1
2 // Copyright (c) 1994-2006 Sun Microsystems Inc.
3 // All Rights Reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // - Redistributions of source code must retain the above copyright notice,
10 // this list of conditions and the following disclaimer.
11 //
12 // - Redistribution in binary form must reproduce the above copyright
13 // notice, this list of conditions and the following disclaimer in the
14 // documentation and/or other materials provided with the distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31
32 // The original source code covered by the above license above has been
33 // modified significantly by Google Inc.
34 // Copyright 2012 the V8 project authors. All rights reserved.
35
36 #ifndef V8_CODEGEN_MIPS_ASSEMBLER_MIPS_INL_H_
37 #define V8_CODEGEN_MIPS_ASSEMBLER_MIPS_INL_H_
38
39 #include "src/codegen/mips/assembler-mips.h"
40
41 #include "src/codegen/assembler.h"
42 #include "src/debug/debug.h"
43 #include "src/objects/objects-inl.h"
44
45 namespace v8 {
46 namespace internal {
47
SupportsOptimizer()48 bool CpuFeatures::SupportsOptimizer() { return IsSupported(FPU); }
49
50 // -----------------------------------------------------------------------------
51 // Operand and MemOperand.
52
is_reg()53 bool Operand::is_reg() const { return rm_.is_valid(); }
54
immediate()55 int32_t Operand::immediate() const {
56 DCHECK(!is_reg());
57 DCHECK(!IsHeapObjectRequest());
58 return value_.immediate;
59 }
60
61 // -----------------------------------------------------------------------------
62 // RelocInfo.
63
apply(intptr_t delta)64 void RelocInfo::apply(intptr_t delta) {
65 if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
66 // Absolute code pointer inside code object moves with the code object.
67 Assembler::RelocateInternalReference(rmode_, pc_, delta);
68 } else if (IsRelativeCodeTarget(rmode_)) {
69 Assembler::RelocateRelativeReference(rmode_, pc_, delta);
70 }
71 }
72
target_address()73 Address RelocInfo::target_address() {
74 DCHECK(IsCodeTargetMode(rmode_) || IsRuntimeEntry(rmode_) ||
75 IsWasmCall(rmode_));
76 return Assembler::target_address_at(pc_, constant_pool_);
77 }
78
target_address_address()79 Address RelocInfo::target_address_address() {
80 DCHECK(HasTargetAddressAddress());
81 // Read the address of the word containing the target_address in an
82 // instruction stream.
83 // The only architecture-independent user of this function is the serializer.
84 // The serializer uses it to find out how many raw bytes of instruction to
85 // output before the next target.
86 // For an instruction like LUI/ORI where the target bits are mixed into the
87 // instruction bits, the size of the target will be zero, indicating that the
88 // serializer should not step forward in memory after a target is resolved
89 // and written. In this case the target_address_address function should
90 // return the end of the instructions to be patched, allowing the
91 // deserializer to deserialize the instructions as raw bytes and put them in
92 // place, ready to be patched with the target. After jump optimization,
93 // that is the address of the instruction that follows J/JAL/JR/JALR
94 // instruction.
95 if (IsMipsArchVariant(kMips32r6)) {
96 // On R6 we don't move to the end of the instructions to be patched, but one
97 // instruction before, because if these instructions are at the end of the
98 // code object it can cause errors in the deserializer.
99 return pc_ + (Assembler::kInstructionsFor32BitConstant - 1) * kInstrSize;
100 } else {
101 return pc_ + Assembler::kInstructionsFor32BitConstant * kInstrSize;
102 }
103 }
104
constant_pool_entry_address()105 Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); }
106
target_address_size()107 int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
108
deserialization_set_special_target_at(Address instruction_payload,Code code,Address target)109 void Assembler::deserialization_set_special_target_at(
110 Address instruction_payload, Code code, Address target) {
111 set_target_address_at(instruction_payload,
112 !code.is_null() ? code.constant_pool() : kNullAddress,
113 target);
114 }
115
deserialization_special_target_size(Address instruction_payload)116 int Assembler::deserialization_special_target_size(
117 Address instruction_payload) {
118 return kSpecialTargetSize;
119 }
120
set_target_internal_reference_encoded_at(Address pc,Address target)121 void Assembler::set_target_internal_reference_encoded_at(Address pc,
122 Address target) {
123 Instr instr1 = Assembler::instr_at(pc + 0 * kInstrSize);
124 Instr instr2 = Assembler::instr_at(pc + 1 * kInstrSize);
125 DCHECK(Assembler::IsLui(instr1));
126 DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
127 instr1 &= ~kImm16Mask;
128 instr2 &= ~kImm16Mask;
129 int32_t imm = static_cast<int32_t>(target);
130 DCHECK_EQ(imm & 3, 0);
131 if (Assembler::IsJicOrJialc(instr2)) {
132 // Encoded internal references are lui/jic load of 32-bit absolute address.
133 uint32_t lui_offset_u, jic_offset_u;
134 Assembler::UnpackTargetAddressUnsigned(imm, &lui_offset_u, &jic_offset_u);
135
136 Assembler::instr_at_put(pc + 0 * kInstrSize, instr1 | lui_offset_u);
137 Assembler::instr_at_put(pc + 1 * kInstrSize, instr2 | jic_offset_u);
138 } else {
139 // Encoded internal references are lui/ori load of 32-bit absolute address.
140 PatchLuiOriImmediate(pc, imm, instr1, 0 * kInstrSize, instr2,
141 1 * kInstrSize);
142 }
143
144 // Currently used only by deserializer, and all code will be flushed
145 // after complete deserialization, no need to flush on each reference.
146 }
147
deserialization_set_target_internal_reference_at(Address pc,Address target,RelocInfo::Mode mode)148 void Assembler::deserialization_set_target_internal_reference_at(
149 Address pc, Address target, RelocInfo::Mode mode) {
150 if (RelocInfo::IsInternalReferenceEncoded(mode)) {
151 DCHECK(IsLui(instr_at(pc)));
152 set_target_internal_reference_encoded_at(pc, target);
153 } else {
154 DCHECK(RelocInfo::IsInternalReference(mode));
155 Memory<Address>(pc) = target;
156 }
157 }
158
target_object(PtrComprCageBase cage_base)159 HeapObject RelocInfo::target_object(PtrComprCageBase cage_base) {
160 DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_) ||
161 IsDataEmbeddedObject(rmode_));
162 if (IsDataEmbeddedObject(rmode_)) {
163 return HeapObject::cast(Object(ReadUnalignedValue<Address>(pc_)));
164 }
165 return HeapObject::cast(
166 Object(Assembler::target_address_at(pc_, constant_pool_)));
167 }
168
target_object_handle(Assembler * origin)169 Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
170 if (IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_)) {
171 return Handle<HeapObject>(reinterpret_cast<Address*>(
172 Assembler::target_address_at(pc_, constant_pool_)));
173 } else if (IsDataEmbeddedObject(rmode_)) {
174 return Handle<HeapObject>::cast(ReadUnalignedValue<Handle<Object>>(pc_));
175 }
176 DCHECK(IsRelativeCodeTarget(rmode_));
177 return origin->relative_code_target_object_handle_at(pc_);
178 }
179
set_target_object(Heap * heap,HeapObject target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)180 void RelocInfo::set_target_object(Heap* heap, HeapObject target,
181 WriteBarrierMode write_barrier_mode,
182 ICacheFlushMode icache_flush_mode) {
183 DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_) ||
184 IsDataEmbeddedObject(rmode_));
185 if (IsDataEmbeddedObject(rmode_)) {
186 WriteUnalignedValue(pc_, target.ptr());
187 // No need to flush icache since no instructions were changed.
188 } else {
189 Assembler::set_target_address_at(pc_, constant_pool_, target.ptr(),
190 icache_flush_mode);
191 }
192 if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null() &&
193 !FLAG_disable_write_barriers) {
194 WriteBarrierForCode(host(), this, target);
195 }
196 }
197
target_external_reference()198 Address RelocInfo::target_external_reference() {
199 DCHECK(IsExternalReference(rmode_));
200 return Assembler::target_address_at(pc_, constant_pool_);
201 }
202
set_target_external_reference(Address target,ICacheFlushMode icache_flush_mode)203 void RelocInfo::set_target_external_reference(
204 Address target, ICacheFlushMode icache_flush_mode) {
205 DCHECK(IsExternalReference(rmode_));
206 Assembler::set_target_address_at(pc_, constant_pool_, target,
207 icache_flush_mode);
208 }
209
target_internal_reference()210 Address RelocInfo::target_internal_reference() {
211 if (IsInternalReference(rmode_)) {
212 return Memory<Address>(pc_);
213 } else {
214 // Encoded internal references are lui/ori or lui/jic load of 32-bit
215 // absolute address.
216 DCHECK(IsInternalReferenceEncoded(rmode_));
217 Instr instr1 = Assembler::instr_at(pc_ + 0 * kInstrSize);
218 Instr instr2 = Assembler::instr_at(pc_ + 1 * kInstrSize);
219 DCHECK(Assembler::IsLui(instr1));
220 DCHECK(Assembler::IsOri(instr2) || Assembler::IsJicOrJialc(instr2));
221 if (Assembler::IsJicOrJialc(instr2)) {
222 return static_cast<Address>(
223 Assembler::CreateTargetAddress(instr1, instr2));
224 }
225 return static_cast<Address>(Assembler::GetLuiOriImmediate(instr1, instr2));
226 }
227 }
228
target_internal_reference_address()229 Address RelocInfo::target_internal_reference_address() {
230 DCHECK(IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_));
231 return pc_;
232 }
233
target_runtime_entry(Assembler * origin)234 Address RelocInfo::target_runtime_entry(Assembler* origin) {
235 DCHECK(IsRuntimeEntry(rmode_));
236 return target_address();
237 }
238
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)239 void RelocInfo::set_target_runtime_entry(Address target,
240 WriteBarrierMode write_barrier_mode,
241 ICacheFlushMode icache_flush_mode) {
242 DCHECK(IsRuntimeEntry(rmode_));
243 if (target_address() != target)
244 set_target_address(target, write_barrier_mode, icache_flush_mode);
245 }
246
target_off_heap_target()247 Address RelocInfo::target_off_heap_target() {
248 DCHECK(IsOffHeapTarget(rmode_));
249 return Assembler::target_address_at(pc_, constant_pool_);
250 }
251
WipeOut()252 void RelocInfo::WipeOut() {
253 DCHECK(IsFullEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
254 IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
255 IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) ||
256 IsOffHeapTarget(rmode_));
257 if (IsInternalReference(rmode_)) {
258 Memory<Address>(pc_) = kNullAddress;
259 } else if (IsInternalReferenceEncoded(rmode_)) {
260 Assembler::set_target_internal_reference_encoded_at(pc_, kNullAddress);
261 } else {
262 Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
263 }
264 }
265
relative_code_target_object_handle_at(Address pc)266 Handle<Code> Assembler::relative_code_target_object_handle_at(
267 Address pc) const {
268 Instr instr1 = instr_at(pc);
269 Instr instr2 = instr_at(pc + kInstrSize);
270 DCHECK(IsLui(instr1));
271 DCHECK(IsOri(instr2) || IsNal(instr2));
272 DCHECK(IsNal(instr2) || IsNal(instr_at(pc - kInstrSize)));
273 if (IsNal(instr2)) {
274 instr2 = instr_at(pc + 2 * kInstrSize);
275 }
276 // Interpret 2 instructions generated by li (lui/ori).
277 int code_target_index = GetLuiOriImmediate(instr1, instr2);
278 return GetCodeTarget(code_target_index);
279 }
280
281 // -----------------------------------------------------------------------------
282 // Assembler.
283
CheckBuffer()284 void Assembler::CheckBuffer() {
285 if (buffer_space() <= kGap) {
286 GrowBuffer();
287 }
288 }
289
CheckForEmitInForbiddenSlot()290 void Assembler::CheckForEmitInForbiddenSlot() {
291 if (!is_buffer_growth_blocked()) {
292 CheckBuffer();
293 }
294 if (IsPrevInstrCompactBranch()) {
295 // Nop instruction to precede a CTI in forbidden slot:
296 Instr nop = SPECIAL | SLL;
297 *reinterpret_cast<Instr*>(pc_) = nop;
298 pc_ += kInstrSize;
299
300 ClearCompactBranchState();
301 }
302 }
303
EmitHelper(Instr x,CompactBranchType is_compact_branch)304 void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
305 if (IsPrevInstrCompactBranch()) {
306 if (Instruction::IsForbiddenAfterBranchInstr(x)) {
307 // Nop instruction to precede a CTI in forbidden slot:
308 Instr nop = SPECIAL | SLL;
309 *reinterpret_cast<Instr*>(pc_) = nop;
310 pc_ += kInstrSize;
311 }
312 ClearCompactBranchState();
313 }
314 *reinterpret_cast<Instr*>(pc_) = x;
315 pc_ += kInstrSize;
316 if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
317 EmittedCompactBranchInstruction();
318 }
319 CheckTrampolinePoolQuick();
320 }
321
322 template <>
323 inline void Assembler::EmitHelper(uint8_t x);
324
325 template <typename T>
EmitHelper(T x)326 void Assembler::EmitHelper(T x) {
327 *reinterpret_cast<T*>(pc_) = x;
328 pc_ += sizeof(x);
329 CheckTrampolinePoolQuick();
330 }
331
332 template <>
EmitHelper(uint8_t x)333 void Assembler::EmitHelper(uint8_t x) {
334 *reinterpret_cast<uint8_t*>(pc_) = x;
335 pc_ += sizeof(x);
336 if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) {
337 CheckTrampolinePoolQuick();
338 }
339 }
340
emit(Instr x,CompactBranchType is_compact_branch)341 void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
342 if (!is_buffer_growth_blocked()) {
343 CheckBuffer();
344 }
345 EmitHelper(x, is_compact_branch);
346 }
347
EnsureSpace(Assembler * assembler)348 EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); }
349
350 } // namespace internal
351 } // namespace v8
352
353 #endif // V8_CODEGEN_MIPS_ASSEMBLER_MIPS_INL_H_
354