/pagevec.h>
32 #include <linux/blkdev.h>
33 #include <linux/slab.h>
34 #include <linux/ratelimit.h>
35 #include <linux/oom.h>
36 #include <linux/topology.h>
37 #include <linux/sysctl.h>
38 #include <linux/cpu.h>
39 #include <linux/cpuset.h>
40 #include <linux/memory_hotplug.h>
41 #include <linux/nodemask.h>
42 #include <linux/vmalloc.h>
43 #include <linux/vmstat.h>
44 #include <linux/mempolicy.h>
45 #include <linux/memremap.h>
46 #include <linux/stop_machine.h>
47 #include <linux/random.h>
48 #include <linux/sort.h>
49 #include <linux/pfn.h>
50 #include <linux/backing-dev.h>
51 #include <linux/fault-inject.h>
52 #include <linux/page-isolation.h>
53 #include <linux/debugobjects.h>
54 #include <linux/kmemleak.h>
55 #include <linux/compaction.h>
56 #include <trace/events/kmem.h>
57 #include <trace/events/oom.h>
58 #include <linux/prefetch.h>
59 #include <linux/mm_inline.h>
60 #include <linux/migrate.h>
61 #include <linux/hugetlb.h>
62 #include <linux/sched/rt.h>
63 #include <linux/sched/mm.h>
64 #include <linux/page_owner.h>
65 #include <linux/kthread.h>
66 #include <linux/memcontrol.h>
67 #include <linux/ftrace.h>
68 #include <linux/lockdep.h>
69 #include <linux/nmi.h>
70 #include <linux/psi.h>
71 #include <linux/padata.h>
72 #include <linux/khugepaged.h>
73 #include <linux/zswapd.h>
74 #ifdef CONFIG_RECLAIM_ACCT
75 #include <linux/reclaim_acct.h>
76 #endif
77 
78 #include <asm/sections.h>
79 #include <asm/tlbflush.h>
80 #include <asm/div64.h>
81 #include "internal.h"
82 #include "shuffle.h"
83 #include "page_reporting.h"
84 
85 /* Free Page Internal flags: for internal, non-pcp variants of free_pages(). */
86 typedef int __bitwise fpi_t;
87 
88 /* No special request */
89 #define FPI_NONE		((__force fpi_t)0)
90 
91 /*
92  * Skip free page reporting notification for the (possibly merged) page.
93  * This does not hinder free page reporting from grabbing the page,
94  * reporting it and marking it "reported" -  it only skips notifying
95  * the free page reporting infrastructure about a newly freed page. For
96  * example, used when temporarily pulling a page from a freelist and
97  * putting it back unmodified.
98  */
99 #define FPI_SKIP_REPORT_NOTIFY	((__force fpi_t)BIT(0))
100 
101 /*
102  * Place the (possibly merged) page to the tail of the freelist. Will ignore
103  * page shuffling (relevant code - e.g., memory onlining - is expected to
104  * shuffle the whole zone).
105  *
106  * Note: No code should rely on this flag for correctness - it's purely
107  *       to allow for optimizations when handing back either fresh pages
108  *       (memory onlining) or untouched pages (page isolation, free page
109  *       reporting).
110  */
111 #define FPI_TO_TAIL		((__force fpi_t)BIT(1))
112 
113 /* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
114 static DEFINE_MUTEX(pcp_batch_high_lock);
115 #define MIN_PERCPU_PAGELIST_FRACTION	(8)
116 
117 #ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
118 DEFINE_PER_CPU(int, numa_node);
119 EXPORT_PER_CPU_SYMBOL(numa_node);
120 #endif
121 
122 DEFINE_STATIC_KEY_TRUE(vm_numa_stat_key);
123 
124 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
125 /*
126  * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
127  * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
128  * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
129  * defined in <linux/topology.h>.
130  */
131 DEFINE_PER_CPU(int, _numa_mem_);		/* Kernel "local memory" node */
132 EXPORT_PER_CPU_SYMBOL(_numa_mem_);
133 #endif
134 
135 /* work_structs for global per-cpu drains */
136 struct pcpu_drain {
137 	struct zone *zone;
138 	struct work_struct work;
139 };
140 static DEFINE_MUTEX(pcpu_drain_mutex);
141 static DEFINE_PER_CPU(struct pcpu_drain, pcpu_drain);
142 
143 #ifdef CONFIG_GCC_PLUGIN_LATENT_ENTROPY
144 volatile unsigned long latent_entropy __latent_entropy;
145 EXPORT_SYMBOL(latent_entropy);
146 #endif
147 
148 /*
149  * Array of node states.
150  */
151 nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
152 	[N_POSSIBLE] = NODE_MASK_ALL,
153 	[N_ONLINE] = { { [0] = 1UL } },
154 #ifndef CONFIG_NUMA
155 	[N_NORMAL_MEMORY] = { { [0] = 1UL } },
156 #ifdef CONFIG_HIGHMEM
157 	[N_HIGH_MEMORY] = { { [0] = 1UL } },
158 #endif
159 	[N_MEMORY] = { { [0] = 1UL } },
160 	[N_CPU] = { { [0] = 1UL } },
161 #endif	/* NUMA */
162 };
163 EXPORT_SYMBOL(node_states);
164 
165 atomic_long_t _totalram_pages __read_mostly;
166 EXPORT_SYMBOL(_totalram_pages);
167 unsigned long totalreserve_pages __read_mostly;
168 unsigned long totalcma_pages __read_mostly;
169 
170 int percpu_pagelist_fraction;
171 gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
172 #ifdef CONFIG_INIT_ON_ALLOC_DEFAULT_ON
173 DEFINE_STATIC_KEY_TRUE(init_on_alloc);
174 #else
175 DEFINE_STATIC_KEY_FALSE(init_on_alloc);
176 #endif
177 EXPORT_SYMBOL(init_on_alloc);
178 
179 #ifdef CONFIG_INIT_ON_FREE_DEFAULT_ON
180 DEFINE_STATIC_KEY_TRUE(init_on_free);
181 #else
182 DEFINE_STATIC_KEY_FALSE(init_on_free);
183 #endif
184 EXPORT_SYMBOL(init_on_free);
185 
early_init_on_alloc(char * buf)186 static int __init early_init_on_alloc(char *buf)
187 {
188 	int ret;
189 	bool bool_result;
190 
191 	ret = kstrtobool(buf, &bool_result);
192 	if (ret)
193 		return ret;
194 	if (bool_result && page_poisoning_enabled())
195 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_alloc\n");
196 	if (bool_result)
197 		static_branch_enable(&init_on_alloc);
198 	else
199 		static_branch_disable(&init_on_alloc);
200 	return 0;
201 }
202 early_param("init_on_alloc", early_init_on_alloc);
203 
early_init_on_free(char * buf)204 static int __init early_init_on_free(char *buf)
205 {
206 	int ret;
207 	bool bool_result;
208 
209 	ret = kstrtobool(buf, &bool_result);
210 	if (ret)
211 		return ret;
212 	if (bool_result && page_poisoning_enabled())
213 		pr_info("mem auto-init: CONFIG_PAGE_POISONING is on, will take precedence over init_on_free\n");
214 	if (bool_result)
215 		static_branch_enable(&init_on_free);
216 	else
217 		static_branch_disable(&init_on_free);
218 	return 0;
219 }
220 early_param("init_on_free", early_init_on_free);
221 
222 /*
223  * A cached value of the page's pageblock's migratetype, used when the page is
224  * put on a pcplist. Used to avoid the pageblock migratetype lookup when
225  * freeing from pcplists in most cases, at the cost of possibly becoming stale.
226  * Also the migratetype set in the page does not necessarily match the pcplist
227  * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
228  * other index - this ensures that it will be put on the correct CMA freelist.
229  */
get_pcppage_migratetype(struct page * page)230 static inline int get_pcppage_migratetype(struct page *page)
231 {
232 	return page->index;
233 }
234 
set_pcppage_migratetype(struct page * page,int migratetype)235 static inline void set_pcppage_migratetype(struct page *page, int migratetype)
236 {
237 	page->index = migratetype;
238 }
239 
240 #ifdef CONFIG_PM_SLEEP
241 /*
242  * The following functions are used by the suspend/hibernate code to temporarily
243  * change gfp_allowed_mask in order to avoid using I/O during memory allocations
244  * while devices are suspended.  To avoid races with the suspend/hibernate code,
245  * they should always be called with system_transition_mutex held
246  * (gfp_allowed_mask also should only be modified with system_transition_mutex
247  * held, unless the suspend/hibernate code is guaranteed not to run in parallel
248  * with that modification).
249  */
250 
251 static gfp_t saved_gfp_mask;
252 
pm_restore_gfp_mask(void)253 void pm_restore_gfp_mask(void)
254 {
255 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
256 	if (saved_gfp_mask) {
257 		gfp_allowed_mask = saved_gfp_mask;
258 		saved_gfp_mask = 0;
259 	}
260 }
261 
pm_restrict_gfp_mask(void)262 void pm_restrict_gfp_mask(void)
263 {
264 	WARN_ON(!mutex_is_locked(&system_transition_mutex));
265 	WARN_ON(saved_gfp_mask);
266 	saved_gfp_mask = gfp_allowed_mask;
267 	gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
268 }
269 
pm_suspended_storage(void)270 bool pm_suspended_storage(void)
271 {
272 	if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
273 		return false;
274 	return true;
275 }
276 #endif /* CONFIG_PM_SLEEP */
277 
278 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
279 unsigned int pageblock_order __read_mostly;
280 #endif
281 
282 static void __free_pages_ok(struct page *page, unsigned int order,
283 			    fpi_t fpi_flags);
284 
285 /*
286  * results with 256, 32 in the lowmem_reserve sysctl:
287  *	1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
288  *	1G machine -> (16M dma, 784M normal, 224M high)
289  *	NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
290  *	HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
291  *	HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
292  *
293  * TBD: should special case ZONE_DMA32 machines here - in those we normally
294  * don't need any ZONE_NORMAL reservation
295  */
296 int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES] = {
297 #ifdef CONFIG_ZONE_DMA
298 	[ZONE_DMA] = 256,
299 #endif
300 #ifdef CONFIG_ZONE_DMA32
301 	[ZONE_DMA32] = 256,
302 #endif
303 	[ZONE_NORMAL] = 32,
304 #ifdef CONFIG_HIGHMEM
305 	[ZONE_HIGHMEM] = 0,
306 #endif
307 	[ZONE_MOVABLE] = 0,
308 };
309 
310 static char * const zone_names[MAX_NR_ZONES] = {
311 #ifdef CONFIG_ZONE_DMA
312 	 "DMA",
313 #endif
314 #ifdef CONFIG_ZONE_DMA32
315 	 "DMA32",
316 #endif
317 	 "Normal",
318 #ifdef CONFIG_HIGHMEM
319 	 "HighMem",
320 #endif
321 	 "Movable",
322 #ifdef CONFIG_ZONE_DEVICE
323 	 "Device",
324 #endif
325 };
326 
327 const char * const migratetype_names[MIGRATE_TYPES] = {
328 	"Unmovable",
329 	"Movable",
330 	"Reclaimable",
331 #ifdef CONFIG_CMA_REUSE
332 	"CMA",
333 #endif
334 	"HighAtomic",
335 #if defined(CONFIG_CMA) && !defined(CONFIG_CMA_REUSE)
336 	"CMA",
337 #endif
338 #ifdef CONFIG_MEMORY_ISOLATION
339 	"Isolate",
340 #endif
341 };
342 
343 compound_page_dtor * const compound_page_dtors[NR_COMPOUND_DTORS] = {
344 	[NULL_COMPOUND_DTOR] = NULL,
345 	[COMPOUND_PAGE_DTOR] = free_compound_page,
346 #ifdef CONFIG_HUGETLB_PAGE
347 	[HUGETLB_PAGE_DTOR] = free_huge_page,
348 #endif
349 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
350 	[TRANSHUGE_PAGE_DTOR] = free_transhuge_page,
351 #endif
352 };
353 
354 int min_free_kbytes = 1024;
355 int user_min_free_kbytes = -1;
356 #ifdef CONFIG_DISCONTIGMEM
357 /*
358  * DiscontigMem defines memory ranges as separate pg_data_t even if the ranges
359  * are not on separate NUMA nodes. Functionally this works but with
360  * watermark_boost_factor, it can reclaim prematurely as the ranges can be
361  * quite small. By default, do not boost watermarks on discontigmem as in
362  * many cases very high-order allocations like THP are likely to be
363  * unsupported and the premature reclaim offsets the advantage of long-term
364  * fragmentation avoidance.
365  */
366 int watermark_boost_factor __read_mostly;
367 #else
368 int watermark_boost_factor __read_mostly = 15000;
369 #endif
370 int watermark_scale_factor = 10;
371 
372 static unsigned long nr_kernel_pages __initdata;
373 static unsigned long nr_all_pages __initdata;
374 static unsigned long dma_reserve __initdata;
375 
376 static unsigned long arch_zone_lowest_possible_pfn[MAX_NR_ZONES] __initdata;
377 static unsigned long arch_zone_highest_possible_pfn[MAX_NR_ZONES] __initdata;
378 static unsigned long required_kernelcore __initdata;
379 static unsigned long required_kernelcore_percent __initdata;
380 static unsigned long required_movablecore __initdata;
381 static unsigned long required_movablecore_percent __initdata;
382 static unsigned long zone_movable_pfn[MAX_NUMNODES] __initdata;
383 static bool mirrored_kernelcore __meminitdata;
384 
385 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
386 int movable_zone;
387 EXPORT_SYMBOL(movable_zone);
388 
389 #if MAX_NUMNODES > 1
390 unsigned int nr_node_ids __read_mostly = MAX_NUMNODES;
391 unsigned int nr_online_nodes __read_mostly = 1;
392 EXPORT_SYMBOL(nr_node_ids);
393 EXPORT_SYMBOL(nr_online_nodes);
394 #endif
395 
396 int page_group_by_mobility_disabled __read_mostly;
397 
398 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
399 /*
400  * During boot we initialize deferred pages on-demand, as needed, but once
401  * page_alloc_init_late() has finished, the deferred pages are all initialized,
402  * and we can permanently disable that path.
403  */
404 static DEFINE_STATIC_KEY_TRUE(deferred_pages);
405 
406 /*
407  * Calling kasan_free_pages() only after deferred memory initialization
408  * has completed. Poisoning pages during deferred memory init will greatly
409  * lengthen the process and cause problem in large memory systems as the
410  * deferred pages initialization is done with interrupt disabled.
411  *
412  * Assuming that there will be no reference to those newly initialized
413  * pages before they are ever allocated, this should have no effect on
414  * KASAN memory tracking as the poison will be properly inserted at page
415  * allocation time. The only corner case is when pages are allocated by
416  * on-demand allocation and then freed again before the deferred pages
417  * initialization is done, but this is not likely to happen.
418  */
kasan_free_nondeferred_pages(struct page * page,int order)419 static inline void kasan_free_nondeferred_pages(struct page *page, int order)
420 {
421 	if (!static_branch_unlikely(&deferred_pages))
422 		kasan_free_pages(page, order);
423 }
424 
425 /* Returns true if the struct page for the pfn is uninitialised */
early_page_uninitialised(unsigned long pfn)426 static inline bool __meminit early_page_uninitialised(unsigned long pfn)
427 {
428 	int nid = early_pfn_to_nid(pfn);
429 
430 	if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
431 		return true;
432 
433 	return false;
434 }
435 
436 /*
437  * Returns true when the remaining initialisation should be deferred until
438  * later in the boot cycle when it can be parallelised.
439  */
440 static bool __meminit
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)441 defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
442 {
443 	static unsigned long prev_end_pfn, nr_initialised;
444 
445 	/*
446 	 * prev_end_pfn static that contains the end of previous zone
447 	 * No need to protect because called very early in boot before smp_init.
448 	 */
449 	if (prev_end_pfn != end_pfn) {
450 		prev_end_pfn = end_pfn;
451 		nr_initialised = 0;
452 	}
453 
454 	/* Always populate low zones for address-constrained allocations */
455 	if (end_pfn < pgdat_end_pfn(NODE_DATA(nid)))
456 		return false;
457 
458 	if (NODE_DATA(nid)->first_deferred_pfn != ULONG_MAX)
459 		return true;
460 	/*
461 	 * We start only with one section of pages, more pages are added as
462 	 * needed until the rest of deferred pages are initialized.
463 	 */
464 	nr_initialised++;
465 	if ((nr_initialised > PAGES_PER_SECTION) &&
466 	    (pfn & (PAGES_PER_SECTION - 1)) == 0) {
467 		NODE_DATA(nid)->first_deferred_pfn = pfn;
468 		return true;
469 	}
470 	return false;
471 }
472 #else
473 #define kasan_free_nondeferred_pages(p, o)	kasan_free_pages(p, o)
474 
early_page_uninitialised(unsigned long pfn)475 static inline bool early_page_uninitialised(unsigned long pfn)
476 {
477 	return false;
478 }
479 
defer_init(int nid,unsigned long pfn,unsigned long end_pfn)480 static inline bool defer_init(int nid, unsigned long pfn, unsigned long end_pfn)
481 {
482 	return false;
483 }
484 #endif
485 
486 /* Return a pointer to the bitmap storing bits affecting a block of pages */
get_pageblock_bitmap(struct page * page,unsigned long pfn)487 static inline unsigned long *get_pageblock_bitmap(struct page *page,
488 							unsigned long pfn)
489 {
490 #ifdef CONFIG_SPARSEMEM
491 	return section_to_usemap(__pfn_to_section(pfn));
492 #else
493 	return page_zone(page)->pageblock_flags;
494 #endif /* CONFIG_SPARSEMEM */
495 }
496 
pfn_to_bitidx(struct page * page,unsigned long pfn)497 static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
498 {
499 #ifdef CONFIG_SPARSEMEM
500 	pfn &= (PAGES_PER_SECTION-1);
501 #else
502 	pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
503 #endif /* CONFIG_SPARSEMEM */
504 	return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
505 }
506 
507 /**
508  * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
509  * @page: The page within the block of interest
510  * @pfn: The target page frame number
511  * @mask: mask of bits that the caller is interested in
512  *
513  * Return: pageblock_bits flags
514  */
515 static __always_inline
__get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long mask)516 unsigned long __get_pfnblock_flags_mask(struct page *page,
517 					unsigned long pfn,
518 					unsigned long mask)
519 {
520 	unsigned long *bitmap;
521 	unsigned long bitidx, word_bitidx;
522 	unsigned long word;
523 
524 	bitmap = get_pageblock_bitmap(page, pfn);
525 	bitidx = pfn_to_bitidx(page, pfn);
526 	word_bitidx = bitidx / BITS_PER_LONG;
527 	bitidx &= (BITS_PER_LONG-1);
528 
529 	word = bitmap[word_bitidx];
530 	return (word >> bitidx) & mask;
531 }
532 
get_pfnblock_flags_mask(struct page * page,unsigned long pfn,unsigned long mask)533 unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
534 					unsigned long mask)
535 {
536 	return __get_pfnblock_flags_mask(page, pfn, mask);
537 }
538 
get_pfnblock_migratetype(struct page * page,unsigned long pfn)539 static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
540 {
541 	return __get_pfnblock_flags_mask(page, pfn, MIGRATETYPE_MASK);
542 }
543 
544 /**
545  * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
546  * @page: The page within the block of interest
547  * @flags: The flags to set
548  * @pfn: The target page frame number
549  * @mask: mask of bits that the caller is interested in
550  */
set_pfnblock_flags_mask(struct page * page,unsigned long flags,unsigned long pfn,unsigned long mask)551 void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
552 					unsigned long pfn,
553 					unsigned long mask)
554 {
555 	unsigned long *bitmap;
556 	unsigned long bitidx, word_bitidx;
557 	unsigned long old_word, word;
558 
559 	BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
560 	BUILD_BUG_ON(MIGRATE_TYPES > (1 << PB_migratetype_bits));
561 
562 	bitmap = get_pageblock_bitmap(page, pfn);
563 	bitidx = pfn_to_bitidx(page, pfn);
564 	word_bitidx = bitidx / BITS_PER_LONG;
565 	bitidx &= (BITS_PER_LONG-1);
566 
567 	VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
568 
569 	mask <<= bitidx;
570 	flags <<= bitidx;
571 
572 	word = READ_ONCE(bitmap[word_bitidx]);
573 	for (;;) {
574 		old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
575 		if (word == old_word)
576 			break;
577 		word = old_word;
578 	}
579 }
580 
set_pageblock_migratetype(struct page * page,int migratetype)581 void set_pageblock_migratetype(struct page *page, int migratetype)
582 {
583 	if (unlikely(page_group_by_mobility_disabled &&
584 		     migratetype < MIGRATE_PCPTYPES))
585 		migratetype = MIGRATE_UNMOVABLE;
586 
587 	set_pfnblock_flags_mask(page, (unsigned long)migratetype,
588 				page_to_pfn(page), MIGRATETYPE_MASK);
589 }
590 
591 #ifdef CONFIG_DEBUG_VM
page_outside_zone_boundaries(struct zone * zone,struct page * page)592 static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
593 {
594 	int ret = 0;
595 	unsigned seq;
596 	unsigned long pfn = page_to_pfn(page);
597 	unsigned long sp, start_pfn;
598 
599 	do {
600 		seq = zone_span_seqbegin(zone);
601 		start_pfn = zone->zone_start_pfn;
602 		sp = zone->spanned_pages;
603 		if (!zone_spans_pfn(zone, pfn))
604 			ret = 1;
605 	} while (zone_span_seqretry(zone, seq));
606 
607 	if (ret)
608 		pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
609 			pfn, zone_to_nid(zone), zone->name,
610 			start_pfn, start_pfn + sp);
611 
612 	return ret;
613 }
614 
page_is_consistent(struct zone * zone,struct page * page)615 static int page_is_consistent(struct zone *zone, struct page *page)
616 {
617 	if (!pfn_valid_within(page_to_pfn(page)))
618 		return 0;
619 	if (zone != page_zone(page))
620 		return 0;
621 
622 	return 1;
623 }
624 /*
625  * Temporary debugging check for pages not lying within a given zone.
626  */
bad_range(struct zone * zone,struct page * page)627 static int __maybe_unused bad_range(struct zone *zone, struct page *page)
628 {
629 	if (page_outside_zone_boundaries(zone, page))
630 		return 1;
631 	if (!page_is_consistent(zone, page))
632 		return 1;
633 
634 	return 0;
635 }
636 #else
bad_range(struct zone * zone,struct page * page)637 static inline int __maybe_unused bad_range(struct zone *zone, struct page *page)
638 {
639 	return 0;
640 }
641 #endif
642 
bad_page(struct page * page,const char * reason)643 static void bad_page(struct page *page, const char *reason)
644 {
645 	static unsigned long resume;
646 	static unsigned long nr_shown;
647 	static unsigned long nr_unshown;
648 
649 	/*
650 	 * Allow a burst of 60 reports, then keep quiet for that minute;
651 	 * or allow a steady drip of one report per second.
652 	 */
653 	if (nr_shown == 60) {
654 		if (time_before(jiffies, resume)) {
655 			nr_unshown++;
656 			goto out;
657 		}
658 		if (nr_unshown) {
659 			pr_alert(
660 			      "BUG: Bad page state: %lu messages suppressed\n",
661 				nr_unshown);
662 			nr_unshown = 0;
663 		}
664 		nr_shown = 0;
665 	}
666 	if (nr_shown++ == 0)
667 		resume = jiffies + 60 * HZ;
668 
669 	pr_alert("BUG: Bad page state in process %s  pfn:%05lx\n",
670 		current->comm, page_to_pfn(page));
671 	__dump_page(page, reason);
672 	dump_page_owner(page);
673 
674 	print_modules();
675 	dump_stack();
676 out:
677 	/* Leave bad fields for debug, except PageBuddy could make trouble */
678 	page_mapcount_reset(page); /* remove PageBuddy */
679 	add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
680 }
681 
682 /*
683  * Higher-order pages are called "compound pages".  They are structured thusly:
684  *
685  * The first PAGE_SIZE page is called the "head page" and have PG_head set.
686  *
687  * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
688  * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
689  *
690  * The first tail page's ->compound_dtor holds the offset in array of compound
691  * page destructors. See compound_page_dtors.
692  *
693  * The first tail page's ->compound_order holds the order of allocation.
694  * This usage means that zero-order pages may not be compound.
695  */
696 
free_compound_page(struct page * page)697 void free_compound_page(struct page *page)
698 {
699 	mem_cgroup_uncharge(page);
700 	__free_pages_ok(page, compound_order(page), FPI_NONE);
701 }
702 
prep_compound_page(struct page * page,unsigned int order)703 void prep_compound_page(struct page *page, unsigned int order)
704 {
705 	int i;
706 	int nr_pages = 1 << order;
707 
708 	__SetPageHead(page);
709 	for (i = 1; i < nr_pages; i++) {
710 		struct page *p = page + i;
711 		set_page_count(p, 0);
712 		p->mapping = TAIL_MAPPING;
713 		set_compound_head(p, page);
714 	}
715 
716 	set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
717 	set_compound_order(page, order);
718 	atomic_set(compound_mapcount_ptr(page), -1);
719 	if (hpage_pincount_available(page))
720 		atomic_set(compound_pincount_ptr(page), 0);
721 }
722 
723 #ifdef CONFIG_DEBUG_PAGEALLOC
724 unsigned int _debug_guardpage_minorder;
725 
726 bool _debug_pagealloc_enabled_early __read_mostly
727 			= IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
728 EXPORT_SYMBOL(_debug_pagealloc_enabled_early);
729 DEFINE_STATIC_KEY_FALSE(_debug_pagealloc_enabled);
730 EXPORT_SYMBOL(_debug_pagealloc_enabled);
731 
732 DEFINE_STATIC_KEY_FALSE(_debug_guardpage_enabled);
733 
early_debug_pagealloc(char * buf)734 static int __init early_debug_pagealloc(char *buf)
735 {
736 	return kstrtobool(buf, &_debug_pagealloc_enabled_early);
737 }
738 early_param("debug_pagealloc", early_debug_pagealloc);
739 
init_debug_pagealloc(void)740 void init_debug_pagealloc(void)
741 {
742 	if (!debug_pagealloc_enabled())
743 		return;
744 
745 	static_branch_enable(&_debug_pagealloc_enabled);
746 
747 	if (!debug_guardpage_minorder())
748 		return;
749 
750 	static_branch_enable(&_debug_guardpage_enabled);
751 }
752 
debug_guardpage_minorder_setup(char * buf)753 static int __init debug_guardpage_minorder_setup(char *buf)
754 {
755 	unsigned long res;
756 
757 	if (kstrtoul(buf, 10, &res) < 0 ||  res > MAX_ORDER / 2) {
758 		pr_err("Bad debug_guardpage_minorder value\n");
759 		return 0;
760 	}
761 	_debug_guardpage_minorder = res;
762 	pr_info("Setting debug_guardpage_minorder to %lu\n", res);
763 	return 0;
764 }
765 early_param("debug_guardpage_minorder", debug_guardpage_minorder_setup);
766 
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)767 static inline bool set_page_guard(struct zone *zone, struct page *page,
768 				unsigned int order, int migratetype)
769 {
770 	if (!debug_guardpage_enabled())
771 		return false;
772 
773 	if (order >= debug_guardpage_minorder())
774 		return false;
775 
776 	__SetPageGuard(page);
777 	INIT_LIST_HEAD(&page->lru);
778 	set_page_private(page, order);
779 	/* Guard pages are not available for any usage */
780 	__mod_zone_freepage_state(zone, -(1 << order), migratetype);
781 
782 	return true;
783 }
784 
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)785 static inline void clear_page_guard(struct zone *zone, struct page *page,
786 				unsigned int order, int migratetype)
787 {
788 	if (!debug_guardpage_enabled())
789 		return;
790 
791 	__ClearPageGuard(page);
792 
793 	set_page_private(page, 0);
794 	if (!is_migrate_isolate(migratetype))
795 		__mod_zone_freepage_state(zone, (1 << order), migratetype);
796 }
797 #else
set_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)798 static inline bool set_page_guard(struct zone *zone, struct page *page,
799 			unsigned int order, int migratetype) { return false; }
clear_page_guard(struct zone * zone,struct page * page,unsigned int order,int migratetype)800 static inline void clear_page_guard(struct zone *zone, struct page *page,
801 				unsigned int order, int migratetype) {}
802 #endif
803 
set_buddy_order(struct page * page,unsigned int order)804 static inline void set_buddy_order(struct page *page, unsigned int order)
805 {
806 	set_page_private(page, order);
807 	__SetPageBuddy(page);
808 }
809 
810 /*
811  * This function checks whether a page is free && is the buddy
812  * we can coalesce a page and its buddy if
813  * (a) the buddy is not in a hole (check before calling!) &&
814  * (b) the buddy is in the buddy system &&
815  * (c) a page and its buddy have the same order &&
816  * (d) a page and its buddy are in the same zone.
817  *
818  * For recording whether a page is in the buddy system, we set PageBuddy.
819  * Setting, clearing, and testing PageBuddy is serialized by zone->lock.
820  *
821  * For recording page's order, we use page_private(page).
822  */
page_is_buddy(struct page * page,struct page * buddy,unsigned int order)823 static inline bool page_is_buddy(struct page *page, struct page *buddy,
824 							unsigned int order)
825 {
826 	if (!page_is_guard(buddy) && !PageBuddy(buddy))
827 		return false;
828 
829 	if (buddy_order(buddy) != order)
830 		return false;
831 
832 	/*
833 	 * zone check is done late to avoid uselessly calculating
834 	 * zone/node ids for pages that could never merge.
835 	 */
836 	if (page_zone_id(page) != page_zone_id(buddy))
837 		return false;
838 
839 	VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
840 
841 	return true;
842 }
843 
844 #ifdef CONFIG_COMPACTION
task_capc(struct zone * zone)845 static inline struct capture_control *task_capc(struct zone *zone)
846 {
847 	struct capture_control *capc = current->capture_control;
848 
849 	return unlikely(capc) &&
850 		!(current->flags & PF_KTHREAD) &&
851 		!capc->page &&
852 		capc->cc->zone == zone ? capc : NULL;
853 }
854 
855 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)856 compaction_capture(struct capture_control *capc, struct page *page,
857 		   int order, int migratetype)
858 {
859 	if (!capc || order != capc->cc->order)
860 		return false;
861 
862 	/* Do not accidentally pollute CMA or isolated regions*/
863 	if (is_migrate_cma(migratetype) ||
864 	    is_migrate_isolate(migratetype))
865 		return false;
866 
867 	/*
868 	 * Do not let lower order allocations polluate a movable pageblock.
869 	 * This might let an unmovable request use a reclaimable pageblock
870 	 * and vice-versa but no more than normal fallback logic which can
871 	 * have trouble finding a high-order free page.
872 	 */
873 	if (order < pageblock_order && migratetype == MIGRATE_MOVABLE)
874 		return false;
875 
876 	capc->page = page;
877 	return true;
878 }
879 
880 #else
task_capc(struct zone * zone)881 static inline struct capture_control *task_capc(struct zone *zone)
882 {
883 	return NULL;
884 }
885 
886 static inline bool
compaction_capture(struct capture_control * capc,struct page * page,int order,int migratetype)887 compaction_capture(struct capture_control *capc, struct page *page,
888 		   int order, int migratetype)
889 {
890 	return false;
891 }
892 #endif /* CONFIG_COMPACTION */
893 
894 /* Used for pages not on another list */
add_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)895 static inline void add_to_free_list(struct page *page, struct zone *zone,
896 				    unsigned int order, int migratetype)
897 {
898 	struct free_area *area = &zone->free_area[order];
899 
900 	list_add(&page->lru, &area->free_list[migratetype]);
901 	area->nr_free++;
902 }
903 
904 /* Used for pages not on another list */
add_to_free_list_tail(struct page * page,struct zone * zone,unsigned int order,int migratetype)905 static inline void add_to_free_list_tail(struct page *page, struct zone *zone,
906 					 unsigned int order, int migratetype)
907 {
908 	struct free_area *area = &zone->free_area[order];
909 
910 	list_add_tail(&page->lru, &area->free_list[migratetype]);
911 	area->nr_free++;
912 }
913 
914 /*
915  * Used for pages which are on another list. Move the pages to the tail
916  * of the list - so the moved pages won't immediately be considered for
917  * allocation again (e.g., optimization for memory onlining).
918  */
move_to_free_list(struct page * page,struct zone * zone,unsigned int order,int migratetype)919 static inline void move_to_free_list(struct page *page, struct zone *zone,
920 				     unsigned int order, int migratetype)
921 {
922 	struct free_area *area = &zone->free_area[order];
923 
924 	list_move_tail(&page->lru, &area->free_list[migratetype]);
925 }
926 
del_page_from_free_list(struct page * page,struct zone * zone,unsigned int order)927 static inline void del_page_from_free_list(struct page *page, struct zone *zone,
928 					   unsigned int order)
929 {
930 	/* clear reported state and update reported page count */
931 	if (page_reported(page))
932 		__ClearPageReported(page);
933 
934 	list_del(&page->lru);
935 	__ClearPageBuddy(page);
936 	set_page_private(page, 0);
937 	zone->free_area[order].nr_free--;
938 }
939 
940 /*
941  * If this is not the largest possible page, check if the buddy
942  * of the next-highest order is free. If it is, it's possible
943  * that pages are being freed that will coalesce soon. In case,
944  * that is happening, add the free page to the tail of the list
945  * so it's less likely to be used soon and more likely to be merged
946  * as a higher order page
947  */
948 static inline bool
buddy_merge_likely(unsigned long pfn,unsigned long buddy_pfn,struct page * page,unsigned int order)949 buddy_merge_likely(unsigned long pfn, unsigned long buddy_pfn,
950 		   struct page *page, unsigned int order)
951 {
952 	struct page *higher_page, *higher_buddy;
953 	unsigned long combined_pfn;
954 
955 	if (order >= MAX_ORDER - 2)
956 		return false;
957 
958 	if (!pfn_valid_within(buddy_pfn))
959 		return false;
960 
961 	combined_pfn = buddy_pfn & pfn;
962 	higher_page = page + (combined_pfn - pfn);
963 	buddy_pfn = __find_buddy_pfn(combined_pfn, order + 1);
964 	higher_buddy = higher_page + (buddy_pfn - combined_pfn);
965 
966 	return pfn_valid_within(buddy_pfn) &&
967 	       page_is_buddy(higher_page, higher_buddy, order + 1);
968 }
969 
970 /*
971  * Freeing function for a buddy system allocator.
972  *
973  * The concept of a buddy system is to maintain direct-mapped table
974  * (containing bit values) for memory blocks of various "orders".
975  * The bottom level table contains the map for the smallest allocatable
976  * units of memory (here, pages), and each level above it describes
977  * pairs of units from the levels below, hence, "buddies".
978  * At a high level, all that happens here is marking the table entry
979  * at the bottom level available, and propagating the changes upward
980  * as necessary, plus some accounting needed to play nicely with other
981  * parts of the VM system.
982  * At each level, we keep a list of pages, which are heads of continuous
983  * free pages of length of (1 << order) and marked with PageBuddy.
984  * Page's order is recorded in page_private(page) field.
985  * So when we are allocating or freeing one, we can derive the state of the
986  * other.  That is, if we allocate a small block, and both were
987  * free, the remainder of the region must be split into blocks.
988  * If a block is freed, and its buddy is also free, then this
989  * triggers coalescing into a block of larger size.
990  *
991  * -- nyc
992  */
993 
__free_one_page(struct page * page,unsigned long pfn,struct zone * zone,unsigned int order,int migratetype,fpi_t fpi_flags)994 static inline void __free_one_page(struct page *page,
995 		unsigned long pfn,
996 		struct zone *zone, unsigned int order,
997 		int migratetype, fpi_t fpi_flags)
998 {
999 	struct capture_control *capc = task_capc(zone);
1000 	unsigned long buddy_pfn;
1001 	unsigned long combined_pfn;
1002 	unsigned int max_order;
1003 	struct page *buddy;
1004 	bool to_tail;
1005 
1006 	max_order = min_t(unsigned int, MAX_ORDER - 1, pageblock_order);
1007 
1008 	VM_BUG_ON(!zone_is_initialized(zone));
1009 	VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1010 
1011 	VM_BUG_ON(migratetype == -1);
1012 	if (likely(!is_migrate_isolate(migratetype)))
1013 		__mod_zone_freepage_state(zone, 1 << order, migratetype);
1014 
1015 	VM_BUG_ON_PAGE(pfn & ((1 << order) - 1), page);
1016 	VM_BUG_ON_PAGE(bad_range(zone, page), page);
1017 
1018 continue_merging:
1019 	while (order < max_order) {
1020 		if (compaction_capture(capc, page, order, migratetype)) {
1021 			__mod_zone_freepage_state(zone, -(1 << order),
1022 								migratetype);
1023 			return;
1024 		}
1025 		buddy_pfn = __find_buddy_pfn(pfn, order);
1026 		buddy = page + (buddy_pfn - pfn);
1027 
1028 		if (!pfn_valid_within(buddy_pfn))
1029 			goto done_merging;
1030 		if (!page_is_buddy(page, buddy, order))
1031 			goto done_merging;
1032 		/*
1033 		 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
1034 		 * merge with it and move up one order.
1035 		 */
1036 		if (page_is_guard(buddy))
1037 			clear_page_guard(zone, buddy, order, migratetype);
1038 		else
1039 			del_page_from_free_list(buddy, zone, order);
1040 		combined_pfn = buddy_pfn & pfn;
1041 		page = page + (combined_pfn - pfn);
1042 		pfn = combined_pfn;
1043 		order++;
1044 	}
1045 	if (order < MAX_ORDER - 1) {
1046 		/* If we are here, it means order is >= pageblock_order.
1047 		 * We want to prevent merge between freepages on isolate
1048 		 * pageblock and normal pageblock. Without this, pageblock
1049 		 * isolation could cause incorrect freepage or CMA accounting.
1050 		 *
1051 		 * We don't want to hit this code for the more frequent
1052 		 * low-order merging.
1053 		 */
1054 		if (unlikely(has_isolate_pageblock(zone))) {
1055 			int buddy_mt;
1056 
1057 			buddy_pfn = __find_buddy_pfn(pfn, order);
1058 			buddy = page + (buddy_pfn - pfn);
1059 			buddy_mt = get_pageblock_migratetype(buddy);
1060 
1061 			if (migratetype != buddy_mt
1062 					&& (is_migrate_isolate(migratetype) ||
1063 						is_migrate_isolate(buddy_mt)))
1064 				goto done_merging;
1065 		}
1066 		max_order = order + 1;
1067 		goto continue_merging;
1068 	}
1069 
1070 done_merging:
1071 	set_buddy_order(page, order);
1072 
1073 	if (fpi_flags & FPI_TO_TAIL)
1074 		to_tail = true;
1075 	else if (is_shuffle_order(order))
1076 		to_tail = shuffle_pick_tail();
1077 	else
1078 		to_tail = buddy_merge_likely(pfn, buddy_pfn, page, order);
1079 
1080 	if (to_tail)
1081 		add_to_free_list_tail(page, zone, order, migratetype);
1082 	else
1083 		add_to_free_list(page, zone, order, migratetype);
1084 
1085 	/* Notify page reporting subsystem of freed page */
1086 	if (!(fpi_flags & FPI_SKIP_REPORT_NOTIFY))
1087 		page_reporting_notify_free(order);
1088 }
1089 
1090 /*
1091  * A bad page could be due to a number of fields. Instead of multiple branches,
1092  * try and check multiple fields with one check. The caller must do a detailed
1093  * check if necessary.
1094  */
page_expected_state(struct page * page,unsigned long check_flags)1095 static inline bool page_expected_state(struct page *page,
1096 					unsigned long check_flags)
1097 {
1098 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1099 		return false;
1100 
1101 	if (unlikely((unsigned long)page->mapping |
1102 			page_ref_count(page) |
1103 #ifdef CONFIG_MEMCG
1104 			(unsigned long)page->mem_cgroup |
1105 #endif
1106 			(page->flags & check_flags)))
1107 		return false;
1108 
1109 	return true;
1110 }
1111 
page_bad_reason(struct page * page,unsigned long flags)1112 static const char *page_bad_reason(struct page *page, unsigned long flags)
1113 {
1114 	const char *bad_reason = NULL;
1115 
1116 	if (unlikely(atomic_read(&page->_mapcount) != -1))
1117 		bad_reason = "nonzero mapcount";
1118 	if (unlikely(page->mapping != NULL))
1119 		bad_reason = "non-NULL mapping";
1120 	if (unlikely(page_ref_count(page) != 0))
1121 		bad_reason = "nonzero _refcount";
1122 	if (unlikely(page->flags & flags)) {
1123 		if (flags == PAGE_FLAGS_CHECK_AT_PREP)
1124 			bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag(s) set";
1125 		else
1126 			bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
1127 	}
1128 #ifdef CONFIG_MEMCG
1129 	if (unlikely(page->mem_cgroup))
1130 		bad_reason = "page still charged to cgroup";
1131 #endif
1132 	return bad_reason;
1133 }
1134 
check_free_page_bad(struct page * page)1135 static void check_free_page_bad(struct page *page)
1136 {
1137 	bad_page(page,
1138 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_FREE));
1139 }
1140 
check_free_page(struct page * page)1141 static inline int check_free_page(struct page *page)
1142 {
1143 	if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
1144 		return 0;
1145 
1146 	/* Something has gone sideways, find it */
1147 	check_free_page_bad(page);
1148 	return 1;
1149 }
1150 
free_tail_pages_check(struct page * head_page,struct page * page)1151 static int free_tail_pages_check(struct page *head_page, struct page *page)
1152 {
1153 	int ret = 1;
1154 
1155 	/*
1156 	 * We rely page->lru.next never has bit 0 set, unless the page
1157 	 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
1158 	 */
1159 	BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
1160 
1161 	if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
1162 		ret = 0;
1163 		goto out;
1164 	}
1165 	switch (page - head_page) {
1166 	case 1:
1167 		/* the first tail page: ->mapping may be compound_mapcount() */
1168 		if (unlikely(compound_mapcount(page))) {
1169 			bad_page(page, "nonzero compound_mapcount");
1170 			goto out;
1171 		}
1172 		break;
1173 	case 2:
1174 		/*
1175 		 * the second tail page: ->mapping is
1176 		 * deferred_list.next -- ignore value.
1177 		 */
1178 		break;
1179 	default:
1180 		if (page->mapping != TAIL_MAPPING) {
1181 			bad_page(page, "corrupted mapping in tail page");
1182 			goto out;
1183 		}
1184 		break;
1185 	}
1186 	if (unlikely(!PageTail(page))) {
1187 		bad_page(page, "PageTail not set");
1188 		goto out;
1189 	}
1190 	if (unlikely(compound_head(page) != head_page)) {
1191 		bad_page(page, "compound_head not consistent");
1192 		goto out;
1193 	}
1194 	ret = 0;
1195 out:
1196 	page->mapping = NULL;
1197 	clear_compound_head(page);
1198 	return ret;
1199 }
1200 
kernel_init_free_pages(struct page * page,int numpages)1201 static void kernel_init_free_pages(struct page *page, int numpages)
1202 {
1203 	int i;
1204 
1205 	/* s390's use of memset() could override KASAN redzones. */
1206 	kasan_disable_current();
1207 	for (i = 0; i < numpages; i++)
1208 		clear_highpage(page + i);
1209 	kasan_enable_current();
1210 }
1211 
free_pages_prepare(struct page * page,unsigned int order,bool check_free)1212 static __always_inline bool free_pages_prepare(struct page *page,
1213 					unsigned int order, bool check_free)
1214 {
1215 	int bad = 0;
1216 
1217 	VM_BUG_ON_PAGE(PageTail(page), page);
1218 
1219 	trace_mm_page_free(page, order);
1220 
1221 	if (unlikely(PageHWPoison(page)) && !order) {
1222 		/*
1223 		 * Do not let hwpoison pages hit pcplists/buddy
1224 		 * Untie memcg state and reset page's owner
1225 		 */
1226 		if (memcg_kmem_enabled() && PageKmemcg(page))
1227 			__memcg_kmem_uncharge_page(page, order);
1228 		reset_page_owner(page, order);
1229 		return false;
1230 	}
1231 
1232 	/*
1233 	 * Check tail pages before head page information is cleared to
1234 	 * avoid checking PageCompound for order-0 pages.
1235 	 */
1236 	if (unlikely(order)) {
1237 		bool compound = PageCompound(page);
1238 		int i;
1239 
1240 		VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
1241 
1242 		if (compound)
1243 			ClearPageDoubleMap(page);
1244 		for (i = 1; i < (1 << order); i++) {
1245 			if (compound)
1246 				bad += free_tail_pages_check(page, page + i);
1247 			if (unlikely(check_free_page(page + i))) {
1248 				bad++;
1249 				continue;
1250 			}
1251 			(page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1252 		}
1253 	}
1254 	if (PageMappingFlags(page))
1255 		page->mapping = NULL;
1256 	if (memcg_kmem_enabled() && PageKmemcg(page))
1257 		__memcg_kmem_uncharge_page(page, order);
1258 	if (check_free)
1259 		bad += check_free_page(page);
1260 	if (bad)
1261 		return false;
1262 
1263 	page_cpupid_reset_last(page);
1264 	page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1265 	reset_page_owner(page, order);
1266 
1267 	if (!PageHighMem(page)) {
1268 		debug_check_no_locks_freed(page_address(page),
1269 					   PAGE_SIZE << order);
1270 		debug_check_no_obj_freed(page_address(page),
1271 					   PAGE_SIZE << order);
1272 	}
1273 	if (want_init_on_free())
1274 		kernel_init_free_pages(page, 1 << order);
1275 
1276 	kernel_poison_pages(page, 1 << order, 0);
1277 	/*
1278 	 * arch_free_page() can make the page's contents inaccessible.  s390
1279 	 * does this.  So nothing which can access the page's contents should
1280 	 * happen after this.
1281 	 */
1282 	arch_free_page(page, order);
1283 
1284 	if (debug_pagealloc_enabled_static())
1285 		kernel_map_pages(page, 1 << order, 0);
1286 
1287 	kasan_free_nondeferred_pages(page, order);
1288 
1289 	return true;
1290 }
1291 
1292 #ifdef CONFIG_DEBUG_VM
1293 /*
1294  * With DEBUG_VM enabled, order-0 pages are checked immediately when being freed
1295  * to pcp lists. With debug_pagealloc also enabled, they are also rechecked when
1296  * moved from pcp lists to free lists.
1297  */
free_pcp_prepare(struct page * page)1298 static bool free_pcp_prepare(struct page *page)
1299 {
1300 	return free_pages_prepare(page, 0, true);
1301 }
1302 
bulkfree_pcp_prepare(struct page * page)1303 static bool bulkfree_pcp_prepare(struct page *page)
1304 {
1305 	if (debug_pagealloc_enabled_static())
1306 		return check_free_page(page);
1307 	else
1308 		return false;
1309 }
1310 #else
1311 /*
1312  * With DEBUG_VM disabled, order-0 pages being freed are checked only when
1313  * moving from pcp lists to free list in order to reduce overhead. With
1314  * debug_pagealloc enabled, they are checked also immediately when being freed
1315  * to the pcp lists.
1316  */
free_pcp_prepare(struct page * page)1317 static bool free_pcp_prepare(struct page *page)
1318 {
1319 	if (debug_pagealloc_enabled_static())
1320 		return free_pages_prepare(page, 0, true);
1321 	else
1322 		return free_pages_prepare(page, 0, false);
1323 }
1324 
bulkfree_pcp_prepare(struct page * page)1325 static bool bulkfree_pcp_prepare(struct page *page)
1326 {
1327 	return check_free_page(page);
1328 }
1329 #endif /* CONFIG_DEBUG_VM */
1330 
prefetch_buddy(struct page * page)1331 static inline void prefetch_buddy(struct page *page)
1332 {
1333 	unsigned long pfn = page_to_pfn(page);
1334 	unsigned long buddy_pfn = __find_buddy_pfn(pfn, 0);
1335 	struct page *buddy = page + (buddy_pfn - pfn);
1336 
1337 	prefetch(buddy);
1338 }
1339 
1340 /*
1341  * Frees a number of pages from the PCP lists
1342  * Assumes all pages on list are in same zone, and of same order.
1343  * count is the number of pages to free.
1344  *
1345  * If the zone was previously in an "all pages pinned" state then look to
1346  * see if this freeing clears that state.
1347  *
1348  * And clear the zone's pages_scanned counter, to hold off the "all pages are
1349  * pinned" detection logic.
1350  */
free_pcppages_bulk(struct zone * zone,int count,struct per_cpu_pages * pcp)1351 static void free_pcppages_bulk(struct zone *zone, int count,
1352 					struct per_cpu_pages *pcp)
1353 {
1354 	int migratetype = 0;
1355 	int batch_free = 0;
1356 	int prefetch_nr = 0;
1357 	bool isolated_pageblocks;
1358 	struct page *page, *tmp;
1359 	LIST_HEAD(head);
1360 
1361 	/*
1362 	 * Ensure proper count is passed which otherwise would stuck in the
1363 	 * below while (list_empty(list)) loop.
1364 	 */
1365 	count = min(pcp->count, count);
1366 	while (count) {
1367 		struct list_head *list;
1368 
1369 		/*
1370 		 * Remove pages from lists in a round-robin fashion. A
1371 		 * batch_free count is maintained that is incremented when an
1372 		 * empty list is encountered.  This is so more pages are freed
1373 		 * off fuller lists instead of spinning excessively around empty
1374 		 * lists
1375 		 */
1376 		do {
1377 			batch_free++;
1378 			if (++migratetype == MIGRATE_PCPTYPES)
1379 				migratetype = 0;
1380 			list = &pcp->lists[migratetype];
1381 		} while (list_empty(list));
1382 
1383 		/* This is the only non-empty list. Free them all. */
1384 		if (batch_free == MIGRATE_PCPTYPES)
1385 			batch_free = count;
1386 
1387 		do {
1388 			page = list_last_entry(list, struct page, lru);
1389 			/* must delete to avoid corrupting pcp list */
1390 			list_del(&page->lru);
1391 			pcp->count--;
1392 
1393 			if (bulkfree_pcp_prepare(page))
1394 				continue;
1395 
1396 			list_add_tail(&page->lru, &head);
1397 
1398 			/*
1399 			 * We are going to put the page back to the global
1400 			 * pool, prefetch its buddy to speed up later access
1401 			 * under zone->lock. It is believed the overhead of
1402 			 * an additional test and calculating buddy_pfn here
1403 			 * can be offset by reduced memory latency later. To
1404 			 * avoid excessive prefetching due to large count, only
1405 			 * prefetch buddy for the first pcp->batch nr of pages.
1406 			 */
1407 			if (prefetch_nr++ < pcp->batch)
1408 				prefetch_buddy(page);
1409 		} while (--count && --batch_free && !list_empty(list));
1410 	}
1411 
1412 	spin_lock(&zone->lock);
1413 	isolated_pageblocks = has_isolate_pageblock(zone);
1414 
1415 	/*
1416 	 * Use safe version since after __free_one_page(),
1417 	 * page->lru.next will not point to original list.
1418 	 */
1419 	list_for_each_entry_safe(page, tmp, &head, lru) {
1420 		int mt = get_pcppage_migratetype(page);
1421 		/* MIGRATE_ISOLATE page should not go to pcplists */
1422 		VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1423 		/* Pageblock could have been isolated meanwhile */
1424 		if (unlikely(isolated_pageblocks))
1425 			mt = get_pageblock_migratetype(page);
1426 
1427 		__free_one_page(page, page_to_pfn(page), zone, 0, mt, FPI_NONE);
1428 		trace_mm_page_pcpu_drain(page, 0, mt);
1429 	}
1430 	spin_unlock(&zone->lock);
1431 }
1432 
free_one_page(struct zone * zone,struct page * page,unsigned long pfn,unsigned int order,int migratetype,fpi_t fpi_flags)1433 static void free_one_page(struct zone *zone,
1434 				struct page *page, unsigned long pfn,
1435 				unsigned int order,
1436 				int migratetype, fpi_t fpi_flags)
1437 {
1438 	spin_lock(&zone->lock);
1439 	if (unlikely(has_isolate_pageblock(zone) ||
1440 		is_migrate_isolate(migratetype))) {
1441 		migratetype = get_pfnblock_migratetype(page, pfn);
1442 	}
1443 	__free_one_page(page, pfn, zone, order, migratetype, fpi_flags);
1444 	spin_unlock(&zone->lock);
1445 }
1446 
__init_single_page(struct page * page,unsigned long pfn,unsigned long zone,int nid)1447 static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1448 				unsigned long zone, int nid)
1449 {
1450 	mm_zero_struct_page(page);
1451 	set_page_links(page, zone, nid, pfn);
1452 	init_page_count(page);
1453 	page_mapcount_reset(page);
1454 	page_cpupid_reset_last(page);
1455 	page_kasan_tag_reset(page);
1456 
1457 	INIT_LIST_HEAD(&page->lru);
1458 #ifdef WANT_PAGE_VIRTUAL
1459 	/* The shift won't overflow because ZONE_NORMAL is below 4G. */
1460 	if (!is_highmem_idx(zone))
1461 		set_page_address(page, __va(pfn << PAGE_SHIFT));
1462 #endif
1463 }
1464 
1465 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
init_reserved_page(unsigned long pfn)1466 static void __meminit init_reserved_page(unsigned long pfn)
1467 {
1468 	pg_data_t *pgdat;
1469 	int nid, zid;
1470 
1471 	if (!early_page_uninitialised(pfn))
1472 		return;
1473 
1474 	nid = early_pfn_to_nid(pfn);
1475 	pgdat = NODE_DATA(nid);
1476 
1477 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1478 		struct zone *zone = &pgdat->node_zones[zid];
1479 
1480 		if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1481 			break;
1482 	}
1483 	__init_single_page(pfn_to_page(pfn), pfn, zid, nid);
1484 }
1485 #else
init_reserved_page(unsigned long pfn)1486 static inline void init_reserved_page(unsigned long pfn)
1487 {
1488 }
1489 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1490 
1491 /*
1492  * Initialised pages do not have PageReserved set. This function is
1493  * called for each range allocated by the bootmem allocator and
1494  * marks the pages PageReserved. The remaining valid pages are later
1495  * sent to the buddy page allocator.
1496  */
reserve_bootmem_region(phys_addr_t start,phys_addr_t end)1497 void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
1498 {
1499 	unsigned long start_pfn = PFN_DOWN(start);
1500 	unsigned long end_pfn = PFN_UP(end);
1501 
1502 	for (; start_pfn < end_pfn; start_pfn++) {
1503 		if (pfn_valid(start_pfn)) {
1504 			struct page *page = pfn_to_page(start_pfn);
1505 
1506 			init_reserved_page(start_pfn);
1507 
1508 			/* Avoid false-positive PageTail() */
1509 			INIT_LIST_HEAD(&page->lru);
1510 
1511 			/*
1512 			 * no need for atomic set_bit because the struct
1513 			 * page is not visible yet so nobody should
1514 			 * access it yet.
1515 			 */
1516 			__SetPageReserved(page);
1517 		}
1518 	}
1519 }
1520 
__free_pages_ok(struct page * page,unsigned int order,fpi_t fpi_flags)1521 static void __free_pages_ok(struct page *page, unsigned int order,
1522 			    fpi_t fpi_flags)
1523 {
1524 	unsigned long flags;
1525 	int migratetype;
1526 	unsigned long pfn = page_to_pfn(page);
1527 
1528 	if (!free_pages_prepare(page, order, true))
1529 		return;
1530 
1531 	migratetype = get_pfnblock_migratetype(page, pfn);
1532 	local_irq_save(flags);
1533 	__count_vm_events(PGFREE, 1 << order);
1534 	free_one_page(page_zone(page), page, pfn, order, migratetype,
1535 		      fpi_flags);
1536 	local_irq_restore(flags);
1537 }
1538 
__free_pages_core(struct page * page,unsigned int order)1539 void __free_pages_core(struct page *page, unsigned int order)
1540 {
1541 	unsigned int nr_pages = 1 << order;
1542 	struct page *p = page;
1543 	unsigned int loop;
1544 
1545 	/*
1546 	 * When initializing the memmap, __init_single_page() sets the refcount
1547 	 * of all pages to 1 ("allocated"/"not free"). We have to set the
1548 	 * refcount of all involved pages to 0.
1549 	 */
1550 	prefetchw(p);
1551 	for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1552 		prefetchw(p + 1);
1553 		__ClearPageReserved(p);
1554 		set_page_count(p, 0);
1555 	}
1556 	__ClearPageReserved(p);
1557 	set_page_count(p, 0);
1558 
1559 	atomic_long_add(nr_pages, &page_zone(page)->managed_pages);
1560 
1561 	/*
1562 	 * Bypass PCP and place fresh pages right to the tail, primarily
1563 	 * relevant for memory onlining.
1564 	 */
1565 	__free_pages_ok(page, order, FPI_TO_TAIL);
1566 }
1567 
1568 #ifdef CONFIG_NEED_MULTIPLE_NODES
1569 
1570 static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1571 
1572 #ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
1573 
1574 /*
1575  * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
1576  */
__early_pfn_to_nid(unsigned long pfn,struct mminit_pfnnid_cache * state)1577 int __meminit __early_pfn_to_nid(unsigned long pfn,
1578 					struct mminit_pfnnid_cache *state)
1579 {
1580 	unsigned long start_pfn, end_pfn;
1581 	int nid;
1582 
1583 	if (state->last_start <= pfn && pfn < state->last_end)
1584 		return state->last_nid;
1585 
1586 	nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
1587 	if (nid != NUMA_NO_NODE) {
1588 		state->last_start = start_pfn;
1589 		state->last_end = end_pfn;
1590 		state->last_nid = nid;
1591 	}
1592 
1593 	return nid;
1594 }
1595 #endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
1596 
early_pfn_to_nid(unsigned long pfn)1597 int __meminit early_pfn_to_nid(unsigned long pfn)
1598 {
1599 	static DEFINE_SPINLOCK(early_pfn_lock);
1600 	int nid;
1601 
1602 	spin_lock(&early_pfn_lock);
1603 	nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
1604 	if (nid < 0)
1605 		nid = first_online_node;
1606 	spin_unlock(&early_pfn_lock);
1607 
1608 	return nid;
1609 }
1610 #endif /* CONFIG_NEED_MULTIPLE_NODES */
1611 
memblock_free_pages(struct page * page,unsigned long pfn,unsigned int order)1612 void __init memblock_free_pages(struct page *page, unsigned long pfn,
1613 							unsigned int order)
1614 {
1615 	if (early_page_uninitialised(pfn))
1616 		return;
1617 	__free_pages_core(page, order);
1618 }
1619 
1620 /*
1621  * Check that the whole (or subset of) a pageblock given by the interval of
1622  * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1623  * with the migration of free compaction scanner. The scanners then need to
1624  * use only pfn_valid_within() check for arches that allow holes within
1625  * pageblocks.
1626  *
1627  * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1628  *
1629  * It's possible on some configurations to have a setup like node0 node1 node0
1630  * i.e. it's possible that all pages within a zones range of pages do not
1631  * belong to a single zone. We assume that a border between node0 and node1
1632  * can occur within a single pageblock, but not a node0 node1 node0
1633  * interleaving within a single pageblock. It is therefore sufficient to check
1634  * the first and last page of a pageblock and avoid checking each individual
1635  * page in a pageblock.
1636  */
__pageblock_pfn_to_page(unsigned long start_pfn,unsigned long end_pfn,struct zone * zone)1637 struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1638 				     unsigned long end_pfn, struct zone *zone)
1639 {
1640 	struct page *start_page;
1641 	struct page *end_page;
1642 
1643 	/* end_pfn is one past the range we are checking */
1644 	end_pfn--;
1645 
1646 	if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1647 		return NULL;
1648 
1649 	start_page = pfn_to_online_page(start_pfn);
1650 	if (!start_page)
1651 		return NULL;
1652 
1653 	if (page_zone(start_page) != zone)
1654 		return NULL;
1655 
1656 	end_page = pfn_to_page(end_pfn);
1657 
1658 	/* This gives a shorter code than deriving page_zone(end_page) */
1659 	if (page_zone_id(start_page) != page_zone_id(end_page))
1660 		return NULL;
1661 
1662 	return start_page;
1663 }
1664 
set_zone_contiguous(struct zone * zone)1665 void set_zone_contiguous(struct zone *zone)
1666 {
1667 	unsigned long block_start_pfn = zone->zone_start_pfn;
1668 	unsigned long block_end_pfn;
1669 
1670 	block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1671 	for (; block_start_pfn < zone_end_pfn(zone);
1672 			block_start_pfn = block_end_pfn,
1673 			 block_end_pfn += pageblock_nr_pages) {
1674 
1675 		block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1676 
1677 		if (!__pageblock_pfn_to_page(block_start_pfn,
1678 					     block_end_pfn, zone))
1679 			return;
1680 		cond_resched();
1681 	}
1682 
1683 	/* We confirm that there is no hole */
1684 	zone->contiguous = true;
1685 }
1686 
clear_zone_contiguous(struct zone * zone)1687 void clear_zone_contiguous(struct zone *zone)
1688 {
1689 	zone->contiguous = false;
1690 }
1691 
1692 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
deferred_free_range(unsigned long pfn,unsigned long nr_pages)1693 static void __init deferred_free_range(unsigned long pfn,
1694 				       unsigned long nr_pages)
1695 {
1696 	struct page *page;
1697 	unsigned long i;
1698 
1699 	if (!nr_pages)
1700 		return;
1701 
1702 	page = pfn_to_page(pfn);
1703 
1704 	/* Free a large naturally-aligned chunk if possible */
1705 	if (nr_pages == pageblock_nr_pages &&
1706 	    (pfn & (pageblock_nr_pages - 1)) == 0) {
1707 		set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1708 		__free_pages_core(page, pageblock_order);
1709 		return;
1710 	}
1711 
1712 	for (i = 0; i < nr_pages; i++, page++, pfn++) {
1713 		if ((pfn & (pageblock_nr_pages - 1)) == 0)
1714 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
1715 		__free_pages_core(page, 0);
1716 	}
1717 }
1718 
1719 /* Completion tracking for deferred_init_memmap() threads */
1720 static atomic_t pgdat_init_n_undone __initdata;
1721 static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1722 
pgdat_init_report_one_done(void)1723 static inline void __init pgdat_init_report_one_done(void)
1724 {
1725 	if (atomic_dec_and_test(&pgdat_init_n_undone))
1726 		complete(&pgdat_init_all_done_comp);
1727 }
1728 
1729 /*
1730  * Returns true if page needs to be initialized or freed to buddy allocator.
1731  *
1732  * First we check if pfn is valid on architectures where it is possible to have
1733  * holes within pageblock_nr_pages. On systems where it is not possible, this
1734  * function is optimized out.
1735  *
1736  * Then, we check if a current large page is valid by only checking the validity
1737  * of the head pfn.
1738  */
deferred_pfn_valid(unsigned long pfn)1739 static inline bool __init deferred_pfn_valid(unsigned long pfn)
1740 {
1741 	if (!pfn_valid_within(pfn))
1742 		return false;
1743 	if (!(pfn & (pageblock_nr_pages - 1)) && !pfn_valid(pfn))
1744 		return false;
1745 	return true;
1746 }
1747 
1748 /*
1749  * Free pages to buddy allocator. Try to free aligned pages in
1750  * pageblock_nr_pages sizes.
1751  */
deferred_free_pages(unsigned long pfn,unsigned long end_pfn)1752 static void __init deferred_free_pages(unsigned long pfn,
1753 				       unsigned long end_pfn)
1754 {
1755 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1756 	unsigned long nr_free = 0;
1757 
1758 	for (; pfn < end_pfn; pfn++) {
1759 		if (!deferred_pfn_valid(pfn)) {
1760 			deferred_free_range(pfn - nr_free, nr_free);
1761 			nr_free = 0;
1762 		} else if (!(pfn & nr_pgmask)) {
1763 			deferred_free_range(pfn - nr_free, nr_free);
1764 			nr_free = 1;
1765 		} else {
1766 			nr_free++;
1767 		}
1768 	}
1769 	/* Free the last block of pages to allocator */
1770 	deferred_free_range(pfn - nr_free, nr_free);
1771 }
1772 
1773 /*
1774  * Initialize struct pages.  We minimize pfn page lookups and scheduler checks
1775  * by performing it only once every pageblock_nr_pages.
1776  * Return number of pages initialized.
1777  */
deferred_init_pages(struct zone * zone,unsigned long pfn,unsigned long end_pfn)1778 static unsigned long  __init deferred_init_pages(struct zone *zone,
1779 						 unsigned long pfn,
1780 						 unsigned long end_pfn)
1781 {
1782 	unsigned long nr_pgmask = pageblock_nr_pages - 1;
1783 	int nid = zone_to_nid(zone);
1784 	unsigned long nr_pages = 0;
1785 	int zid = zone_idx(zone);
1786 	struct page *page = NULL;
1787 
1788 	for (; pfn < end_pfn; pfn++) {
1789 		if (!deferred_pfn_valid(pfn)) {
1790 			page = NULL;
1791 			continue;
1792 		} else if (!page || !(pfn & nr_pgmask)) {
1793 			page = pfn_to_page(pfn);
1794 		} else {
1795 			page++;
1796 		}
1797 		__init_single_page(page, pfn, zid, nid);
1798 		nr_pages++;
1799 	}
1800 	return (nr_pages);
1801 }
1802 
1803 /*
1804  * This function is meant to pre-load the iterator for the zone init.
1805  * Specifically it walks through the ranges until we are caught up to the
1806  * first_init_pfn value and exits there. If we never encounter the value we
1807  * return false indicating there are no valid ranges left.
1808  */
1809 static bool __init
deferred_init_mem_pfn_range_in_zone(u64 * i,struct zone * zone,unsigned long * spfn,unsigned long * epfn,unsigned long first_init_pfn)1810 deferred_init_mem_pfn_range_in_zone(u64 *i, struct zone *zone,
1811 				    unsigned long *spfn, unsigned long *epfn,
1812 				    unsigned long first_init_pfn)
1813 {
1814 	u64 j;
1815 
1816 	/*
1817 	 * Start out by walking through the ranges in this zone that have
1818 	 * already been initialized. We don't need to do anything with them
1819 	 * so we just need to flush them out of the system.
1820 	 */
1821 	for_each_free_mem_pfn_range_in_zone(j, zone, spfn, epfn) {
1822 		if (*epfn <= first_init_pfn)
1823 			continue;
1824 		if (*spfn < first_init_pfn)
1825 			*spfn = first_init_pfn;
1826 		*i = j;
1827 		return true;
1828 	}
1829 
1830 	return false;
1831 }
1832 
1833 /*
1834  * Initialize and free pages. We do it in two loops: first we initialize
1835  * struct page, then free to buddy allocator, because while we are
1836  * freeing pages we can access pages that are ahead (computing buddy
1837  * page in __free_one_page()).
1838  *
1839  * In order to try and keep some memory in the cache we have the loop
1840  * broken along max page order boundaries. This way we will not cause
1841  * any issues with the buddy page computation.
1842  */
1843 static unsigned long __init
deferred_init_maxorder(u64 * i,struct zone * zone,unsigned long * start_pfn,unsigned long * end_pfn)1844 deferred_init_maxorder(u64 *i, struct zone *zone, unsigned long *start_pfn,
1845 		       unsigned long *end_pfn)
1846 {
1847 	unsigned long mo_pfn = ALIGN(*start_pfn + 1, MAX_ORDER_NR_PAGES);
1848 	unsigned long spfn = *start_pfn, epfn = *end_pfn;
1849 	unsigned long nr_pages = 0;
1850 	u64 j = *i;
1851 
1852 	/* First we loop through and initialize the page values */
1853 	for_each_free_mem_pfn_range_in_zone_from(j, zone, start_pfn, end_pfn) {
1854 		unsigned long t;
1855 
1856 		if (mo_pfn <= *start_pfn)
1857 			break;
1858 
1859 		t = min(mo_pfn, *end_pfn);
1860 		nr_pages += deferred_init_pages(zone, *start_pfn, t);
1861 
1862 		if (mo_pfn < *end_pfn) {
1863 			*start_pfn = mo_pfn;
1864 			break;
1865 		}
1866 	}
1867 
1868 	/* Reset values and now loop through freeing pages as needed */
1869 	swap(j, *i);
1870 
1871 	for_each_free_mem_pfn_range_in_zone_from(j, zone, &spfn, &epfn) {
1872 		unsigned long t;
1873 
1874 		if (mo_pfn <= spfn)
1875 			break;
1876 
1877 		t = min(mo_pfn, epfn);
1878 		deferred_free_pages(spfn, t);
1879 
1880 		if (mo_pfn <= epfn)
1881 			break;
1882 	}
1883 
1884 	return nr_pages;
1885 }
1886 
1887 static void __init
deferred_init_memmap_chunk(unsigned long start_pfn,unsigned long end_pfn,void * arg)1888 deferred_init_memmap_chunk(unsigned long start_pfn, unsigned long end_pfn,
1889 			   void *arg)
1890 {
1891 	unsigned long spfn, epfn;
1892 	struct zone *zone = arg;
1893 	u64 i;
1894 
1895 	deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn, start_pfn);
1896 
1897 	/*
1898 	 * Initialize and free pages in MAX_ORDER sized increments so that we
1899 	 * can avoid introducing any issues with the buddy allocator.
1900 	 */
1901 	while (spfn < end_pfn) {
1902 		deferred_init_maxorder(&i, zone, &spfn, &epfn);
1903 		cond_resched();
1904 	}
1905 }
1906 
1907 /* An arch may override for more concurrency. */
1908 __weak int __init
deferred_page_init_max_threads(const struct cpumask * node_cpumask)1909 deferred_page_init_max_threads(const struct cpumask *node_cpumask)
1910 {
1911 	return 1;
1912 }
1913 
1914 /* Initialise remaining memory on a node */
deferred_init_memmap(void * data)1915 static int __init deferred_init_memmap(void *data)
1916 {
1917 	pg_data_t *pgdat = data;
1918 	const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
1919 	unsigned long spfn = 0, epfn = 0;
1920 	unsigned long first_init_pfn, flags;
1921 	unsigned long start = jiffies;
1922 	struct zone *zone;
1923 	int zid, max_threads;
1924 	u64 i;
1925 
1926 	/* Bind memory initialisation thread to a local node if possible */
1927 	if (!cpumask_empty(cpumask))
1928 		set_cpus_allowed_ptr(current, cpumask);
1929 
1930 	pgdat_resize_lock(pgdat, &flags);
1931 	first_init_pfn = pgdat->first_deferred_pfn;
1932 	if (first_init_pfn == ULONG_MAX) {
1933 		pgdat_resize_unlock(pgdat, &flags);
1934 		pgdat_init_report_one_done();
1935 		return 0;
1936 	}
1937 
1938 	/* Sanity check boundaries */
1939 	BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1940 	BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1941 	pgdat->first_deferred_pfn = ULONG_MAX;
1942 
1943 	/*
1944 	 * Once we unlock here, the zone cannot be grown anymore, thus if an
1945 	 * interrupt thread must allocate this early in boot, zone must be
1946 	 * pre-grown prior to start of deferred page initialization.
1947 	 */
1948 	pgdat_resize_unlock(pgdat, &flags);
1949 
1950 	/* Only the highest zone is deferred so find it */
1951 	for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1952 		zone = pgdat->node_zones + zid;
1953 		if (first_init_pfn < zone_end_pfn(zone))
1954 			break;
1955 	}
1956 
1957 	/* If the zone is empty somebody else may have cleared out the zone */
1958 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1959 						 first_init_pfn))
1960 		goto zone_empty;
1961 
1962 	max_threads = deferred_page_init_max_threads(cpumask);
1963 
1964 	while (spfn < epfn) {
1965 		unsigned long epfn_align = ALIGN(epfn, PAGES_PER_SECTION);
1966 		struct padata_mt_job job = {
1967 			.thread_fn   = deferred_init_memmap_chunk,
1968 			.fn_arg      = zone,
1969 			.start       = spfn,
1970 			.size        = epfn_align - spfn,
1971 			.align       = PAGES_PER_SECTION,
1972 			.min_chunk   = PAGES_PER_SECTION,
1973 			.max_threads = max_threads,
1974 		};
1975 
1976 		padata_do_multithreaded(&job);
1977 		deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
1978 						    epfn_align);
1979 	}
1980 zone_empty:
1981 	/* Sanity check that the next zone really is unpopulated */
1982 	WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1983 
1984 	pr_info("node %d deferred pages initialised in %ums\n",
1985 		pgdat->node_id, jiffies_to_msecs(jiffies - start));
1986 
1987 	pgdat_init_report_one_done();
1988 	return 0;
1989 }
1990 
1991 /*
1992  * If this zone has deferred pages, try to grow it by initializing enough
1993  * deferred pages to satisfy the allocation specified by order, rounded up to
1994  * the nearest PAGES_PER_SECTION boundary.  So we're adding memory in increments
1995  * of SECTION_SIZE bytes by initializing struct pages in increments of
1996  * PAGES_PER_SECTION * sizeof(struct page) bytes.
1997  *
1998  * Return true when zone was grown, otherwise return false. We return true even
1999  * when we grow less than requested, to let the caller decide if there are
2000  * enough pages to satisfy the allocation.
2001  *
2002  * Note: We use noinline because this function is needed only during boot, and
2003  * it is called from a __ref function _deferred_grow_zone. This way we are
2004  * making sure that it is not inlined into permanent text section.
2005  */
2006 static noinline bool __init
deferred_grow_zone(struct zone * zone,unsigned int order)2007 deferred_grow_zone(struct zone *zone, unsigned int order)
2008 {
2009 	unsigned long nr_pages_needed = ALIGN(1 << order, PAGES_PER_SECTION);
2010 	pg_data_t *pgdat = zone->zone_pgdat;
2011 	unsigned long first_deferred_pfn = pgdat->first_deferred_pfn;
2012 	unsigned long spfn, epfn, flags;
2013 	unsigned long nr_pages = 0;
2014 	u64 i;
2015 
2016 	/* Only the last zone may have deferred pages */
2017 	if (zone_end_pfn(zone) != pgdat_end_pfn(pgdat))
2018 		return false;
2019 
2020 	pgdat_resize_lock(pgdat, &flags);
2021 
2022 	/*
2023 	 * If someone grew this zone while we were waiting for spinlock, return
2024 	 * true, as there might be enough pages already.
2025 	 */
2026 	if (first_deferred_pfn != pgdat->first_deferred_pfn) {
2027 		pgdat_resize_unlock(pgdat, &flags);
2028 		return true;
2029 	}
2030 
2031 	/* If the zone is empty somebody else may have cleared out the zone */
2032 	if (!deferred_init_mem_pfn_range_in_zone(&i, zone, &spfn, &epfn,
2033 						 first_deferred_pfn)) {
2034 		pgdat->first_deferred_pfn = ULONG_MAX;
2035 		pgdat_resize_unlock(pgdat, &flags);
2036 		/* Retry only once. */
2037 		return first_deferred_pfn != ULONG_MAX;
2038 	}
2039 
2040 	/*
2041 	 * Initialize and free pages in MAX_ORDER sized increments so
2042 	 * that we can avoid introducing any issues with the buddy
2043 	 * allocator.
2044 	 */
2045 	while (spfn < epfn) {
2046 		/* update our first deferred PFN for this section */
2047 		first_deferred_pfn = spfn;
2048 
2049 		nr_pages += deferred_init_maxorder(&i, zone, &spfn, &epfn);
2050 		touch_nmi_watchdog();
2051 
2052 		/* We should only stop along section boundaries */
2053 		if ((first_deferred_pfn ^ spfn) < PAGES_PER_SECTION)
2054 			continue;
2055 
2056 		/* If our quota has been met we can stop here */
2057 		if (nr_pages >= nr_pages_needed)
2058 			break;
2059 	}
2060 
2061 	pgdat->first_deferred_pfn = spfn;
2062 	pgdat_resize_unlock(pgdat, &flags);
2063 
2064 	return nr_pages > 0;
2065 }
2066 
2067 /*
2068  * deferred_grow_zone() is __init, but it is called from
2069  * get_page_from_freelist() during early boot until deferred_pages permanently
2070  * disables this call. This is why we have refdata wrapper to avoid warning,
2071  * and to ensure that the function body gets unloaded.
2072  */
2073 static bool __ref
_deferred_grow_zone(struct zone * zone,unsigned int order)2074 _deferred_grow_zone(struct zone *zone, unsigned int order)
2075 {
2076 	return deferred_grow_zone(zone, order);
2077 }
2078 
2079 #endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
2080 
page_alloc_init_late(void)2081 void __init page_alloc_init_late(void)
2082 {
2083 	struct zone *zone;
2084 	int nid;
2085 
2086 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
2087 
2088 	/* There will be num_node_state(N_MEMORY) threads */
2089 	atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
2090 	for_each_node_state(nid, N_MEMORY) {
2091 		kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
2092 	}
2093 
2094 	/* Block until all are initialised */
2095 	wait_for_completion(&pgdat_init_all_done_comp);
2096 
2097 	/*
2098 	 * The number of managed pages has changed due to the initialisation
2099 	 * so the pcpu batch and high limits needs to be updated or the limits
2100 	 * will be artificially small.
2101 	 */
2102 	for_each_populated_zone(zone)
2103 		zone_pcp_update(zone);
2104 
2105 	/*
2106 	 * We initialized the rest of the deferred pages.  Permanently disable
2107 	 * on-demand struct page initialization.
2108 	 */
2109 	static_branch_disable(&deferred_pages);
2110 
2111 	/* Reinit limits that are based on free pages after the kernel is up */
2112 	files_maxfiles_init();
2113 #endif
2114 
2115 	/* Discard memblock private memory */
2116 	memblock_discard();
2117 
2118 	for_each_node_state(nid, N_MEMORY)
2119 		shuffle_free_memory(NODE_DATA(nid));
2120 
2121 	for_each_populated_zone(zone)
2122 		set_zone_contiguous(zone);
2123 }
2124 
2125 #ifdef CONFIG_CMA
2126 /* Free whole pageblock and set its migration type to MIGRATE_CMA. */
init_cma_reserved_pageblock(struct page * page)2127 void __init init_cma_reserved_pageblock(struct page *page)
2128 {
2129 	unsigned i = pageblock_nr_pages;
2130 	struct page *p = page;
2131 
2132 	do {
2133 		__ClearPageReserved(p);
2134 		set_page_count(p, 0);
2135 	} while (++p, --i);
2136 
2137 	set_pageblock_migratetype(page, MIGRATE_CMA);
2138 
2139 	if (pageblock_order >= MAX_ORDER) {
2140 		i = pageblock_nr_pages;
2141 		p = page;
2142 		do {
2143 			set_page_refcounted(p);
2144 			__free_pages(p, MAX_ORDER - 1);
2145 			p += MAX_ORDER_NR_PAGES;
2146 		} while (i -= MAX_ORDER_NR_PAGES);
2147 	} else {
2148 		set_page_refcounted(page);
2149 		__free_pages(page, pageblock_order);
2150 	}
2151 
2152 	adjust_managed_page_count(page, pageblock_nr_pages);
2153 }
2154 #endif
2155 
2156 /*
2157  * The order of subdivision here is critical for the IO subsystem.
2158  * Please do not alter this order without good reasons and regression
2159  * testing. Specifically, as large blocks of memory are subdivided,
2160  * the order in which smaller blocks are delivered depends on the order
2161  * they're subdivided in this function. This is the primary factor
2162  * influencing the order in which pages are delivered to the IO
2163  * subsystem according to empirical testing, and this is also justified
2164  * by considering the behavior of a buddy system containing a single
2165  * large block of memory acted on by a series of small allocations.
2166  * This behavior is a critical factor in sglist merging's success.
2167  *
2168  * -- nyc
2169  */
expand(struct zone * zone,struct page * page,int low,int high,int migratetype)2170 static inline void expand(struct zone *zone, struct page *page,
2171 	int low, int high, int migratetype)
2172 {
2173 	unsigned long size = 1 << high;
2174 
2175 	while (high > low) {
2176 		high--;
2177 		size >>= 1;
2178 		VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
2179 
2180 		/*
2181 		 * Mark as guard pages (or page), that will allow to
2182 		 * merge back to allocator when buddy will be freed.
2183 		 * Corresponding page table entries will not be touched,
2184 		 * pages will stay not present in virtual address space
2185 		 */
2186 		if (set_page_guard(zone, &page[size], high, migratetype))
2187 			continue;
2188 
2189 		add_to_free_list(&page[size], zone, high, migratetype);
2190 		set_buddy_order(&page[size], high);
2191 	}
2192 }
2193 
check_new_page_bad(struct page * page)2194 static void check_new_page_bad(struct page *page)
2195 {
2196 	if (unlikely(page->flags & __PG_HWPOISON)) {
2197 		/* Don't complain about hwpoisoned pages */
2198 		page_mapcount_reset(page); /* remove PageBuddy */
2199 		return;
2200 	}
2201 
2202 	bad_page(page,
2203 		 page_bad_reason(page, PAGE_FLAGS_CHECK_AT_PREP));
2204 }
2205 
2206 /*
2207  * This page is about to be returned from the page allocator
2208  */
check_new_page(struct page * page)2209 static inline int check_new_page(struct page *page)
2210 {
2211 	if (likely(page_expected_state(page,
2212 				PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
2213 		return 0;
2214 
2215 	check_new_page_bad(page);
2216 	return 1;
2217 }
2218 
free_pages_prezeroed(void)2219 static inline bool free_pages_prezeroed(void)
2220 {
2221 	return (IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
2222 		page_poisoning_enabled()) || want_init_on_free();
2223 }
2224 
2225 #ifdef CONFIG_DEBUG_VM
2226 /*
2227  * With DEBUG_VM enabled, order-0 pages are checked for expected state when
2228  * being allocated from pcp lists. With debug_pagealloc also enabled, they are
2229  * also checked when pcp lists are refilled from the free lists.
2230  */
check_pcp_refill(struct page * page)2231 static inline bool check_pcp_refill(struct page *page)
2232 {
2233 	if (debug_pagealloc_enabled_static())
2234 		return check_new_page(page);
2235 	else
2236 		return false;
2237 }
2238 
check_new_pcp(struct page * page)2239 static inline bool check_new_pcp(struct page *page)
2240 {
2241 	return check_new_page(page);
2242 }
2243 #else
2244 /*
2245  * With DEBUG_VM disabled, free order-0 pages are checked for expected state
2246  * when pcp lists are being refilled from the free lists. With debug_pagealloc
2247  * enabled, they are also checked when being allocated from the pcp lists.
2248  */
check_pcp_refill(struct page * page)2249 static inline bool check_pcp_refill(struct page *page)
2250 {
2251 	return check_new_page(page);
2252 }
check_new_pcp(struct page * page)2253 static inline bool check_new_pcp(struct page *page)
2254 {
2255 	if (debug_pagealloc_enabled_static())
2256 		return check_new_page(page);
2257 	else
2258 		return false;
2259 }
2260 #endif /* CONFIG_DEBUG_VM */
2261 
check_new_pages(struct page * page,unsigned int order)2262 static bool check_new_pages(struct page *page, unsigned int order)
2263 {
2264 	int i;
2265 	for (i = 0; i < (1 << order); i++) {
2266 		struct page *p = page + i;
2267 
2268 		if (unlikely(check_new_page(p)))
2269 			return true;
2270 	}
2271 
2272 	return false;
2273 }
2274 
post_alloc_hook(struct page * page,unsigned int order,gfp_t gfp_flags)2275 inline void post_alloc_hook(struct page *page, unsigned int order,
2276 				gfp_t gfp_flags)
2277 {
2278 	set_page_private(page, 0);
2279 	set_page_refcounted(page);
2280 
2281 	arch_alloc_page(page, order);
2282 	if (debug_pagealloc_enabled_static())
2283 		kernel_map_pages(page, 1 << order, 1);
2284 	kasan_alloc_pages(page, order);
2285 	kernel_poison_pages(page, 1 << order, 1);
2286 	set_page_owner(page, order, gfp_flags);
2287 }
2288 
prep_new_page(struct page * page,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags)2289 static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
2290 							unsigned int alloc_flags)
2291 {
2292 	post_alloc_hook(page, order, gfp_flags);
2293 
2294 	if (!free_pages_prezeroed() && want_init_on_alloc(gfp_flags))
2295 		kernel_init_free_pages(page, 1 << order);
2296 
2297 	if (order && (gfp_flags & __GFP_COMP))
2298 		prep_compound_page(page, order);
2299 
2300 	/*
2301 	 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
2302 	 * allocate the page. The expectation is that the caller is taking
2303 	 * steps that will free more memory. The caller should avoid the page
2304 	 * being used for !PFMEMALLOC purposes.
2305 	 */
2306 	if (alloc_flags & ALLOC_NO_WATERMARKS)
2307 		set_page_pfmemalloc(page);
2308 	else
2309 		clear_page_pfmemalloc(page);
2310 }
2311 
2312 /*
2313  * Go through the free lists for the given migratetype and remove
2314  * the smallest available page from the freelists
2315  */
2316 static __always_inline
__rmqueue_smallest(struct zone * zone,unsigned int order,int migratetype)2317 struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
2318 						int migratetype)
2319 {
2320 	unsigned int current_order;
2321 	struct free_area *area;
2322 	struct page *page;
2323 
2324 	/* Find a page of the appropriate size in the preferred list */
2325 	for (current_order = order; current_order < MAX_ORDER; ++current_order) {
2326 		area = &(zone->free_area[current_order]);
2327 		page = get_page_from_free_area(area, migratetype);
2328 		if (!page)
2329 			continue;
2330 		del_page_from_free_list(page, zone, current_order);
2331 		expand(zone, page, order, current_order, migratetype);
2332 		set_pcppage_migratetype(page, migratetype);
2333 		return page;
2334 	}
2335 
2336 	return NULL;
2337 }
2338 
2339 
2340 /*
2341  * This array describes the order lists are fallen back to when
2342  * the free lists for the desirable migrate type are depleted
2343  */
2344 static int fallbacks[MIGRATE_TYPES][3] = {
2345 	[MIGRATE_UNMOVABLE]   = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE,   MIGRATE_TYPES },
2346 	[MIGRATE_MOVABLE]     = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
2347 	[MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE,   MIGRATE_MOVABLE,   MIGRATE_TYPES },
2348 #ifdef CONFIG_CMA
2349 	[MIGRATE_CMA]         = { MIGRATE_TYPES }, /* Never used */
2350 #endif
2351 #ifdef CONFIG_MEMORY_ISOLATION
2352 	[MIGRATE_ISOLATE]     = { MIGRATE_TYPES }, /* Never used */
2353 #endif
2354 };
2355 
2356 #ifdef CONFIG_CMA
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2357 static __always_inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2358 					unsigned int order)
2359 {
2360 	return __rmqueue_smallest(zone, order, MIGRATE_CMA);
2361 }
2362 #else
__rmqueue_cma_fallback(struct zone * zone,unsigned int order)2363 static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
2364 					unsigned int order) { return NULL; }
2365 #endif
2366 
2367 /*
2368  * Move the free pages in a range to the freelist tail of the requested type.
2369  * Note that start_page and end_pages are not aligned on a pageblock
2370  * boundary. If alignment is required, use move_freepages_block()
2371  */
move_freepages(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,int migratetype,int * num_movable)2372 static int move_freepages(struct zone *zone,
2373 			  unsigned long start_pfn, unsigned long end_pfn,
2374 			  int migratetype, int *num_movable)
2375 {
2376 	struct page *page;
2377 	unsigned long pfn;
2378 	unsigned int order;
2379 	int pages_moved = 0;
2380 
2381 	for (pfn = start_pfn; pfn <= end_pfn;) {
2382 		if (!pfn_valid_within(pfn)) {
2383 			pfn++;
2384 			continue;
2385 		}
2386 
2387 		page = pfn_to_page(pfn);
2388 		if (!PageBuddy(page)) {
2389 			/*
2390 			 * We assume that pages that could be isolated for
2391 			 * migration are movable. But we don't actually try
2392 			 * isolating, as that would be expensive.
2393 			 */
2394 			if (num_movable &&
2395 					(PageLRU(page) || __PageMovable(page)))
2396 				(*num_movable)++;
2397 			pfn++;
2398 			continue;
2399 		}
2400 
2401 		/* Make sure we are not inadvertently changing nodes */
2402 		VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
2403 		VM_BUG_ON_PAGE(page_zone(page) != zone, page);
2404 
2405 		order = buddy_order(page);
2406 		move_to_free_list(page, zone, order, migratetype);
2407 		pfn += 1 << order;
2408 		pages_moved += 1 << order;
2409 	}
2410 
2411 	return pages_moved;
2412 }
2413 
move_freepages_block(struct zone * zone,struct page * page,int migratetype,int * num_movable)2414 int move_freepages_block(struct zone *zone, struct page *page,
2415 				int migratetype, int *num_movable)
2416 {
2417 	unsigned long start_pfn, end_pfn, pfn;
2418 
2419 	if (num_movable)
2420 		*num_movable = 0;
2421 
2422 	pfn = page_to_pfn(page);
2423 	start_pfn = pfn & ~(pageblock_nr_pages - 1);
2424 	end_pfn = start_pfn + pageblock_nr_pages - 1;
2425 
2426 	/* Do not cross zone boundaries */
2427 	if (!zone_spans_pfn(zone, start_pfn))
2428 		start_pfn = pfn;
2429 	if (!zone_spans_pfn(zone, end_pfn))
2430 		return 0;
2431 
2432 	return move_freepages(zone, start_pfn, end_pfn, migratetype,
2433 								num_movable);
2434 }
2435 
change_pageblock_range(struct page * pageblock_page,int start_order,int migratetype)2436 static void change_pageblock_range(struct page *pageblock_page,
2437 					int start_order, int migratetype)
2438 {
2439 	int nr_pageblocks = 1 << (start_order - pageblock_order);
2440 
2441 	while (nr_pageblocks--) {
2442 		set_pageblock_migratetype(pageblock_page, migratetype);
2443 		pageblock_page += pageblock_nr_pages;
2444 	}
2445 }
2446 
2447 /*
2448  * When we are falling back to another migratetype during allocation, try to
2449  * steal extra free pages from the same pageblocks to satisfy further
2450  * allocations, instead of polluting multiple pageblocks.
2451  *
2452  * If we are stealing a relatively large buddy page, it is likely there will
2453  * be more free pages in the pageblock, so try to steal them all. For
2454  * reclaimable and unmovable allocations, we steal regardless of page size,
2455  * as fragmentation caused by those allocations polluting movable pageblocks
2456  * is worse than movable allocations stealing from unmovable and reclaimable
2457  * pageblocks.
2458  */
can_steal_fallback(unsigned int order,int start_mt)2459 static bool can_steal_fallback(unsigned int order, int start_mt)
2460 {
2461 	/*
2462 	 * Leaving this order check is intended, although there is
2463 	 * relaxed order check in next check. The reason is that
2464 	 * we can actually steal whole pageblock if this condition met,
2465 	 * but, below check doesn't guarantee it and that is just heuristic
2466 	 * so could be changed anytime.
2467 	 */
2468 	if (order >= pageblock_order)
2469 		return true;
2470 
2471 	if (order >= pageblock_order / 2 ||
2472 		start_mt == MIGRATE_RECLAIMABLE ||
2473 		start_mt == MIGRATE_UNMOVABLE ||
2474 		page_group_by_mobility_disabled)
2475 		return true;
2476 
2477 	return false;
2478 }
2479 
boost_watermark(struct zone * zone)2480 static inline bool boost_watermark(struct zone *zone)
2481 {
2482 	unsigned long max_boost;
2483 
2484 	if (!watermark_boost_factor)
2485 		return false;
2486 	/*
2487 	 * Don't bother in zones that are unlikely to produce results.
2488 	 * On small machines, including kdump capture kernels running
2489 	 * in a small area, boosting the watermark can cause an out of
2490 	 * memory situation immediately.
2491 	 */
2492 	if ((pageblock_nr_pages * 4) > zone_managed_pages(zone))
2493 		return false;
2494 
2495 	max_boost = mult_frac(zone->_watermark[WMARK_HIGH],
2496 			watermark_boost_factor, 10000);
2497 
2498 	/*
2499 	 * high watermark may be uninitialised if fragmentation occurs
2500 	 * very early in boot so do not boost. We do not fall
2501 	 * through and boost by pageblock_nr_pages as failing
2502 	 * allocations that early means that reclaim is not going
2503 	 * to help and it may even be impossible to reclaim the
2504 	 * boosted watermark resulting in a hang.
2505 	 */
2506 	if (!max_boost)
2507 		return false;
2508 
2509 	max_boost = max(pageblock_nr_pages, max_boost);
2510 
2511 	zone->watermark_boost = min(zone->watermark_boost + pageblock_nr_pages,
2512 		max_boost);
2513 
2514 	return true;
2515 }
2516 
2517 /*
2518  * This function implements actual steal behaviour. If order is large enough,
2519  * we can steal whole pageblock. If not, we first move freepages in this
2520  * pageblock to our migratetype and determine how many already-allocated pages
2521  * are there in the pageblock with a compatible migratetype. If at least half
2522  * of pages are free or compatible, we can change migratetype of the pageblock
2523  * itself, so pages freed in the future will be put on the correct free list.
2524  */
steal_suitable_fallback(struct zone * zone,struct page * page,unsigned int alloc_flags,int start_type,bool whole_block)2525 static void steal_suitable_fallback(struct zone *zone, struct page *page,
2526 		unsigned int alloc_flags, int start_type, bool whole_block)
2527 {
2528 	unsigned int current_order = buddy_order(page);
2529 	int free_pages, movable_pages, alike_pages;
2530 	int old_block_type;
2531 
2532 	old_block_type = get_pageblock_migratetype(page);
2533 
2534 	/*
2535 	 * This can happen due to races and we want to prevent broken
2536 	 * highatomic accounting.
2537 	 */
2538 	if (is_migrate_highatomic(old_block_type))
2539 		goto single_page;
2540 
2541 	/* Take ownership for orders >= pageblock_order */
2542 	if (current_order >= pageblock_order) {
2543 		change_pageblock_range(page, current_order, start_type);
2544 		goto single_page;
2545 	}
2546 
2547 	/*
2548 	 * Boost watermarks to increase reclaim pressure to reduce the
2549 	 * likelihood of future fallbacks. Wake kswapd now as the node
2550 	 * may be balanced overall and kswapd will not wake naturally.
2551 	 */
2552 	if (boost_watermark(zone) && (alloc_flags & ALLOC_KSWAPD))
2553 		set_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
2554 
2555 	/* We are not allowed to try stealing from the whole block */
2556 	if (!whole_block)
2557 		goto single_page;
2558 
2559 	free_pages = move_freepages_block(zone, page, start_type,
2560 						&movable_pages);
2561 	/*
2562 	 * Determine how many pages are compatible with our allocation.
2563 	 * For movable allocation, it's the number of movable pages which
2564 	 * we just obtained. For other types it's a bit more tricky.
2565 	 */
2566 	if (start_type == MIGRATE_MOVABLE) {
2567 		alike_pages = movable_pages;
2568 	} else {
2569 		/*
2570 		 * If we are falling back a RECLAIMABLE or UNMOVABLE allocation
2571 		 * to MOVABLE pageblock, consider all non-movable pages as
2572 		 * compatible. If it's UNMOVABLE falling back to RECLAIMABLE or
2573 		 * vice versa, be conservative since we can't distinguish the
2574 		 * exact migratetype of non-movable pages.
2575 		 */
2576 		if (old_block_type == MIGRATE_MOVABLE)
2577 			alike_pages = pageblock_nr_pages
2578 						- (free_pages + movable_pages);
2579 		else
2580 			alike_pages = 0;
2581 	}
2582 
2583 	/* moving whole block can fail due to zone boundary conditions */
2584 	if (!free_pages)
2585 		goto single_page;
2586 
2587 	/*
2588 	 * If a sufficient number of pages in the block are either free or of
2589 	 * comparable migratability as our allocation, claim the whole block.
2590 	 */
2591 	if (free_pages + alike_pages >= (1 << (pageblock_order-1)) ||
2592 			page_group_by_mobility_disabled)
2593 		set_pageblock_migratetype(page, start_type);
2594 
2595 	return;
2596 
2597 single_page:
2598 	move_to_free_list(page, zone, current_order, start_type);
2599 }
2600 
2601 /*
2602  * Check whether there is a suitable fallback freepage with requested order.
2603  * If only_stealable is true, this function returns fallback_mt only if
2604  * we can steal other freepages all together. This would help to reduce
2605  * fragmentation due to mixed migratetype pages in one pageblock.
2606  */
find_suitable_fallback(struct free_area * area,unsigned int order,int migratetype,bool only_stealable,bool * can_steal)2607 int find_suitable_fallback(struct free_area *area, unsigned int order,
2608 			int migratetype, bool only_stealable, bool *can_steal)
2609 {
2610 	int i;
2611 	int fallback_mt;
2612 
2613 	if (area->nr_free == 0)
2614 		return -1;
2615 
2616 	*can_steal = false;
2617 	for (i = 0;; i++) {
2618 		fallback_mt = fallbacks[migratetype][i];
2619 		if (fallback_mt == MIGRATE_TYPES)
2620 			break;
2621 
2622 		if (free_area_empty(area, fallback_mt))
2623 			continue;
2624 
2625 		if (can_steal_fallback(order, migratetype))
2626 			*can_steal = true;
2627 
2628 		if (!only_stealable)
2629 			return fallback_mt;
2630 
2631 		if (*can_steal)
2632 			return fallback_mt;
2633 	}
2634 
2635 	return -1;
2636 }
2637 
2638 /*
2639  * Reserve a pageblock for exclusive use of high-order atomic allocations if
2640  * there are no empty page blocks that contain a page with a suitable order
2641  */
reserve_highatomic_pageblock(struct page * page,struct zone * zone,unsigned int alloc_order)2642 static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2643 				unsigned int alloc_order)
2644 {
2645 	int mt;
2646 	unsigned long max_managed, flags;
2647 
2648 	/*
2649 	 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2650 	 * Check is race-prone but harmless.
2651 	 */
2652 	max_managed = (zone_managed_pages(zone) / 100) + pageblock_nr_pages;
2653 	if (zone->nr_reserved_highatomic >= max_managed)
2654 		return;
2655 
2656 	spin_lock_irqsave(&zone->lock, flags);
2657 
2658 	/* Recheck the nr_reserved_highatomic limit under the lock */
2659 	if (zone->nr_reserved_highatomic >= max_managed)
2660 		goto out_unlock;
2661 
2662 	/* Yoink! */
2663 	mt = get_pageblock_migratetype(page);
2664 	if (!is_migrate_highatomic(mt) && !is_migrate_isolate(mt)
2665 	    && !is_migrate_cma(mt)) {
2666 		zone->nr_reserved_highatomic += pageblock_nr_pages;
2667 		set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2668 		move_freepages_block(zone, page, MIGRATE_HIGHATOMIC, NULL);
2669 	}
2670 
2671 out_unlock:
2672 	spin_unlock_irqrestore(&zone->lock, flags);
2673 }
2674 
2675 /*
2676  * Used when an allocation is about to fail under memory pressure. This
2677  * potentially hurts the reliability of high-order allocations when under
2678  * intense memory pressure but failed atomic allocations should be easier
2679  * to recover from than an OOM.
2680  *
2681  * If @force is true, try to unreserve a pageblock even though highatomic
2682  * pageblock is exhausted.
2683  */
unreserve_highatomic_pageblock(const struct alloc_context * ac,bool force)2684 static bool unreserve_highatomic_pageblock(const struct alloc_context *ac,
2685 						bool force)
2686 {
2687 	struct zonelist *zonelist = ac->zonelist;
2688 	unsigned long flags;
2689 	struct zoneref *z;
2690 	struct zone *zone;
2691 	struct page *page;
2692 	int order;
2693 	bool ret;
2694 
2695 	for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->highest_zoneidx,
2696 								ac->nodemask) {
2697 		/*
2698 		 * Preserve at least one pageblock unless memory pressure
2699 		 * is really high.
2700 		 */
2701 		if (!force && zone->nr_reserved_highatomic <=
2702 					pageblock_nr_pages)
2703 			continue;
2704 
2705 		spin_lock_irqsave(&zone->lock, flags);
2706 		for (order = 0; order < MAX_ORDER; order++) {
2707 			struct free_area *area = &(zone->free_area[order]);
2708 
2709 			page = get_page_from_free_area(area, MIGRATE_HIGHATOMIC);
2710 			if (!page)
2711 				continue;
2712 
2713 			/*
2714 			 * In page freeing path, migratetype change is racy so
2715 			 * we can counter several free pages in a pageblock
2716 			 * in this loop althoug we changed the pageblock type
2717 			 * from highatomic to ac->migratetype. So we should
2718 			 * adjust the count once.
2719 			 */
2720 			if (is_migrate_highatomic_page(page)) {
2721 				/*
2722 				 * It should never happen but changes to
2723 				 * locking could inadvertently allow a per-cpu
2724 				 * drain to add pages to MIGRATE_HIGHATOMIC
2725 				 * while unreserving so be safe and watch for
2726 				 * underflows.
2727 				 */
2728 				zone->nr_reserved_highatomic -= min(
2729 						pageblock_nr_pages,
2730 						zone->nr_reserved_highatomic);
2731 			}
2732 
2733 			/*
2734 			 * Convert to ac->migratetype and avoid the normal
2735 			 * pageblock stealing heuristics. Minimally, the caller
2736 			 * is doing the work and needs the pages. More
2737 			 * importantly, if the block was always converted to
2738 			 * MIGRATE_UNMOVABLE or another type then the number
2739 			 * of pageblocks that cannot be completely freed
2740 			 * may increase.
2741 			 */
2742 			set_pageblock_migratetype(page, ac->migratetype);
2743 			ret = move_freepages_block(zone, page, ac->migratetype,
2744 									NULL);
2745 			if (ret) {
2746 				spin_unlock_irqrestore(&zone->lock, flags);
2747 				return ret;
2748 			}
2749 		}
2750 		spin_unlock_irqrestore(&zone->lock, flags);
2751 	}
2752 
2753 	return false;
2754 }
2755 
2756 /*
2757  * Try finding a free buddy page on the fallback list and put it on the free
2758  * list of requested migratetype, possibly along with other pages from the same
2759  * block, depending on fragmentation avoidance heuristics. Returns true if
2760  * fallback was found so that __rmqueue_smallest() can grab it.
2761  *
2762  * The use of signed ints for order and current_order is a deliberate
2763  * deviation from the rest of this file, to make the for loop
2764  * condition simpler.
2765  */
2766 static __always_inline bool
__rmqueue_fallback(struct zone * zone,int order,int start_migratetype,unsigned int alloc_flags)2767 __rmqueue_fallback(struct zone *zone, int order, int start_migratetype,
2768 						unsigned int alloc_flags)
2769 {
2770 	struct free_area *area;
2771 	int current_order;
2772 	int min_order = order;
2773 	struct page *page;
2774 	int fallback_mt;
2775 	bool can_steal;
2776 
2777 	/*
2778 	 * Do not steal pages from freelists belonging to other pageblocks
2779 	 * i.e. orders < pageblock_order. If there are no local zones free,
2780 	 * the zonelists will be reiterated without ALLOC_NOFRAGMENT.
2781 	 */
2782 	if (alloc_flags & ALLOC_NOFRAGMENT)
2783 		min_order = pageblock_order;
2784 
2785 	/*
2786 	 * Find the largest available free page in the other list. This roughly
2787 	 * approximates finding the pageblock with the most free pages, which
2788 	 * would be too costly to do exactly.
2789 	 */
2790 	for (current_order = MAX_ORDER - 1; current_order >= min_order;
2791 				--current_order) {
2792 		area = &(zone->free_area[current_order]);
2793 		fallback_mt = find_suitable_fallback(area, current_order,
2794 				start_migratetype, false, &can_steal);
2795 		if (fallback_mt == -1)
2796 			continue;
2797 
2798 		/*
2799 		 * We cannot steal all free pages from the pageblock and the
2800 		 * requested migratetype is movable. In that case it's better to
2801 		 * steal and split the smallest available page instead of the
2802 		 * largest available page, because even if the next movable
2803 		 * allocation falls back into a different pageblock than this
2804 		 * one, it won't cause permanent fragmentation.
2805 		 */
2806 		if (!can_steal && start_migratetype == MIGRATE_MOVABLE
2807 					&& current_order > order)
2808 			goto find_smallest;
2809 
2810 		goto do_steal;
2811 	}
2812 
2813 	return false;
2814 
2815 find_smallest:
2816 	for (current_order = order; current_order < MAX_ORDER;
2817 							current_order++) {
2818 		area = &(zone->free_area[current_order]);
2819 		fallback_mt = find_suitable_fallback(area, current_order,
2820 				start_migratetype, false, &can_steal);
2821 		if (fallback_mt != -1)
2822 			break;
2823 	}
2824 
2825 	/*
2826 	 * This should not happen - we already found a suitable fallback
2827 	 * when looking for the largest page.
2828 	 */
2829 	VM_BUG_ON(current_order == MAX_ORDER);
2830 
2831 do_steal:
2832 	page = get_page_from_free_area(area, fallback_mt);
2833 
2834 	steal_suitable_fallback(zone, page, alloc_flags, start_migratetype,
2835 								can_steal);
2836 
2837 	trace_mm_page_alloc_extfrag(page, order, current_order,
2838 		start_migratetype, fallback_mt);
2839 
2840 	return true;
2841 
2842 }
2843 
2844 static __always_inline struct page *
__rmqueue_with_cma_reuse(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2845 __rmqueue_with_cma_reuse(struct zone *zone, unsigned int order,
2846 					int migratetype, unsigned int alloc_flags)
2847 {
2848 	struct page *page = NULL;
2849 retry:
2850 	page = __rmqueue_smallest(zone, order, migratetype);
2851 
2852 	if (unlikely(!page) && is_migrate_cma(migratetype)) {
2853 		migratetype = MIGRATE_MOVABLE;
2854 		alloc_flags &= ~ALLOC_CMA;
2855 		page = __rmqueue_smallest(zone, order, migratetype);
2856 	}
2857 
2858 	if (unlikely(!page) &&
2859 		__rmqueue_fallback(zone, order, migratetype, alloc_flags))
2860 		goto retry;
2861 
2862 	return page;
2863 }
2864 
2865 /*
2866  * Do the hard work of removing an element from the buddy allocator.
2867  * Call me with the zone->lock already held.
2868  */
2869 static __always_inline struct page *
__rmqueue(struct zone * zone,unsigned int order,int migratetype,unsigned int alloc_flags)2870 __rmqueue(struct zone *zone, unsigned int order, int migratetype,
2871 						unsigned int alloc_flags)
2872 {
2873 	struct page *page;
2874 
2875 #ifdef CONFIG_CMA_REUSE
2876 	page = __rmqueue_with_cma_reuse(zone, order, migratetype, alloc_flags);
2877 	goto out;
2878 #endif
2879 
2880 	if (IS_ENABLED(CONFIG_CMA)) {
2881 		/*
2882 		 * Balance movable allocations between regular and CMA areas by
2883 		 * allocating from CMA when over half of the zone's free memory
2884 		 * is in the CMA area.
2885 		 */
2886 		if (alloc_flags & ALLOC_CMA &&
2887 		    zone_page_state(zone, NR_FREE_CMA_PAGES) >
2888 		    zone_page_state(zone, NR_FREE_PAGES) / 2) {
2889 			page = __rmqueue_cma_fallback(zone, order);
2890 			if (page)
2891 				goto out;
2892 		}
2893 	}
2894 retry:
2895 	page = __rmqueue_smallest(zone, order, migratetype);
2896 	if (unlikely(!page)) {
2897 		if (alloc_flags & ALLOC_CMA)
2898 			page = __rmqueue_cma_fallback(zone, order);
2899 
2900 		if (!page && __rmqueue_fallback(zone, order, migratetype,
2901 								alloc_flags))
2902 			goto retry;
2903 	}
2904 out:
2905 	if (page)
2906 		trace_mm_page_alloc_zone_locked(page, order, migratetype);
2907 	return page;
2908 }
2909 
2910 /*
2911  * Obtain a specified number of elements from the buddy allocator, all under
2912  * a single hold of the lock, for efficiency.  Add them to the supplied list.
2913  * Returns the number of new pages which were placed at *list.
2914  */
rmqueue_bulk(struct zone * zone,unsigned int order,unsigned long count,struct list_head * list,int migratetype,unsigned int alloc_flags)2915 static int rmqueue_bulk(struct zone *zone, unsigned int order,
2916 			unsigned long count, struct list_head *list,
2917 			int migratetype, unsigned int alloc_flags)
2918 {
2919 	int i, alloced = 0;
2920 
2921 	spin_lock(&zone->lock);
2922 	for (i = 0; i < count; ++i) {
2923 		struct page *page = __rmqueue(zone, order, migratetype,
2924 								alloc_flags);
2925 		if (unlikely(page == NULL))
2926 			break;
2927 
2928 		if (unlikely(check_pcp_refill(page)))
2929 			continue;
2930 
2931 		/*
2932 		 * Split buddy pages returned by expand() are received here in
2933 		 * physical page order. The page is added to the tail of
2934 		 * caller's list. From the callers perspective, the linked list
2935 		 * is ordered by page number under some conditions. This is
2936 		 * useful for IO devices that can forward direction from the
2937 		 * head, thus also in the physical page order. This is useful
2938 		 * for IO devices that can merge IO requests if the physical
2939 		 * pages are ordered properly.
2940 		 */
2941 		list_add_tail(&page->lru, list);
2942 		alloced++;
2943 		if (is_migrate_cma(get_pcppage_migratetype(page)))
2944 			__mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2945 					      -(1 << order));
2946 	}
2947 
2948 	/*
2949 	 * i pages were removed from the buddy list even if some leak due
2950 	 * to check_pcp_refill failing so adjust NR_FREE_PAGES based
2951 	 * on i. Do not confuse with 'alloced' which is the number of
2952 	 * pages added to the pcp list.
2953 	 */
2954 	__mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
2955 	spin_unlock(&zone->lock);
2956 	return alloced;
2957 }
2958 
2959 #ifdef CONFIG_NUMA
2960 /*
2961  * Called from the vmstat counter updater to drain pagesets of this
2962  * currently executing processor on remote nodes after they have
2963  * expired.
2964  *
2965  * Note that this function must be called with the thread pinned to
2966  * a single processor.
2967  */
drain_zone_pages(struct zone * zone,struct per_cpu_pages * pcp)2968 void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
2969 {
2970 	unsigned long flags;
2971 	int to_drain, batch;
2972 
2973 	local_irq_save(flags);
2974 	batch = READ_ONCE(pcp->batch);
2975 	to_drain = min(pcp->count, batch);
2976 	if (to_drain > 0)
2977 		free_pcppages_bulk(zone, to_drain, pcp);
2978 	local_irq_restore(flags);
2979 }
2980 #endif
2981 
2982 /*
2983  * Drain pcplists of the indicated processor and zone.
2984  *
2985  * The processor must either be the current processor and the
2986  * thread pinned to the current processor or a processor that
2987  * is not online.
2988  */
drain_pages_zone(unsigned int cpu,struct zone * zone)2989 static void drain_pages_zone(unsigned int cpu, struct zone *zone)
2990 {
2991 	unsigned long flags;
2992 	struct per_cpu_pageset *pset;
2993 	struct per_cpu_pages *pcp;
2994 
2995 	local_irq_save(flags);
2996 	pset = per_cpu_ptr(zone->pageset, cpu);
2997 
2998 	pcp = &pset->pcp;
2999 	if (pcp->count)
3000 		free_pcppages_bulk(zone, pcp->count, pcp);
3001 	local_irq_restore(flags);
3002 }
3003 
3004 /*
3005  * Drain pcplists of all zones on the indicated processor.
3006  *
3007  * The processor must either be the current processor and the
3008  * thread pinned to the current processor or a processor that
3009  * is not online.
3010  */
drain_pages(unsigned int cpu)3011 static void drain_pages(unsigned int cpu)
3012 {
3013 	struct zone *zone;
3014 
3015 	for_each_populated_zone(zone) {
3016 		drain_pages_zone(cpu, zone);
3017 	}
3018 }
3019 
3020 /*
3021  * Spill all of this CPU's per-cpu pages back into the buddy allocator.
3022  *
3023  * The CPU has to be pinned. When zone parameter is non-NULL, spill just
3024  * the single zone's pages.
3025  */
drain_local_pages(struct zone * zone)3026 void drain_local_pages(struct zone *zone)
3027 {
3028 	int cpu = smp_processor_id();
3029 
3030 	if (zone)
3031 		drain_pages_zone(cpu, zone);
3032 	else
3033 		drain_pages(cpu);
3034 }
3035 
drain_local_pages_wq(struct work_struct * work)3036 static void drain_local_pages_wq(struct work_struct *work)
3037 {
3038 	struct pcpu_drain *drain;
3039 
3040 	drain = container_of(work, struct pcpu_drain, work);
3041 
3042 	/*
3043 	 * drain_all_pages doesn't use proper cpu hotplug protection so
3044 	 * we can race with cpu offline when the WQ can move this from
3045 	 * a cpu pinned worker to an unbound one. We can operate on a different
3046 	 * cpu which is allright but we also have to make sure to not move to
3047 	 * a different one.
3048 	 */
3049 	preempt_disable();
3050 	drain_local_pages(drain->zone);
3051 	preempt_enable();
3052 }
3053 
3054 /*
3055  * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
3056  *
3057  * When zone parameter is non-NULL, spill just the single zone's pages.
3058  *
3059  * Note that this can be extremely slow as the draining happens in a workqueue.
3060  */
drain_all_pages(struct zone * zone)3061 void drain_all_pages(struct zone *zone)
3062 {
3063 	int cpu;
3064 
3065 	/*
3066 	 * Allocate in the BSS so we wont require allocation in
3067 	 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
3068 	 */
3069 	static cpumask_t cpus_with_pcps;
3070 
3071 	/*
3072 	 * Make sure nobody triggers this path before mm_percpu_wq is fully
3073 	 * initialized.
3074 	 */
3075 	if (WARN_ON_ONCE(!mm_percpu_wq))
3076 		return;
3077 
3078 	/*
3079 	 * Do not drain if one is already in progress unless it's specific to
3080 	 * a zone. Such callers are primarily CMA and memory hotplug and need
3081 	 * the drain to be complete when the call returns.
3082 	 */
3083 	if (unlikely(!mutex_trylock(&pcpu_drain_mutex))) {
3084 		if (!zone)
3085 			return;
3086 		mutex_lock(&pcpu_drain_mutex);
3087 	}
3088 
3089 	/*
3090 	 * We don't care about racing with CPU hotplug event
3091 	 * as offline notification will cause the notified
3092 	 * cpu to drain that CPU pcps and on_each_cpu_mask
3093 	 * disables preemption as part of its processing
3094 	 */
3095 	for_each_online_cpu(cpu) {
3096 		struct per_cpu_pageset *pcp;
3097 		struct zone *z;
3098 		bool has_pcps = false;
3099 
3100 		if (zone) {
3101 			pcp = per_cpu_ptr(zone->pageset, cpu);
3102 			if (pcp->pcp.count)
3103 				has_pcps = true;
3104 		} else {
3105 			for_each_populated_zone(z) {
3106 				pcp = per_cpu_ptr(z->pageset, cpu);
3107 				if (pcp->pcp.count) {
3108 					has_pcps = true;
3109 					break;
3110 				}
3111 			}
3112 		}
3113 
3114 		if (has_pcps)
3115 			cpumask_set_cpu(cpu, &cpus_with_pcps);
3116 		else
3117 			cpumask_clear_cpu(cpu, &cpus_with_pcps);
3118 	}
3119 
3120 	for_each_cpu(cpu, &cpus_with_pcps) {
3121 		struct pcpu_drain *drain = per_cpu_ptr(&pcpu_drain, cpu);
3122 
3123 		drain->zone = zone;
3124 		INIT_WORK(&drain->work, drain_local_pages_wq);
3125 		queue_work_on(cpu, mm_percpu_wq, &drain->work);
3126 	}
3127 	for_each_cpu(cpu, &cpus_with_pcps)
3128 		flush_work(&per_cpu_ptr(&pcpu_drain, cpu)->work);
3129 
3130 	mutex_unlock(&pcpu_drain_mutex);
3131 }
3132 
3133 #ifdef CONFIG_HIBERNATION
3134 
3135 /*
3136  * Touch the watchdog for every WD_PAGE_COUNT pages.
3137  */
3138 #define WD_PAGE_COUNT	(128*1024)
3139 
mark_free_pages(struct zone * zone)3140 void mark_free_pages(struct zone *zone)
3141 {
3142 	unsigned long pfn, max_zone_pfn, page_count = WD_PAGE_COUNT;
3143 	unsigned long flags;
3144 	unsigned int order, t;
3145 	struct page *page;
3146 
3147 	if (zone_is_empty(zone))
3148 		return;
3149 
3150 	spin_lock_irqsave(&zone->lock, flags);
3151 
3152 	max_zone_pfn = zone_end_pfn(zone);
3153 	for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
3154 		if (pfn_valid(pfn)) {
3155 			page = pfn_to_page(pfn);
3156 
3157 			if (!--page_count) {
3158 				touch_nmi_watchdog();
3159 				page_count = WD_PAGE_COUNT;
3160 			}
3161 
3162 			if (page_zone(page) != zone)
3163 				continue;
3164 
3165 			if (!swsusp_page_is_forbidden(page))
3166 				swsusp_unset_page_free(page);
3167 		}
3168 
3169 	for_each_migratetype_order(order, t) {
3170 		list_for_each_entry(page,
3171 				&zone->free_area[order].free_list[t], lru) {
3172 			unsigned long i;
3173 
3174 			pfn = page_to_pfn(page);
3175 			for (i = 0; i < (1UL << order); i++) {
3176 				if (!--page_count) {
3177 					touch_nmi_watchdog();
3178 					page_count = WD_PAGE_COUNT;
3179 				}
3180 				swsusp_set_page_free(pfn_to_page(pfn + i));
3181 			}
3182 		}
3183 	}
3184 	spin_unlock_irqrestore(&zone->lock, flags);
3185 }
3186 #endif /* CONFIG_PM */
3187 
free_unref_page_prepare(struct page * page,unsigned long pfn)3188 static bool free_unref_page_prepare(struct page *page, unsigned long pfn)
3189 {
3190 	int migratetype;
3191 
3192 	if (!free_pcp_prepare(page))
3193 		return false;
3194 
3195 	migratetype = get_pfnblock_migratetype(page, pfn);
3196 	set_pcppage_migratetype(page, migratetype);
3197 	return true;
3198 }
3199 
free_unref_page_commit(struct page * page,unsigned long pfn)3200 static void free_unref_page_commit(struct page *page, unsigned long pfn)
3201 {
3202 	struct zone *zone = page_zone(page);
3203 	struct per_cpu_pages *pcp;
3204 	int migratetype;
3205 
3206 	migratetype = get_pcppage_migratetype(page);
3207 	__count_vm_event(PGFREE);
3208 
3209 	/*
3210 	 * We only track unmovable, reclaimable and movable on pcp lists.
3211 	 * Free ISOLATE pages back to the allocator because they are being
3212 	 * offlined but treat HIGHATOMIC as movable pages so we can get those
3213 	 * areas back if necessary. Otherwise, we may have to free
3214 	 * excessively into the page allocator
3215 	 */
3216 	if (migratetype >= MIGRATE_PCPTYPES) {
3217 		if (unlikely(is_migrate_isolate(migratetype))) {
3218 			free_one_page(zone, page, pfn, 0, migratetype,
3219 				      FPI_NONE);
3220 			return;
3221 		}
3222 		migratetype = MIGRATE_MOVABLE;
3223 	}
3224 
3225 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3226 	list_add(&page->lru, &pcp->lists[migratetype]);
3227 	pcp->count++;
3228 	if (pcp->count >= pcp->high) {
3229 		unsigned long batch = READ_ONCE(pcp->batch);
3230 		free_pcppages_bulk(zone, batch, pcp);
3231 	}
3232 }
3233 
3234 /*
3235  * Free a 0-order page
3236  */
free_unref_page(struct page * page)3237 void free_unref_page(struct page *page)
3238 {
3239 	unsigned long flags;
3240 	unsigned long pfn = page_to_pfn(page);
3241 
3242 	if (!free_unref_page_prepare(page, pfn))
3243 		return;
3244 
3245 	local_irq_save(flags);
3246 	free_unref_page_commit(page, pfn);
3247 	local_irq_restore(flags);
3248 }
3249 
3250 /*
3251  * Free a list of 0-order pages
3252  */
free_unref_page_list(struct list_head * list)3253 void free_unref_page_list(struct list_head *list)
3254 {
3255 	struct page *page, *next;
3256 	unsigned long flags, pfn;
3257 	int batch_count = 0;
3258 
3259 	/* Prepare pages for freeing */
3260 	list_for_each_entry_safe(page, next, list, lru) {
3261 		pfn = page_to_pfn(page);
3262 		if (!free_unref_page_prepare(page, pfn))
3263 			list_del(&page->lru);
3264 		set_page_private(page, pfn);
3265 	}
3266 
3267 	local_irq_save(flags);
3268 	list_for_each_entry_safe(page, next, list, lru) {
3269 		unsigned long pfn = page_private(page);
3270 
3271 		set_page_private(page, 0);
3272 		trace_mm_page_free_batched(page);
3273 		free_unref_page_commit(page, pfn);
3274 
3275 		/*
3276 		 * Guard against excessive IRQ disabled times when we get
3277 		 * a large list of pages to free.
3278 		 */
3279 		if (++batch_count == SWAP_CLUSTER_MAX) {
3280 			local_irq_restore(flags);
3281 			batch_count = 0;
3282 			local_irq_save(flags);
3283 		}
3284 	}
3285 	local_irq_restore(flags);
3286 }
3287 
3288 /*
3289  * split_page takes a non-compound higher-order page, and splits it into
3290  * n (1<<order) sub-pages: page[0..n]
3291  * Each sub-page must be freed individually.
3292  *
3293  * Note: this is probably too low level an operation for use in drivers.
3294  * Please consult with lkml before using this in your driver.
3295  */
split_page(struct page * page,unsigned int order)3296 void split_page(struct page *page, unsigned int order)
3297 {
3298 	int i;
3299 
3300 	VM_BUG_ON_PAGE(PageCompound(page), page);
3301 	VM_BUG_ON_PAGE(!page_count(page), page);
3302 
3303 	for (i = 1; i < (1 << order); i++)
3304 		set_page_refcounted(page + i);
3305 	split_page_owner(page, 1 << order);
3306 	split_page_memcg(page, 1 << order);
3307 }
3308 EXPORT_SYMBOL_GPL(split_page);
3309 
__isolate_free_page(struct page * page,unsigned int order)3310 int __isolate_free_page(struct page *page, unsigned int order)
3311 {
3312 	unsigned long watermark;
3313 	struct zone *zone;
3314 	int mt;
3315 
3316 	BUG_ON(!PageBuddy(page));
3317 
3318 	zone = page_zone(page);
3319 	mt = get_pageblock_migratetype(page);
3320 
3321 	if (!is_migrate_isolate(mt)) {
3322 		/*
3323 		 * Obey watermarks as if the page was being allocated. We can
3324 		 * emulate a high-order watermark check with a raised order-0
3325 		 * watermark, because we already know our high-order page
3326 		 * exists.
3327 		 */
3328 		watermark = zone->_watermark[WMARK_MIN] + (1UL << order);
3329 		if (!zone_watermark_ok(zone, 0, watermark, 0, ALLOC_CMA))
3330 			return 0;
3331 
3332 		__mod_zone_freepage_state(zone, -(1UL << order), mt);
3333 	}
3334 
3335 	/* Remove page from free list */
3336 
3337 	del_page_from_free_list(page, zone, order);
3338 
3339 	/*
3340 	 * Set the pageblock if the isolated page is at least half of a
3341 	 * pageblock
3342 	 */
3343 	if (order >= pageblock_order - 1) {
3344 		struct page *endpage = page + (1 << order) - 1;
3345 		for (; page < endpage; page += pageblock_nr_pages) {
3346 			int mt = get_pageblock_migratetype(page);
3347 			if (!is_migrate_isolate(mt) && !is_migrate_cma(mt)
3348 			    && !is_migrate_highatomic(mt))
3349 				set_pageblock_migratetype(page,
3350 							  MIGRATE_MOVABLE);
3351 		}
3352 	}
3353 
3354 
3355 	return 1UL << order;
3356 }
3357 
3358 /**
3359  * __putback_isolated_page - Return a now-isolated page back where we got it
3360  * @page: Page that was isolated
3361  * @order: Order of the isolated page
3362  * @mt: The page's pageblock's migratetype
3363  *
3364  * This function is meant to return a page pulled from the free lists via
3365  * __isolate_free_page back to the free lists they were pulled from.
3366  */
__putback_isolated_page(struct page * page,unsigned int order,int mt)3367 void __putback_isolated_page(struct page *page, unsigned int order, int mt)
3368 {
3369 	struct zone *zone = page_zone(page);
3370 
3371 	/* zone lock should be held when this function is called */
3372 	lockdep_assert_held(&zone->lock);
3373 
3374 	/* Return isolated page to tail of freelist. */
3375 	__free_one_page(page, page_to_pfn(page), zone, order, mt,
3376 			FPI_SKIP_REPORT_NOTIFY | FPI_TO_TAIL);
3377 }
3378 
3379 /*
3380  * Update NUMA hit/miss statistics
3381  *
3382  * Must be called with interrupts disabled.
3383  */
zone_statistics(struct zone * preferred_zone,struct zone * z)3384 static inline void zone_statistics(struct zone *preferred_zone, struct zone *z)
3385 {
3386 #ifdef CONFIG_NUMA
3387 	enum numa_stat_item local_stat = NUMA_LOCAL;
3388 
3389 	/* skip numa counters update if numa stats is disabled */
3390 	if (!static_branch_likely(&vm_numa_stat_key))
3391 		return;
3392 
3393 	if (zone_to_nid(z) != numa_node_id())
3394 		local_stat = NUMA_OTHER;
3395 
3396 	if (zone_to_nid(z) == zone_to_nid(preferred_zone))
3397 		__inc_numa_state(z, NUMA_HIT);
3398 	else {
3399 		__inc_numa_state(z, NUMA_MISS);
3400 		__inc_numa_state(preferred_zone, NUMA_FOREIGN);
3401 	}
3402 	__inc_numa_state(z, local_stat);
3403 #endif
3404 }
3405 
3406 /* Remove page from the per-cpu list, caller must protect the list */
__rmqueue_pcplist(struct zone * zone,int migratetype,unsigned int alloc_flags,struct per_cpu_pages * pcp,struct list_head * list)3407 static struct page *__rmqueue_pcplist(struct zone *zone, int migratetype,
3408 			unsigned int alloc_flags,
3409 			struct per_cpu_pages *pcp,
3410 			struct list_head *list)
3411 {
3412 	struct page *page;
3413 
3414 	do {
3415 		if (list_empty(list)) {
3416 			pcp->count += rmqueue_bulk(zone, 0,
3417 					pcp->batch, list,
3418 					migratetype, alloc_flags);
3419 			if (unlikely(list_empty(list)))
3420 				return NULL;
3421 		}
3422 
3423 		page = list_first_entry(list, struct page, lru);
3424 		list_del(&page->lru);
3425 		pcp->count--;
3426 	} while (check_new_pcp(page));
3427 
3428 	return page;
3429 }
3430 
3431 /* Lock and remove page from the per-cpu list */
rmqueue_pcplist(struct zone * preferred_zone,struct zone * zone,gfp_t gfp_flags,int migratetype,unsigned int alloc_flags)3432 static struct page *rmqueue_pcplist(struct zone *preferred_zone,
3433 			struct zone *zone, gfp_t gfp_flags,
3434 			int migratetype, unsigned int alloc_flags)
3435 {
3436 	struct per_cpu_pages *pcp;
3437 	struct list_head *list;
3438 	struct page *page;
3439 	unsigned long flags;
3440 
3441 	local_irq_save(flags);
3442 	pcp = &this_cpu_ptr(zone->pageset)->pcp;
3443 	list = &pcp->lists[migratetype];
3444 	page = __rmqueue_pcplist(zone,  migratetype, alloc_flags, pcp, list);
3445 	if (page) {
3446 		__count_zid_vm_events(PGALLOC, page_zonenum(page), 1);
3447 		zone_statistics(preferred_zone, zone);
3448 	}
3449 	local_irq_restore(flags);
3450 	return page;
3451 }
3452 
3453 /*
3454  * Allocate a page from the given zone. Use pcplists for order-0 allocations.
3455  */
3456 static inline
rmqueue(struct zone * preferred_zone,struct zone * zone,unsigned int order,gfp_t gfp_flags,unsigned int alloc_flags,int migratetype)3457 struct page *rmqueue(struct zone *preferred_zone,
3458 			struct zone *zone, unsigned int order,
3459 			gfp_t gfp_flags, unsigned int alloc_flags,
3460 			int migratetype)
3461 {
3462 	unsigned long flags;
3463 	struct page *page;
3464 
3465 	if (likely(order == 0)) {
3466 		/*
3467 		 * MIGRATE_MOVABLE pcplist could have the pages on CMA area and
3468 		 * we need to skip it when CMA area isn't allowed.
3469 		 */
3470 		if (!IS_ENABLED(CONFIG_CMA) || alloc_flags & ALLOC_CMA ||
3471 				migratetype != MIGRATE_MOVABLE ||
3472 				IS_ENABLED(CONFIG_CMA_REUSE)) {
3473 			page = rmqueue_pcplist(preferred_zone, zone, gfp_flags,
3474 					migratetype, alloc_flags);
3475 			goto out;
3476 		}
3477 	}
3478 
3479 	/*
3480 	 * We most definitely don't want callers attempting to
3481 	 * allocate greater than order-1 page units with __GFP_NOFAIL.
3482 	 */
3483 	WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
3484 	spin_lock_irqsave(&zone->lock, flags);
3485 
3486 	do {
3487 		page = NULL;
3488 		/*
3489 		 * order-0 request can reach here when the pcplist is skipped
3490 		 * due to non-CMA allocation context. HIGHATOMIC area is
3491 		 * reserved for high-order atomic allocation, so order-0
3492 		 * request should skip it.
3493 		 */
3494 		if (order > 0 && alloc_flags & ALLOC_HARDER) {
3495 			page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
3496 			if (page)
3497 				trace_mm_page_alloc_zone_locked(page, order, migratetype);
3498 		}
3499 		if (!page)
3500 			page = __rmqueue(zone, order, migratetype, alloc_flags);
3501 	} while (page && check_new_pages(page, order));
3502 	spin_unlock(&zone->lock);
3503 	if (!page)
3504 		goto failed;
3505 	__mod_zone_freepage_state(zone, -(1 << order),
3506 				  get_pcppage_migratetype(page));
3507 
3508 	__count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
3509 	zone_statistics(preferred_zone, zone);
3510 	local_irq_restore(flags);
3511 
3512 out:
3513 	/* Separate test+clear to avoid unnecessary atomics */
3514 	if (test_bit(ZONE_BOOSTED_WATERMARK, &zone->flags)) {
3515 		clear_bit(ZONE_BOOSTED_WATERMARK, &zone->flags);
3516 		wakeup_kswapd(zone, 0, 0, zone_idx(zone));
3517 	}
3518 
3519 	VM_BUG_ON_PAGE(page && bad_range(zone, page), page);
3520 	return page;
3521 
3522 failed:
3523 	local_irq_restore(flags);
3524 	return NULL;
3525 }
3526 
3527 #ifdef CONFIG_FAIL_PAGE_ALLOC
3528 
3529 static struct {
3530 	struct fault_attr attr;
3531 
3532 	bool ignore_gfp_highmem;
3533 	bool ignore_gfp_reclaim;
3534 	u32 min_order;
3535 } fail_page_alloc = {
3536 	.attr = FAULT_ATTR_INITIALIZER,
3537 	.ignore_gfp_reclaim = true,
3538 	.ignore_gfp_highmem = true,
3539 	.min_order = 1,
3540 };
3541 
setup_fail_page_alloc(char * str)3542 static int __init setup_fail_page_alloc(char *str)
3543 {
3544 	return setup_fault_attr(&fail_page_alloc.attr, str);
3545 }
3546 __setup("fail_page_alloc=", setup_fail_page_alloc);
3547 
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3548 static bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3549 {
3550 	if (order < fail_page_alloc.min_order)
3551 		return false;
3552 	if (gfp_mask & __GFP_NOFAIL)
3553 		return false;
3554 	if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
3555 		return false;
3556 	if (fail_page_alloc.ignore_gfp_reclaim &&
3557 			(gfp_mask & __GFP_DIRECT_RECLAIM))
3558 		return false;
3559 
3560 	return should_fail(&fail_page_alloc.attr, 1 << order);
3561 }
3562 
3563 #ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
3564 
fail_page_alloc_debugfs(void)3565 static int __init fail_page_alloc_debugfs(void)
3566 {
3567 	umode_t mode = S_IFREG | 0600;
3568 	struct dentry *dir;
3569 
3570 	dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
3571 					&fail_page_alloc.attr);
3572 
3573 	debugfs_create_bool("ignore-gfp-wait", mode, dir,
3574 			    &fail_page_alloc.ignore_gfp_reclaim);
3575 	debugfs_create_bool("ignore-gfp-highmem", mode, dir,
3576 			    &fail_page_alloc.ignore_gfp_highmem);
3577 	debugfs_create_u32("min-order", mode, dir, &fail_page_alloc.min_order);
3578 
3579 	return 0;
3580 }
3581 
3582 late_initcall(fail_page_alloc_debugfs);
3583 
3584 #endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
3585 
3586 #else /* CONFIG_FAIL_PAGE_ALLOC */
3587 
__should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3588 static inline bool __should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3589 {
3590 	return false;
3591 }
3592 
3593 #endif /* CONFIG_FAIL_PAGE_ALLOC */
3594 
should_fail_alloc_page(gfp_t gfp_mask,unsigned int order)3595 noinline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
3596 {
3597 	return __should_fail_alloc_page(gfp_mask, order);
3598 }
3599 ALLOW_ERROR_INJECTION(should_fail_alloc_page, TRUE);
3600 
__zone_watermark_unusable_free(struct zone * z,unsigned int order,unsigned int alloc_flags)3601 static inline long __zone_watermark_unusable_free(struct zone *z,
3602 				unsigned int order, unsigned int alloc_flags)
3603 {
3604 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3605 	long unusable_free = (1 << order) - 1;
3606 
3607 	/*
3608 	 * If the caller does not have rights to ALLOC_HARDER then subtract
3609 	 * the high-atomic reserves. This will over-estimate the size of the
3610 	 * atomic reserve but it avoids a search.
3611 	 */
3612 	if (likely(!alloc_harder))
3613 		unusable_free += z->nr_reserved_highatomic;
3614 
3615 #ifdef CONFIG_CMA
3616 	/* If allocation can't use CMA areas don't use free CMA pages */
3617 	if (!(alloc_flags & ALLOC_CMA))
3618 		unusable_free += zone_page_state(z, NR_FREE_CMA_PAGES);
3619 #endif
3620 
3621 	return unusable_free;
3622 }
3623 
3624 /*
3625  * Return true if free base pages are above 'mark'. For high-order checks it
3626  * will return true of the order-0 watermark is reached and there is at least
3627  * one free page of a suitable size. Checking now avoids taking the zone lock
3628  * to check in the allocation paths if no pages are free.
3629  */
__zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,long free_pages)3630 bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3631 			 int highest_zoneidx, unsigned int alloc_flags,
3632 			 long free_pages)
3633 {
3634 	long min = mark;
3635 	int o;
3636 	const bool alloc_harder = (alloc_flags & (ALLOC_HARDER|ALLOC_OOM));
3637 
3638 	/* free_pages may go negative - that's OK */
3639 	free_pages -= __zone_watermark_unusable_free(z, order, alloc_flags);
3640 
3641 	if (alloc_flags & ALLOC_HIGH)
3642 		min -= min / 2;
3643 
3644 	if (unlikely(alloc_harder)) {
3645 		/*
3646 		 * OOM victims can try even harder than normal ALLOC_HARDER
3647 		 * users on the grounds that it's definitely going to be in
3648 		 * the exit path shortly and free memory. Any allocation it
3649 		 * makes during the free path will be small and short-lived.
3650 		 */
3651 		if (alloc_flags & ALLOC_OOM)
3652 			min -= min / 2;
3653 		else
3654 			min -= min / 4;
3655 	}
3656 
3657 	/*
3658 	 * Check watermarks for an order-0 allocation request. If these
3659 	 * are not met, then a high-order request also cannot go ahead
3660 	 * even if a suitable page happened to be free.
3661 	 */
3662 	if (free_pages <= min + z->lowmem_reserve[highest_zoneidx])
3663 		return false;
3664 
3665 	/* If this is an order-0 request then the watermark is fine */
3666 	if (!order)
3667 		return true;
3668 
3669 	/* For a high-order request, check at least one suitable page is free */
3670 	for (o = order; o < MAX_ORDER; o++) {
3671 		struct free_area *area = &z->free_area[o];
3672 		int mt;
3673 
3674 		if (!area->nr_free)
3675 			continue;
3676 
3677 		for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
3678 			if (!free_area_empty(area, mt))
3679 				return true;
3680 		}
3681 
3682 #ifdef CONFIG_CMA
3683 		if ((alloc_flags & ALLOC_CMA) &&
3684 		    !free_area_empty(area, MIGRATE_CMA)) {
3685 			return true;
3686 		}
3687 #endif
3688 		if (alloc_harder && !free_area_empty(area, MIGRATE_HIGHATOMIC))
3689 			return true;
3690 	}
3691 	return false;
3692 }
3693 
zone_watermark_ok(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags)3694 bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
3695 		      int highest_zoneidx, unsigned int alloc_flags)
3696 {
3697 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3698 					zone_page_state(z, NR_FREE_PAGES));
3699 }
3700 
zone_watermark_fast(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx,unsigned int alloc_flags,gfp_t gfp_mask)3701 static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
3702 				unsigned long mark, int highest_zoneidx,
3703 				unsigned int alloc_flags, gfp_t gfp_mask)
3704 {
3705 	long free_pages;
3706 
3707 	free_pages = zone_page_state(z, NR_FREE_PAGES);
3708 
3709 	/*
3710 	 * Fast check for order-0 only. If this fails then the reserves
3711 	 * need to be calculated.
3712 	 */
3713 	if (!order) {
3714 		long usable_free;
3715 		long reserved;
3716 
3717 		usable_free = free_pages;
3718 		reserved = __zone_watermark_unusable_free(z, 0, alloc_flags);
3719 
3720 		/* reserved may over estimate high-atomic reserves. */
3721 		usable_free -= min(usable_free, reserved);
3722 		if (usable_free > mark + z->lowmem_reserve[highest_zoneidx])
3723 			return true;
3724 	}
3725 
3726 	if (__zone_watermark_ok(z, order, mark, highest_zoneidx, alloc_flags,
3727 					free_pages))
3728 		return true;
3729 	/*
3730 	 * Ignore watermark boosting for GFP_ATOMIC order-0 allocations
3731 	 * when checking the min watermark. The min watermark is the
3732 	 * point where boosting is ignored so that kswapd is woken up
3733 	 * when below the low watermark.
3734 	 */
3735 	if (unlikely(!order && (gfp_mask & __GFP_ATOMIC) && z->watermark_boost
3736 		&& ((alloc_flags & ALLOC_WMARK_MASK) == WMARK_MIN))) {
3737 		mark = z->_watermark[WMARK_MIN];
3738 		return __zone_watermark_ok(z, order, mark, highest_zoneidx,
3739 					alloc_flags, free_pages);
3740 	}
3741 
3742 	return false;
3743 }
3744 
zone_watermark_ok_safe(struct zone * z,unsigned int order,unsigned long mark,int highest_zoneidx)3745 bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
3746 			unsigned long mark, int highest_zoneidx)
3747 {
3748 	long free_pages = zone_page_state(z, NR_FREE_PAGES);
3749 
3750 	if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
3751 		free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
3752 
3753 	return __zone_watermark_ok(z, order, mark, highest_zoneidx, 0,
3754 								free_pages);
3755 }
3756 
3757 #ifdef CONFIG_NUMA
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3758 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3759 {
3760 	return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <=
3761 				node_reclaim_distance;
3762 }
3763 #else	/* CONFIG_NUMA */
zone_allows_reclaim(struct zone * local_zone,struct zone * zone)3764 static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
3765 {
3766 	return true;
3767 }
3768 #endif	/* CONFIG_NUMA */
3769 
3770 /*
3771  * The restriction on ZONE_DMA32 as being a suitable zone to use to avoid
3772  * fragmentation is subtle. If the preferred zone was HIGHMEM then
3773  * premature use of a lower zone may cause lowmem pressure problems that
3774  * are worse than fragmentation. If the next zone is ZONE_DMA then it is
3775  * probably too small. It only makes sense to spread allocations to avoid
3776  * fragmentation between the Normal and DMA32 zones.
3777  */
3778 static inline unsigned int
alloc_flags_nofragment(struct zone * zone,gfp_t gfp_mask)3779 alloc_flags_nofragment(struct zone *zone, gfp_t gfp_mask)
3780 {
3781 	unsigned int alloc_flags;
3782 
3783 	/*
3784 	 * __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
3785 	 * to save a branch.
3786 	 */
3787 	alloc_flags = (__force int) (gfp_mask & __GFP_KSWAPD_RECLAIM);
3788 
3789 #ifdef CONFIG_ZONE_DMA32
3790 	if (!zone)
3791 		return alloc_flags;
3792 
3793 	if (zone_idx(zone) != ZONE_NORMAL)
3794 		return alloc_flags;
3795 
3796 	/*
3797 	 * If ZONE_DMA32 exists, assume it is the one after ZONE_NORMAL and
3798 	 * the pointer is within zone->zone_pgdat->node_zones[]. Also assume
3799 	 * on UMA that if Normal is populated then so is DMA32.
3800 	 */
3801 	BUILD_BUG_ON(ZONE_NORMAL - ZONE_DMA32 != 1);
3802 	if (nr_online_nodes > 1 && !populated_zone(--zone))
3803 		return alloc_flags;
3804 
3805 	alloc_flags |= ALLOC_NOFRAGMENT;
3806 #endif /* CONFIG_ZONE_DMA32 */
3807 	return alloc_flags;
3808 }
3809 
current_alloc_flags(gfp_t gfp_mask,unsigned int alloc_flags)3810 static inline unsigned int current_alloc_flags(gfp_t gfp_mask,
3811 					unsigned int alloc_flags)
3812 {
3813 #ifdef CONFIG_CMA
3814 	unsigned int pflags = current->flags;
3815 
3816 	if (!(pflags & PF_MEMALLOC_NOCMA) &&
3817 			gfp_migratetype(gfp_mask) == get_cma_migratetype())
3818 		alloc_flags |= ALLOC_CMA;
3819 
3820 #endif
3821 	return alloc_flags;
3822 }
3823 
3824 /*
3825  * get_page_from_freelist goes through the zonelist trying to allocate
3826  * a page.
3827  */
3828 static struct page *
get_page_from_freelist(gfp_t gfp_mask,unsigned int order,int alloc_flags,const struct alloc_context * ac)3829 get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
3830 						const struct alloc_context *ac)
3831 {
3832 	struct zoneref *z;
3833 	struct zone *zone;
3834 	struct pglist_data *last_pgdat_dirty_limit = NULL;
3835 	bool no_fallback;
3836 
3837 retry:
3838 	/*
3839 	 * Scan zonelist, looking for a zone with enough free.
3840 	 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
3841 	 */
3842 	no_fallback = alloc_flags & ALLOC_NOFRAGMENT;
3843 	z = ac->preferred_zoneref;
3844 	for_next_zone_zonelist_nodemask(zone, z, ac->highest_zoneidx,
3845 					ac->nodemask) {
3846 		struct page *page;
3847 		unsigned long mark;
3848 
3849 		if (cpusets_enabled() &&
3850 			(alloc_flags & ALLOC_CPUSET) &&
3851 			!__cpuset_zone_allowed(zone, gfp_mask))
3852 				continue;
3853 		/*
3854 		 * When allocating a page cache page for writing, we
3855 		 * want to get it from a node that is within its dirty
3856 		 * limit, such that no single node holds more than its
3857 		 * proportional share of globally allowed dirty pages.
3858 		 * The dirty limits take into account the node's
3859 		 * lowmem reserves and high watermark so that kswapd
3860 		 * should be able to balance it without having to
3861 		 * write pages from its LRU list.
3862 		 *
3863 		 * XXX: For now, allow allocations to potentially
3864 		 * exceed the per-node dirty limit in the slowpath
3865 		 * (spread_dirty_pages unset) before going into reclaim,
3866 		 * which is important when on a NUMA setup the allowed
3867 		 * nodes are together not big enough to reach the
3868 		 * global limit.  The proper fix for these situations
3869 		 * will require awareness of nodes in the
3870 		 * dirty-throttling and the flusher threads.
3871 		 */
3872 		if (ac->spread_dirty_pages) {
3873 			if (last_pgdat_dirty_limit == zone->zone_pgdat)
3874 				continue;
3875 
3876 			if (!node_dirty_ok(zone->zone_pgdat)) {
3877 				last_pgdat_dirty_limit = zone->zone_pgdat;
3878 				continue;
3879 			}
3880 		}
3881 
3882 		if (no_fallback && nr_online_nodes > 1 &&
3883 		    zone != ac->preferred_zoneref->zone) {
3884 			int local_nid;
3885 
3886 			/*
3887 			 * If moving to a remote node, retry but allow
3888 			 * fragmenting fallbacks. Locality is more important
3889 			 * than fragmentation avoidance.
3890 			 */
3891 			local_nid = zone_to_nid(ac->preferred_zoneref->zone);
3892 			if (zone_to_nid(zone) != local_nid) {
3893 				alloc_flags &= ~ALLOC_NOFRAGMENT;
3894 				goto retry;
3895 			}
3896 		}
3897 
3898 		mark = wmark_pages(zone, alloc_flags & ALLOC_WMARK_MASK);
3899 		if (!zone_watermark_fast(zone, order, mark,
3900 				       ac->highest_zoneidx, alloc_flags,
3901 				       gfp_mask)) {
3902 			int ret;
3903 
3904 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3905 			/*
3906 			 * Watermark failed for this zone, but see if we can
3907 			 * grow this zone if it contains deferred pages.
3908 			 */
3909 			if (static_branch_unlikely(&deferred_pages)) {
3910 				if (_deferred_grow_zone(zone, order))
3911 					goto try_this_zone;
3912 			}
3913 #endif
3914 			/* Checked here to keep the fast path fast */
3915 			BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
3916 			if (alloc_flags & ALLOC_NO_WATERMARKS)
3917 				goto try_this_zone;
3918 
3919 			if (node_reclaim_mode == 0 ||
3920 			    !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
3921 				continue;
3922 
3923 			ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
3924 			switch (ret) {
3925 			case NODE_RECLAIM_NOSCAN:
3926 				/* did not scan */
3927 				continue;
3928 			case NODE_RECLAIM_FULL:
3929 				/* scanned but unreclaimable */
3930 				continue;
3931 			default:
3932 				/* did we reclaim enough */
3933 				if (zone_watermark_ok(zone, order, mark,
3934 					ac->highest_zoneidx, alloc_flags))
3935 					goto try_this_zone;
3936 
3937 				continue;
3938 			}
3939 		}
3940 
3941 try_this_zone:
3942 		page = rmqueue(ac->preferred_zoneref->zone, zone, order,
3943 				gfp_mask, alloc_flags, ac->migratetype);
3944 		if (page) {
3945 			prep_new_page(page, order, gfp_mask, alloc_flags);
3946 
3947 			/*
3948 			 * If this is a high-order atomic allocation then check
3949 			 * if the pageblock should be reserved for the future
3950 			 */
3951 			if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
3952 				reserve_highatomic_pageblock(page, zone, order);
3953 
3954 			return page;
3955 		} else {
3956 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
3957 			/* Try again if zone has deferred pages */
3958 			if (static_branch_unlikely(&deferred_pages)) {
3959 				if (_deferred_grow_zone(zone, order))
3960 					goto try_this_zone;
3961 			}
3962 #endif
3963 		}
3964 	}
3965 
3966 	/*
3967 	 * It's possible on a UMA machine to get through all zones that are
3968 	 * fragmented. If avoiding fragmentation, reset and try again.
3969 	 */
3970 	if (no_fallback) {
3971 		alloc_flags &= ~ALLOC_NOFRAGMENT;
3972 		goto retry;
3973 	}
3974 
3975 	return NULL;
3976 }
3977 
warn_alloc_show_mem(gfp_t gfp_mask,nodemask_t * nodemask)3978 static void warn_alloc_show_mem(gfp_t gfp_mask, nodemask_t *nodemask)
3979 {
3980 	unsigned int filter = SHOW_MEM_FILTER_NODES;
3981 
3982 	/*
3983 	 * This documents exceptions given to allocations in certain
3984 	 * contexts that are allowed to allocate outside current's set
3985 	 * of allowed nodes.
3986 	 */
3987 	if (!(gfp_mask & __GFP_NOMEMALLOC))
3988 		if (tsk_is_oom_victim(current) ||
3989 		    (current->flags & (PF_MEMALLOC | PF_EXITING)))
3990 			filter &= ~SHOW_MEM_FILTER_NODES;
3991 	if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
3992 		filter &= ~SHOW_MEM_FILTER_NODES;
3993 
3994 	show_mem(filter, nodemask);
3995 }
3996 
warn_alloc(gfp_t gfp_mask,nodemask_t * nodemask,const char * fmt,...)3997 void warn_alloc(gfp_t gfp_mask, nodemask_t *nodemask, const char *fmt, ...)
3998 {
3999 	struct va_format vaf;
4000 	va_list args;
4001 	static DEFINE_RATELIMIT_STATE(nopage_rs, 10*HZ, 1);
4002 
4003 	if ((gfp_mask & __GFP_NOWARN) ||
4004 	     !__ratelimit(&nopage_rs) ||
4005 	     ((gfp_mask & __GFP_DMA) && !has_managed_dma()))
4006 		return;
4007 
4008 	va_start(args, fmt);
4009 	vaf.fmt = fmt;
4010 	vaf.va = &args;
4011 	pr_warn("%s: %pV, mode:%#x(%pGg), nodemask=%*pbl",
4012 			current->comm, &vaf, gfp_mask, &gfp_mask,
4013 			nodemask_pr_args(nodemask));
4014 	va_end(args);
4015 
4016 	cpuset_print_current_mems_allowed();
4017 	pr_cont("\n");
4018 	dump_stack();
4019 	warn_alloc_show_mem(gfp_mask, nodemask);
4020 }
4021 
4022 static inline struct page *
__alloc_pages_cpuset_fallback(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac)4023 __alloc_pages_cpuset_fallback(gfp_t gfp_mask, unsigned int order,
4024 			      unsigned int alloc_flags,
4025 			      const struct alloc_context *ac)
4026 {
4027 	struct page *page;
4028 
4029 	page = get_page_from_freelist(gfp_mask, order,
4030 			alloc_flags|ALLOC_CPUSET, ac);
4031 	/*
4032 	 * fallback to ignore cpuset restriction if our nodes
4033 	 * are depleted
4034 	 */
4035 	if (!page)
4036 		page = get_page_from_freelist(gfp_mask, order,
4037 				alloc_flags, ac);
4038 
4039 	return page;
4040 }
4041 
4042 static inline struct page *
__alloc_pages_may_oom(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac,unsigned long * did_some_progress)4043 __alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
4044 	const struct alloc_context *ac, unsigned long *did_some_progress)
4045 {
4046 	struct oom_control oc = {
4047 		.zonelist = ac->zonelist,
4048 		.nodemask = ac->nodemask,
4049 		.memcg = NULL,
4050 		.gfp_mask = gfp_mask,
4051 		.order = order,
4052 	};
4053 	struct page *page;
4054 
4055 	*did_some_progress = 0;
4056 
4057 	/*
4058 	 * Acquire the oom lock.  If that fails, somebody else is
4059 	 * making progress for us.
4060 	 */
4061 	if (!mutex_trylock(&oom_lock)) {
4062 		*did_some_progress = 1;
4063 		schedule_timeout_uninterruptible(1);
4064 		return NULL;
4065 	}
4066 
4067 	/*
4068 	 * Go through the zonelist yet one more time, keep very high watermark
4069 	 * here, this is only to catch a parallel oom killing, we must fail if
4070 	 * we're still under heavy pressure. But make sure that this reclaim
4071 	 * attempt shall not depend on __GFP_DIRECT_RECLAIM && !__GFP_NORETRY
4072 	 * allocation which will never fail due to oom_lock already held.
4073 	 */
4074 	page = get_page_from_freelist((gfp_mask | __GFP_HARDWALL) &
4075 				      ~__GFP_DIRECT_RECLAIM, order,
4076 				      ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
4077 	if (page)
4078 		goto out;
4079 
4080 	/* Coredumps can quickly deplete all memory reserves */
4081 	if (current->flags & PF_DUMPCORE)
4082 		goto out;
4083 	/* The OOM killer will not help higher order allocs */
4084 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4085 		goto out;
4086 	/*
4087 	 * We have already exhausted all our reclaim opportunities without any
4088 	 * success so it is time to admit defeat. We will skip the OOM killer
4089 	 * because it is very likely that the caller has a more reasonable
4090 	 * fallback than shooting a random task.
4091 	 *
4092 	 * The OOM killer may not free memory on a specific node.
4093 	 */
4094 	if (gfp_mask & (__GFP_RETRY_MAYFAIL | __GFP_THISNODE))
4095 		goto out;
4096 	/* The OOM killer does not needlessly kill tasks for lowmem */
4097 	if (ac->highest_zoneidx < ZONE_NORMAL)
4098 		goto out;
4099 	if (pm_suspended_storage())
4100 		goto out;
4101 	/*
4102 	 * XXX: GFP_NOFS allocations should rather fail than rely on
4103 	 * other request to make a forward progress.
4104 	 * We are in an unfortunate situation where out_of_memory cannot
4105 	 * do much for this context but let's try it to at least get
4106 	 * access to memory reserved if the current task is killed (see
4107 	 * out_of_memory). Once filesystems are ready to handle allocation
4108 	 * failures more gracefully we should just bail out here.
4109 	 */
4110 
4111 	/* Exhausted what can be done so it's blame time */
4112 	if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
4113 		*did_some_progress = 1;
4114 
4115 		/*
4116 		 * Help non-failing allocations by giving them access to memory
4117 		 * reserves
4118 		 */
4119 		if (gfp_mask & __GFP_NOFAIL)
4120 			page = __alloc_pages_cpuset_fallback(gfp_mask, order,
4121 					ALLOC_NO_WATERMARKS, ac);
4122 	}
4123 out:
4124 	mutex_unlock(&oom_lock);
4125 	return page;
4126 }
4127 
4128 /*
4129  * Maximum number of compaction retries wit a progress before OOM
4130  * killer is consider as the only way to move forward.
4131  */
4132 #define MAX_COMPACT_RETRIES 16
4133 
4134 #ifdef CONFIG_COMPACTION
4135 /* Try memory compaction for high-order allocations before reclaim */
4136 static struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4137 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4138 		unsigned int alloc_flags, const struct alloc_context *ac,
4139 		enum compact_priority prio, enum compact_result *compact_result)
4140 {
4141 	struct page *page = NULL;
4142 	unsigned long pflags;
4143 	unsigned int noreclaim_flag;
4144 
4145 	if (!order)
4146 		return NULL;
4147 
4148 	psi_memstall_enter(&pflags);
4149 	noreclaim_flag = memalloc_noreclaim_save();
4150 
4151 	*compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
4152 								prio, &page);
4153 
4154 	memalloc_noreclaim_restore(noreclaim_flag);
4155 	psi_memstall_leave(&pflags);
4156 
4157 	/*
4158 	 * At least in one zone compaction wasn't deferred or skipped, so let's
4159 	 * count a compaction stall
4160 	 */
4161 	count_vm_event(COMPACTSTALL);
4162 
4163 	/* Prep a captured page if available */
4164 	if (page)
4165 		prep_new_page(page, order, gfp_mask, alloc_flags);
4166 
4167 	/* Try get a page from the freelist if available */
4168 	if (!page)
4169 		page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4170 
4171 	if (page) {
4172 		struct zone *zone = page_zone(page);
4173 
4174 		zone->compact_blockskip_flush = false;
4175 		compaction_defer_reset(zone, order, true);
4176 		count_vm_event(COMPACTSUCCESS);
4177 		return page;
4178 	}
4179 
4180 	/*
4181 	 * It's bad if compaction run occurs and fails. The most likely reason
4182 	 * is that pages exist, but not enough to satisfy watermarks.
4183 	 */
4184 	count_vm_event(COMPACTFAIL);
4185 
4186 	cond_resched();
4187 
4188 	return NULL;
4189 }
4190 
4191 static inline bool
should_compact_retry(struct alloc_context * ac,int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4192 should_compact_retry(struct alloc_context *ac, int order, int alloc_flags,
4193 		     enum compact_result compact_result,
4194 		     enum compact_priority *compact_priority,
4195 		     int *compaction_retries)
4196 {
4197 	int max_retries = MAX_COMPACT_RETRIES;
4198 	int min_priority;
4199 	bool ret = false;
4200 	int retries = *compaction_retries;
4201 	enum compact_priority priority = *compact_priority;
4202 
4203 	if (!order)
4204 		return false;
4205 
4206 	if (compaction_made_progress(compact_result))
4207 		(*compaction_retries)++;
4208 
4209 	/*
4210 	 * compaction considers all the zone as desperately out of memory
4211 	 * so it doesn't really make much sense to retry except when the
4212 	 * failure could be caused by insufficient priority
4213 	 */
4214 	if (compaction_failed(compact_result))
4215 		goto check_priority;
4216 
4217 	/*
4218 	 * compaction was skipped because there are not enough order-0 pages
4219 	 * to work with, so we retry only if it looks like reclaim can help.
4220 	 */
4221 	if (compaction_needs_reclaim(compact_result)) {
4222 		ret = compaction_zonelist_suitable(ac, order, alloc_flags);
4223 		goto out;
4224 	}
4225 
4226 	/*
4227 	 * make sure the compaction wasn't deferred or didn't bail out early
4228 	 * due to locks contention before we declare that we should give up.
4229 	 * But the next retry should use a higher priority if allowed, so
4230 	 * we don't just keep bailing out endlessly.
4231 	 */
4232 	if (compaction_withdrawn(compact_result)) {
4233 		goto check_priority;
4234 	}
4235 
4236 	/*
4237 	 * !costly requests are much more important than __GFP_RETRY_MAYFAIL
4238 	 * costly ones because they are de facto nofail and invoke OOM
4239 	 * killer to move on while costly can fail and users are ready
4240 	 * to cope with that. 1/4 retries is rather arbitrary but we
4241 	 * would need much more detailed feedback from compaction to
4242 	 * make a better decision.
4243 	 */
4244 	if (order > PAGE_ALLOC_COSTLY_ORDER)
4245 		max_retries /= 4;
4246 	if (*compaction_retries <= max_retries) {
4247 		ret = true;
4248 		goto out;
4249 	}
4250 
4251 	/*
4252 	 * Make sure there are attempts at the highest priority if we exhausted
4253 	 * all retries or failed at the lower priorities.
4254 	 */
4255 check_priority:
4256 	min_priority = (order > PAGE_ALLOC_COSTLY_ORDER) ?
4257 			MIN_COMPACT_COSTLY_PRIORITY : MIN_COMPACT_PRIORITY;
4258 
4259 	if (*compact_priority > min_priority) {
4260 		(*compact_priority)--;
4261 		*compaction_retries = 0;
4262 		ret = true;
4263 	}
4264 out:
4265 	trace_compact_retry(order, priority, compact_result, retries, max_retries, ret);
4266 	return ret;
4267 }
4268 #else
4269 static inline struct page *
__alloc_pages_direct_compact(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,enum compact_priority prio,enum compact_result * compact_result)4270 __alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
4271 		unsigned int alloc_flags, const struct alloc_context *ac,
4272 		enum compact_priority prio, enum compact_result *compact_result)
4273 {
4274 	*compact_result = COMPACT_SKIPPED;
4275 	return NULL;
4276 }
4277 
4278 static inline bool
should_compact_retry(struct alloc_context * ac,unsigned int order,int alloc_flags,enum compact_result compact_result,enum compact_priority * compact_priority,int * compaction_retries)4279 should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
4280 		     enum compact_result compact_result,
4281 		     enum compact_priority *compact_priority,
4282 		     int *compaction_retries)
4283 {
4284 	struct zone *zone;
4285 	struct zoneref *z;
4286 
4287 	if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
4288 		return false;
4289 
4290 	/*
4291 	 * There are setups with compaction disabled which would prefer to loop
4292 	 * inside the allocator rather than hit the oom killer prematurely.
4293 	 * Let's give them a good hope and keep retrying while the order-0
4294 	 * watermarks are OK.
4295 	 */
4296 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4297 				ac->highest_zoneidx, ac->nodemask) {
4298 		if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
4299 					ac->highest_zoneidx, alloc_flags))
4300 			return true;
4301 	}
4302 	return false;
4303 }
4304 #endif /* CONFIG_COMPACTION */
4305 
4306 #ifdef CONFIG_LOCKDEP
4307 static struct lockdep_map __fs_reclaim_map =
4308 	STATIC_LOCKDEP_MAP_INIT("fs_reclaim", &__fs_reclaim_map);
4309 
__need_fs_reclaim(gfp_t gfp_mask)4310 static bool __need_fs_reclaim(gfp_t gfp_mask)
4311 {
4312 	gfp_mask = current_gfp_context(gfp_mask);
4313 
4314 	/* no reclaim without waiting on it */
4315 	if (!(gfp_mask & __GFP_DIRECT_RECLAIM))
4316 		return false;
4317 
4318 	/* this guy won't enter reclaim */
4319 	if (current->flags & PF_MEMALLOC)
4320 		return false;
4321 
4322 	/* We're only interested __GFP_FS allocations for now */
4323 	if (!(gfp_mask & __GFP_FS))
4324 		return false;
4325 
4326 	if (gfp_mask & __GFP_NOLOCKDEP)
4327 		return false;
4328 
4329 	return true;
4330 }
4331 
__fs_reclaim_acquire(void)4332 void __fs_reclaim_acquire(void)
4333 {
4334 	lock_map_acquire(&__fs_reclaim_map);
4335 }
4336 
__fs_reclaim_release(void)4337 void __fs_reclaim_release(void)
4338 {
4339 	lock_map_release(&__fs_reclaim_map);
4340 }
4341 
fs_reclaim_acquire(gfp_t gfp_mask)4342 void fs_reclaim_acquire(gfp_t gfp_mask)
4343 {
4344 	if (__need_fs_reclaim(gfp_mask))
4345 		__fs_reclaim_acquire();
4346 }
4347 EXPORT_SYMBOL_GPL(fs_reclaim_acquire);
4348 
fs_reclaim_release(gfp_t gfp_mask)4349 void fs_reclaim_release(gfp_t gfp_mask)
4350 {
4351 	if (__need_fs_reclaim(gfp_mask))
4352 		__fs_reclaim_release();
4353 }
4354 EXPORT_SYMBOL_GPL(fs_reclaim_release);
4355 #endif
4356 
4357 /*
4358  * Zonelists may change due to hotplug during allocation. Detect when zonelists
4359  * have been rebuilt so allocation retries. Reader side does not lock and
4360  * retries the allocation if zonelist changes. Writer side is protected by the
4361  * embedded spin_lock.
4362  */
4363 static DEFINE_SEQLOCK(zonelist_update_seq);
4364 
zonelist_iter_begin(void)4365 static unsigned int zonelist_iter_begin(void)
4366 {
4367 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4368 		return read_seqbegin(&zonelist_update_seq);
4369 
4370 	return 0;
4371 }
4372 
check_retry_zonelist(unsigned int seq)4373 static unsigned int check_retry_zonelist(unsigned int seq)
4374 {
4375 	if (IS_ENABLED(CONFIG_MEMORY_HOTREMOVE))
4376 		return read_seqretry(&zonelist_update_seq, seq);
4377 
4378 	return seq;
4379 }
4380 
4381 /* Perform direct synchronous page reclaim */
4382 static unsigned long
__perform_reclaim(gfp_t gfp_mask,unsigned int order,const struct alloc_context * ac)4383 __perform_reclaim(gfp_t gfp_mask, unsigned int order,
4384 					const struct alloc_context *ac)
4385 {
4386 	unsigned int noreclaim_flag;
4387 	unsigned long pflags, progress;
4388 
4389 	cond_resched();
4390 
4391 	/* We now go into synchronous reclaim */
4392 	cpuset_memory_pressure_bump();
4393 	psi_memstall_enter(&pflags);
4394 	fs_reclaim_acquire(gfp_mask);
4395 	noreclaim_flag = memalloc_noreclaim_save();
4396 
4397 	progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
4398 								ac->nodemask);
4399 
4400 	memalloc_noreclaim_restore(noreclaim_flag);
4401 	fs_reclaim_release(gfp_mask);
4402 	psi_memstall_leave(&pflags);
4403 
4404 	cond_resched();
4405 
4406 	return progress;
4407 }
4408 
4409 /* The really slow allocator path where we enter direct reclaim */
4410 static inline struct page *
__alloc_pages_direct_reclaim(gfp_t gfp_mask,unsigned int order,unsigned int alloc_flags,const struct alloc_context * ac,unsigned long * did_some_progress)4411 __alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
4412 		unsigned int alloc_flags, const struct alloc_context *ac,
4413 		unsigned long *did_some_progress)
4414 {
4415 	struct page *page = NULL;
4416 	bool drained = false;
4417 
4418 	*did_some_progress = __perform_reclaim(gfp_mask, order, ac);
4419 	if (unlikely(!(*did_some_progress)))
4420 		return NULL;
4421 
4422 retry:
4423 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4424 
4425 	/*
4426 	 * If an allocation failed after direct reclaim, it could be because
4427 	 * pages are pinned on the per-cpu lists or in high alloc reserves.
4428 	 * Shrink them and try again
4429 	 */
4430 	if (!page && !drained) {
4431 		unreserve_highatomic_pageblock(ac, false);
4432 #ifdef CONFIG_RECLAIM_ACCT
4433 		reclaimacct_substage_start(RA_DRAINALLPAGES);
4434 #endif
4435 		drain_all_pages(NULL);
4436 #ifdef CONFIG_RECLAIM_ACCT
4437 		reclaimacct_substage_end(RA_DRAINALLPAGES, 0, NULL);
4438 #endif
4439 		drained = true;
4440 		goto retry;
4441 	}
4442 
4443 	return page;
4444 }
4445 
wake_all_kswapds(unsigned int order,gfp_t gfp_mask,const struct alloc_context * ac)4446 static void wake_all_kswapds(unsigned int order, gfp_t gfp_mask,
4447 			     const struct alloc_context *ac)
4448 {
4449 	struct zoneref *z;
4450 	struct zone *zone;
4451 	pg_data_t *last_pgdat = NULL;
4452 	enum zone_type highest_zoneidx = ac->highest_zoneidx;
4453 
4454 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, highest_zoneidx,
4455 					ac->nodemask) {
4456 		if (last_pgdat != zone->zone_pgdat)
4457 			wakeup_kswapd(zone, gfp_mask, order, highest_zoneidx);
4458 		last_pgdat = zone->zone_pgdat;
4459 	}
4460 }
4461 
4462 static inline unsigned int
gfp_to_alloc_flags(gfp_t gfp_mask)4463 gfp_to_alloc_flags(gfp_t gfp_mask)
4464 {
4465 	unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
4466 
4467 	/*
4468 	 * __GFP_HIGH is assumed to be the same as ALLOC_HIGH
4469 	 * and __GFP_KSWAPD_RECLAIM is assumed to be the same as ALLOC_KSWAPD
4470 	 * to save two branches.
4471 	 */
4472 	BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
4473 	BUILD_BUG_ON(__GFP_KSWAPD_RECLAIM != (__force gfp_t) ALLOC_KSWAPD);
4474 
4475 	/*
4476 	 * The caller may dip into page reserves a bit more if the caller
4477 	 * cannot run direct reclaim, or if the caller has realtime scheduling
4478 	 * policy or is asking for __GFP_HIGH memory.  GFP_ATOMIC requests will
4479 	 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
4480 	 */
4481 	alloc_flags |= (__force int)
4482 		(gfp_mask & (__GFP_HIGH | __GFP_KSWAPD_RECLAIM));
4483 
4484 	if (gfp_mask & __GFP_ATOMIC) {
4485 		/*
4486 		 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
4487 		 * if it can't schedule.
4488 		 */
4489 		if (!(gfp_mask & __GFP_NOMEMALLOC))
4490 			alloc_flags |= ALLOC_HARDER;
4491 		/*
4492 		 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
4493 		 * comment for __cpuset_node_allowed().
4494 		 */
4495 		alloc_flags &= ~ALLOC_CPUSET;
4496 	} else if (unlikely(rt_task(current)) && !in_interrupt())
4497 		alloc_flags |= ALLOC_HARDER;
4498 
4499 	alloc_flags = current_alloc_flags(gfp_mask, alloc_flags);
4500 
4501 	return alloc_flags;
4502 }
4503 
oom_reserves_allowed(struct task_struct * tsk)4504 static bool oom_reserves_allowed(struct task_struct *tsk)
4505 {
4506 	if (!tsk_is_oom_victim(tsk))
4507 		return false;
4508 
4509 	/*
4510 	 * !MMU doesn't have oom reaper so give access to memory reserves
4511 	 * only to the thread with TIF_MEMDIE set
4512 	 */
4513 	if (!IS_ENABLED(CONFIG_MMU) && !test_thread_flag(TIF_MEMDIE))
4514 		return false;
4515 
4516 	return true;
4517 }
4518 
4519 /*
4520  * Distinguish requests which really need access to full memory
4521  * reserves from oom victims which can live with a portion of it
4522  */
__gfp_pfmemalloc_flags(gfp_t gfp_mask)4523 static inline int __gfp_pfmemalloc_flags(gfp_t gfp_mask)
4524 {
4525 	if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
4526 		return 0;
4527 	if (gfp_mask & __GFP_MEMALLOC)
4528 		return ALLOC_NO_WATERMARKS;
4529 	if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
4530 		return ALLOC_NO_WATERMARKS;
4531 	if (!in_interrupt()) {
4532 		if (current->flags & PF_MEMALLOC)
4533 			return ALLOC_NO_WATERMARKS;
4534 		else if (oom_reserves_allowed(current))
4535 			return ALLOC_OOM;
4536 	}
4537 
4538 	return 0;
4539 }
4540 
gfp_pfmemalloc_allowed(gfp_t gfp_mask)4541 bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
4542 {
4543 	return !!__gfp_pfmemalloc_flags(gfp_mask);
4544 }
4545 
4546 /*
4547  * Checks whether it makes sense to retry the reclaim to make a forward progress
4548  * for the given allocation request.
4549  *
4550  * We give up when we either have tried MAX_RECLAIM_RETRIES in a row
4551  * without success, or when we couldn't even meet the watermark if we
4552  * reclaimed all remaining pages on the LRU lists.
4553  *
4554  * Returns true if a retry is viable or false to enter the oom path.
4555  */
4556 static inline bool
should_reclaim_retry(gfp_t gfp_mask,unsigned order,struct alloc_context * ac,int alloc_flags,bool did_some_progress,int * no_progress_loops)4557 should_reclaim_retry(gfp_t gfp_mask, unsigned order,
4558 		     struct alloc_context *ac, int alloc_flags,
4559 		     bool did_some_progress, int *no_progress_loops)
4560 {
4561 	struct zone *zone;
4562 	struct zoneref *z;
4563 	bool ret = false;
4564 
4565 	/*
4566 	 * Costly allocations might have made a progress but this doesn't mean
4567 	 * their order will become available due to high fragmentation so
4568 	 * always increment the no progress counter for them
4569 	 */
4570 	if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
4571 		*no_progress_loops = 0;
4572 	else
4573 		(*no_progress_loops)++;
4574 
4575 	/*
4576 	 * Make sure we converge to OOM if we cannot make any progress
4577 	 * several times in the row.
4578 	 */
4579 	if (*no_progress_loops > MAX_RECLAIM_RETRIES) {
4580 		/* Before OOM, exhaust highatomic_reserve */
4581 		return unreserve_highatomic_pageblock(ac, true);
4582 	}
4583 
4584 	/*
4585 	 * Keep reclaiming pages while there is a chance this will lead
4586 	 * somewhere.  If none of the target zones can satisfy our allocation
4587 	 * request even if all reclaimable pages are considered then we are
4588 	 * screwed and have to go OOM.
4589 	 */
4590 	for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
4591 				ac->highest_zoneidx, ac->nodemask) {
4592 		unsigned long available;
4593 		unsigned long reclaimable;
4594 		unsigned long min_wmark = min_wmark_pages(zone);
4595 		bool wmark;
4596 
4597 		available = reclaimable = zone_reclaimable_pages(zone);
4598 		available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
4599 
4600 		/*
4601 		 * Would the allocation succeed if we reclaimed all
4602 		 * reclaimable pages?
4603 		 */
4604 		wmark = __zone_watermark_ok(zone, order, min_wmark,
4605 				ac->highest_zoneidx, alloc_flags, available);
4606 		trace_reclaim_retry_zone(z, order, reclaimable,
4607 				available, min_wmark, *no_progress_loops, wmark);
4608 		if (wmark) {
4609 			/*
4610 			 * If we didn't make any progress and have a lot of
4611 			 * dirty + writeback pages then we should wait for
4612 			 * an IO to complete to slow down the reclaim and
4613 			 * prevent from pre mature OOM
4614 			 */
4615 			if (!did_some_progress) {
4616 				unsigned long write_pending;
4617 
4618 				write_pending = zone_page_state_snapshot(zone,
4619 							NR_ZONE_WRITE_PENDING);
4620 
4621 				if (2 * write_pending > reclaimable) {
4622 					congestion_wait(BLK_RW_ASYNC, HZ/10);
4623 					return true;
4624 				}
4625 			}
4626 
4627 			ret = true;
4628 			goto out;
4629 		}
4630 	}
4631 
4632 out:
4633 	/*
4634 	 * Memory allocation/reclaim might be called from a WQ context and the
4635 	 * current implementation of the WQ concurrency control doesn't
4636 	 * recognize that a particular WQ is congested if the worker thread is
4637 	 * looping without ever sleeping. Therefore we have to do a short sleep
4638 	 * here rather than calling cond_resched().
4639 	 */
4640 	if (current->flags & PF_WQ_WORKER)
4641 		schedule_timeout_uninterruptible(1);
4642 	else
4643 		cond_resched();
4644 	return ret;
4645 }
4646 
4647 static inline bool
check_retry_cpuset(int cpuset_mems_cookie,struct alloc_context * ac)4648 check_retry_cpuset(int cpuset_mems_cookie, struct alloc_context *ac)
4649 {
4650 	/*
4651 	 * It's possible that cpuset's mems_allowed and the nodemask from
4652 	 * mempolicy don't intersect. This should be normally dealt with by
4653 	 * policy_nodemask(), but it's possible to race with cpuset update in
4654 	 * such a way the check therein was true, and then it became false
4655 	 * before we got our cpuset_mems_cookie here.
4656 	 * This assumes that for all allocations, ac->nodemask can come only
4657 	 * from MPOL_BIND mempolicy (whose documented semantics is to be ignored
4658 	 * when it does not intersect with the cpuset restrictions) or the
4659 	 * caller can deal with a violated nodemask.
4660 	 */
4661 	if (cpusets_enabled() && ac->nodemask &&
4662 			!cpuset_nodemask_valid_mems_allowed(ac->nodemask)) {
4663 		ac->nodemask = NULL;
4664 		return true;
4665 	}
4666 
4667 	/*
4668 	 * When updating a task's mems_allowed or mempolicy nodemask, it is
4669 	 * possible to race with parallel threads in such a way that our
4670 	 * allocation can fail while the mask is being updated. If we are about
4671 	 * to fail, check if the cpuset changed during allocation and if so,
4672 	 * retry.
4673 	 */
4674 	if (read_mems_allowed_retry(cpuset_mems_cookie))
4675 		return true;
4676 
4677 	return false;
4678 }
4679 
4680 static inline struct page *
__alloc_pages_slowpath(gfp_t gfp_mask,unsigned int order,struct alloc_context * ac)4681 __alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
4682 						struct alloc_context *ac)
4683 {
4684 	bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
4685 	const bool costly_order = order > PAGE_ALLOC_COSTLY_ORDER;
4686 	struct page *page = NULL;
4687 	unsigned int alloc_flags;
4688 	unsigned long did_some_progress;
4689 	enum compact_priority compact_priority;
4690 	enum compact_result compact_result;
4691 	int compaction_retries;
4692 	int no_progress_loops;
4693 	unsigned int cpuset_mems_cookie;
4694 	unsigned int zonelist_iter_cookie;
4695 	int reserve_flags;
4696 #ifdef CONFIG_RECLAIM_ACCT
4697 	struct reclaim_acct ra = {0};
4698 #endif
4699 
4700 	/*
4701 	 * We also sanity check to catch abuse of atomic reserves being used by
4702 	 * callers that are not in atomic context.
4703 	 */
4704 	if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
4705 				(__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
4706 		gfp_mask &= ~__GFP_ATOMIC;
4707 
4708 restart:
4709 	compaction_retries = 0;
4710 	no_progress_loops = 0;
4711 	compact_priority = DEF_COMPACT_PRIORITY;
4712 	cpuset_mems_cookie = read_mems_allowed_begin();
4713 	zonelist_iter_cookie = zonelist_iter_begin();
4714 
4715 	/*
4716 	 * The fast path uses conservative alloc_flags to succeed only until
4717 	 * kswapd needs to be woken up, and to avoid the cost of setting up
4718 	 * alloc_flags precisely. So we do that now.
4719 	 */
4720 	alloc_flags = gfp_to_alloc_flags(gfp_mask);
4721 
4722 	/*
4723 	 * We need to recalculate the starting point for the zonelist iterator
4724 	 * because we might have used different nodemask in the fast path, or
4725 	 * there was a cpuset modification and we are retrying - otherwise we
4726 	 * could end up iterating over non-eligible zones endlessly.
4727 	 */
4728 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4729 					ac->highest_zoneidx, ac->nodemask);
4730 	if (!ac->preferred_zoneref->zone)
4731 		goto nopage;
4732 
4733 	if (alloc_flags & ALLOC_KSWAPD)
4734 		wake_all_kswapds(order, gfp_mask, ac);
4735 
4736 	/*
4737 	 * The adjusted alloc_flags might result in immediate success, so try
4738 	 * that first
4739 	 */
4740 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4741 	if (page)
4742 		goto got_pg;
4743 
4744 	/*
4745 	 * For costly allocations, try direct compaction first, as it's likely
4746 	 * that we have enough base pages and don't need to reclaim. For non-
4747 	 * movable high-order allocations, do that as well, as compaction will
4748 	 * try prevent permanent fragmentation by migrating from blocks of the
4749 	 * same migratetype.
4750 	 * Don't try this for allocations that are allowed to ignore
4751 	 * watermarks, as the ALLOC_NO_WATERMARKS attempt didn't yet happen.
4752 	 */
4753 	if (can_direct_reclaim &&
4754 			(costly_order ||
4755 			   (order > 0 && ac->migratetype != MIGRATE_MOVABLE))
4756 			&& !gfp_pfmemalloc_allowed(gfp_mask)) {
4757 		page = __alloc_pages_direct_compact(gfp_mask, order,
4758 						alloc_flags, ac,
4759 						INIT_COMPACT_PRIORITY,
4760 						&compact_result);
4761 		if (page)
4762 			goto got_pg;
4763 
4764 		/*
4765 		 * Checks for costly allocations with __GFP_NORETRY, which
4766 		 * includes some THP page fault allocations
4767 		 */
4768 		if (costly_order && (gfp_mask & __GFP_NORETRY)) {
4769 			/*
4770 			 * If allocating entire pageblock(s) and compaction
4771 			 * failed because all zones are below low watermarks
4772 			 * or is prohibited because it recently failed at this
4773 			 * order, fail immediately unless the allocator has
4774 			 * requested compaction and reclaim retry.
4775 			 *
4776 			 * Reclaim is
4777 			 *  - potentially very expensive because zones are far
4778 			 *    below their low watermarks or this is part of very
4779 			 *    bursty high order allocations,
4780 			 *  - not guaranteed to help because isolate_freepages()
4781 			 *    may not iterate over freed pages as part of its
4782 			 *    linear scan, and
4783 			 *  - unlikely to make entire pageblocks free on its
4784 			 *    own.
4785 			 */
4786 			if (compact_result == COMPACT_SKIPPED ||
4787 			    compact_result == COMPACT_DEFERRED)
4788 				goto nopage;
4789 
4790 			/*
4791 			 * Looks like reclaim/compaction is worth trying, but
4792 			 * sync compaction could be very expensive, so keep
4793 			 * using async compaction.
4794 			 */
4795 			compact_priority = INIT_COMPACT_PRIORITY;
4796 		}
4797 	}
4798 
4799 retry:
4800 	/* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
4801 	if (alloc_flags & ALLOC_KSWAPD)
4802 		wake_all_kswapds(order, gfp_mask, ac);
4803 
4804 	reserve_flags = __gfp_pfmemalloc_flags(gfp_mask);
4805 	if (reserve_flags)
4806 		alloc_flags = current_alloc_flags(gfp_mask, reserve_flags);
4807 
4808 	/*
4809 	 * Reset the nodemask and zonelist iterators if memory policies can be
4810 	 * ignored. These allocations are high priority and system rather than
4811 	 * user oriented.
4812 	 */
4813 	if (!(alloc_flags & ALLOC_CPUSET) || reserve_flags) {
4814 		ac->nodemask = NULL;
4815 		ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
4816 					ac->highest_zoneidx, ac->nodemask);
4817 	}
4818 
4819 	/* Attempt with potentially adjusted zonelist and alloc_flags */
4820 	page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
4821 	if (page)
4822 		goto got_pg;
4823 
4824 	/* Caller is not willing to reclaim, we can't balance anything */
4825 	if (!can_direct_reclaim)
4826 		goto nopage;
4827 
4828 	/* Avoid recursion of direct reclaim */
4829 	if (current->flags & PF_MEMALLOC)
4830 		goto nopage;
4831 
4832 	/* Try direct reclaim and then allocating */
4833 #ifdef CONFIG_RECLAIM_ACCT
4834 	reclaimacct_start(DIRECT_RECLAIMS, &ra);
4835 #endif
4836 	page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
4837 							&did_some_progress);
4838 #ifdef CONFIG_RECLAIM_ACCT
4839 	reclaimacct_end(DIRECT_RECLAIMS);
4840 #endif
4841 	if (page)
4842 		goto got_pg;
4843 
4844 	/* Try direct compaction and then allocating */
4845 	page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
4846 					compact_priority, &compact_result);
4847 	if (page)
4848 		goto got_pg;
4849 
4850 	/* Do not loop if specifically requested */
4851 	if (gfp_mask & __GFP_NORETRY)
4852 		goto nopage;
4853 
4854 	/*
4855 	 * Do not retry costly high order allocations unless they are
4856 	 * __GFP_RETRY_MAYFAIL
4857 	 */
4858 	if (costly_order && !(gfp_mask & __GFP_RETRY_MAYFAIL))
4859 		goto nopage;
4860 
4861 	if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
4862 				 did_some_progress > 0, &no_progress_loops))
4863 		goto retry;
4864 
4865 	/*
4866 	 * It doesn't make any sense to retry for the compaction if the order-0
4867 	 * reclaim is not able to make any progress because the current
4868 	 * implementation of the compaction depends on the sufficient amount
4869 	 * of free memory (see __compaction_suitable)
4870 	 */
4871 	if (did_some_progress > 0 &&
4872 			should_compact_retry(ac, order, alloc_flags,
4873 				compact_result, &compact_priority,
4874 				&compaction_retries))
4875 		goto retry;
4876 
4877 
4878 	/*
4879 	 * Deal with possible cpuset update races or zonelist updates to avoid
4880 	 * a unnecessary OOM kill.
4881 	 */
4882 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4883 	    check_retry_zonelist(zonelist_iter_cookie))
4884 		goto restart;
4885 
4886 	/* Reclaim has failed us, start killing things */
4887 	page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
4888 	if (page)
4889 		goto got_pg;
4890 
4891 	/* Avoid allocations with no watermarks from looping endlessly */
4892 	if (tsk_is_oom_victim(current) &&
4893 	    (alloc_flags & ALLOC_OOM ||
4894 	     (gfp_mask & __GFP_NOMEMALLOC)))
4895 		goto nopage;
4896 
4897 	/* Retry as long as the OOM killer is making progress */
4898 	if (did_some_progress) {
4899 		no_progress_loops = 0;
4900 		goto retry;
4901 	}
4902 
4903 nopage:
4904 	/*
4905 	 * Deal with possible cpuset update races or zonelist updates to avoid
4906 	 * a unnecessary OOM kill.
4907 	 */
4908 	if (check_retry_cpuset(cpuset_mems_cookie, ac) ||
4909 	    check_retry_zonelist(zonelist_iter_cookie))
4910 		goto restart;
4911 
4912 	/*
4913 	 * Make sure that __GFP_NOFAIL request doesn't leak out and make sure
4914 	 * we always retry
4915 	 */
4916 	if (gfp_mask & __GFP_NOFAIL) {
4917 		/*
4918 		 * All existing users of the __GFP_NOFAIL are blockable, so warn
4919 		 * of any new users that actually require GFP_NOWAIT
4920 		 */
4921 		if (WARN_ON_ONCE(!can_direct_reclaim))
4922 			goto fail;
4923 
4924 		/*
4925 		 * PF_MEMALLOC request from this context is rather bizarre
4926 		 * because we cannot reclaim anything and only can loop waiting
4927 		 * for somebody to do a work for us
4928 		 */
4929 		WARN_ON_ONCE(current->flags & PF_MEMALLOC);
4930 
4931 		/*
4932 		 * non failing costly orders are a hard requirement which we
4933 		 * are not prepared for much so let's warn about these users
4934 		 * so that we can identify them and convert them to something
4935 		 * else.
4936 		 */
4937 		WARN_ON_ONCE(order > PAGE_ALLOC_COSTLY_ORDER);
4938 
4939 		/*
4940 		 * Help non-failing allocations by giving them access to memory
4941 		 * reserves but do not use ALLOC_NO_WATERMARKS because this
4942 		 * could deplete whole memory reserves which would just make
4943 		 * the situation worse
4944 		 */
4945 		page = __alloc_pages_cpuset_fallback(gfp_mask, order, ALLOC_HARDER, ac);
4946 		if (page)
4947 			goto got_pg;
4948 
4949 		cond_resched();
4950 		goto retry;
4951 	}
4952 fail:
4953 	warn_alloc(gfp_mask, ac->nodemask,
4954 			"page allocation failure: order:%u", order);
4955 got_pg:
4956 	return page;
4957 }
4958 
prepare_alloc_pages(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask,struct alloc_context * ac,gfp_t * alloc_mask,unsigned int * alloc_flags)4959 static inline bool prepare_alloc_pages(gfp_t gfp_mask, unsigned int order,
4960 		int preferred_nid, nodemask_t *nodemask,
4961 		struct alloc_context *ac, gfp_t *alloc_mask,
4962 		unsigned int *alloc_flags)
4963 {
4964 	ac->highest_zoneidx = gfp_zone(gfp_mask);
4965 	ac->zonelist = node_zonelist(preferred_nid, gfp_mask);
4966 	ac->nodemask = nodemask;
4967 	ac->migratetype = gfp_migratetype(gfp_mask);
4968 
4969 	if (cpusets_enabled()) {
4970 		*alloc_mask |= __GFP_HARDWALL;
4971 		/*
4972 		 * When we are in the interrupt context, it is irrelevant
4973 		 * to the current task context. It means that any node ok.
4974 		 */
4975 		if (!in_interrupt() && !ac->nodemask)
4976 			ac->nodemask = &cpuset_current_mems_allowed;
4977 		else
4978 			*alloc_flags |= ALLOC_CPUSET;
4979 	}
4980 
4981 	fs_reclaim_acquire(gfp_mask);
4982 	fs_reclaim_release(gfp_mask);
4983 
4984 	might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
4985 
4986 #ifdef CONFIG_HYPERHOLD_ZSWAPD
4987 	if (gfp_mask & __GFP_KSWAPD_RECLAIM)
4988 		wake_all_zswapd();
4989 #endif
4990 
4991 	if (should_fail_alloc_page(gfp_mask, order))
4992 		return false;
4993 
4994 	*alloc_flags = current_alloc_flags(gfp_mask, *alloc_flags);
4995 
4996 	/* Dirty zone balancing only done in the fast path */
4997 	ac->spread_dirty_pages = (gfp_mask & __GFP_WRITE);
4998 
4999 	/*
5000 	 * The preferred zone is used for statistics but crucially it is
5001 	 * also used as the starting point for the zonelist iterator. It
5002 	 * may get reset for allocations that ignore memory policies.
5003 	 */
5004 	ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
5005 					ac->highest_zoneidx, ac->nodemask);
5006 
5007 	return true;
5008 }
5009 
5010 /*
5011  * This is the 'heart' of the zoned buddy allocator.
5012  */
5013 struct page *
__alloc_pages_nodemask(gfp_t gfp_mask,unsigned int order,int preferred_nid,nodemask_t * nodemask)5014 __alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order, int preferred_nid,
5015 							nodemask_t *nodemask)
5016 {
5017 	struct page *page;
5018 	unsigned int alloc_flags = ALLOC_WMARK_LOW;
5019 	gfp_t alloc_mask; /* The gfp_t that was actually used for allocation */
5020 	struct alloc_context ac = { };
5021 
5022 	/*
5023 	 * There are several places where we assume that the order value is sane
5024 	 * so bail out early if the request is out of bound.
5025 	 */
5026 	if (unlikely(order >= MAX_ORDER)) {
5027 		WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
5028 		return NULL;
5029 	}
5030 
5031 	gfp_mask &= gfp_allowed_mask;
5032 	alloc_mask = gfp_mask;
5033 	if (!prepare_alloc_pages(gfp_mask, order, preferred_nid, nodemask, &ac, &alloc_mask, &alloc_flags))
5034 		return NULL;
5035 
5036 	/*
5037 	 * Forbid the first pass from falling back to types that fragment
5038 	 * memory until all local zones are considered.
5039 	 */
5040 	alloc_flags |= alloc_flags_nofragment(ac.preferred_zoneref->zone, gfp_mask);
5041 
5042 	/* First allocation attempt */
5043 	page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
5044 	if (likely(page))
5045 		goto out;
5046 
5047 	/*
5048 	 * Apply scoped allocation constraints. This is mainly about GFP_NOFS
5049 	 * resp. GFP_NOIO which has to be inherited for all allocation requests
5050 	 * from a particular context which has been marked by
5051 	 * memalloc_no{fs,io}_{save,restore}.
5052 	 */
5053 	alloc_mask = current_gfp_context(gfp_mask);
5054 	ac.spread_dirty_pages = false;
5055 
5056 	/*
5057 	 * Restore the original nodemask if it was potentially replaced with
5058 	 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
5059 	 */
5060 	ac.nodemask = nodemask;
5061 
5062 	page = __alloc_pages_slowpath(alloc_mask, order, &ac);
5063 
5064 out:
5065 	if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
5066 	    unlikely(__memcg_kmem_charge_page(page, gfp_mask, order) != 0)) {
5067 		__free_pages(page, order);
5068 		page = NULL;
5069 	}
5070 
5071 	trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
5072 
5073 	return page;
5074 }
5075 EXPORT_SYMBOL(__alloc_pages_nodemask);
5076 
5077 /*
5078  * Common helper functions. Never use with __GFP_HIGHMEM because the returned
5079  * address cannot represent highmem pages. Use alloc_pages and then kmap if
5080  * you need to access high mem.
5081  */
__get_free_pages(gfp_t gfp_mask,unsigned int order)5082 unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
5083 {
5084 	struct page *page;
5085 
5086 	page = alloc_pages(gfp_mask & ~__GFP_HIGHMEM, order);
5087 	if (!page)
5088 		return 0;
5089 	return (unsigned long) page_address(page);
5090 }
5091 EXPORT_SYMBOL(__get_free_pages);
5092 
get_zeroed_page(gfp_t gfp_mask)5093 unsigned long get_zeroed_page(gfp_t gfp_mask)
5094 {
5095 	return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
5096 }
5097 EXPORT_SYMBOL(get_zeroed_page);
5098 
free_the_page(struct page * page,unsigned int order)5099 static inline void free_the_page(struct page *page, unsigned int order)
5100 {
5101 	if (order == 0)		/* Via pcp? */
5102 		free_unref_page(page);
5103 	else
5104 		__free_pages_ok(page, order, FPI_NONE);
5105 }
5106 
__free_pages(struct page * page,unsigned int order)5107 void __free_pages(struct page *page, unsigned int order)
5108 {
5109 	/* get PageHead before we drop reference */
5110 	int head = PageHead(page);
5111 
5112 	if (put_page_testzero(page))
5113 		free_the_page(page, order);
5114 	else if (!head)
5115 		while (order-- > 0)
5116 			free_the_page(page + (1 << order), order);
5117 }
5118 EXPORT_SYMBOL(__free_pages);
5119 
free_pages(unsigned long addr,unsigned int order)5120 void free_pages(unsigned long addr, unsigned int order)
5121 {
5122 	if (addr != 0) {
5123 		VM_BUG_ON(!virt_addr_valid((void *)addr));
5124 		__free_pages(virt_to_page((void *)addr), order);
5125 	}
5126 }
5127 
5128 EXPORT_SYMBOL(free_pages);
5129 
5130 /*
5131  * Page Fragment:
5132  *  An arbitrary-length arbitrary-offset area of memory which resides
5133  *  within a 0 or higher order page.  Multiple fragments within that page
5134  *  are individually refcounted, in the page's reference counter.
5135  *
5136  * The page_frag functions below provide a simple allocation framework for
5137  * page fragments.  This is used by the network stack and network device
5138  * drivers to provide a backing region of memory for use as either an
5139  * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
5140  */
__page_frag_cache_refill(struct page_frag_cache * nc,gfp_t gfp_mask)5141 static struct page *__page_frag_cache_refill(struct page_frag_cache *nc,
5142 					     gfp_t gfp_mask)
5143 {
5144 	struct page *page = NULL;
5145 	gfp_t gfp = gfp_mask;
5146 
5147 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5148 	gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
5149 		    __GFP_NOMEMALLOC;
5150 	page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
5151 				PAGE_FRAG_CACHE_MAX_ORDER);
5152 	nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
5153 #endif
5154 	if (unlikely(!page))
5155 		page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
5156 
5157 	nc->va = page ? page_address(page) : NULL;
5158 
5159 #ifdef CONFIG_PAGE_TRACING
5160 	if (likely(page)) {
5161 		int order = get_order(nc->size);
5162 		int i;
5163 		struct page *newpage = page;
5164 		unsigned int deta = 1U << (unsigned int)order;
5165 
5166 		for (i = 0; i < (1 << order); i++) {
5167 			if (!newpage)
5168 				break;
5169 			SetPageSKB(newpage);
5170 			newpage++;
5171 		}
5172 		mod_zone_page_state(page_zone(page), NR_SKB_PAGES, (long)deta);
5173 	}
5174 #endif
5175 
5176 	return page;
5177 }
5178 
__page_frag_cache_drain(struct page * page,unsigned int count)5179 void __page_frag_cache_drain(struct page *page, unsigned int count)
5180 {
5181 	VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
5182 
5183 	if (page_ref_sub_and_test(page, count)) {
5184 #ifdef CONFIG_PAGE_TRACING
5185 		if (likely(page)) {
5186 			unsigned int deta = 1U << compound_order(page);
5187 
5188 			mod_zone_page_state(page_zone(page), NR_SKB_PAGES, -(long)deta);
5189 		}
5190 #endif
5191 		free_the_page(page, compound_order(page));
5192 	}
5193 }
5194 EXPORT_SYMBOL(__page_frag_cache_drain);
5195 
page_frag_alloc(struct page_frag_cache * nc,unsigned int fragsz,gfp_t gfp_mask)5196 void *page_frag_alloc(struct page_frag_cache *nc,
5197 		      unsigned int fragsz, gfp_t gfp_mask)
5198 {
5199 	unsigned int size = PAGE_SIZE;
5200 	struct page *page;
5201 	int offset;
5202 
5203 	if (unlikely(!nc->va)) {
5204 refill:
5205 		page = __page_frag_cache_refill(nc, gfp_mask);
5206 		if (!page)
5207 			return NULL;
5208 
5209 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5210 		/* if size can vary use size else just use PAGE_SIZE */
5211 		size = nc->size;
5212 #endif
5213 		/* Even if we own the page, we do not use atomic_set().
5214 		 * This would break get_page_unless_zero() users.
5215 		 */
5216 		page_ref_add(page, PAGE_FRAG_CACHE_MAX_SIZE);
5217 
5218 		/* reset page count bias and offset to start of new frag */
5219 		nc->pfmemalloc = page_is_pfmemalloc(page);
5220 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5221 		nc->offset = size;
5222 	}
5223 
5224 	offset = nc->offset - fragsz;
5225 	if (unlikely(offset < 0)) {
5226 		page = virt_to_page(nc->va);
5227 
5228 		if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
5229 			goto refill;
5230 
5231 		if (unlikely(nc->pfmemalloc)) {
5232 			free_the_page(page, compound_order(page));
5233 			goto refill;
5234 		}
5235 
5236 #if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
5237 		/* if size can vary use size else just use PAGE_SIZE */
5238 		size = nc->size;
5239 #endif
5240 		/* OK, page count is 0, we can safely set it */
5241 		set_page_count(page, PAGE_FRAG_CACHE_MAX_SIZE + 1);
5242 
5243 		/* reset page count bias and offset to start of new frag */
5244 		nc->pagecnt_bias = PAGE_FRAG_CACHE_MAX_SIZE + 1;
5245 		offset = size - fragsz;
5246 		if (unlikely(offset < 0)) {
5247 			/*
5248 			 * The caller is trying to allocate a fragment
5249 			 * with fragsz > PAGE_SIZE but the cache isn't big
5250 			 * enough to satisfy the request, this may
5251 			 * happen in low memory conditions.
5252 			 * We don't release the cache page because
5253 			 * it could make memory pressure worse
5254 			 * so we simply return NULL here.
5255 			 */
5256 			return NULL;
5257 		}
5258 	}
5259 
5260 	nc->pagecnt_bias--;
5261 	nc->offset = offset;
5262 
5263 	return nc->va + offset;
5264 }
5265 EXPORT_SYMBOL(page_frag_alloc);
5266 
5267 /*
5268  * Frees a page fragment allocated out of either a compound or order 0 page.
5269  */
page_frag_free(void * addr)5270 void page_frag_free(void *addr)
5271 {
5272 	struct page *page = virt_to_head_page(addr);
5273 
5274 	if (unlikely(put_page_testzero(page))) {
5275 #ifdef CONFIG_PAGE_TRACING
5276 		if (likely(page)) {
5277 			unsigned int deta = 1U << compound_order(page);
5278 
5279 			mod_zone_page_state(page_zone(page), NR_SKB_PAGES, -(long)deta);
5280 		}
5281 #endif
5282 		free_the_page(page, compound_order(page));
5283 	}
5284 }
5285 EXPORT_SYMBOL(page_frag_free);
5286 
make_alloc_exact(unsigned long addr,unsigned int order,size_t size)5287 static void *make_alloc_exact(unsigned long addr, unsigned int order,
5288 		size_t size)
5289 {
5290 	if (addr) {
5291 		unsigned long alloc_end = addr + (PAGE_SIZE << order);
5292 		unsigned long used = addr + PAGE_ALIGN(size);
5293 
5294 		split_page(virt_to_page((void *)addr), order);
5295 		while (used < alloc_end) {
5296 			free_page(used);
5297 			used += PAGE_SIZE;
5298 		}
5299 	}
5300 	return (void *)addr;
5301 }
5302 
5303 /**
5304  * alloc_pages_exact - allocate an exact number physically-contiguous pages.
5305  * @size: the number of bytes to allocate
5306  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5307  *
5308  * This function is similar to alloc_pages(), except that it allocates the
5309  * minimum number of pages to satisfy the request.  alloc_pages() can only
5310  * allocate memory in power-of-two pages.
5311  *
5312  * This function is also limited by MAX_ORDER.
5313  *
5314  * Memory allocated by this function must be released by free_pages_exact().
5315  *
5316  * Return: pointer to the allocated area or %NULL in case of error.
5317  */
alloc_pages_exact(size_t size,gfp_t gfp_mask)5318 void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
5319 {
5320 	unsigned int order = get_order(size);
5321 	unsigned long addr;
5322 
5323 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5324 		gfp_mask &= ~__GFP_COMP;
5325 
5326 	addr = __get_free_pages(gfp_mask, order);
5327 	return make_alloc_exact(addr, order, size);
5328 }
5329 EXPORT_SYMBOL(alloc_pages_exact);
5330 
5331 /**
5332  * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
5333  *			   pages on a node.
5334  * @nid: the preferred node ID where memory should be allocated
5335  * @size: the number of bytes to allocate
5336  * @gfp_mask: GFP flags for the allocation, must not contain __GFP_COMP
5337  *
5338  * Like alloc_pages_exact(), but try to allocate on node nid first before falling
5339  * back.
5340  *
5341  * Return: pointer to the allocated area or %NULL in case of error.
5342  */
alloc_pages_exact_nid(int nid,size_t size,gfp_t gfp_mask)5343 void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
5344 {
5345 	unsigned int order = get_order(size);
5346 	struct page *p;
5347 
5348 	if (WARN_ON_ONCE(gfp_mask & __GFP_COMP))
5349 		gfp_mask &= ~__GFP_COMP;
5350 
5351 	p = alloc_pages_node(nid, gfp_mask, order);
5352 	if (!p)
5353 		return NULL;
5354 	return make_alloc_exact((unsigned long)page_address(p), order, size);
5355 }
5356 
5357 /**
5358  * free_pages_exact - release memory allocated via alloc_pages_exact()
5359  * @virt: the value returned by alloc_pages_exact.
5360  * @size: size of allocation, same value as passed to alloc_pages_exact().
5361  *
5362  * Release the memory allocated by a previous call to alloc_pages_exact.
5363  */
free_pages_exact(void * virt,size_t size)5364 void free_pages_exact(void *virt, size_t size)
5365 {
5366 	unsigned long addr = (unsigned long)virt;
5367 	unsigned long end = addr + PAGE_ALIGN(size);
5368 
5369 	while (addr < end) {
5370 		free_page(addr);
5371 		addr += PAGE_SIZE;
5372 	}
5373 }
5374 EXPORT_SYMBOL(free_pages_exact);
5375 
5376 /**
5377  * nr_free_zone_pages - count number of pages beyond high watermark
5378  * @offset: The zone index of the highest zone
5379  *
5380  * nr_free_zone_pages() counts the number of pages which are beyond the
5381  * high watermark within all zones at or below a given zone index.  For each
5382  * zone, the number of pages is calculated as:
5383  *
5384  *     nr_free_zone_pages = managed_pages - high_pages
5385  *
5386  * Return: number of pages beyond high watermark.
5387  */
nr_free_zone_pages(int offset)5388 static unsigned long nr_free_zone_pages(int offset)
5389 {
5390 	struct zoneref *z;
5391 	struct zone *zone;
5392 
5393 	/* Just pick one node, since fallback list is circular */
5394 	unsigned long sum = 0;
5395 
5396 	struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
5397 
5398 	for_each_zone_zonelist(zone, z, zonelist, offset) {
5399 		unsigned long size = zone_managed_pages(zone);
5400 		unsigned long high = high_wmark_pages(zone);
5401 		if (size > high)
5402 			sum += size - high;
5403 	}
5404 
5405 	return sum;
5406 }
5407 
5408 /**
5409  * nr_free_buffer_pages - count number of pages beyond high watermark
5410  *
5411  * nr_free_buffer_pages() counts the number of pages which are beyond the high
5412  * watermark within ZONE_DMA and ZONE_NORMAL.
5413  *
5414  * Return: number of pages beyond high watermark within ZONE_DMA and
5415  * ZONE_NORMAL.
5416  */
nr_free_buffer_pages(void)5417 unsigned long nr_free_buffer_pages(void)
5418 {
5419 	return nr_free_zone_pages(gfp_zone(GFP_USER));
5420 }
5421 EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
5422 
show_node(struct zone * zone)5423 static inline void show_node(struct zone *zone)
5424 {
5425 	if (IS_ENABLED(CONFIG_NUMA))
5426 		printk("Node %d ", zone_to_nid(zone));
5427 }
5428 
si_mem_available(void)5429 long si_mem_available(void)
5430 {
5431 	long available;
5432 	unsigned long pagecache;
5433 	unsigned long wmark_low = 0;
5434 	unsigned long pages[NR_LRU_LISTS];
5435 	unsigned long reclaimable;
5436 	struct zone *zone;
5437 	int lru;
5438 
5439 	for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
5440 		pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
5441 
5442 	for_each_zone(zone)
5443 		wmark_low += low_wmark_pages(zone);
5444 
5445 	/*
5446 	 * Estimate the amount of memory available for userspace allocations,
5447 	 * without causing swapping.
5448 	 */
5449 	available = global_zone_page_state(NR_FREE_PAGES) - totalreserve_pages;
5450 
5451 	/*
5452 	 * Not all the page cache can be freed, otherwise the system will
5453 	 * start swapping. Assume at least half of the page cache, or the
5454 	 * low watermark worth of cache, needs to stay.
5455 	 */
5456 	pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
5457 	pagecache -= min(pagecache / 2, wmark_low);
5458 	available += pagecache;
5459 
5460 	/*
5461 	 * Part of the reclaimable slab and other kernel memory consists of
5462 	 * items that are in use, and cannot be freed. Cap this estimate at the
5463 	 * low watermark.
5464 	 */
5465 	reclaimable = global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B) +
5466 		global_node_page_state(NR_KERNEL_MISC_RECLAIMABLE);
5467 	available += reclaimable - min(reclaimable / 2, wmark_low);
5468 
5469 	if (available < 0)
5470 		available = 0;
5471 	return available;
5472 }
5473 EXPORT_SYMBOL_GPL(si_mem_available);
5474 
si_meminfo(struct sysinfo * val)5475 void si_meminfo(struct sysinfo *val)
5476 {
5477 	val->totalram = totalram_pages();
5478 	val->sharedram = global_node_page_state(NR_SHMEM);
5479 	val->freeram = global_zone_page_state(NR_FREE_PAGES);
5480 	val->bufferram = nr_blockdev_pages();
5481 	val->totalhigh = totalhigh_pages();
5482 	val->freehigh = nr_free_highpages();
5483 	val->mem_unit = PAGE_SIZE;
5484 }
5485 
5486 EXPORT_SYMBOL(si_meminfo);
5487 
5488 #ifdef CONFIG_NUMA
si_meminfo_node(struct sysinfo * val,int nid)5489 void si_meminfo_node(struct sysinfo *val, int nid)
5490 {
5491 	int zone_type;		/* needs to be signed */
5492 	unsigned long managed_pages = 0;
5493 	unsigned long managed_highpages = 0;
5494 	unsigned long free_highpages = 0;
5495 	pg_data_t *pgdat = NODE_DATA(nid);
5496 
5497 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
5498 		managed_pages += zone_managed_pages(&pgdat->node_zones[zone_type]);
5499 	val->totalram = managed_pages;
5500 	val->sharedram = node_page_state(pgdat, NR_SHMEM);
5501 	val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
5502 #ifdef CONFIG_HIGHMEM
5503 	for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
5504 		struct zone *zone = &pgdat->node_zones[zone_type];
5505 
5506 		if (is_highmem(zone)) {
5507 			managed_highpages += zone_managed_pages(zone);
5508 			free_highpages += zone_page_state(zone, NR_FREE_PAGES);
5509 		}
5510 	}
5511 	val->totalhigh = managed_highpages;
5512 	val->freehigh = free_highpages;
5513 #else
5514 	val->totalhigh = managed_highpages;
5515 	val->freehigh = free_highpages;
5516 #endif
5517 	val->mem_unit = PAGE_SIZE;
5518 }
5519 #endif
5520 
5521 /*
5522  * Determine whether the node should be displayed or not, depending on whether
5523  * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
5524  */
show_mem_node_skip(unsigned int flags,int nid,nodemask_t * nodemask)5525 static bool show_mem_node_skip(unsigned int flags, int nid, nodemask_t *nodemask)
5526 {
5527 	if (!(flags & SHOW_MEM_FILTER_NODES))
5528 		return false;
5529 
5530 	/*
5531 	 * no node mask - aka implicit memory numa policy. Do not bother with
5532 	 * the synchronization - read_mems_allowed_begin - because we do not
5533 	 * have to be precise here.
5534 	 */
5535 	if (!nodemask)
5536 		nodemask = &cpuset_current_mems_allowed;
5537 
5538 	return !node_isset(nid, *nodemask);
5539 }
5540 
5541 #define K(x) ((x) << (PAGE_SHIFT-10))
5542 
show_migration_types(unsigned char type)5543 static void show_migration_types(unsigned char type)
5544 {
5545 	static const char types[MIGRATE_TYPES] = {
5546 		[MIGRATE_UNMOVABLE]	= 'U',
5547 		[MIGRATE_MOVABLE]	= 'M',
5548 		[MIGRATE_RECLAIMABLE]	= 'E',
5549 		[MIGRATE_HIGHATOMIC]	= 'H',
5550 #ifdef CONFIG_CMA
5551 		[MIGRATE_CMA]		= 'C',
5552 #endif
5553 #ifdef CONFIG_MEMORY_ISOLATION
5554 		[MIGRATE_ISOLATE]	= 'I',
5555 #endif
5556 	};
5557 	char tmp[MIGRATE_TYPES + 1];
5558 	char *p = tmp;
5559 	int i;
5560 
5561 	for (i = 0; i < MIGRATE_TYPES; i++) {
5562 		if (type & (1 << i))
5563 			*p++ = types[i];
5564 	}
5565 
5566 	*p = '\0';
5567 	printk(KERN_CONT "(%s) ", tmp);
5568 }
5569 
5570 /*
5571  * Show free area list (used inside shift_scroll-lock stuff)
5572  * We also calculate the percentage fragmentation. We do this by counting the
5573  * memory on each free list with the exception of the first item on the list.
5574  *
5575  * Bits in @filter:
5576  * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
5577  *   cpuset.
5578  */
show_free_areas(unsigned int filter,nodemask_t * nodemask)5579 void show_free_areas(unsigned int filter, nodemask_t *nodemask)
5580 {
5581 	unsigned long free_pcp = 0;
5582 	int cpu;
5583 	struct zone *zone;
5584 	pg_data_t *pgdat;
5585 
5586 	for_each_populated_zone(zone) {
5587 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5588 			continue;
5589 
5590 		for_each_online_cpu(cpu)
5591 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5592 	}
5593 
5594 	printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
5595 		" active_file:%lu inactive_file:%lu isolated_file:%lu\n"
5596 		" unevictable:%lu dirty:%lu writeback:%lu\n"
5597 		" slab_reclaimable:%lu slab_unreclaimable:%lu\n"
5598 		" mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
5599 		" free:%lu free_pcp:%lu free_cma:%lu\n",
5600 		global_node_page_state(NR_ACTIVE_ANON),
5601 		global_node_page_state(NR_INACTIVE_ANON),
5602 		global_node_page_state(NR_ISOLATED_ANON),
5603 		global_node_page_state(NR_ACTIVE_FILE),
5604 		global_node_page_state(NR_INACTIVE_FILE),
5605 		global_node_page_state(NR_ISOLATED_FILE),
5606 		global_node_page_state(NR_UNEVICTABLE),
5607 		global_node_page_state(NR_FILE_DIRTY),
5608 		global_node_page_state(NR_WRITEBACK),
5609 		global_node_page_state_pages(NR_SLAB_RECLAIMABLE_B),
5610 		global_node_page_state_pages(NR_SLAB_UNRECLAIMABLE_B),
5611 		global_node_page_state(NR_FILE_MAPPED),
5612 		global_node_page_state(NR_SHMEM),
5613 		global_zone_page_state(NR_PAGETABLE),
5614 		global_zone_page_state(NR_BOUNCE),
5615 		global_zone_page_state(NR_FREE_PAGES),
5616 		free_pcp,
5617 		global_zone_page_state(NR_FREE_CMA_PAGES));
5618 
5619 	for_each_online_pgdat(pgdat) {
5620 		if (show_mem_node_skip(filter, pgdat->node_id, nodemask))
5621 			continue;
5622 
5623 		printk("Node %d"
5624 			" active_anon:%lukB"
5625 			" inactive_anon:%lukB"
5626 			" active_file:%lukB"
5627 			" inactive_file:%lukB"
5628 			" unevictable:%lukB"
5629 			" isolated(anon):%lukB"
5630 			" isolated(file):%lukB"
5631 			" mapped:%lukB"
5632 			" dirty:%lukB"
5633 			" writeback:%lukB"
5634 			" shmem:%lukB"
5635 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5636 			" shmem_thp: %lukB"
5637 			" shmem_pmdmapped: %lukB"
5638 			" anon_thp: %lukB"
5639 #endif
5640 			" writeback_tmp:%lukB"
5641 			" kernel_stack:%lukB"
5642 #ifdef CONFIG_SHADOW_CALL_STACK
5643 			" shadow_call_stack:%lukB"
5644 #endif
5645 			" all_unreclaimable? %s"
5646 			"\n",
5647 			pgdat->node_id,
5648 			K(node_page_state(pgdat, NR_ACTIVE_ANON)),
5649 			K(node_page_state(pgdat, NR_INACTIVE_ANON)),
5650 			K(node_page_state(pgdat, NR_ACTIVE_FILE)),
5651 			K(node_page_state(pgdat, NR_INACTIVE_FILE)),
5652 			K(node_page_state(pgdat, NR_UNEVICTABLE)),
5653 			K(node_page_state(pgdat, NR_ISOLATED_ANON)),
5654 			K(node_page_state(pgdat, NR_ISOLATED_FILE)),
5655 			K(node_page_state(pgdat, NR_FILE_MAPPED)),
5656 			K(node_page_state(pgdat, NR_FILE_DIRTY)),
5657 			K(node_page_state(pgdat, NR_WRITEBACK)),
5658 			K(node_page_state(pgdat, NR_SHMEM)),
5659 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
5660 			K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
5661 			K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
5662 					* HPAGE_PMD_NR),
5663 			K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
5664 #endif
5665 			K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
5666 			node_page_state(pgdat, NR_KERNEL_STACK_KB),
5667 #ifdef CONFIG_SHADOW_CALL_STACK
5668 			node_page_state(pgdat, NR_KERNEL_SCS_KB),
5669 #endif
5670 			pgdat->kswapd_failures >= MAX_RECLAIM_RETRIES ?
5671 				"yes" : "no");
5672 	}
5673 
5674 	for_each_populated_zone(zone) {
5675 		int i;
5676 
5677 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5678 			continue;
5679 
5680 		free_pcp = 0;
5681 		for_each_online_cpu(cpu)
5682 			free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
5683 
5684 		show_node(zone);
5685 		printk(KERN_CONT
5686 			"%s"
5687 			" free:%lukB"
5688 			" min:%lukB"
5689 			" low:%lukB"
5690 			" high:%lukB"
5691 			" reserved_highatomic:%luKB"
5692 			" active_anon:%lukB"
5693 			" inactive_anon:%lukB"
5694 			" active_file:%lukB"
5695 			" inactive_file:%lukB"
5696 			" unevictable:%lukB"
5697 			" writepending:%lukB"
5698 			" present:%lukB"
5699 			" managed:%lukB"
5700 			" mlocked:%lukB"
5701 			" pagetables:%lukB"
5702 			" bounce:%lukB"
5703 			" free_pcp:%lukB"
5704 			" local_pcp:%ukB"
5705 			" free_cma:%lukB"
5706 			"\n",
5707 			zone->name,
5708 			K(zone_page_state(zone, NR_FREE_PAGES)),
5709 			K(min_wmark_pages(zone)),
5710 			K(low_wmark_pages(zone)),
5711 			K(high_wmark_pages(zone)),
5712 			K(zone->nr_reserved_highatomic),
5713 			K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
5714 			K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
5715 			K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
5716 			K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
5717 			K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5718 			K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
5719 			K(zone->present_pages),
5720 			K(zone_managed_pages(zone)),
5721 			K(zone_page_state(zone, NR_MLOCK)),
5722 			K(zone_page_state(zone, NR_PAGETABLE)),
5723 			K(zone_page_state(zone, NR_BOUNCE)),
5724 			K(free_pcp),
5725 			K(this_cpu_read(zone->pageset->pcp.count)),
5726 			K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
5727 		printk("lowmem_reserve[]:");
5728 		for (i = 0; i < MAX_NR_ZONES; i++)
5729 			printk(KERN_CONT " %ld", zone->lowmem_reserve[i]);
5730 		printk(KERN_CONT "\n");
5731 	}
5732 
5733 	for_each_populated_zone(zone) {
5734 		unsigned int order;
5735 		unsigned long nr[MAX_ORDER], flags, total = 0;
5736 		unsigned char types[MAX_ORDER];
5737 
5738 		if (show_mem_node_skip(filter, zone_to_nid(zone), nodemask))
5739 			continue;
5740 		show_node(zone);
5741 		printk(KERN_CONT "%s: ", zone->name);
5742 
5743 		spin_lock_irqsave(&zone->lock, flags);
5744 		for (order = 0; order < MAX_ORDER; order++) {
5745 			struct free_area *area = &zone->free_area[order];
5746 			int type;
5747 
5748 			nr[order] = area->nr_free;
5749 			total += nr[order] << order;
5750 
5751 			types[order] = 0;
5752 			for (type = 0; type < MIGRATE_TYPES; type++) {
5753 				if (!free_area_empty(area, type))
5754 					types[order] |= 1 << type;
5755 			}
5756 		}
5757 		spin_unlock_irqrestore(&zone->lock, flags);
5758 		for (order = 0; order < MAX_ORDER; order++) {
5759 			printk(KERN_CONT "%lu*%lukB ",
5760 			       nr[order], K(1UL) << order);
5761 			if (nr[order])
5762 				show_migration_types(types[order]);
5763 		}
5764 		printk(KERN_CONT "= %lukB\n", K(total));
5765 	}
5766 
5767 	hugetlb_show_meminfo();
5768 
5769 	printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
5770 
5771 	show_swap_cache_info();
5772 }
5773 
zoneref_set_zone(struct zone * zone,struct zoneref * zoneref)5774 static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
5775 {
5776 	zoneref->zone = zone;
5777 	zoneref->zone_idx = zone_idx(zone);
5778 }
5779 
5780 /*
5781  * Builds allocation fallback zone lists.
5782  *
5783  * Add all populated zones of a node to the zonelist.
5784  */
build_zonerefs_node(pg_data_t * pgdat,struct zoneref * zonerefs)5785 static int build_zonerefs_node(pg_data_t *pgdat, struct zoneref *zonerefs)
5786 {
5787 	struct zone *zone;
5788 	enum zone_type zone_type = MAX_NR_ZONES;
5789 	int nr_zones = 0;
5790 
5791 	do {
5792 		zone_type--;
5793 		zone = pgdat->node_zones + zone_type;
5794 		if (populated_zone(zone)) {
5795 			zoneref_set_zone(zone, &zonerefs[nr_zones++]);
5796 			check_highest_zone(zone_type);
5797 		}
5798 	} while (zone_type);
5799 
5800 	return nr_zones;
5801 }
5802 
5803 #ifdef CONFIG_NUMA
5804 
__parse_numa_zonelist_order(char * s)5805 static int __parse_numa_zonelist_order(char *s)
5806 {
5807 	/*
5808 	 * We used to support different zonlists modes but they turned
5809 	 * out to be just not useful. Let's keep the warning in place
5810 	 * if somebody still use the cmd line parameter so that we do
5811 	 * not fail it silently
5812 	 */
5813 	if (!(*s == 'd' || *s == 'D' || *s == 'n' || *s == 'N')) {
5814 		pr_warn("Ignoring unsupported numa_zonelist_order value:  %s\n", s);
5815 		return -EINVAL;
5816 	}
5817 	return 0;
5818 }
5819 
5820 char numa_zonelist_order[] = "Node";
5821 
5822 /*
5823  * sysctl handler for numa_zonelist_order
5824  */
numa_zonelist_order_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)5825 int numa_zonelist_order_handler(struct ctl_table *table, int write,
5826 		void *buffer, size_t *length, loff_t *ppos)
5827 {
5828 	if (write)
5829 		return __parse_numa_zonelist_order(buffer);
5830 	return proc_dostring(table, write, buffer, length, ppos);
5831 }
5832 
5833 
5834 #define MAX_NODE_LOAD (nr_online_nodes)
5835 static int node_load[MAX_NUMNODES];
5836 
5837 /**
5838  * find_next_best_node - find the next node that should appear in a given node's fallback list
5839  * @node: node whose fallback list we're appending
5840  * @used_node_mask: nodemask_t of already used nodes
5841  *
5842  * We use a number of factors to determine which is the next node that should
5843  * appear on a given node's fallback list.  The node should not have appeared
5844  * already in @node's fallback list, and it should be the next closest node
5845  * according to the distance array (which contains arbitrary distance values
5846  * from each node to each node in the system), and should also prefer nodes
5847  * with no CPUs, since presumably they'll have very little allocation pressure
5848  * on them otherwise.
5849  *
5850  * Return: node id of the found node or %NUMA_NO_NODE if no node is found.
5851  */
find_next_best_node(int node,nodemask_t * used_node_mask)5852 static int find_next_best_node(int node, nodemask_t *used_node_mask)
5853 {
5854 	int n, val;
5855 	int min_val = INT_MAX;
5856 	int best_node = NUMA_NO_NODE;
5857 
5858 	/* Use the local node if we haven't already */
5859 	if (!node_isset(node, *used_node_mask)) {
5860 		node_set(node, *used_node_mask);
5861 		return node;
5862 	}
5863 
5864 	for_each_node_state(n, N_MEMORY) {
5865 
5866 		/* Don't want a node to appear more than once */
5867 		if (node_isset(n, *used_node_mask))
5868 			continue;
5869 
5870 		/* Use the distance array to find the distance */
5871 		val = node_distance(node, n);
5872 
5873 		/* Penalize nodes under us ("prefer the next node") */
5874 		val += (n < node);
5875 
5876 		/* Give preference to headless and unused nodes */
5877 		if (!cpumask_empty(cpumask_of_node(n)))
5878 			val += PENALTY_FOR_NODE_WITH_CPUS;
5879 
5880 		/* Slight preference for less loaded node */
5881 		val *= (MAX_NODE_LOAD*MAX_NUMNODES);
5882 		val += node_load[n];
5883 
5884 		if (val < min_val) {
5885 			min_val = val;
5886 			best_node = n;
5887 		}
5888 	}
5889 
5890 	if (best_node >= 0)
5891 		node_set(best_node, *used_node_mask);
5892 
5893 	return best_node;
5894 }
5895 
5896 
5897 /*
5898  * Build zonelists ordered by node and zones within node.
5899  * This results in maximum locality--normal zone overflows into local
5900  * DMA zone, if any--but risks exhausting DMA zone.
5901  */
build_zonelists_in_node_order(pg_data_t * pgdat,int * node_order,unsigned nr_nodes)5902 static void build_zonelists_in_node_order(pg_data_t *pgdat, int *node_order,
5903 		unsigned nr_nodes)
5904 {
5905 	struct zoneref *zonerefs;
5906 	int i;
5907 
5908 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
5909 
5910 	for (i = 0; i < nr_nodes; i++) {
5911 		int nr_zones;
5912 
5913 		pg_data_t *node = NODE_DATA(node_order[i]);
5914 
5915 		nr_zones = build_zonerefs_node(node, zonerefs);
5916 		zonerefs += nr_zones;
5917 	}
5918 	zonerefs->zone = NULL;
5919 	zonerefs->zone_idx = 0;
5920 }
5921 
5922 /*
5923  * Build gfp_thisnode zonelists
5924  */
build_thisnode_zonelists(pg_data_t * pgdat)5925 static void build_thisnode_zonelists(pg_data_t *pgdat)
5926 {
5927 	struct zoneref *zonerefs;
5928 	int nr_zones;
5929 
5930 	zonerefs = pgdat->node_zonelists[ZONELIST_NOFALLBACK]._zonerefs;
5931 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
5932 	zonerefs += nr_zones;
5933 	zonerefs->zone = NULL;
5934 	zonerefs->zone_idx = 0;
5935 }
5936 
5937 /*
5938  * Build zonelists ordered by zone and nodes within zones.
5939  * This results in conserving DMA zone[s] until all Normal memory is
5940  * exhausted, but results in overflowing to remote node while memory
5941  * may still exist in local DMA zone.
5942  */
5943 
build_zonelists(pg_data_t * pgdat)5944 static void build_zonelists(pg_data_t *pgdat)
5945 {
5946 	static int node_order[MAX_NUMNODES];
5947 	int node, load, nr_nodes = 0;
5948 	nodemask_t used_mask = NODE_MASK_NONE;
5949 	int local_node, prev_node;
5950 
5951 	/* NUMA-aware ordering of nodes */
5952 	local_node = pgdat->node_id;
5953 	load = nr_online_nodes;
5954 	prev_node = local_node;
5955 
5956 	memset(node_order, 0, sizeof(node_order));
5957 	while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
5958 		/*
5959 		 * We don't want to pressure a particular node.
5960 		 * So adding penalty to the first node in same
5961 		 * distance group to make it round-robin.
5962 		 */
5963 		if (node_distance(local_node, node) !=
5964 		    node_distance(local_node, prev_node))
5965 			node_load[node] = load;
5966 
5967 		node_order[nr_nodes++] = node;
5968 		prev_node = node;
5969 		load--;
5970 	}
5971 
5972 	build_zonelists_in_node_order(pgdat, node_order, nr_nodes);
5973 	build_thisnode_zonelists(pgdat);
5974 }
5975 
5976 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
5977 /*
5978  * Return node id of node used for "local" allocations.
5979  * I.e., first node id of first zone in arg node's generic zonelist.
5980  * Used for initializing percpu 'numa_mem', which is used primarily
5981  * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
5982  */
local_memory_node(int node)5983 int local_memory_node(int node)
5984 {
5985 	struct zoneref *z;
5986 
5987 	z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
5988 				   gfp_zone(GFP_KERNEL),
5989 				   NULL);
5990 	return zone_to_nid(z->zone);
5991 }
5992 #endif
5993 
5994 static void setup_min_unmapped_ratio(void);
5995 static void setup_min_slab_ratio(void);
5996 #else	/* CONFIG_NUMA */
5997 
build_zonelists(pg_data_t * pgdat)5998 static void build_zonelists(pg_data_t *pgdat)
5999 {
6000 	int node, local_node;
6001 	struct zoneref *zonerefs;
6002 	int nr_zones;
6003 
6004 	local_node = pgdat->node_id;
6005 
6006 	zonerefs = pgdat->node_zonelists[ZONELIST_FALLBACK]._zonerefs;
6007 	nr_zones = build_zonerefs_node(pgdat, zonerefs);
6008 	zonerefs += nr_zones;
6009 
6010 	/*
6011 	 * Now we build the zonelist so that it contains the zones
6012 	 * of all the other nodes.
6013 	 * We don't want to pressure a particular node, so when
6014 	 * building the zones for node N, we make sure that the
6015 	 * zones coming right after the local ones are those from
6016 	 * node N+1 (modulo N)
6017 	 */
6018 	for (node = local_node + 1; node < MAX_NUMNODES; node++) {
6019 		if (!node_online(node))
6020 			continue;
6021 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6022 		zonerefs += nr_zones;
6023 	}
6024 	for (node = 0; node < local_node; node++) {
6025 		if (!node_online(node))
6026 			continue;
6027 		nr_zones = build_zonerefs_node(NODE_DATA(node), zonerefs);
6028 		zonerefs += nr_zones;
6029 	}
6030 
6031 	zonerefs->zone = NULL;
6032 	zonerefs->zone_idx = 0;
6033 }
6034 
6035 #endif	/* CONFIG_NUMA */
6036 
6037 /*
6038  * Boot pageset table. One per cpu which is going to be used for all
6039  * zones and all nodes. The parameters will be set in such a way
6040  * that an item put on a list will immediately be handed over to
6041  * the buddy list. This is safe since pageset manipulation is done
6042  * with interrupts disabled.
6043  *
6044  * The boot_pagesets must be kept even after bootup is complete for
6045  * unused processors and/or zones. They do play a role for bootstrapping
6046  * hotplugged processors.
6047  *
6048  * zoneinfo_show() and maybe other functions do
6049  * not check if the processor is online before following the pageset pointer.
6050  * Other parts of the kernel may not check if the zone is available.
6051  */
6052 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
6053 static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
6054 static DEFINE_PER_CPU(struct per_cpu_nodestat, boot_nodestats);
6055 
__build_all_zonelists(void * data)6056 static void __build_all_zonelists(void *data)
6057 {
6058 	int nid;
6059 	int __maybe_unused cpu;
6060 	pg_data_t *self = data;
6061 	unsigned long flags;
6062 
6063 	/*
6064 	 * Explicitly disable this CPU's interrupts before taking seqlock
6065 	 * to prevent any IRQ handler from calling into the page allocator
6066 	 * (e.g. GFP_ATOMIC) that could hit zonelist_iter_begin and livelock.
6067 	 */
6068 	local_irq_save(flags);
6069 	/*
6070 	 * Explicitly disable this CPU's synchronous printk() before taking
6071 	 * seqlock to prevent any printk() from trying to hold port->lock, for
6072 	 * tty_insert_flip_string_and_push_buffer() on other CPU might be
6073 	 * calling kmalloc(GFP_ATOMIC | __GFP_NOWARN) with port->lock held.
6074 	 */
6075 	printk_deferred_enter();
6076 	write_seqlock(&zonelist_update_seq);
6077 
6078 #ifdef CONFIG_NUMA
6079 	memset(node_load, 0, sizeof(node_load));
6080 #endif
6081 
6082 	/*
6083 	 * This node is hotadded and no memory is yet present.   So just
6084 	 * building zonelists is fine - no need to touch other nodes.
6085 	 */
6086 	if (self && !node_online(self->node_id)) {
6087 		build_zonelists(self);
6088 	} else {
6089 		for_each_online_node(nid) {
6090 			pg_data_t *pgdat = NODE_DATA(nid);
6091 
6092 			build_zonelists(pgdat);
6093 		}
6094 
6095 #ifdef CONFIG_HAVE_MEMORYLESS_NODES
6096 		/*
6097 		 * We now know the "local memory node" for each node--
6098 		 * i.e., the node of the first zone in the generic zonelist.
6099 		 * Set up numa_mem percpu variable for on-line cpus.  During
6100 		 * boot, only the boot cpu should be on-line;  we'll init the
6101 		 * secondary cpus' numa_mem as they come on-line.  During
6102 		 * node/memory hotplug, we'll fixup all on-line cpus.
6103 		 */
6104 		for_each_online_cpu(cpu)
6105 			set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
6106 #endif
6107 	}
6108 
6109 	write_sequnlock(&zonelist_update_seq);
6110 	printk_deferred_exit();
6111 	local_irq_restore(flags);
6112 }
6113 
6114 static noinline void __init
build_all_zonelists_init(void)6115 build_all_zonelists_init(void)
6116 {
6117 	int cpu;
6118 
6119 	__build_all_zonelists(NULL);
6120 
6121 	/*
6122 	 * Initialize the boot_pagesets that are going to be used
6123 	 * for bootstrapping processors. The real pagesets for
6124 	 * each zone will be allocated later when the per cpu
6125 	 * allocator is available.
6126 	 *
6127 	 * boot_pagesets are used also for bootstrapping offline
6128 	 * cpus if the system is already booted because the pagesets
6129 	 * are needed to initialize allocators on a specific cpu too.
6130 	 * F.e. the percpu allocator needs the page allocator which
6131 	 * needs the percpu allocator in order to allocate its pagesets
6132 	 * (a chicken-egg dilemma).
6133 	 */
6134 	for_each_possible_cpu(cpu)
6135 		setup_pageset(&per_cpu(boot_pageset, cpu), 0);
6136 
6137 	mminit_verify_zonelist();
6138 	cpuset_init_current_mems_allowed();
6139 }
6140 
6141 /*
6142  * unless system_state == SYSTEM_BOOTING.
6143  *
6144  * __ref due to call of __init annotated helper build_all_zonelists_init
6145  * [protected by SYSTEM_BOOTING].
6146  */
build_all_zonelists(pg_data_t * pgdat)6147 void __ref build_all_zonelists(pg_data_t *pgdat)
6148 {
6149 	unsigned long vm_total_pages;
6150 
6151 	if (system_state == SYSTEM_BOOTING) {
6152 		build_all_zonelists_init();
6153 	} else {
6154 		__build_all_zonelists(pgdat);
6155 		/* cpuset refresh routine should be here */
6156 	}
6157 	/* Get the number of free pages beyond high watermark in all zones. */
6158 	vm_total_pages = nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
6159 	/*
6160 	 * Disable grouping by mobility if the number of pages in the
6161 	 * system is too low to allow the mechanism to work. It would be
6162 	 * more accurate, but expensive to check per-zone. This check is
6163 	 * made on memory-hotadd so a system can start with mobility
6164 	 * disabled and enable it later
6165 	 */
6166 	if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
6167 		page_group_by_mobility_disabled = 1;
6168 	else
6169 		page_group_by_mobility_disabled = 0;
6170 
6171 	pr_info("Built %u zonelists, mobility grouping %s.  Total pages: %ld\n",
6172 		nr_online_nodes,
6173 		page_group_by_mobility_disabled ? "off" : "on",
6174 		vm_total_pages);
6175 #ifdef CONFIG_NUMA
6176 	pr_info("Policy zone: %s\n", zone_names[policy_zone]);
6177 #endif
6178 }
6179 
6180 /* If zone is ZONE_MOVABLE but memory is mirrored, it is an overlapped init */
6181 static bool __meminit
overlap_memmap_init(unsigned long zone,unsigned long * pfn)6182 overlap_memmap_init(unsigned long zone, unsigned long *pfn)
6183 {
6184 	static struct memblock_region *r;
6185 
6186 	if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
6187 		if (!r || *pfn >= memblock_region_memory_end_pfn(r)) {
6188 			for_each_mem_region(r) {
6189 				if (*pfn < memblock_region_memory_end_pfn(r))
6190 					break;
6191 			}
6192 		}
6193 		if (*pfn >= memblock_region_memory_base_pfn(r) &&
6194 		    memblock_is_mirror(r)) {
6195 			*pfn = memblock_region_memory_end_pfn(r);
6196 			return true;
6197 		}
6198 	}
6199 	return false;
6200 }
6201 
6202 /*
6203  * Initially all pages are reserved - free ones are freed
6204  * up by memblock_free_all() once the early boot process is
6205  * done. Non-atomic initialization, single-pass.
6206  *
6207  * All aligned pageblocks are initialized to the specified migratetype
6208  * (usually MIGRATE_MOVABLE). Besides setting the migratetype, no related
6209  * zone stats (e.g., nr_isolate_pageblock) are touched.
6210  */
memmap_init_zone(unsigned long size,int nid,unsigned long zone,unsigned long start_pfn,unsigned long zone_end_pfn,enum meminit_context context,struct vmem_altmap * altmap,int migratetype)6211 void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
6212 		unsigned long start_pfn, unsigned long zone_end_pfn,
6213 		enum meminit_context context,
6214 		struct vmem_altmap *altmap, int migratetype)
6215 {
6216 	unsigned long pfn, end_pfn = start_pfn + size;
6217 	struct page *page;
6218 
6219 	if (highest_memmap_pfn < end_pfn - 1)
6220 		highest_memmap_pfn = end_pfn - 1;
6221 
6222 #ifdef CONFIG_ZONE_DEVICE
6223 	/*
6224 	 * Honor reservation requested by the driver for this ZONE_DEVICE
6225 	 * memory. We limit the total number of pages to initialize to just
6226 	 * those that might contain the memory mapping. We will defer the
6227 	 * ZONE_DEVICE page initialization until after we have released
6228 	 * the hotplug lock.
6229 	 */
6230 	if (zone == ZONE_DEVICE) {
6231 		if (!altmap)
6232 			return;
6233 
6234 		if (start_pfn == altmap->base_pfn)
6235 			start_pfn += altmap->reserve;
6236 		end_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6237 	}
6238 #endif
6239 
6240 	for (pfn = start_pfn; pfn < end_pfn; ) {
6241 		/*
6242 		 * There can be holes in boot-time mem_map[]s handed to this
6243 		 * function.  They do not exist on hotplugged memory.
6244 		 */
6245 		if (context == MEMINIT_EARLY) {
6246 			if (overlap_memmap_init(zone, &pfn))
6247 				continue;
6248 			if (defer_init(nid, pfn, zone_end_pfn))
6249 				break;
6250 		}
6251 
6252 		page = pfn_to_page(pfn);
6253 		__init_single_page(page, pfn, zone, nid);
6254 		if (context == MEMINIT_HOTPLUG)
6255 			__SetPageReserved(page);
6256 
6257 		/*
6258 		 * Usually, we want to mark the pageblock MIGRATE_MOVABLE,
6259 		 * such that unmovable allocations won't be scattered all
6260 		 * over the place during system boot.
6261 		 */
6262 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6263 			set_pageblock_migratetype(page, migratetype);
6264 			cond_resched();
6265 		}
6266 		pfn++;
6267 	}
6268 }
6269 
6270 #ifdef CONFIG_ZONE_DEVICE
memmap_init_zone_device(struct zone * zone,unsigned long start_pfn,unsigned long nr_pages,struct dev_pagemap * pgmap)6271 void __ref memmap_init_zone_device(struct zone *zone,
6272 				   unsigned long start_pfn,
6273 				   unsigned long nr_pages,
6274 				   struct dev_pagemap *pgmap)
6275 {
6276 	unsigned long pfn, end_pfn = start_pfn + nr_pages;
6277 	struct pglist_data *pgdat = zone->zone_pgdat;
6278 	struct vmem_altmap *altmap = pgmap_altmap(pgmap);
6279 	unsigned long zone_idx = zone_idx(zone);
6280 	unsigned long start = jiffies;
6281 	int nid = pgdat->node_id;
6282 
6283 	if (WARN_ON_ONCE(!pgmap || zone_idx(zone) != ZONE_DEVICE))
6284 		return;
6285 
6286 	/*
6287 	 * The call to memmap_init should have already taken care
6288 	 * of the pages reserved for the memmap, so we can just jump to
6289 	 * the end of that region and start processing the device pages.
6290 	 */
6291 	if (altmap) {
6292 		start_pfn = altmap->base_pfn + vmem_altmap_offset(altmap);
6293 		nr_pages = end_pfn - start_pfn;
6294 	}
6295 
6296 	for (pfn = start_pfn; pfn < end_pfn; pfn++) {
6297 		struct page *page = pfn_to_page(pfn);
6298 
6299 		__init_single_page(page, pfn, zone_idx, nid);
6300 
6301 		/*
6302 		 * Mark page reserved as it will need to wait for onlining
6303 		 * phase for it to be fully associated with a zone.
6304 		 *
6305 		 * We can use the non-atomic __set_bit operation for setting
6306 		 * the flag as we are still initializing the pages.
6307 		 */
6308 		__SetPageReserved(page);
6309 
6310 		/*
6311 		 * ZONE_DEVICE pages union ->lru with a ->pgmap back pointer
6312 		 * and zone_device_data.  It is a bug if a ZONE_DEVICE page is
6313 		 * ever freed or placed on a driver-private list.
6314 		 */
6315 		page->pgmap = pgmap;
6316 		page->zone_device_data = NULL;
6317 
6318 		/*
6319 		 * Mark the block movable so that blocks are reserved for
6320 		 * movable at startup. This will force kernel allocations
6321 		 * to reserve their blocks rather than leaking throughout
6322 		 * the address space during boot when many long-lived
6323 		 * kernel allocations are made.
6324 		 *
6325 		 * Please note that MEMINIT_HOTPLUG path doesn't clear memmap
6326 		 * because this is done early in section_activate()
6327 		 */
6328 		if (IS_ALIGNED(pfn, pageblock_nr_pages)) {
6329 			set_pageblock_migratetype(page, MIGRATE_MOVABLE);
6330 			cond_resched();
6331 		}
6332 	}
6333 
6334 	pr_info("%s initialised %lu pages in %ums\n", __func__,
6335 		nr_pages, jiffies_to_msecs(jiffies - start));
6336 }
6337 
6338 #endif
zone_init_free_lists(struct zone * zone)6339 static void __meminit zone_init_free_lists(struct zone *zone)
6340 {
6341 	unsigned int order, t;
6342 	for_each_migratetype_order(order, t) {
6343 		INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
6344 		zone->free_area[order].nr_free = 0;
6345 	}
6346 }
6347 
6348 #if !defined(CONFIG_FLAT_NODE_MEM_MAP)
6349 /*
6350  * Only struct pages that correspond to ranges defined by memblock.memory
6351  * are zeroed and initialized by going through __init_single_page() during
6352  * memmap_init_zone_range().
6353  *
6354  * But, there could be struct pages that correspond to holes in
6355  * memblock.memory. This can happen because of the following reasons:
6356  * - physical memory bank size is not necessarily the exact multiple of the
6357  *   arbitrary section size
6358  * - early reserved memory may not be listed in memblock.memory
6359  * - memory layouts defined with memmap= kernel parameter may not align
6360  *   nicely with memmap sections
6361  *
6362  * Explicitly initialize those struct pages so that:
6363  * - PG_Reserved is set
6364  * - zone and node links point to zone and node that span the page if the
6365  *   hole is in the middle of a zone
6366  * - zone and node links point to adjacent zone/node if the hole falls on
6367  *   the zone boundary; the pages in such holes will be prepended to the
6368  *   zone/node above the hole except for the trailing pages in the last
6369  *   section that will be appended to the zone/node below.
6370  */
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)6371 static void __init init_unavailable_range(unsigned long spfn,
6372 					  unsigned long epfn,
6373 					  int zone, int node)
6374 {
6375 	unsigned long pfn;
6376 	u64 pgcnt = 0;
6377 
6378 	for (pfn = spfn; pfn < epfn; pfn++) {
6379 		if (!pfn_valid(ALIGN_DOWN(pfn, pageblock_nr_pages))) {
6380 			pfn = ALIGN_DOWN(pfn, pageblock_nr_pages)
6381 				+ pageblock_nr_pages - 1;
6382 			continue;
6383 		}
6384 		__init_single_page(pfn_to_page(pfn), pfn, zone, node);
6385 		__SetPageReserved(pfn_to_page(pfn));
6386 		pgcnt++;
6387 	}
6388 
6389 	if (pgcnt)
6390 		pr_info("On node %d, zone %s: %lld pages in unavailable ranges",
6391 			node, zone_names[zone], pgcnt);
6392 }
6393 #else
init_unavailable_range(unsigned long spfn,unsigned long epfn,int zone,int node)6394 static inline void init_unavailable_range(unsigned long spfn,
6395 					  unsigned long epfn,
6396 					  int zone, int node)
6397 {
6398 }
6399 #endif
6400 
memmap_init_zone_range(struct zone * zone,unsigned long start_pfn,unsigned long end_pfn,unsigned long * hole_pfn)6401 static void __init memmap_init_zone_range(struct zone *zone,
6402 					  unsigned long start_pfn,
6403 					  unsigned long end_pfn,
6404 					  unsigned long *hole_pfn)
6405 {
6406 	unsigned long zone_start_pfn = zone->zone_start_pfn;
6407 	unsigned long zone_end_pfn = zone_start_pfn + zone->spanned_pages;
6408 	int nid = zone_to_nid(zone), zone_id = zone_idx(zone);
6409 
6410 	start_pfn = clamp(start_pfn, zone_start_pfn, zone_end_pfn);
6411 	end_pfn = clamp(end_pfn, zone_start_pfn, zone_end_pfn);
6412 
6413 	if (start_pfn >= end_pfn)
6414 		return;
6415 
6416 	memmap_init_zone(end_pfn - start_pfn, nid, zone_id, start_pfn,
6417 			  zone_end_pfn, MEMINIT_EARLY, NULL, MIGRATE_MOVABLE);
6418 
6419 	if (*hole_pfn < start_pfn)
6420 		init_unavailable_range(*hole_pfn, start_pfn, zone_id, nid);
6421 
6422 	*hole_pfn = end_pfn;
6423 }
6424 
memmap_init(void)6425 void __init __weak memmap_init(void)
6426 {
6427 	unsigned long start_pfn, end_pfn;
6428 	unsigned long hole_pfn = 0;
6429 	int i, j, zone_id, nid;
6430 
6431 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6432 		struct pglist_data *node = NODE_DATA(nid);
6433 
6434 		for (j = 0; j < MAX_NR_ZONES; j++) {
6435 			struct zone *zone = node->node_zones + j;
6436 
6437 			if (!populated_zone(zone))
6438 				continue;
6439 
6440 			memmap_init_zone_range(zone, start_pfn, end_pfn,
6441 					       &hole_pfn);
6442 			zone_id = j;
6443 		}
6444 	}
6445 
6446 #ifdef CONFIG_SPARSEMEM
6447 	/*
6448 	 * Initialize the memory map for hole in the range [memory_end,
6449 	 * section_end].
6450 	 * Append the pages in this hole to the highest zone in the last
6451 	 * node.
6452 	 * The call to init_unavailable_range() is outside the ifdef to
6453 	 * silence the compiler warining about zone_id set but not used;
6454 	 * for FLATMEM it is a nop anyway
6455 	 */
6456 	end_pfn = round_up(end_pfn, PAGES_PER_SECTION);
6457 	if (hole_pfn < end_pfn)
6458 #endif
6459 		init_unavailable_range(hole_pfn, end_pfn, zone_id, nid);
6460 }
6461 
6462 /* A stub for backwards compatibility with custom implementatin on IA-64 */
arch_memmap_init(unsigned long size,int nid,unsigned long zone,unsigned long range_start_pfn)6463 void __meminit __weak arch_memmap_init(unsigned long size, int nid,
6464 				       unsigned long zone,
6465 				       unsigned long range_start_pfn)
6466 {
6467 }
6468 
zone_batchsize(struct zone * zone)6469 static int zone_batchsize(struct zone *zone)
6470 {
6471 #ifdef CONFIG_MMU
6472 	int batch;
6473 
6474 	/*
6475 	 * The per-cpu-pages pools are set to around 1000th of the
6476 	 * size of the zone.
6477 	 */
6478 	batch = zone_managed_pages(zone) / 1024;
6479 	/* But no more than a meg. */
6480 	if (batch * PAGE_SIZE > 1024 * 1024)
6481 		batch = (1024 * 1024) / PAGE_SIZE;
6482 	batch /= 4;		/* We effectively *= 4 below */
6483 	if (batch < 1)
6484 		batch = 1;
6485 
6486 	/*
6487 	 * Clamp the batch to a 2^n - 1 value. Having a power
6488 	 * of 2 value was found to be more likely to have
6489 	 * suboptimal cache aliasing properties in some cases.
6490 	 *
6491 	 * For example if 2 tasks are alternately allocating
6492 	 * batches of pages, one task can end up with a lot
6493 	 * of pages of one half of the possible page colors
6494 	 * and the other with pages of the other colors.
6495 	 */
6496 	batch = rounddown_pow_of_two(batch + batch/2) - 1;
6497 
6498 	return batch;
6499 
6500 #else
6501 	/* The deferral and batching of frees should be suppressed under NOMMU
6502 	 * conditions.
6503 	 *
6504 	 * The problem is that NOMMU needs to be able to allocate large chunks
6505 	 * of contiguous memory as there's no hardware page translation to
6506 	 * assemble apparent contiguous memory from discontiguous pages.
6507 	 *
6508 	 * Queueing large contiguous runs of pages for batching, however,
6509 	 * causes the pages to actually be freed in smaller chunks.  As there
6510 	 * can be a significant delay between the individual batches being
6511 	 * recycled, this leads to the once large chunks of space being
6512 	 * fragmented and becoming unavailable for high-order allocations.
6513 	 */
6514 	return 0;
6515 #endif
6516 }
6517 
6518 /*
6519  * pcp->high and pcp->batch values are related and dependent on one another:
6520  * ->batch must never be higher then ->high.
6521  * The following function updates them in a safe manner without read side
6522  * locking.
6523  *
6524  * Any new users of pcp->batch and pcp->high should ensure they can cope with
6525  * those fields changing asynchronously (acording to the above rule).
6526  *
6527  * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
6528  * outside of boot time (or some other assurance that no concurrent updaters
6529  * exist).
6530  */
pageset_update(struct per_cpu_pages * pcp,unsigned long high,unsigned long batch)6531 static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
6532 		unsigned long batch)
6533 {
6534        /* start with a fail safe value for batch */
6535 	pcp->batch = 1;
6536 	smp_wmb();
6537 
6538        /* Update high, then batch, in order */
6539 	pcp->high = high;
6540 	smp_wmb();
6541 
6542 	pcp->batch = batch;
6543 }
6544 
6545 /* a companion to pageset_set_high() */
pageset_set_batch(struct per_cpu_pageset * p,unsigned long batch)6546 static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
6547 {
6548 	pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
6549 }
6550 
pageset_init(struct per_cpu_pageset * p)6551 static void pageset_init(struct per_cpu_pageset *p)
6552 {
6553 	struct per_cpu_pages *pcp;
6554 	int migratetype;
6555 
6556 	memset(p, 0, sizeof(*p));
6557 
6558 	pcp = &p->pcp;
6559 	for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
6560 		INIT_LIST_HEAD(&pcp->lists[migratetype]);
6561 }
6562 
setup_pageset(struct per_cpu_pageset * p,unsigned long batch)6563 static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
6564 {
6565 	pageset_init(p);
6566 	pageset_set_batch(p, batch);
6567 }
6568 
6569 /*
6570  * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
6571  * to the value high for the pageset p.
6572  */
pageset_set_high(struct per_cpu_pageset * p,unsigned long high)6573 static void pageset_set_high(struct per_cpu_pageset *p,
6574 				unsigned long high)
6575 {
6576 	unsigned long batch = max(1UL, high / 4);
6577 	if ((high / 4) > (PAGE_SHIFT * 8))
6578 		batch = PAGE_SHIFT * 8;
6579 
6580 	pageset_update(&p->pcp, high, batch);
6581 }
6582 
pageset_set_high_and_batch(struct zone * zone,struct per_cpu_pageset * pcp)6583 static void pageset_set_high_and_batch(struct zone *zone,
6584 				       struct per_cpu_pageset *pcp)
6585 {
6586 	if (percpu_pagelist_fraction)
6587 		pageset_set_high(pcp,
6588 			(zone_managed_pages(zone) /
6589 				percpu_pagelist_fraction));
6590 	else
6591 		pageset_set_batch(pcp, zone_batchsize(zone));
6592 }
6593 
zone_pageset_init(struct zone * zone,int cpu)6594 static void __meminit zone_pageset_init(struct zone *zone, int cpu)
6595 {
6596 	struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
6597 
6598 	pageset_init(pcp);
6599 	pageset_set_high_and_batch(zone, pcp);
6600 }
6601 
setup_zone_pageset(struct zone * zone)6602 void __meminit setup_zone_pageset(struct zone *zone)
6603 {
6604 	int cpu;
6605 	zone->pageset = alloc_percpu(struct per_cpu_pageset);
6606 	for_each_possible_cpu(cpu)
6607 		zone_pageset_init(zone, cpu);
6608 }
6609 
6610 /*
6611  * Allocate per cpu pagesets and initialize them.
6612  * Before this call only boot pagesets were available.
6613  */
setup_per_cpu_pageset(void)6614 void __init setup_per_cpu_pageset(void)
6615 {
6616 	struct pglist_data *pgdat;
6617 	struct zone *zone;
6618 	int __maybe_unused cpu;
6619 
6620 	for_each_populated_zone(zone)
6621 		setup_zone_pageset(zone);
6622 
6623 #ifdef CONFIG_NUMA
6624 	/*
6625 	 * Unpopulated zones continue using the boot pagesets.
6626 	 * The numa stats for these pagesets need to be reset.
6627 	 * Otherwise, they will end up skewing the stats of
6628 	 * the nodes these zones are associated with.
6629 	 */
6630 	for_each_possible_cpu(cpu) {
6631 		struct per_cpu_pageset *pcp = &per_cpu(boot_pageset, cpu);
6632 		memset(pcp->vm_numa_stat_diff, 0,
6633 		       sizeof(pcp->vm_numa_stat_diff));
6634 	}
6635 #endif
6636 
6637 	for_each_online_pgdat(pgdat)
6638 		pgdat->per_cpu_nodestats =
6639 			alloc_percpu(struct per_cpu_nodestat);
6640 }
6641 
zone_pcp_init(struct zone * zone)6642 static __meminit void zone_pcp_init(struct zone *zone)
6643 {
6644 	/*
6645 	 * per cpu subsystem is not up at this point. The following code
6646 	 * relies on the ability of the linker to provide the
6647 	 * offset of a (static) per cpu variable into the per cpu area.
6648 	 */
6649 	zone->pageset = &boot_pageset;
6650 
6651 	if (populated_zone(zone))
6652 		printk(KERN_DEBUG "  %s zone: %lu pages, LIFO batch:%u\n",
6653 			zone->name, zone->present_pages,
6654 					 zone_batchsize(zone));
6655 }
6656 
init_currently_empty_zone(struct zone * zone,unsigned long zone_start_pfn,unsigned long size)6657 void __meminit init_currently_empty_zone(struct zone *zone,
6658 					unsigned long zone_start_pfn,
6659 					unsigned long size)
6660 {
6661 	struct pglist_data *pgdat = zone->zone_pgdat;
6662 	int zone_idx = zone_idx(zone) + 1;
6663 
6664 	if (zone_idx > pgdat->nr_zones)
6665 		pgdat->nr_zones = zone_idx;
6666 
6667 	zone->zone_start_pfn = zone_start_pfn;
6668 
6669 	mminit_dprintk(MMINIT_TRACE, "memmap_init",
6670 			"Initialising map node %d zone %lu pfns %lu -> %lu\n",
6671 			pgdat->node_id,
6672 			(unsigned long)zone_idx(zone),
6673 			zone_start_pfn, (zone_start_pfn + size));
6674 
6675 	zone_init_free_lists(zone);
6676 	zone->initialized = 1;
6677 }
6678 
6679 /**
6680  * get_pfn_range_for_nid - Return the start and end page frames for a node
6681  * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
6682  * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
6683  * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
6684  *
6685  * It returns the start and end page frame of a node based on information
6686  * provided by memblock_set_node(). If called for a node
6687  * with no available memory, a warning is printed and the start and end
6688  * PFNs will be 0.
6689  */
get_pfn_range_for_nid(unsigned int nid,unsigned long * start_pfn,unsigned long * end_pfn)6690 void __init get_pfn_range_for_nid(unsigned int nid,
6691 			unsigned long *start_pfn, unsigned long *end_pfn)
6692 {
6693 	unsigned long this_start_pfn, this_end_pfn;
6694 	int i;
6695 
6696 	*start_pfn = -1UL;
6697 	*end_pfn = 0;
6698 
6699 	for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
6700 		*start_pfn = min(*start_pfn, this_start_pfn);
6701 		*end_pfn = max(*end_pfn, this_end_pfn);
6702 	}
6703 
6704 	if (*start_pfn == -1UL)
6705 		*start_pfn = 0;
6706 }
6707 
6708 /*
6709  * This finds a zone that can be used for ZONE_MOVABLE pages. The
6710  * assumption is made that zones within a node are ordered in monotonic
6711  * increasing memory addresses so that the "highest" populated zone is used
6712  */
find_usable_zone_for_movable(void)6713 static void __init find_usable_zone_for_movable(void)
6714 {
6715 	int zone_index;
6716 	for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
6717 		if (zone_index == ZONE_MOVABLE)
6718 			continue;
6719 
6720 		if (arch_zone_highest_possible_pfn[zone_index] >
6721 				arch_zone_lowest_possible_pfn[zone_index])
6722 			break;
6723 	}
6724 
6725 	VM_BUG_ON(zone_index == -1);
6726 	movable_zone = zone_index;
6727 }
6728 
6729 /*
6730  * The zone ranges provided by the architecture do not include ZONE_MOVABLE
6731  * because it is sized independent of architecture. Unlike the other zones,
6732  * the starting point for ZONE_MOVABLE is not fixed. It may be different
6733  * in each node depending on the size of each node and how evenly kernelcore
6734  * is distributed. This helper function adjusts the zone ranges
6735  * provided by the architecture for a given node by using the end of the
6736  * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
6737  * zones within a node are in order of monotonic increases memory addresses
6738  */
adjust_zone_range_for_zone_movable(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)6739 static void __init adjust_zone_range_for_zone_movable(int nid,
6740 					unsigned long zone_type,
6741 					unsigned long node_start_pfn,
6742 					unsigned long node_end_pfn,
6743 					unsigned long *zone_start_pfn,
6744 					unsigned long *zone_end_pfn)
6745 {
6746 	/* Only adjust if ZONE_MOVABLE is on this node */
6747 	if (zone_movable_pfn[nid]) {
6748 		/* Size ZONE_MOVABLE */
6749 		if (zone_type == ZONE_MOVABLE) {
6750 			*zone_start_pfn = zone_movable_pfn[nid];
6751 			*zone_end_pfn = min(node_end_pfn,
6752 				arch_zone_highest_possible_pfn[movable_zone]);
6753 
6754 		/* Adjust for ZONE_MOVABLE starting within this range */
6755 		} else if (!mirrored_kernelcore &&
6756 			*zone_start_pfn < zone_movable_pfn[nid] &&
6757 			*zone_end_pfn > zone_movable_pfn[nid]) {
6758 			*zone_end_pfn = zone_movable_pfn[nid];
6759 
6760 		/* Check if this whole range is within ZONE_MOVABLE */
6761 		} else if (*zone_start_pfn >= zone_movable_pfn[nid])
6762 			*zone_start_pfn = *zone_end_pfn;
6763 	}
6764 }
6765 
6766 /*
6767  * Return the number of pages a zone spans in a node, including holes
6768  * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
6769  */
zone_spanned_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn,unsigned long * zone_start_pfn,unsigned long * zone_end_pfn)6770 static unsigned long __init zone_spanned_pages_in_node(int nid,
6771 					unsigned long zone_type,
6772 					unsigned long node_start_pfn,
6773 					unsigned long node_end_pfn,
6774 					unsigned long *zone_start_pfn,
6775 					unsigned long *zone_end_pfn)
6776 {
6777 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6778 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6779 	/* When hotadd a new node from cpu_up(), the node should be empty */
6780 	if (!node_start_pfn && !node_end_pfn)
6781 		return 0;
6782 
6783 	/* Get the start and end of the zone */
6784 	*zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6785 	*zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6786 	adjust_zone_range_for_zone_movable(nid, zone_type,
6787 				node_start_pfn, node_end_pfn,
6788 				zone_start_pfn, zone_end_pfn);
6789 
6790 	/* Check that this node has pages within the zone's required range */
6791 	if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
6792 		return 0;
6793 
6794 	/* Move the zone boundaries inside the node if necessary */
6795 	*zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
6796 	*zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
6797 
6798 	/* Return the spanned pages */
6799 	return *zone_end_pfn - *zone_start_pfn;
6800 }
6801 
6802 /*
6803  * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
6804  * then all holes in the requested range will be accounted for.
6805  */
__absent_pages_in_range(int nid,unsigned long range_start_pfn,unsigned long range_end_pfn)6806 unsigned long __init __absent_pages_in_range(int nid,
6807 				unsigned long range_start_pfn,
6808 				unsigned long range_end_pfn)
6809 {
6810 	unsigned long nr_absent = range_end_pfn - range_start_pfn;
6811 	unsigned long start_pfn, end_pfn;
6812 	int i;
6813 
6814 	for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
6815 		start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
6816 		end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
6817 		nr_absent -= end_pfn - start_pfn;
6818 	}
6819 	return nr_absent;
6820 }
6821 
6822 /**
6823  * absent_pages_in_range - Return number of page frames in holes within a range
6824  * @start_pfn: The start PFN to start searching for holes
6825  * @end_pfn: The end PFN to stop searching for holes
6826  *
6827  * Return: the number of pages frames in memory holes within a range.
6828  */
absent_pages_in_range(unsigned long start_pfn,unsigned long end_pfn)6829 unsigned long __init absent_pages_in_range(unsigned long start_pfn,
6830 							unsigned long end_pfn)
6831 {
6832 	return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
6833 }
6834 
6835 /* Return the number of page frames in holes in a zone on a node */
zone_absent_pages_in_node(int nid,unsigned long zone_type,unsigned long node_start_pfn,unsigned long node_end_pfn)6836 static unsigned long __init zone_absent_pages_in_node(int nid,
6837 					unsigned long zone_type,
6838 					unsigned long node_start_pfn,
6839 					unsigned long node_end_pfn)
6840 {
6841 	unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
6842 	unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
6843 	unsigned long zone_start_pfn, zone_end_pfn;
6844 	unsigned long nr_absent;
6845 
6846 	/* When hotadd a new node from cpu_up(), the node should be empty */
6847 	if (!node_start_pfn && !node_end_pfn)
6848 		return 0;
6849 
6850 	zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
6851 	zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
6852 
6853 	adjust_zone_range_for_zone_movable(nid, zone_type,
6854 			node_start_pfn, node_end_pfn,
6855 			&zone_start_pfn, &zone_end_pfn);
6856 	nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
6857 
6858 	/*
6859 	 * ZONE_MOVABLE handling.
6860 	 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
6861 	 * and vice versa.
6862 	 */
6863 	if (mirrored_kernelcore && zone_movable_pfn[nid]) {
6864 		unsigned long start_pfn, end_pfn;
6865 		struct memblock_region *r;
6866 
6867 		for_each_mem_region(r) {
6868 			start_pfn = clamp(memblock_region_memory_base_pfn(r),
6869 					  zone_start_pfn, zone_end_pfn);
6870 			end_pfn = clamp(memblock_region_memory_end_pfn(r),
6871 					zone_start_pfn, zone_end_pfn);
6872 
6873 			if (zone_type == ZONE_MOVABLE &&
6874 			    memblock_is_mirror(r))
6875 				nr_absent += end_pfn - start_pfn;
6876 
6877 			if (zone_type == ZONE_NORMAL &&
6878 			    !memblock_is_mirror(r))
6879 				nr_absent += end_pfn - start_pfn;
6880 		}
6881 	}
6882 
6883 	return nr_absent;
6884 }
6885 
calculate_node_totalpages(struct pglist_data * pgdat,unsigned long node_start_pfn,unsigned long node_end_pfn)6886 static void __init calculate_node_totalpages(struct pglist_data *pgdat,
6887 						unsigned long node_start_pfn,
6888 						unsigned long node_end_pfn)
6889 {
6890 	unsigned long realtotalpages = 0, totalpages = 0;
6891 	enum zone_type i;
6892 
6893 	for (i = 0; i < MAX_NR_ZONES; i++) {
6894 		struct zone *zone = pgdat->node_zones + i;
6895 		unsigned long zone_start_pfn, zone_end_pfn;
6896 		unsigned long spanned, absent;
6897 		unsigned long size, real_size;
6898 
6899 		spanned = zone_spanned_pages_in_node(pgdat->node_id, i,
6900 						     node_start_pfn,
6901 						     node_end_pfn,
6902 						     &zone_start_pfn,
6903 						     &zone_end_pfn);
6904 		absent = zone_absent_pages_in_node(pgdat->node_id, i,
6905 						   node_start_pfn,
6906 						   node_end_pfn);
6907 
6908 		size = spanned;
6909 		real_size = size - absent;
6910 
6911 		if (size)
6912 			zone->zone_start_pfn = zone_start_pfn;
6913 		else
6914 			zone->zone_start_pfn = 0;
6915 		zone->spanned_pages = size;
6916 		zone->present_pages = real_size;
6917 
6918 		totalpages += size;
6919 		realtotalpages += real_size;
6920 	}
6921 
6922 	pgdat->node_spanned_pages = totalpages;
6923 	pgdat->node_present_pages = realtotalpages;
6924 	printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
6925 							realtotalpages);
6926 }
6927 
6928 #ifndef CONFIG_SPARSEMEM
6929 /*
6930  * Calculate the size of the zone->blockflags rounded to an unsigned long
6931  * Start by making sure zonesize is a multiple of pageblock_order by rounding
6932  * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
6933  * round what is now in bits to nearest long in bits, then return it in
6934  * bytes.
6935  */
usemap_size(unsigned long zone_start_pfn,unsigned long zonesize)6936 static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
6937 {
6938 	unsigned long usemapsize;
6939 
6940 	zonesize += zone_start_pfn & (pageblock_nr_pages-1);
6941 	usemapsize = roundup(zonesize, pageblock_nr_pages);
6942 	usemapsize = usemapsize >> pageblock_order;
6943 	usemapsize *= NR_PAGEBLOCK_BITS;
6944 	usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
6945 
6946 	return usemapsize / 8;
6947 }
6948 
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)6949 static void __ref setup_usemap(struct pglist_data *pgdat,
6950 				struct zone *zone,
6951 				unsigned long zone_start_pfn,
6952 				unsigned long zonesize)
6953 {
6954 	unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
6955 	zone->pageblock_flags = NULL;
6956 	if (usemapsize) {
6957 		zone->pageblock_flags =
6958 			memblock_alloc_node(usemapsize, SMP_CACHE_BYTES,
6959 					    pgdat->node_id);
6960 		if (!zone->pageblock_flags)
6961 			panic("Failed to allocate %ld bytes for zone %s pageblock flags on node %d\n",
6962 			      usemapsize, zone->name, pgdat->node_id);
6963 	}
6964 }
6965 #else
setup_usemap(struct pglist_data * pgdat,struct zone * zone,unsigned long zone_start_pfn,unsigned long zonesize)6966 static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
6967 				unsigned long zone_start_pfn, unsigned long zonesize) {}
6968 #endif /* CONFIG_SPARSEMEM */
6969 
6970 #ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
6971 
6972 /* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
set_pageblock_order(void)6973 void __init set_pageblock_order(void)
6974 {
6975 	unsigned int order;
6976 
6977 	/* Check that pageblock_nr_pages has not already been setup */
6978 	if (pageblock_order)
6979 		return;
6980 
6981 	if (HPAGE_SHIFT > PAGE_SHIFT)
6982 		order = HUGETLB_PAGE_ORDER;
6983 	else
6984 		order = MAX_ORDER - 1;
6985 
6986 	/*
6987 	 * Assume the largest contiguous order of interest is a huge page.
6988 	 * This value may be variable depending on boot parameters on IA64 and
6989 	 * powerpc.
6990 	 */
6991 	pageblock_order = order;
6992 }
6993 #else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
6994 
6995 /*
6996  * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
6997  * is unused as pageblock_order is set at compile-time. See
6998  * include/linux/pageblock-flags.h for the values of pageblock_order based on
6999  * the kernel config
7000  */
set_pageblock_order(void)7001 void __init set_pageblock_order(void)
7002 {
7003 }
7004 
7005 #endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
7006 
calc_memmap_size(unsigned long spanned_pages,unsigned long present_pages)7007 static unsigned long __init calc_memmap_size(unsigned long spanned_pages,
7008 						unsigned long present_pages)
7009 {
7010 	unsigned long pages = spanned_pages;
7011 
7012 	/*
7013 	 * Provide a more accurate estimation if there are holes within
7014 	 * the zone and SPARSEMEM is in use. If there are holes within the
7015 	 * zone, each populated memory region may cost us one or two extra
7016 	 * memmap pages due to alignment because memmap pages for each
7017 	 * populated regions may not be naturally aligned on page boundary.
7018 	 * So the (present_pages >> 4) heuristic is a tradeoff for that.
7019 	 */
7020 	if (spanned_pages > present_pages + (present_pages >> 4) &&
7021 	    IS_ENABLED(CONFIG_SPARSEMEM))
7022 		pages = present_pages;
7023 
7024 	return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
7025 }
7026 
7027 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
pgdat_init_split_queue(struct pglist_data * pgdat)7028 static void pgdat_init_split_queue(struct pglist_data *pgdat)
7029 {
7030 	struct deferred_split *ds_queue = &pgdat->deferred_split_queue;
7031 
7032 	spin_lock_init(&ds_queue->split_queue_lock);
7033 	INIT_LIST_HEAD(&ds_queue->split_queue);
7034 	ds_queue->split_queue_len = 0;
7035 }
7036 #else
pgdat_init_split_queue(struct pglist_data * pgdat)7037 static void pgdat_init_split_queue(struct pglist_data *pgdat) {}
7038 #endif
7039 
7040 #ifdef CONFIG_COMPACTION
pgdat_init_kcompactd(struct pglist_data * pgdat)7041 static void pgdat_init_kcompactd(struct pglist_data *pgdat)
7042 {
7043 	init_waitqueue_head(&pgdat->kcompactd_wait);
7044 }
7045 #else
pgdat_init_kcompactd(struct pglist_data * pgdat)7046 static void pgdat_init_kcompactd(struct pglist_data *pgdat) {}
7047 #endif
7048 
pgdat_init_internals(struct pglist_data * pgdat)7049 static void __meminit pgdat_init_internals(struct pglist_data *pgdat)
7050 {
7051 	pgdat_resize_init(pgdat);
7052 
7053 	pgdat_init_split_queue(pgdat);
7054 	pgdat_init_kcompactd(pgdat);
7055 
7056 	init_waitqueue_head(&pgdat->kswapd_wait);
7057 	init_waitqueue_head(&pgdat->pfmemalloc_wait);
7058 #ifdef CONFIG_HYPERHOLD_ZSWAPD
7059 	init_waitqueue_head(&pgdat->zswapd_wait);
7060 #endif
7061 
7062 	pgdat_page_ext_init(pgdat);
7063 	spin_lock_init(&pgdat->lru_lock);
7064 	lruvec_init(&pgdat->__lruvec);
7065 #if defined(CONFIG_HYPERHOLD_FILE_LRU) && defined(CONFIG_MEMCG)
7066 	pgdat->__lruvec.pgdat = pgdat;
7067 #endif
7068 }
7069 
zone_init_internals(struct zone * zone,enum zone_type idx,int nid,unsigned long remaining_pages)7070 static void __meminit zone_init_internals(struct zone *zone, enum zone_type idx, int nid,
7071 							unsigned long remaining_pages)
7072 {
7073 	atomic_long_set(&zone->managed_pages, remaining_pages);
7074 	zone_set_nid(zone, nid);
7075 	zone->name = zone_names[idx];
7076 	zone->zone_pgdat = NODE_DATA(nid);
7077 	spin_lock_init(&zone->lock);
7078 	zone_seqlock_init(zone);
7079 	zone_pcp_init(zone);
7080 }
7081 
7082 /*
7083  * Set up the zone data structures
7084  * - init pgdat internals
7085  * - init all zones belonging to this node
7086  *
7087  * NOTE: this function is only called during memory hotplug
7088  */
7089 #ifdef CONFIG_MEMORY_HOTPLUG
free_area_init_core_hotplug(int nid)7090 void __ref free_area_init_core_hotplug(int nid)
7091 {
7092 	enum zone_type z;
7093 	pg_data_t *pgdat = NODE_DATA(nid);
7094 
7095 	pgdat_init_internals(pgdat);
7096 	for (z = 0; z < MAX_NR_ZONES; z++)
7097 		zone_init_internals(&pgdat->node_zones[z], z, nid, 0);
7098 }
7099 #endif
7100 
7101 /*
7102  * Set up the zone data structures:
7103  *   - mark all pages reserved
7104  *   - mark all memory queues empty
7105  *   - clear the memory bitmaps
7106  *
7107  * NOTE: pgdat should get zeroed by caller.
7108  * NOTE: this function is only called during early init.
7109  */
free_area_init_core(struct pglist_data * pgdat)7110 static void __init free_area_init_core(struct pglist_data *pgdat)
7111 {
7112 	enum zone_type j;
7113 	int nid = pgdat->node_id;
7114 
7115 	pgdat_init_internals(pgdat);
7116 	pgdat->per_cpu_nodestats = &boot_nodestats;
7117 
7118 	for (j = 0; j < MAX_NR_ZONES; j++) {
7119 		struct zone *zone = pgdat->node_zones + j;
7120 		unsigned long size, freesize, memmap_pages;
7121 		unsigned long zone_start_pfn = zone->zone_start_pfn;
7122 
7123 		size = zone->spanned_pages;
7124 		freesize = zone->present_pages;
7125 
7126 		/*
7127 		 * Adjust freesize so that it accounts for how much memory
7128 		 * is used by this zone for memmap. This affects the watermark
7129 		 * and per-cpu initialisations
7130 		 */
7131 		memmap_pages = calc_memmap_size(size, freesize);
7132 		if (!is_highmem_idx(j)) {
7133 			if (freesize >= memmap_pages) {
7134 				freesize -= memmap_pages;
7135 				if (memmap_pages)
7136 					printk(KERN_DEBUG
7137 					       "  %s zone: %lu pages used for memmap\n",
7138 					       zone_names[j], memmap_pages);
7139 			} else
7140 				pr_warn("  %s zone: %lu pages exceeds freesize %lu\n",
7141 					zone_names[j], memmap_pages, freesize);
7142 		}
7143 
7144 		/* Account for reserved pages */
7145 		if (j == 0 && freesize > dma_reserve) {
7146 			freesize -= dma_reserve;
7147 			printk(KERN_DEBUG "  %s zone: %lu pages reserved\n",
7148 					zone_names[0], dma_reserve);
7149 		}
7150 
7151 		if (!is_highmem_idx(j))
7152 			nr_kernel_pages += freesize;
7153 		/* Charge for highmem memmap if there are enough kernel pages */
7154 		else if (nr_kernel_pages > memmap_pages * 2)
7155 			nr_kernel_pages -= memmap_pages;
7156 		nr_all_pages += freesize;
7157 
7158 		/*
7159 		 * Set an approximate value for lowmem here, it will be adjusted
7160 		 * when the bootmem allocator frees pages into the buddy system.
7161 		 * And all highmem pages will be managed by the buddy system.
7162 		 */
7163 		zone_init_internals(zone, j, nid, freesize);
7164 
7165 		if (!size)
7166 			continue;
7167 
7168 		set_pageblock_order();
7169 		setup_usemap(pgdat, zone, zone_start_pfn, size);
7170 		init_currently_empty_zone(zone, zone_start_pfn, size);
7171 		arch_memmap_init(size, nid, j, zone_start_pfn);
7172 	}
7173 }
7174 
7175 #ifdef CONFIG_FLAT_NODE_MEM_MAP
alloc_node_mem_map(struct pglist_data * pgdat)7176 static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
7177 {
7178 	unsigned long __maybe_unused start = 0;
7179 	unsigned long __maybe_unused offset = 0;
7180 
7181 	/* Skip empty nodes */
7182 	if (!pgdat->node_spanned_pages)
7183 		return;
7184 
7185 	start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
7186 	offset = pgdat->node_start_pfn - start;
7187 	/* ia64 gets its own node_mem_map, before this, without bootmem */
7188 	if (!pgdat->node_mem_map) {
7189 		unsigned long size, end;
7190 		struct page *map;
7191 
7192 		/*
7193 		 * The zone's endpoints aren't required to be MAX_ORDER
7194 		 * aligned but the node_mem_map endpoints must be in order
7195 		 * for the buddy allocator to function correctly.
7196 		 */
7197 		end = pgdat_end_pfn(pgdat);
7198 		end = ALIGN(end, MAX_ORDER_NR_PAGES);
7199 		size =  (end - start) * sizeof(struct page);
7200 		map = memblock_alloc_node(size, SMP_CACHE_BYTES,
7201 					  pgdat->node_id);
7202 		if (!map)
7203 			panic("Failed to allocate %ld bytes for node %d memory map\n",
7204 			      size, pgdat->node_id);
7205 		pgdat->node_mem_map = map + offset;
7206 	}
7207 	pr_debug("%s: node %d, pgdat %08lx, node_mem_map %08lx\n",
7208 				__func__, pgdat->node_id, (unsigned long)pgdat,
7209 				(unsigned long)pgdat->node_mem_map);
7210 #ifndef CONFIG_NEED_MULTIPLE_NODES
7211 	/*
7212 	 * With no DISCONTIG, the global mem_map is just set as node 0's
7213 	 */
7214 	if (pgdat == NODE_DATA(0)) {
7215 		mem_map = NODE_DATA(0)->node_mem_map;
7216 		if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
7217 			mem_map -= offset;
7218 	}
7219 #endif
7220 }
7221 #else
alloc_node_mem_map(struct pglist_data * pgdat)7222 static void __ref alloc_node_mem_map(struct pglist_data *pgdat) { }
7223 #endif /* CONFIG_FLAT_NODE_MEM_MAP */
7224 
7225 #ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
pgdat_set_deferred_range(pg_data_t * pgdat)7226 static inline void pgdat_set_deferred_range(pg_data_t *pgdat)
7227 {
7228 	pgdat->first_deferred_pfn = ULONG_MAX;
7229 }
7230 #else
pgdat_set_deferred_range(pg_data_t * pgdat)7231 static inline void pgdat_set_deferred_range(pg_data_t *pgdat) {}
7232 #endif
7233 
free_area_init_node(int nid)7234 static void __init free_area_init_node(int nid)
7235 {
7236 	pg_data_t *pgdat = NODE_DATA(nid);
7237 	unsigned long start_pfn = 0;
7238 	unsigned long end_pfn = 0;
7239 
7240 	/* pg_data_t should be reset to zero when it's allocated */
7241 	WARN_ON(pgdat->nr_zones || pgdat->kswapd_highest_zoneidx);
7242 
7243 	get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7244 
7245 	pgdat->node_id = nid;
7246 	pgdat->node_start_pfn = start_pfn;
7247 	pgdat->per_cpu_nodestats = NULL;
7248 
7249 	pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
7250 		(u64)start_pfn << PAGE_SHIFT,
7251 		end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
7252 	calculate_node_totalpages(pgdat, start_pfn, end_pfn);
7253 
7254 	alloc_node_mem_map(pgdat);
7255 	pgdat_set_deferred_range(pgdat);
7256 
7257 	free_area_init_core(pgdat);
7258 }
7259 
free_area_init_memoryless_node(int nid)7260 void __init free_area_init_memoryless_node(int nid)
7261 {
7262 	free_area_init_node(nid);
7263 }
7264 
7265 #if MAX_NUMNODES > 1
7266 /*
7267  * Figure out the number of possible node ids.
7268  */
setup_nr_node_ids(void)7269 void __init setup_nr_node_ids(void)
7270 {
7271 	unsigned int highest;
7272 
7273 	highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
7274 	nr_node_ids = highest + 1;
7275 }
7276 #endif
7277 
7278 /**
7279  * node_map_pfn_alignment - determine the maximum internode alignment
7280  *
7281  * This function should be called after node map is populated and sorted.
7282  * It calculates the maximum power of two alignment which can distinguish
7283  * all the nodes.
7284  *
7285  * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
7286  * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)).  If the
7287  * nodes are shifted by 256MiB, 256MiB.  Note that if only the last node is
7288  * shifted, 1GiB is enough and this function will indicate so.
7289  *
7290  * This is used to test whether pfn -> nid mapping of the chosen memory
7291  * model has fine enough granularity to avoid incorrect mapping for the
7292  * populated node map.
7293  *
7294  * Return: the determined alignment in pfn's.  0 if there is no alignment
7295  * requirement (single node).
7296  */
node_map_pfn_alignment(void)7297 unsigned long __init node_map_pfn_alignment(void)
7298 {
7299 	unsigned long accl_mask = 0, last_end = 0;
7300 	unsigned long start, end, mask;
7301 	int last_nid = NUMA_NO_NODE;
7302 	int i, nid;
7303 
7304 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
7305 		if (!start || last_nid < 0 || last_nid == nid) {
7306 			last_nid = nid;
7307 			last_end = end;
7308 			continue;
7309 		}
7310 
7311 		/*
7312 		 * Start with a mask granular enough to pin-point to the
7313 		 * start pfn and tick off bits one-by-one until it becomes
7314 		 * too coarse to separate the current node from the last.
7315 		 */
7316 		mask = ~((1 << __ffs(start)) - 1);
7317 		while (mask && last_end <= (start & (mask << 1)))
7318 			mask <<= 1;
7319 
7320 		/* accumulate all internode masks */
7321 		accl_mask |= mask;
7322 	}
7323 
7324 	/* convert mask to number of pages */
7325 	return ~accl_mask + 1;
7326 }
7327 
7328 /**
7329  * find_min_pfn_with_active_regions - Find the minimum PFN registered
7330  *
7331  * Return: the minimum PFN based on information provided via
7332  * memblock_set_node().
7333  */
find_min_pfn_with_active_regions(void)7334 unsigned long __init find_min_pfn_with_active_regions(void)
7335 {
7336 	return PHYS_PFN(memblock_start_of_DRAM());
7337 }
7338 
7339 /*
7340  * early_calculate_totalpages()
7341  * Sum pages in active regions for movable zone.
7342  * Populate N_MEMORY for calculating usable_nodes.
7343  */
early_calculate_totalpages(void)7344 static unsigned long __init early_calculate_totalpages(void)
7345 {
7346 	unsigned long totalpages = 0;
7347 	unsigned long start_pfn, end_pfn;
7348 	int i, nid;
7349 
7350 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7351 		unsigned long pages = end_pfn - start_pfn;
7352 
7353 		totalpages += pages;
7354 		if (pages)
7355 			node_set_state(nid, N_MEMORY);
7356 	}
7357 	return totalpages;
7358 }
7359 
7360 /*
7361  * Find the PFN the Movable zone begins in each node. Kernel memory
7362  * is spread evenly between nodes as long as the nodes have enough
7363  * memory. When they don't, some nodes will have more kernelcore than
7364  * others
7365  */
find_zone_movable_pfns_for_nodes(void)7366 static void __init find_zone_movable_pfns_for_nodes(void)
7367 {
7368 	int i, nid;
7369 	unsigned long usable_startpfn;
7370 	unsigned long kernelcore_node, kernelcore_remaining;
7371 	/* save the state before borrow the nodemask */
7372 	nodemask_t saved_node_state = node_states[N_MEMORY];
7373 	unsigned long totalpages = early_calculate_totalpages();
7374 	int usable_nodes = nodes_weight(node_states[N_MEMORY]);
7375 	struct memblock_region *r;
7376 
7377 	/* Need to find movable_zone earlier when movable_node is specified. */
7378 	find_usable_zone_for_movable();
7379 
7380 	/*
7381 	 * If movable_node is specified, ignore kernelcore and movablecore
7382 	 * options.
7383 	 */
7384 	if (movable_node_is_enabled()) {
7385 		for_each_mem_region(r) {
7386 			if (!memblock_is_hotpluggable(r))
7387 				continue;
7388 
7389 			nid = memblock_get_region_node(r);
7390 
7391 			usable_startpfn = PFN_DOWN(r->base);
7392 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7393 				min(usable_startpfn, zone_movable_pfn[nid]) :
7394 				usable_startpfn;
7395 		}
7396 
7397 		goto out2;
7398 	}
7399 
7400 	/*
7401 	 * If kernelcore=mirror is specified, ignore movablecore option
7402 	 */
7403 	if (mirrored_kernelcore) {
7404 		bool mem_below_4gb_not_mirrored = false;
7405 
7406 		for_each_mem_region(r) {
7407 			if (memblock_is_mirror(r))
7408 				continue;
7409 
7410 			nid = memblock_get_region_node(r);
7411 
7412 			usable_startpfn = memblock_region_memory_base_pfn(r);
7413 
7414 			if (usable_startpfn < 0x100000) {
7415 				mem_below_4gb_not_mirrored = true;
7416 				continue;
7417 			}
7418 
7419 			zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
7420 				min(usable_startpfn, zone_movable_pfn[nid]) :
7421 				usable_startpfn;
7422 		}
7423 
7424 		if (mem_below_4gb_not_mirrored)
7425 			pr_warn("This configuration results in unmirrored kernel memory.\n");
7426 
7427 		goto out2;
7428 	}
7429 
7430 	/*
7431 	 * If kernelcore=nn% or movablecore=nn% was specified, calculate the
7432 	 * amount of necessary memory.
7433 	 */
7434 	if (required_kernelcore_percent)
7435 		required_kernelcore = (totalpages * 100 * required_kernelcore_percent) /
7436 				       10000UL;
7437 	if (required_movablecore_percent)
7438 		required_movablecore = (totalpages * 100 * required_movablecore_percent) /
7439 					10000UL;
7440 
7441 	/*
7442 	 * If movablecore= was specified, calculate what size of
7443 	 * kernelcore that corresponds so that memory usable for
7444 	 * any allocation type is evenly spread. If both kernelcore
7445 	 * and movablecore are specified, then the value of kernelcore
7446 	 * will be used for required_kernelcore if it's greater than
7447 	 * what movablecore would have allowed.
7448 	 */
7449 	if (required_movablecore) {
7450 		unsigned long corepages;
7451 
7452 		/*
7453 		 * Round-up so that ZONE_MOVABLE is at least as large as what
7454 		 * was requested by the user
7455 		 */
7456 		required_movablecore =
7457 			roundup(required_movablecore, MAX_ORDER_NR_PAGES);
7458 		required_movablecore = min(totalpages, required_movablecore);
7459 		corepages = totalpages - required_movablecore;
7460 
7461 		required_kernelcore = max(required_kernelcore, corepages);
7462 	}
7463 
7464 	/*
7465 	 * If kernelcore was not specified or kernelcore size is larger
7466 	 * than totalpages, there is no ZONE_MOVABLE.
7467 	 */
7468 	if (!required_kernelcore || required_kernelcore >= totalpages)
7469 		goto out;
7470 
7471 	/* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
7472 	usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
7473 
7474 restart:
7475 	/* Spread kernelcore memory as evenly as possible throughout nodes */
7476 	kernelcore_node = required_kernelcore / usable_nodes;
7477 	for_each_node_state(nid, N_MEMORY) {
7478 		unsigned long start_pfn, end_pfn;
7479 
7480 		/*
7481 		 * Recalculate kernelcore_node if the division per node
7482 		 * now exceeds what is necessary to satisfy the requested
7483 		 * amount of memory for the kernel
7484 		 */
7485 		if (required_kernelcore < kernelcore_node)
7486 			kernelcore_node = required_kernelcore / usable_nodes;
7487 
7488 		/*
7489 		 * As the map is walked, we track how much memory is usable
7490 		 * by the kernel using kernelcore_remaining. When it is
7491 		 * 0, the rest of the node is usable by ZONE_MOVABLE
7492 		 */
7493 		kernelcore_remaining = kernelcore_node;
7494 
7495 		/* Go through each range of PFNs within this node */
7496 		for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
7497 			unsigned long size_pages;
7498 
7499 			start_pfn = max(start_pfn, zone_movable_pfn[nid]);
7500 			if (start_pfn >= end_pfn)
7501 				continue;
7502 
7503 			/* Account for what is only usable for kernelcore */
7504 			if (start_pfn < usable_startpfn) {
7505 				unsigned long kernel_pages;
7506 				kernel_pages = min(end_pfn, usable_startpfn)
7507 								- start_pfn;
7508 
7509 				kernelcore_remaining -= min(kernel_pages,
7510 							kernelcore_remaining);
7511 				required_kernelcore -= min(kernel_pages,
7512 							required_kernelcore);
7513 
7514 				/* Continue if range is now fully accounted */
7515 				if (end_pfn <= usable_startpfn) {
7516 
7517 					/*
7518 					 * Push zone_movable_pfn to the end so
7519 					 * that if we have to rebalance
7520 					 * kernelcore across nodes, we will
7521 					 * not double account here
7522 					 */
7523 					zone_movable_pfn[nid] = end_pfn;
7524 					continue;
7525 				}
7526 				start_pfn = usable_startpfn;
7527 			}
7528 
7529 			/*
7530 			 * The usable PFN range for ZONE_MOVABLE is from
7531 			 * start_pfn->end_pfn. Calculate size_pages as the
7532 			 * number of pages used as kernelcore
7533 			 */
7534 			size_pages = end_pfn - start_pfn;
7535 			if (size_pages > kernelcore_remaining)
7536 				size_pages = kernelcore_remaining;
7537 			zone_movable_pfn[nid] = start_pfn + size_pages;
7538 
7539 			/*
7540 			 * Some kernelcore has been met, update counts and
7541 			 * break if the kernelcore for this node has been
7542 			 * satisfied
7543 			 */
7544 			required_kernelcore -= min(required_kernelcore,
7545 								size_pages);
7546 			kernelcore_remaining -= size_pages;
7547 			if (!kernelcore_remaining)
7548 				break;
7549 		}
7550 	}
7551 
7552 	/*
7553 	 * If there is still required_kernelcore, we do another pass with one
7554 	 * less node in the count. This will push zone_movable_pfn[nid] further
7555 	 * along on the nodes that still have memory until kernelcore is
7556 	 * satisfied
7557 	 */
7558 	usable_nodes--;
7559 	if (usable_nodes && required_kernelcore > usable_nodes)
7560 		goto restart;
7561 
7562 out2:
7563 	/* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
7564 	for (nid = 0; nid < MAX_NUMNODES; nid++) {
7565 		unsigned long start_pfn, end_pfn;
7566 
7567 		zone_movable_pfn[nid] =
7568 			roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
7569 
7570 		get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
7571 		if (zone_movable_pfn[nid] >= end_pfn)
7572 			zone_movable_pfn[nid] = 0;
7573 	}
7574 
7575 out:
7576 	/* restore the node_state */
7577 	node_states[N_MEMORY] = saved_node_state;
7578 }
7579 
7580 /* Any regular or high memory on that node ? */
check_for_memory(pg_data_t * pgdat,int nid)7581 static void check_for_memory(pg_data_t *pgdat, int nid)
7582 {
7583 	enum zone_type zone_type;
7584 
7585 	for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
7586 		struct zone *zone = &pgdat->node_zones[zone_type];
7587 		if (populated_zone(zone)) {
7588 			if (IS_ENABLED(CONFIG_HIGHMEM))
7589 				node_set_state(nid, N_HIGH_MEMORY);
7590 			if (zone_type <= ZONE_NORMAL)
7591 				node_set_state(nid, N_NORMAL_MEMORY);
7592 			break;
7593 		}
7594 	}
7595 }
7596 
7597 /*
7598  * Some architecturs, e.g. ARC may have ZONE_HIGHMEM below ZONE_NORMAL. For
7599  * such cases we allow max_zone_pfn sorted in the descending order
7600  */
arch_has_descending_max_zone_pfns(void)7601 bool __weak arch_has_descending_max_zone_pfns(void)
7602 {
7603 	return false;
7604 }
7605 
7606 /**
7607  * free_area_init - Initialise all pg_data_t and zone data
7608  * @max_zone_pfn: an array of max PFNs for each zone
7609  *
7610  * This will call free_area_init_node() for each active node in the system.
7611  * Using the page ranges provided by memblock_set_node(), the size of each
7612  * zone in each node and their holes is calculated. If the maximum PFN
7613  * between two adjacent zones match, it is assumed that the zone is empty.
7614  * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
7615  * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
7616  * starts where the previous one ended. For example, ZONE_DMA32 starts
7617  * at arch_max_dma_pfn.
7618  */
free_area_init(unsigned long * max_zone_pfn)7619 void __init free_area_init(unsigned long *max_zone_pfn)
7620 {
7621 	unsigned long start_pfn, end_pfn;
7622 	int i, nid, zone;
7623 	bool descending;
7624 
7625 	/* Record where the zone boundaries are */
7626 	memset(arch_zone_lowest_possible_pfn, 0,
7627 				sizeof(arch_zone_lowest_possible_pfn));
7628 	memset(arch_zone_highest_possible_pfn, 0,
7629 				sizeof(arch_zone_highest_possible_pfn));
7630 
7631 	start_pfn = find_min_pfn_with_active_regions();
7632 	descending = arch_has_descending_max_zone_pfns();
7633 
7634 	for (i = 0; i < MAX_NR_ZONES; i++) {
7635 		if (descending)
7636 			zone = MAX_NR_ZONES - i - 1;
7637 		else
7638 			zone = i;
7639 
7640 		if (zone == ZONE_MOVABLE)
7641 			continue;
7642 
7643 		end_pfn = max(max_zone_pfn[zone], start_pfn);
7644 		arch_zone_lowest_possible_pfn[zone] = start_pfn;
7645 		arch_zone_highest_possible_pfn[zone] = end_pfn;
7646 
7647 		start_pfn = end_pfn;
7648 	}
7649 
7650 	/* Find the PFNs that ZONE_MOVABLE begins at in each node */
7651 	memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
7652 	find_zone_movable_pfns_for_nodes();
7653 
7654 	/* Print out the zone ranges */
7655 	pr_info("Zone ranges:\n");
7656 	for (i = 0; i < MAX_NR_ZONES; i++) {
7657 		if (i == ZONE_MOVABLE)
7658 			continue;
7659 		pr_info("  %-8s ", zone_names[i]);
7660 		if (arch_zone_lowest_possible_pfn[i] ==
7661 				arch_zone_highest_possible_pfn[i])
7662 			pr_cont("empty\n");
7663 		else
7664 			pr_cont("[mem %#018Lx-%#018Lx]\n",
7665 				(u64)arch_zone_lowest_possible_pfn[i]
7666 					<< PAGE_SHIFT,
7667 				((u64)arch_zone_highest_possible_pfn[i]
7668 					<< PAGE_SHIFT) - 1);
7669 	}
7670 
7671 	/* Print out the PFNs ZONE_MOVABLE begins at in each node */
7672 	pr_info("Movable zone start for each node\n");
7673 	for (i = 0; i < MAX_NUMNODES; i++) {
7674 		if (zone_movable_pfn[i])
7675 			pr_info("  Node %d: %#018Lx\n", i,
7676 			       (u64)zone_movable_pfn[i] << PAGE_SHIFT);
7677 	}
7678 
7679 	/*
7680 	 * Print out the early node map, and initialize the
7681 	 * subsection-map relative to active online memory ranges to
7682 	 * enable future "sub-section" extensions of the memory map.
7683 	 */
7684 	pr_info("Early memory node ranges\n");
7685 	for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
7686 		pr_info("  node %3d: [mem %#018Lx-%#018Lx]\n", nid,
7687 			(u64)start_pfn << PAGE_SHIFT,
7688 			((u64)end_pfn << PAGE_SHIFT) - 1);
7689 		subsection_map_init(start_pfn, end_pfn - start_pfn);
7690 	}
7691 
7692 	/* Initialise every node */
7693 	mminit_verify_pageflags_layout();
7694 	setup_nr_node_ids();
7695 	for_each_online_node(nid) {
7696 		pg_data_t *pgdat = NODE_DATA(nid);
7697 		free_area_init_node(nid);
7698 
7699 		/* Any memory on that node */
7700 		if (pgdat->node_present_pages)
7701 			node_set_state(nid, N_MEMORY);
7702 		check_for_memory(pgdat, nid);
7703 	}
7704 
7705 	memmap_init();
7706 }
7707 
cmdline_parse_core(char * p,unsigned long * core,unsigned long * percent)7708 static int __init cmdline_parse_core(char *p, unsigned long *core,
7709 				     unsigned long *percent)
7710 {
7711 	unsigned long long coremem;
7712 	char *endptr;
7713 
7714 	if (!p)
7715 		return -EINVAL;
7716 
7717 	/* Value may be a percentage of total memory, otherwise bytes */
7718 	coremem = simple_strtoull(p, &endptr, 0);
7719 	if (*endptr == '%') {
7720 		/* Paranoid check for percent values greater than 100 */
7721 		WARN_ON(coremem > 100);
7722 
7723 		*percent = coremem;
7724 	} else {
7725 		coremem = memparse(p, &p);
7726 		/* Paranoid check that UL is enough for the coremem value */
7727 		WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
7728 
7729 		*core = coremem >> PAGE_SHIFT;
7730 		*percent = 0UL;
7731 	}
7732 	return 0;
7733 }
7734 
7735 /*
7736  * kernelcore=size sets the amount of memory for use for allocations that
7737  * cannot be reclaimed or migrated.
7738  */
cmdline_parse_kernelcore(char * p)7739 static int __init cmdline_parse_kernelcore(char *p)
7740 {
7741 	/* parse kernelcore=mirror */
7742 	if (parse_option_str(p, "mirror")) {
7743 		mirrored_kernelcore = true;
7744 		return 0;
7745 	}
7746 
7747 	return cmdline_parse_core(p, &required_kernelcore,
7748 				  &required_kernelcore_percent);
7749 }
7750 
7751 /*
7752  * movablecore=size sets the amount of memory for use for allocations that
7753  * can be reclaimed or migrated.
7754  */
cmdline_parse_movablecore(char * p)7755 static int __init cmdline_parse_movablecore(char *p)
7756 {
7757 	return cmdline_parse_core(p, &required_movablecore,
7758 				  &required_movablecore_percent);
7759 }
7760 
7761 early_param("kernelcore", cmdline_parse_kernelcore);
7762 early_param("movablecore", cmdline_parse_movablecore);
7763 
adjust_managed_page_count(struct page * page,long count)7764 void adjust_managed_page_count(struct page *page, long count)
7765 {
7766 	atomic_long_add(count, &page_zone(page)->managed_pages);
7767 	totalram_pages_add(count);
7768 #ifdef CONFIG_HIGHMEM
7769 	if (PageHighMem(page))
7770 		totalhigh_pages_add(count);
7771 #endif
7772 }
7773 EXPORT_SYMBOL(adjust_managed_page_count);
7774 
free_reserved_area(void * start,void * end,int poison,const char * s)7775 unsigned long free_reserved_area(void *start, void *end, int poison, const char *s)
7776 {
7777 	void *pos;
7778 	unsigned long pages = 0;
7779 
7780 	start = (void *)PAGE_ALIGN((unsigned long)start);
7781 	end = (void *)((unsigned long)end & PAGE_MASK);
7782 	for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
7783 		struct page *page = virt_to_page(pos);
7784 		void *direct_map_addr;
7785 
7786 		/*
7787 		 * 'direct_map_addr' might be different from 'pos'
7788 		 * because some architectures' virt_to_page()
7789 		 * work with aliases.  Getting the direct map
7790 		 * address ensures that we get a _writeable_
7791 		 * alias for the memset().
7792 		 */
7793 		direct_map_addr = page_address(page);
7794 		if ((unsigned int)poison <= 0xFF)
7795 			memset(direct_map_addr, poison, PAGE_SIZE);
7796 
7797 		free_reserved_page(page);
7798 	}
7799 
7800 	if (pages && s)
7801 		pr_info("Freeing %s memory: %ldK\n",
7802 			s, pages << (PAGE_SHIFT - 10));
7803 
7804 	return pages;
7805 }
7806 
7807 #ifdef	CONFIG_HIGHMEM
free_highmem_page(struct page * page)7808 void free_highmem_page(struct page *page)
7809 {
7810 	__free_reserved_page(page);
7811 	totalram_pages_inc();
7812 	atomic_long_inc(&page_zone(page)->managed_pages);
7813 	totalhigh_pages_inc();
7814 }
7815 #endif
7816 
7817 
mem_init_print_info(const char * str)7818 void __init mem_init_print_info(const char *str)
7819 {
7820 	unsigned long physpages, codesize, datasize, rosize, bss_size;
7821 	unsigned long init_code_size, init_data_size;
7822 
7823 	physpages = get_num_physpages();
7824 	codesize = _etext - _stext;
7825 	datasize = _edata - _sdata;
7826 	rosize = __end_rodata - __start_rodata;
7827 	bss_size = __bss_stop - __bss_start;
7828 	init_data_size = __init_end - __init_begin;
7829 	init_code_size = _einittext - _sinittext;
7830 
7831 	/*
7832 	 * Detect special cases and adjust section sizes accordingly:
7833 	 * 1) .init.* may be embedded into .data sections
7834 	 * 2) .init.text.* may be out of [__init_begin, __init_end],
7835 	 *    please refer to arch/tile/kernel/vmlinux.lds.S.
7836 	 * 3) .rodata.* may be embedded into .text or .data sections.
7837 	 */
7838 #define adj_init_size(start, end, size, pos, adj) \
7839 	do { \
7840 		if (&start[0] <= &pos[0] && &pos[0] < &end[0] && size > adj) \
7841 			size -= adj; \
7842 	} while (0)
7843 
7844 	adj_init_size(__init_begin, __init_end, init_data_size,
7845 		     _sinittext, init_code_size);
7846 	adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
7847 	adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
7848 	adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
7849 	adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
7850 
7851 #undef	adj_init_size
7852 
7853 	pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7854 #ifdef	CONFIG_HIGHMEM
7855 		", %luK highmem"
7856 #endif
7857 		"%s%s)\n",
7858 		nr_free_pages() << (PAGE_SHIFT - 10),
7859 		physpages << (PAGE_SHIFT - 10),
7860 		codesize >> 10, datasize >> 10, rosize >> 10,
7861 		(init_data_size + init_code_size) >> 10, bss_size >> 10,
7862 		(physpages - totalram_pages() - totalcma_pages) << (PAGE_SHIFT - 10),
7863 		totalcma_pages << (PAGE_SHIFT - 10),
7864 #ifdef	CONFIG_HIGHMEM
7865 		totalhigh_pages() << (PAGE_SHIFT - 10),
7866 #endif
7867 		str ? ", " : "", str ? str : "");
7868 }
7869 
7870 /**
7871  * set_dma_reserve - set the specified number of pages reserved in the first zone
7872  * @new_dma_reserve: The number of pages to mark reserved
7873  *
7874  * The per-cpu batchsize and zone watermarks are determined by managed_pages.
7875  * In the DMA zone, a significant percentage may be consumed by kernel image
7876  * and other unfreeable allocations which can skew the watermarks badly. This
7877  * function may optionally be used to account for unfreeable pages in the
7878  * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
7879  * smaller per-cpu batchsize.
7880  */
set_dma_reserve(unsigned long new_dma_reserve)7881 void __init set_dma_reserve(unsigned long new_dma_reserve)
7882 {
7883 	dma_reserve = new_dma_reserve;
7884 }
7885 
page_alloc_cpu_dead(unsigned int cpu)7886 static int page_alloc_cpu_dead(unsigned int cpu)
7887 {
7888 
7889 	lru_add_drain_cpu(cpu);
7890 	drain_pages(cpu);
7891 
7892 	/*
7893 	 * Spill the event counters of the dead processor
7894 	 * into the current processors event counters.
7895 	 * This artificially elevates the count of the current
7896 	 * processor.
7897 	 */
7898 	vm_events_fold_cpu(cpu);
7899 
7900 	/*
7901 	 * Zero the differential counters of the dead processor
7902 	 * so that the vm statistics are consistent.
7903 	 *
7904 	 * This is only okay since the processor is dead and cannot
7905 	 * race with what we are doing.
7906 	 */
7907 	cpu_vm_stats_fold(cpu);
7908 	return 0;
7909 }
7910 
7911 #ifdef CONFIG_NUMA
7912 int hashdist = HASHDIST_DEFAULT;
7913 
set_hashdist(char * str)7914 static int __init set_hashdist(char *str)
7915 {
7916 	if (!str)
7917 		return 0;
7918 	hashdist = simple_strtoul(str, &str, 0);
7919 	return 1;
7920 }
7921 __setup("hashdist=", set_hashdist);
7922 #endif
7923 
page_alloc_init(void)7924 void __init page_alloc_init(void)
7925 {
7926 	int ret;
7927 
7928 #ifdef CONFIG_NUMA
7929 	if (num_node_state(N_MEMORY) == 1)
7930 		hashdist = 0;
7931 #endif
7932 
7933 	ret = cpuhp_setup_state_nocalls(CPUHP_PAGE_ALLOC_DEAD,
7934 					"mm/page_alloc:dead", NULL,
7935 					page_alloc_cpu_dead);
7936 	WARN_ON(ret < 0);
7937 }
7938 
7939 /*
7940  * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
7941  *	or min_free_kbytes changes.
7942  */
calculate_totalreserve_pages(void)7943 static void calculate_totalreserve_pages(void)
7944 {
7945 	struct pglist_data *pgdat;
7946 	unsigned long reserve_pages = 0;
7947 	enum zone_type i, j;
7948 
7949 	for_each_online_pgdat(pgdat) {
7950 
7951 		pgdat->totalreserve_pages = 0;
7952 
7953 		for (i = 0; i < MAX_NR_ZONES; i++) {
7954 			struct zone *zone = pgdat->node_zones + i;
7955 			long max = 0;
7956 			unsigned long managed_pages = zone_managed_pages(zone);
7957 
7958 			/* Find valid and maximum lowmem_reserve in the zone */
7959 			for (j = i; j < MAX_NR_ZONES; j++) {
7960 				if (zone->lowmem_reserve[j] > max)
7961 					max = zone->lowmem_reserve[j];
7962 			}
7963 
7964 			/* we treat the high watermark as reserved pages. */
7965 			max += high_wmark_pages(zone);
7966 
7967 			if (max > managed_pages)
7968 				max = managed_pages;
7969 
7970 			pgdat->totalreserve_pages += max;
7971 
7972 			reserve_pages += max;
7973 		}
7974 	}
7975 	totalreserve_pages = reserve_pages;
7976 }
7977 
7978 /*
7979  * setup_per_zone_lowmem_reserve - called whenever
7980  *	sysctl_lowmem_reserve_ratio changes.  Ensures that each zone
7981  *	has a correct pages reserved value, so an adequate number of
7982  *	pages are left in the zone after a successful __alloc_pages().
7983  */
setup_per_zone_lowmem_reserve(void)7984 static void setup_per_zone_lowmem_reserve(void)
7985 {
7986 	struct pglist_data *pgdat;
7987 	enum zone_type i, j;
7988 
7989 	for_each_online_pgdat(pgdat) {
7990 		for (i = 0; i < MAX_NR_ZONES - 1; i++) {
7991 			struct zone *zone = &pgdat->node_zones[i];
7992 			int ratio = sysctl_lowmem_reserve_ratio[i];
7993 			bool clear = !ratio || !zone_managed_pages(zone);
7994 			unsigned long managed_pages = 0;
7995 
7996 			for (j = i + 1; j < MAX_NR_ZONES; j++) {
7997 				struct zone *upper_zone = &pgdat->node_zones[j];
7998 
7999 				managed_pages += zone_managed_pages(upper_zone);
8000 
8001 				if (clear)
8002 					zone->lowmem_reserve[j] = 0;
8003 				else
8004 					zone->lowmem_reserve[j] = managed_pages / ratio;
8005 			}
8006 		}
8007 	}
8008 
8009 	/* update totalreserve_pages */
8010 	calculate_totalreserve_pages();
8011 }
8012 
__setup_per_zone_wmarks(void)8013 static void __setup_per_zone_wmarks(void)
8014 {
8015 	unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
8016 	unsigned long lowmem_pages = 0;
8017 	struct zone *zone;
8018 	unsigned long flags;
8019 
8020 	/* Calculate total number of !ZONE_HIGHMEM pages */
8021 	for_each_zone(zone) {
8022 		if (!is_highmem(zone))
8023 			lowmem_pages += zone_managed_pages(zone);
8024 	}
8025 
8026 	for_each_zone(zone) {
8027 		u64 tmp;
8028 
8029 		spin_lock_irqsave(&zone->lock, flags);
8030 		tmp = (u64)pages_min * zone_managed_pages(zone);
8031 		do_div(tmp, lowmem_pages);
8032 		if (is_highmem(zone)) {
8033 			/*
8034 			 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
8035 			 * need highmem pages, so cap pages_min to a small
8036 			 * value here.
8037 			 *
8038 			 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
8039 			 * deltas control async page reclaim, and so should
8040 			 * not be capped for highmem.
8041 			 */
8042 			unsigned long min_pages;
8043 
8044 			min_pages = zone_managed_pages(zone) / 1024;
8045 			min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
8046 			zone->_watermark[WMARK_MIN] = min_pages;
8047 		} else {
8048 			/*
8049 			 * If it's a lowmem zone, reserve a number of pages
8050 			 * proportionate to the zone's size.
8051 			 */
8052 			zone->_watermark[WMARK_MIN] = tmp;
8053 		}
8054 
8055 		/*
8056 		 * Set the kswapd watermarks distance according to the
8057 		 * scale factor in proportion to available memory, but
8058 		 * ensure a minimum size on small systems.
8059 		 */
8060 		tmp = max_t(u64, tmp >> 2,
8061 			    mult_frac(zone_managed_pages(zone),
8062 				      watermark_scale_factor, 10000));
8063 
8064 		zone->watermark_boost = 0;
8065 		zone->_watermark[WMARK_LOW]  = min_wmark_pages(zone) + tmp;
8066 		zone->_watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
8067 
8068 		spin_unlock_irqrestore(&zone->lock, flags);
8069 	}
8070 
8071 	/* update totalreserve_pages */
8072 	calculate_totalreserve_pages();
8073 }
8074 
8075 /**
8076  * setup_per_zone_wmarks - called when min_free_kbytes changes
8077  * or when memory is hot-{added|removed}
8078  *
8079  * Ensures that the watermark[min,low,high] values for each zone are set
8080  * correctly with respect to min_free_kbytes.
8081  */
setup_per_zone_wmarks(void)8082 void setup_per_zone_wmarks(void)
8083 {
8084 	static DEFINE_SPINLOCK(lock);
8085 
8086 	spin_lock(&lock);
8087 	__setup_per_zone_wmarks();
8088 	spin_unlock(&lock);
8089 }
8090 
8091 /*
8092  * Initialise min_free_kbytes.
8093  *
8094  * For small machines we want it small (128k min).  For large machines
8095  * we want it large (256MB max).  But it is not linear, because network
8096  * bandwidth does not increase linearly with machine size.  We use
8097  *
8098  *	min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
8099  *	min_free_kbytes = sqrt(lowmem_kbytes * 16)
8100  *
8101  * which yields
8102  *
8103  * 16MB:	512k
8104  * 32MB:	724k
8105  * 64MB:	1024k
8106  * 128MB:	1448k
8107  * 256MB:	2048k
8108  * 512MB:	2896k
8109  * 1024MB:	4096k
8110  * 2048MB:	5792k
8111  * 4096MB:	8192k
8112  * 8192MB:	11584k
8113  * 16384MB:	16384k
8114  */
init_per_zone_wmark_min(void)8115 int __meminit init_per_zone_wmark_min(void)
8116 {
8117 	unsigned long lowmem_kbytes;
8118 	int new_min_free_kbytes;
8119 
8120 	lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
8121 	new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
8122 
8123 	if (new_min_free_kbytes > user_min_free_kbytes) {
8124 		min_free_kbytes = new_min_free_kbytes;
8125 		if (min_free_kbytes < 128)
8126 			min_free_kbytes = 128;
8127 		if (min_free_kbytes > 262144)
8128 			min_free_kbytes = 262144;
8129 	} else {
8130 		pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
8131 				new_min_free_kbytes, user_min_free_kbytes);
8132 	}
8133 	setup_per_zone_wmarks();
8134 	refresh_zone_stat_thresholds();
8135 	setup_per_zone_lowmem_reserve();
8136 
8137 #ifdef CONFIG_NUMA
8138 	setup_min_unmapped_ratio();
8139 	setup_min_slab_ratio();
8140 #endif
8141 
8142 	khugepaged_min_free_kbytes_update();
8143 
8144 	return 0;
8145 }
postcore_initcall(init_per_zone_wmark_min)8146 postcore_initcall(init_per_zone_wmark_min)
8147 
8148 /*
8149  * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
8150  *	that we can call two helper functions whenever min_free_kbytes
8151  *	changes.
8152  */
8153 int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8154 		void *buffer, size_t *length, loff_t *ppos)
8155 {
8156 	int rc;
8157 
8158 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8159 	if (rc)
8160 		return rc;
8161 
8162 	if (write) {
8163 		user_min_free_kbytes = min_free_kbytes;
8164 		setup_per_zone_wmarks();
8165 	}
8166 	return 0;
8167 }
8168 
watermark_scale_factor_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8169 int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
8170 		void *buffer, size_t *length, loff_t *ppos)
8171 {
8172 	int rc;
8173 
8174 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8175 	if (rc)
8176 		return rc;
8177 
8178 	if (write)
8179 		setup_per_zone_wmarks();
8180 
8181 	return 0;
8182 }
8183 
8184 #ifdef CONFIG_NUMA
setup_min_unmapped_ratio(void)8185 static void setup_min_unmapped_ratio(void)
8186 {
8187 	pg_data_t *pgdat;
8188 	struct zone *zone;
8189 
8190 	for_each_online_pgdat(pgdat)
8191 		pgdat->min_unmapped_pages = 0;
8192 
8193 	for_each_zone(zone)
8194 		zone->zone_pgdat->min_unmapped_pages += (zone_managed_pages(zone) *
8195 						         sysctl_min_unmapped_ratio) / 100;
8196 }
8197 
8198 
sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8199 int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8200 		void *buffer, size_t *length, loff_t *ppos)
8201 {
8202 	int rc;
8203 
8204 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8205 	if (rc)
8206 		return rc;
8207 
8208 	setup_min_unmapped_ratio();
8209 
8210 	return 0;
8211 }
8212 
setup_min_slab_ratio(void)8213 static void setup_min_slab_ratio(void)
8214 {
8215 	pg_data_t *pgdat;
8216 	struct zone *zone;
8217 
8218 	for_each_online_pgdat(pgdat)
8219 		pgdat->min_slab_pages = 0;
8220 
8221 	for_each_zone(zone)
8222 		zone->zone_pgdat->min_slab_pages += (zone_managed_pages(zone) *
8223 						     sysctl_min_slab_ratio) / 100;
8224 }
8225 
sysctl_min_slab_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8226 int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
8227 		void *buffer, size_t *length, loff_t *ppos)
8228 {
8229 	int rc;
8230 
8231 	rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
8232 	if (rc)
8233 		return rc;
8234 
8235 	setup_min_slab_ratio();
8236 
8237 	return 0;
8238 }
8239 #endif
8240 
8241 /*
8242  * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
8243  *	proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
8244  *	whenever sysctl_lowmem_reserve_ratio changes.
8245  *
8246  * The reserve ratio obviously has absolutely no relation with the
8247  * minimum watermarks. The lowmem reserve ratio can only make sense
8248  * if in function of the boot time zone sizes.
8249  */
lowmem_reserve_ratio_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8250 int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8251 		void *buffer, size_t *length, loff_t *ppos)
8252 {
8253 	int i;
8254 
8255 	proc_dointvec_minmax(table, write, buffer, length, ppos);
8256 
8257 	for (i = 0; i < MAX_NR_ZONES; i++) {
8258 		if (sysctl_lowmem_reserve_ratio[i] < 1)
8259 			sysctl_lowmem_reserve_ratio[i] = 0;
8260 	}
8261 
8262 	setup_per_zone_lowmem_reserve();
8263 	return 0;
8264 }
8265 
__zone_pcp_update(struct zone * zone)8266 static void __zone_pcp_update(struct zone *zone)
8267 {
8268 	unsigned int cpu;
8269 
8270 	for_each_possible_cpu(cpu)
8271 		pageset_set_high_and_batch(zone,
8272 				per_cpu_ptr(zone->pageset, cpu));
8273 }
8274 
8275 /*
8276  * percpu_pagelist_fraction - changes the pcp->high for each zone on each
8277  * cpu.  It is the fraction of total pages in each zone that a hot per cpu
8278  * pagelist can have before it gets flushed back to buddy allocator.
8279  */
percpu_pagelist_fraction_sysctl_handler(struct ctl_table * table,int write,void * buffer,size_t * length,loff_t * ppos)8280 int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8281 		void *buffer, size_t *length, loff_t *ppos)
8282 {
8283 	struct zone *zone;
8284 	int old_percpu_pagelist_fraction;
8285 	int ret;
8286 
8287 	mutex_lock(&pcp_batch_high_lock);
8288 	old_percpu_pagelist_fraction = percpu_pagelist_fraction;
8289 
8290 	ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
8291 	if (!write || ret < 0)
8292 		goto out;
8293 
8294 	/* Sanity checking to avoid pcp imbalance */
8295 	if (percpu_pagelist_fraction &&
8296 	    percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
8297 		percpu_pagelist_fraction = old_percpu_pagelist_fraction;
8298 		ret = -EINVAL;
8299 		goto out;
8300 	}
8301 
8302 	/* No change? */
8303 	if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
8304 		goto out;
8305 
8306 	for_each_populated_zone(zone)
8307 		__zone_pcp_update(zone);
8308 out:
8309 	mutex_unlock(&pcp_batch_high_lock);
8310 	return ret;
8311 }
8312 
8313 #ifndef __HAVE_ARCH_RESERVED_KERNEL_PAGES
8314 /*
8315  * Returns the number of pages that arch has reserved but
8316  * is not known to alloc_large_system_hash().
8317  */
arch_reserved_kernel_pages(void)8318 static unsigned long __init arch_reserved_kernel_pages(void)
8319 {
8320 	return 0;
8321 }
8322 #endif
8323 
8324 /*
8325  * Adaptive scale is meant to reduce sizes of hash tables on large memory
8326  * machines. As memory size is increased the scale is also increased but at
8327  * slower pace.  Starting from ADAPT_SCALE_BASE (64G), every time memory
8328  * quadruples the scale is increased by one, which means the size of hash table
8329  * only doubles, instead of quadrupling as well.
8330  * Because 32-bit systems cannot have large physical memory, where this scaling
8331  * makes sense, it is disabled on such platforms.
8332  */
8333 #if __BITS_PER_LONG > 32
8334 #define ADAPT_SCALE_BASE	(64ul << 30)
8335 #define ADAPT_SCALE_SHIFT	2
8336 #define ADAPT_SCALE_NPAGES	(ADAPT_SCALE_BASE >> PAGE_SHIFT)
8337 #endif
8338 
8339 /*
8340  * allocate a large system hash table from bootmem
8341  * - it is assumed that the hash table must contain an exact power-of-2
8342  *   quantity of entries
8343  * - limit is the number of hash buckets, not the total allocation size
8344  */
alloc_large_system_hash(const char * tablename,unsigned long bucketsize,unsigned long numentries,int scale,int flags,unsigned int * _hash_shift,unsigned int * _hash_mask,unsigned long low_limit,unsigned long high_limit)8345 void *__init alloc_large_system_hash(const char *tablename,
8346 				     unsigned long bucketsize,
8347 				     unsigned long numentries,
8348 				     int scale,
8349 				     int flags,
8350 				     unsigned int *_hash_shift,
8351 				     unsigned int *_hash_mask,
8352 				     unsigned long low_limit,
8353 				     unsigned long high_limit)
8354 {
8355 	unsigned long long max = high_limit;
8356 	unsigned long log2qty, size;
8357 	void *table = NULL;
8358 	gfp_t gfp_flags;
8359 	bool virt;
8360 
8361 	/* allow the kernel cmdline to have a say */
8362 	if (!numentries) {
8363 		/* round applicable memory size up to nearest megabyte */
8364 		numentries = nr_kernel_pages;
8365 		numentries -= arch_reserved_kernel_pages();
8366 
8367 		/* It isn't necessary when PAGE_SIZE >= 1MB */
8368 		if (PAGE_SHIFT < 20)
8369 			numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
8370 
8371 #if __BITS_PER_LONG > 32
8372 		if (!high_limit) {
8373 			unsigned long adapt;
8374 
8375 			for (adapt = ADAPT_SCALE_NPAGES; adapt < numentries;
8376 			     adapt <<= ADAPT_SCALE_SHIFT)
8377 				scale++;
8378 		}
8379 #endif
8380 
8381 		/* limit to 1 bucket per 2^scale bytes of low memory */
8382 		if (scale > PAGE_SHIFT)
8383 			numentries >>= (scale - PAGE_SHIFT);
8384 		else
8385 			numentries <<= (PAGE_SHIFT - scale);
8386 
8387 		/* Make sure we've got at least a 0-order allocation.. */
8388 		if (unlikely(flags & HASH_SMALL)) {
8389 			/* Makes no sense without HASH_EARLY */
8390 			WARN_ON(!(flags & HASH_EARLY));
8391 			if (!(numentries >> *_hash_shift)) {
8392 				numentries = 1UL << *_hash_shift;
8393 				BUG_ON(!numentries);
8394 			}
8395 		} else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
8396 			numentries = PAGE_SIZE / bucketsize;
8397 	}
8398 	numentries = roundup_pow_of_two(numentries);
8399 
8400 	/* limit allocation size to 1/16 total memory by default */
8401 	if (max == 0) {
8402 		max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
8403 		do_div(max, bucketsize);
8404 	}
8405 	max = min(max, 0x80000000ULL);
8406 
8407 	if (numentries < low_limit)
8408 		numentries = low_limit;
8409 	if (numentries > max)
8410 		numentries = max;
8411 
8412 	log2qty = ilog2(numentries);
8413 
8414 	gfp_flags = (flags & HASH_ZERO) ? GFP_ATOMIC | __GFP_ZERO : GFP_ATOMIC;
8415 	do {
8416 		virt = false;
8417 		size = bucketsize << log2qty;
8418 		if (flags & HASH_EARLY) {
8419 			if (flags & HASH_ZERO)
8420 				table = memblock_alloc(size, SMP_CACHE_BYTES);
8421 			else
8422 				table = memblock_alloc_raw(size,
8423 							   SMP_CACHE_BYTES);
8424 		} else if (get_order(size) >= MAX_ORDER || hashdist) {
8425 			table = __vmalloc(size, gfp_flags);
8426 			virt = true;
8427 		} else {
8428 			/*
8429 			 * If bucketsize is not a power-of-two, we may free
8430 			 * some pages at the end of hash table which
8431 			 * alloc_pages_exact() automatically does
8432 			 */
8433 			table = alloc_pages_exact(size, gfp_flags);
8434 			kmemleak_alloc(table, size, 1, gfp_flags);
8435 		}
8436 	} while (!table && size > PAGE_SIZE && --log2qty);
8437 
8438 	if (!table)
8439 		panic("Failed to allocate %s hash table\n", tablename);
8440 
8441 	pr_info("%s hash table entries: %ld (order: %d, %lu bytes, %s)\n",
8442 		tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size,
8443 		virt ? "vmalloc" : "linear");
8444 
8445 	if (_hash_shift)
8446 		*_hash_shift = log2qty;
8447 	if (_hash_mask)
8448 		*_hash_mask = (1 << log2qty) - 1;
8449 
8450 	return table;
8451 }
8452 
8453 /*
8454  * This function checks whether pageblock includes unmovable pages or not.
8455  *
8456  * PageLRU check without isolation or lru_lock could race so that
8457  * MIGRATE_MOVABLE block might include unmovable pages. And __PageMovable
8458  * check without lock_page also may miss some movable non-lru pages at
8459  * race condition. So you can't expect this function should be exact.
8460  *
8461  * Returns a page without holding a reference. If the caller wants to
8462  * dereference that page (e.g., dumping), it has to make sure that it
8463  * cannot get removed (e.g., via memory unplug) concurrently.
8464  *
8465  */
has_unmovable_pages(struct zone * zone,struct page * page,int migratetype,int flags)8466 struct page *has_unmovable_pages(struct zone *zone, struct page *page,
8467 				 int migratetype, int flags)
8468 {
8469 	unsigned long iter = 0;
8470 	unsigned long pfn = page_to_pfn(page);
8471 	unsigned long offset = pfn % pageblock_nr_pages;
8472 
8473 	if (is_migrate_cma_page(page)) {
8474 		/*
8475 		 * CMA allocations (alloc_contig_range) really need to mark
8476 		 * isolate CMA pageblocks even when they are not movable in fact
8477 		 * so consider them movable here.
8478 		 */
8479 		if (is_migrate_cma(migratetype))
8480 			return NULL;
8481 
8482 		return page;
8483 	}
8484 
8485 	for (; iter < pageblock_nr_pages - offset; iter++) {
8486 		if (!pfn_valid_within(pfn + iter))
8487 			continue;
8488 
8489 		page = pfn_to_page(pfn + iter);
8490 
8491 		/*
8492 		 * Both, bootmem allocations and memory holes are marked
8493 		 * PG_reserved and are unmovable. We can even have unmovable
8494 		 * allocations inside ZONE_MOVABLE, for example when
8495 		 * specifying "movablecore".
8496 		 */
8497 		if (PageReserved(page))
8498 			return page;
8499 
8500 		/*
8501 		 * If the zone is movable and we have ruled out all reserved
8502 		 * pages then it should be reasonably safe to assume the rest
8503 		 * is movable.
8504 		 */
8505 		if (zone_idx(zone) == ZONE_MOVABLE)
8506 			continue;
8507 
8508 		/*
8509 		 * Hugepages are not in LRU lists, but they're movable.
8510 		 * THPs are on the LRU, but need to be counted as #small pages.
8511 		 * We need not scan over tail pages because we don't
8512 		 * handle each tail page individually in migration.
8513 		 */
8514 		if (PageHuge(page) || PageTransCompound(page)) {
8515 			struct page *head = compound_head(page);
8516 			unsigned int skip_pages;
8517 
8518 			if (PageHuge(page)) {
8519 				if (!hugepage_migration_supported(page_hstate(head)))
8520 					return page;
8521 			} else if (!PageLRU(head) && !__PageMovable(head)) {
8522 				return page;
8523 			}
8524 
8525 			skip_pages = compound_nr(head) - (page - head);
8526 			iter += skip_pages - 1;
8527 			continue;
8528 		}
8529 
8530 		/*
8531 		 * We can't use page_count without pin a page
8532 		 * because another CPU can free compound page.
8533 		 * This check already skips compound tails of THP
8534 		 * because their page->_refcount is zero at all time.
8535 		 */
8536 		if (!page_ref_count(page)) {
8537 			if (PageBuddy(page))
8538 				iter += (1 << buddy_order(page)) - 1;
8539 			continue;
8540 		}
8541 
8542 		/*
8543 		 * The HWPoisoned page may be not in buddy system, and
8544 		 * page_count() is not 0.
8545 		 */
8546 		if ((flags & MEMORY_OFFLINE) && PageHWPoison(page))
8547 			continue;
8548 
8549 		/*
8550 		 * We treat all PageOffline() pages as movable when offlining
8551 		 * to give drivers a chance to decrement their reference count
8552 		 * in MEM_GOING_OFFLINE in order to indicate that these pages
8553 		 * can be offlined as there are no direct references anymore.
8554 		 * For actually unmovable PageOffline() where the driver does
8555 		 * not support this, we will fail later when trying to actually
8556 		 * move these pages that still have a reference count > 0.
8557 		 * (false negatives in this function only)
8558 		 */
8559 		if ((flags & MEMORY_OFFLINE) && PageOffline(page))
8560 			continue;
8561 
8562 		if (__PageMovable(page) || PageLRU(page))
8563 			continue;
8564 
8565 		/*
8566 		 * If there are RECLAIMABLE pages, we need to check
8567 		 * it.  But now, memory offline itself doesn't call
8568 		 * shrink_node_slabs() and it still to be fixed.
8569 		 */
8570 		return page;
8571 	}
8572 	return NULL;
8573 }
8574 
8575 #ifdef CONFIG_CONTIG_ALLOC
pfn_max_align_down(unsigned long pfn)8576 static unsigned long pfn_max_align_down(unsigned long pfn)
8577 {
8578 	return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
8579 			     pageblock_nr_pages) - 1);
8580 }
8581 
pfn_max_align_up(unsigned long pfn)8582 static unsigned long pfn_max_align_up(unsigned long pfn)
8583 {
8584 	return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
8585 				pageblock_nr_pages));
8586 }
8587 
8588 /* [start, end) must belong to a single zone. */
__alloc_contig_migrate_range(struct compact_control * cc,unsigned long start,unsigned long end)8589 static int __alloc_contig_migrate_range(struct compact_control *cc,
8590 					unsigned long start, unsigned long end)
8591 {
8592 	/* This function is based on compact_zone() from compaction.c. */
8593 	unsigned int nr_reclaimed;
8594 	unsigned long pfn = start;
8595 	unsigned int tries = 0;
8596 	int ret = 0;
8597 	struct migration_target_control mtc = {
8598 		.nid = zone_to_nid(cc->zone),
8599 		.gfp_mask = GFP_USER | __GFP_MOVABLE | __GFP_RETRY_MAYFAIL,
8600 	};
8601 
8602 	migrate_prep();
8603 
8604 	while (pfn < end || !list_empty(&cc->migratepages)) {
8605 		if (fatal_signal_pending(current)) {
8606 			ret = -EINTR;
8607 			break;
8608 		}
8609 
8610 		if (list_empty(&cc->migratepages)) {
8611 			cc->nr_migratepages = 0;
8612 			pfn = isolate_migratepages_range(cc, pfn, end);
8613 			if (!pfn) {
8614 				ret = -EINTR;
8615 				break;
8616 			}
8617 			tries = 0;
8618 		} else if (++tries == 5) {
8619 			ret = ret < 0 ? ret : -EBUSY;
8620 			break;
8621 		}
8622 
8623 		nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
8624 							&cc->migratepages);
8625 		cc->nr_migratepages -= nr_reclaimed;
8626 
8627 		ret = migrate_pages(&cc->migratepages, alloc_migration_target,
8628 				NULL, (unsigned long)&mtc, cc->mode, MR_CONTIG_RANGE);
8629 	}
8630 	if (ret < 0) {
8631 		putback_movable_pages(&cc->migratepages);
8632 		return ret;
8633 	}
8634 	return 0;
8635 }
8636 
8637 /**
8638  * alloc_contig_range() -- tries to allocate given range of pages
8639  * @start:	start PFN to allocate
8640  * @end:	one-past-the-last PFN to allocate
8641  * @migratetype:	migratetype of the underlaying pageblocks (either
8642  *			#MIGRATE_MOVABLE or #MIGRATE_CMA).  All pageblocks
8643  *			in range must have the same migratetype and it must
8644  *			be either of the two.
8645  * @gfp_mask:	GFP mask to use during compaction
8646  *
8647  * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
8648  * aligned.  The PFN range must belong to a single zone.
8649  *
8650  * The first thing this routine does is attempt to MIGRATE_ISOLATE all
8651  * pageblocks in the range.  Once isolated, the pageblocks should not
8652  * be modified by others.
8653  *
8654  * Return: zero on success or negative error code.  On success all
8655  * pages which PFN is in [start, end) are allocated for the caller and
8656  * need to be freed with free_contig_range().
8657  */
alloc_contig_range(unsigned long start,unsigned long end,unsigned migratetype,gfp_t gfp_mask)8658 int alloc_contig_range(unsigned long start, unsigned long end,
8659 		       unsigned migratetype, gfp_t gfp_mask)
8660 {
8661 	unsigned long outer_start, outer_end;
8662 	unsigned int order;
8663 	int ret = 0;
8664 
8665 	struct compact_control cc = {
8666 		.nr_migratepages = 0,
8667 		.order = -1,
8668 		.zone = page_zone(pfn_to_page(start)),
8669 		.mode = MIGRATE_SYNC,
8670 		.ignore_skip_hint = true,
8671 		.no_set_skip_hint = true,
8672 		.gfp_mask = current_gfp_context(gfp_mask),
8673 		.alloc_contig = true,
8674 	};
8675 	INIT_LIST_HEAD(&cc.migratepages);
8676 
8677 	/*
8678 	 * What we do here is we mark all pageblocks in range as
8679 	 * MIGRATE_ISOLATE.  Because pageblock and max order pages may
8680 	 * have different sizes, and due to the way page allocator
8681 	 * work, we align the range to biggest of the two pages so
8682 	 * that page allocator won't try to merge buddies from
8683 	 * different pageblocks and change MIGRATE_ISOLATE to some
8684 	 * other migration type.
8685 	 *
8686 	 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
8687 	 * migrate the pages from an unaligned range (ie. pages that
8688 	 * we are interested in).  This will put all the pages in
8689 	 * range back to page allocator as MIGRATE_ISOLATE.
8690 	 *
8691 	 * When this is done, we take the pages in range from page
8692 	 * allocator removing them from the buddy system.  This way
8693 	 * page allocator will never consider using them.
8694 	 *
8695 	 * This lets us mark the pageblocks back as
8696 	 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
8697 	 * aligned range but not in the unaligned, original range are
8698 	 * put back to page allocator so that buddy can use them.
8699 	 */
8700 
8701 	ret = start_isolate_page_range(pfn_max_align_down(start),
8702 				       pfn_max_align_up(end), migratetype, 0);
8703 	if (ret)
8704 		return ret;
8705 
8706 	/*
8707 	 * In case of -EBUSY, we'd like to know which page causes problem.
8708 	 * So, just fall through. test_pages_isolated() has a tracepoint
8709 	 * which will report the busy page.
8710 	 *
8711 	 * It is possible that busy pages could become available before
8712 	 * the call to test_pages_isolated, and the range will actually be
8713 	 * allocated.  So, if we fall through be sure to clear ret so that
8714 	 * -EBUSY is not accidentally used or returned to caller.
8715 	 */
8716 	ret = __alloc_contig_migrate_range(&cc, start, end);
8717 	if (ret && ret != -EBUSY)
8718 		goto done;
8719 	ret =0;
8720 
8721 	/*
8722 	 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
8723 	 * aligned blocks that are marked as MIGRATE_ISOLATE.  What's
8724 	 * more, all pages in [start, end) are free in page allocator.
8725 	 * What we are going to do is to allocate all pages from
8726 	 * [start, end) (that is remove them from page allocator).
8727 	 *
8728 	 * The only problem is that pages at the beginning and at the
8729 	 * end of interesting range may be not aligned with pages that
8730 	 * page allocator holds, ie. they can be part of higher order
8731 	 * pages.  Because of this, we reserve the bigger range and
8732 	 * once this is done free the pages we are not interested in.
8733 	 *
8734 	 * We don't have to hold zone->lock here because the pages are
8735 	 * isolated thus they won't get removed from buddy.
8736 	 */
8737 
8738 	lru_add_drain_all();
8739 
8740 	order = 0;
8741 	outer_start = start;
8742 	while (!PageBuddy(pfn_to_page(outer_start))) {
8743 		if (++order >= MAX_ORDER) {
8744 			outer_start = start;
8745 			break;
8746 		}
8747 		outer_start &= ~0UL << order;
8748 	}
8749 
8750 	if (outer_start != start) {
8751 		order = buddy_order(pfn_to_page(outer_start));
8752 
8753 		/*
8754 		 * outer_start page could be small order buddy page and
8755 		 * it doesn't include start page. Adjust outer_start
8756 		 * in this case to report failed page properly
8757 		 * on tracepoint in test_pages_isolated()
8758 		 */
8759 		if (outer_start + (1UL << order) <= start)
8760 			outer_start = start;
8761 	}
8762 
8763 	/* Make sure the range is really isolated. */
8764 	if (test_pages_isolated(outer_start, end, 0)) {
8765 		pr_info_ratelimited("%s: [%lx, %lx) PFNs busy\n",
8766 			__func__, outer_start, end);
8767 		ret = -EBUSY;
8768 		goto done;
8769 	}
8770 
8771 	/* Grab isolated pages from freelists. */
8772 	outer_end = isolate_freepages_range(&cc, outer_start, end);
8773 	if (!outer_end) {
8774 		ret = -EBUSY;
8775 		goto done;
8776 	}
8777 
8778 	/* Free head and tail (if any) */
8779 	if (start != outer_start)
8780 		free_contig_range(outer_start, start - outer_start);
8781 	if (end != outer_end)
8782 		free_contig_range(end, outer_end - end);
8783 
8784 done:
8785 	undo_isolate_page_range(pfn_max_align_down(start),
8786 				pfn_max_align_up(end), migratetype);
8787 	return ret;
8788 }
8789 EXPORT_SYMBOL(alloc_contig_range);
8790 
__alloc_contig_pages(unsigned long start_pfn,unsigned long nr_pages,gfp_t gfp_mask)8791 static int __alloc_contig_pages(unsigned long start_pfn,
8792 				unsigned long nr_pages, gfp_t gfp_mask)
8793 {
8794 	unsigned long end_pfn = start_pfn + nr_pages;
8795 
8796 	return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE,
8797 				  gfp_mask);
8798 }
8799 
pfn_range_valid_contig(struct zone * z,unsigned long start_pfn,unsigned long nr_pages)8800 static bool pfn_range_valid_contig(struct zone *z, unsigned long start_pfn,
8801 				   unsigned long nr_pages)
8802 {
8803 	unsigned long i, end_pfn = start_pfn + nr_pages;
8804 	struct page *page;
8805 
8806 	for (i = start_pfn; i < end_pfn; i++) {
8807 		page = pfn_to_online_page(i);
8808 		if (!page)
8809 			return false;
8810 
8811 		if (page_zone(page) != z)
8812 			return false;
8813 
8814 		if (PageReserved(page))
8815 			return false;
8816 
8817 		if (page_count(page) > 0)
8818 			return false;
8819 
8820 		if (PageHuge(page))
8821 			return false;
8822 	}
8823 	return true;
8824 }
8825 
zone_spans_last_pfn(const struct zone * zone,unsigned long start_pfn,unsigned long nr_pages)8826 static bool zone_spans_last_pfn(const struct zone *zone,
8827 				unsigned long start_pfn, unsigned long nr_pages)
8828 {
8829 	unsigned long last_pfn = start_pfn + nr_pages - 1;
8830 
8831 	return zone_spans_pfn(zone, last_pfn);
8832 }
8833 
8834 /**
8835  * alloc_contig_pages() -- tries to find and allocate contiguous range of pages
8836  * @nr_pages:	Number of contiguous pages to allocate
8837  * @gfp_mask:	GFP mask to limit search and used during compaction
8838  * @nid:	Target node
8839  * @nodemask:	Mask for other possible nodes
8840  *
8841  * This routine is a wrapper around alloc_contig_range(). It scans over zones
8842  * on an applicable zonelist to find a contiguous pfn range which can then be
8843  * tried for allocation with alloc_contig_range(). This routine is intended
8844  * for allocation requests which can not be fulfilled with the buddy allocator.
8845  *
8846  * The allocated memory is always aligned to a page boundary. If nr_pages is a
8847  * power of two then the alignment is guaranteed to be to the given nr_pages
8848  * (e.g. 1GB request would be aligned to 1GB).
8849  *
8850  * Allocated pages can be freed with free_contig_range() or by manually calling
8851  * __free_page() on each allocated page.
8852  *
8853  * Return: pointer to contiguous pages on success, or NULL if not successful.
8854  */
alloc_contig_pages(unsigned long nr_pages,gfp_t gfp_mask,int nid,nodemask_t * nodemask)8855 struct page *alloc_contig_pages(unsigned long nr_pages, gfp_t gfp_mask,
8856 				int nid, nodemask_t *nodemask)
8857 {
8858 	unsigned long ret, pfn, flags;
8859 	struct zonelist *zonelist;
8860 	struct zone *zone;
8861 	struct zoneref *z;
8862 
8863 	zonelist = node_zonelist(nid, gfp_mask);
8864 	for_each_zone_zonelist_nodemask(zone, z, zonelist,
8865 					gfp_zone(gfp_mask), nodemask) {
8866 		spin_lock_irqsave(&zone->lock, flags);
8867 
8868 		pfn = ALIGN(zone->zone_start_pfn, nr_pages);
8869 		while (zone_spans_last_pfn(zone, pfn, nr_pages)) {
8870 			if (pfn_range_valid_contig(zone, pfn, nr_pages)) {
8871 				/*
8872 				 * We release the zone lock here because
8873 				 * alloc_contig_range() will also lock the zone
8874 				 * at some point. If there's an allocation
8875 				 * spinning on this lock, it may win the race
8876 				 * and cause alloc_contig_range() to fail...
8877 				 */
8878 				spin_unlock_irqrestore(&zone->lock, flags);
8879 				ret = __alloc_contig_pages(pfn, nr_pages,
8880 							gfp_mask);
8881 				if (!ret)
8882 					return pfn_to_page(pfn);
8883 				spin_lock_irqsave(&zone->lock, flags);
8884 			}
8885 			pfn += nr_pages;
8886 		}
8887 		spin_unlock_irqrestore(&zone->lock, flags);
8888 	}
8889 	return NULL;
8890 }
8891 #endif /* CONFIG_CONTIG_ALLOC */
8892 
free_contig_range(unsigned long pfn,unsigned int nr_pages)8893 void free_contig_range(unsigned long pfn, unsigned int nr_pages)
8894 {
8895 	unsigned int count = 0;
8896 
8897 	for (; nr_pages--; pfn++) {
8898 		struct page *page = pfn_to_page(pfn);
8899 
8900 		count += page_count(page) != 1;
8901 		__free_page(page);
8902 	}
8903 	WARN(count != 0, "%d pages are still in use!\n", count);
8904 }
8905 EXPORT_SYMBOL(free_contig_range);
8906 
8907 /*
8908  * The zone indicated has a new number of managed_pages; batch sizes and percpu
8909  * page high values need to be recalulated.
8910  */
zone_pcp_update(struct zone * zone)8911 void __meminit zone_pcp_update(struct zone *zone)
8912 {
8913 	mutex_lock(&pcp_batch_high_lock);
8914 	__zone_pcp_update(zone);
8915 	mutex_unlock(&pcp_batch_high_lock);
8916 }
8917 
zone_pcp_reset(struct zone * zone)8918 void zone_pcp_reset(struct zone *zone)
8919 {
8920 	unsigned long flags;
8921 	int cpu;
8922 	struct per_cpu_pageset *pset;
8923 
8924 	/* avoid races with drain_pages()  */
8925 	local_irq_save(flags);
8926 	if (zone->pageset != &boot_pageset) {
8927 		for_each_online_cpu(cpu) {
8928 			pset = per_cpu_ptr(zone->pageset, cpu);
8929 			drain_zonestat(zone, pset);
8930 		}
8931 		free_percpu(zone->pageset);
8932 		zone->pageset = &boot_pageset;
8933 	}
8934 	local_irq_restore(flags);
8935 }
8936 
8937 #ifdef CONFIG_MEMORY_HOTREMOVE
8938 /*
8939  * All pages in the range must be in a single zone, must not contain holes,
8940  * must span full sections, and must be isolated before calling this function.
8941  */
__offline_isolated_pages(unsigned long start_pfn,unsigned long end_pfn)8942 void __offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
8943 {
8944 	unsigned long pfn = start_pfn;
8945 	struct page *page;
8946 	struct zone *zone;
8947 	unsigned int order;
8948 	unsigned long flags;
8949 
8950 	offline_mem_sections(pfn, end_pfn);
8951 	zone = page_zone(pfn_to_page(pfn));
8952 	spin_lock_irqsave(&zone->lock, flags);
8953 	while (pfn < end_pfn) {
8954 		page = pfn_to_page(pfn);
8955 		/*
8956 		 * The HWPoisoned page may be not in buddy system, and
8957 		 * page_count() is not 0.
8958 		 */
8959 		if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
8960 			pfn++;
8961 			continue;
8962 		}
8963 		/*
8964 		 * At this point all remaining PageOffline() pages have a
8965 		 * reference count of 0 and can simply be skipped.
8966 		 */
8967 		if (PageOffline(page)) {
8968 			BUG_ON(page_count(page));
8969 			BUG_ON(PageBuddy(page));
8970 			pfn++;
8971 			continue;
8972 		}
8973 
8974 		BUG_ON(page_count(page));
8975 		BUG_ON(!PageBuddy(page));
8976 		order = buddy_order(page);
8977 		del_page_from_free_list(page, zone, order);
8978 		pfn += (1 << order);
8979 	}
8980 	spin_unlock_irqrestore(&zone->lock, flags);
8981 }
8982 #endif
8983 
is_free_buddy_page(struct page * page)8984 bool is_free_buddy_page(struct page *page)
8985 {
8986 	struct zone *zone = page_zone(page);
8987 	unsigned long pfn = page_to_pfn(page);
8988 	unsigned long flags;
8989 	unsigned int order;
8990 
8991 	spin_lock_irqsave(&zone->lock, flags);
8992 	for (order = 0; order < MAX_ORDER; order++) {
8993 		struct page *page_head = page - (pfn & ((1 << order) - 1));
8994 
8995 		if (PageBuddy(page_head) && buddy_order(page_head) >= order)
8996 			break;
8997 	}
8998 	spin_unlock_irqrestore(&zone->lock, flags);
8999 
9000 	return order < MAX_ORDER;
9001 }
9002 
9003 #ifdef CONFIG_MEMORY_FAILURE
9004 /*
9005  * Break down a higher-order page in sub-pages, and keep our target out of
9006  * buddy allocator.
9007  */
break_down_buddy_pages(struct zone * zone,struct page * page,struct page * target,int low,int high,int migratetype)9008 static void break_down_buddy_pages(struct zone *zone, struct page *page,
9009 				   struct page *target, int low, int high,
9010 				   int migratetype)
9011 {
9012 	unsigned long size = 1 << high;
9013 	struct page *current_buddy, *next_page;
9014 
9015 	while (high > low) {
9016 		high--;
9017 		size >>= 1;
9018 
9019 		if (target >= &page[size]) {
9020 			next_page = page + size;
9021 			current_buddy = page;
9022 		} else {
9023 			next_page = page;
9024 			current_buddy = page + size;
9025 		}
9026 
9027 		if (set_page_guard(zone, current_buddy, high, migratetype))
9028 			continue;
9029 
9030 		if (current_buddy != target) {
9031 			add_to_free_list(current_buddy, zone, high, migratetype);
9032 			set_buddy_order(current_buddy, high);
9033 			page = next_page;
9034 		}
9035 	}
9036 }
9037 
9038 /*
9039  * Take a page that will be marked as poisoned off the buddy allocator.
9040  */
take_page_off_buddy(struct page * page)9041 bool take_page_off_buddy(struct page *page)
9042 {
9043 	struct zone *zone = page_zone(page);
9044 	unsigned long pfn = page_to_pfn(page);
9045 	unsigned long flags;
9046 	unsigned int order;
9047 	bool ret = false;
9048 
9049 	spin_lock_irqsave(&zone->lock, flags);
9050 	for (order = 0; order < MAX_ORDER; order++) {
9051 		struct page *page_head = page - (pfn & ((1 << order) - 1));
9052 		int page_order = buddy_order(page_head);
9053 
9054 		if (PageBuddy(page_head) && page_order >= order) {
9055 			unsigned long pfn_head = page_to_pfn(page_head);
9056 			int migratetype = get_pfnblock_migratetype(page_head,
9057 								   pfn_head);
9058 
9059 			del_page_from_free_list(page_head, zone, page_order);
9060 			break_down_buddy_pages(zone, page_head, page, 0,
9061 						page_order, migratetype);
9062 			if (!is_migrate_isolate(migratetype))
9063 				__mod_zone_freepage_state(zone, -1, migratetype);
9064 			ret = true;
9065 			break;
9066 		}
9067 		if (page_count(page_head) > 0)
9068 			break;
9069 	}
9070 	spin_unlock_irqrestore(&zone->lock, flags);
9071 	return ret;
9072 }
9073 #endif
9074 
9075 #ifdef CONFIG_ZONE_DMA
has_managed_dma(void)9076 bool has_managed_dma(void)
9077 {
9078 	struct pglist_data *pgdat;
9079 
9080 	for_each_online_pgdat(pgdat) {
9081 		struct zone *zone = &pgdat->node_zones[ZONE_DMA];
9082 
9083 		if (managed_zone(zone))
9084 			return true;
9085 	}
9086 	return false;
9087 }
9088 #endif /* CONFIG_ZONE_DMA */
9089