• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 // Copyright (c) 1994-2006 Sun Microsystems Inc.
3 // All Rights Reserved.
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // - Redistributions of source code must retain the above copyright notice,
10 // this list of conditions and the following disclaimer.
11 //
12 // - Redistribution in binary form must reproduce the above copyright
13 // notice, this list of conditions and the following disclaimer in the
14 // documentation and/or other materials provided with the distribution.
15 //
16 // - Neither the name of Sun Microsystems or the names of contributors may
17 // be used to endorse or promote products derived from this software without
18 // specific prior written permission.
19 //
20 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
21 // IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
22 // THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
23 // PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR
24 // CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
25 // EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
26 // PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
27 // PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
28 // LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
29 // NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
30 // SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
31 
32 // The original source code covered by the above license above has been
33 // modified significantly by Google Inc.
34 // Copyright 2012 the V8 project authors. All rights reserved.
35 
36 #ifndef V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_INL_H_
37 #define V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_INL_H_
38 
39 #include "src/codegen/mips64/assembler-mips64.h"
40 
41 #include "src/codegen/assembler.h"
42 #include "src/debug/debug.h"
43 #include "src/objects/objects-inl.h"
44 
45 namespace v8 {
46 namespace internal {
47 
SupportsOptimizer()48 bool CpuFeatures::SupportsOptimizer() { return IsSupported(FPU); }
49 
50 // -----------------------------------------------------------------------------
51 // Operand and MemOperand.
52 
is_reg()53 bool Operand::is_reg() const { return rm_.is_valid(); }
54 
immediate()55 int64_t Operand::immediate() const {
56   DCHECK(!is_reg());
57   DCHECK(!IsHeapObjectRequest());
58   return value_.immediate;
59 }
60 
61 // -----------------------------------------------------------------------------
62 // RelocInfo.
63 
apply(intptr_t delta)64 void RelocInfo::apply(intptr_t delta) {
65   if (IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_)) {
66     // Absolute code pointer inside code object moves with the code object.
67     Assembler::RelocateInternalReference(rmode_, pc_, delta);
68   }
69 }
70 
target_address()71 Address RelocInfo::target_address() {
72   DCHECK(IsCodeTarget(rmode_) || IsRuntimeEntry(rmode_) || IsWasmCall(rmode_));
73   return Assembler::target_address_at(pc_, constant_pool_);
74 }
75 
target_address_address()76 Address RelocInfo::target_address_address() {
77   DCHECK(HasTargetAddressAddress());
78   // Read the address of the word containing the target_address in an
79   // instruction stream.
80   // The only architecture-independent user of this function is the serializer.
81   // The serializer uses it to find out how many raw bytes of instruction to
82   // output before the next target.
83   // For an instruction like LUI/ORI where the target bits are mixed into the
84   // instruction bits, the size of the target will be zero, indicating that the
85   // serializer should not step forward in memory after a target is resolved
86   // and written. In this case the target_address_address function should
87   // return the end of the instructions to be patched, allowing the
88   // deserializer to deserialize the instructions as raw bytes and put them in
89   // place, ready to be patched with the target. After jump optimization,
90   // that is the address of the instruction that follows J/JAL/JR/JALR
91   // instruction.
92   return pc_ + Assembler::kInstructionsFor64BitConstant * kInstrSize;
93 }
94 
constant_pool_entry_address()95 Address RelocInfo::constant_pool_entry_address() { UNREACHABLE(); }
96 
target_address_size()97 int RelocInfo::target_address_size() { return Assembler::kSpecialTargetSize; }
98 
deserialization_set_special_target_at(Address instruction_payload,Code code,Address target)99 void Assembler::deserialization_set_special_target_at(
100     Address instruction_payload, Code code, Address target) {
101   set_target_address_at(instruction_payload,
102                         !code.is_null() ? code.constant_pool() : kNullAddress,
103                         target);
104 }
105 
deserialization_special_target_size(Address instruction_payload)106 int Assembler::deserialization_special_target_size(
107     Address instruction_payload) {
108   return kSpecialTargetSize;
109 }
110 
set_target_internal_reference_encoded_at(Address pc,Address target)111 void Assembler::set_target_internal_reference_encoded_at(Address pc,
112                                                          Address target) {
113   // Encoded internal references are j/jal instructions.
114   Instr instr = Assembler::instr_at(pc + 0 * kInstrSize);
115 
116   uint64_t imm28 = target & static_cast<uint64_t>(kImm28Mask);
117 
118   instr &= ~kImm26Mask;
119   uint64_t imm26 = imm28 >> 2;
120   DCHECK(is_uint26(imm26));
121 
122   instr_at_put(pc, instr | (imm26 & kImm26Mask));
123   // Currently used only by deserializer, and all code will be flushed
124   // after complete deserialization, no need to flush on each reference.
125 }
126 
deserialization_set_target_internal_reference_at(Address pc,Address target,RelocInfo::Mode mode)127 void Assembler::deserialization_set_target_internal_reference_at(
128     Address pc, Address target, RelocInfo::Mode mode) {
129   if (mode == RelocInfo::INTERNAL_REFERENCE_ENCODED) {
130     DCHECK(IsJ(instr_at(pc)));
131     set_target_internal_reference_encoded_at(pc, target);
132   } else {
133     DCHECK(mode == RelocInfo::INTERNAL_REFERENCE);
134     Memory<Address>(pc) = target;
135   }
136 }
137 
target_object(PtrComprCageBase cage_base)138 HeapObject RelocInfo::target_object(PtrComprCageBase cage_base) {
139   DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_) ||
140          IsDataEmbeddedObject(rmode_));
141   if (IsDataEmbeddedObject(rmode_)) {
142     return HeapObject::cast(Object(ReadUnalignedValue<Address>(pc_)));
143   }
144   return HeapObject::cast(
145       Object(Assembler::target_address_at(pc_, constant_pool_)));
146 }
147 
target_object_handle(Assembler * origin)148 Handle<HeapObject> RelocInfo::target_object_handle(Assembler* origin) {
149   if (IsDataEmbeddedObject(rmode_)) {
150     return Handle<HeapObject>::cast(ReadUnalignedValue<Handle<Object>>(pc_));
151   } else {
152     DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_));
153     return Handle<HeapObject>(reinterpret_cast<Address*>(
154         Assembler::target_address_at(pc_, constant_pool_)));
155   }
156 }
157 
set_target_object(Heap * heap,HeapObject target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)158 void RelocInfo::set_target_object(Heap* heap, HeapObject target,
159                                   WriteBarrierMode write_barrier_mode,
160                                   ICacheFlushMode icache_flush_mode) {
161   DCHECK(IsCodeTarget(rmode_) || IsFullEmbeddedObject(rmode_) ||
162          IsDataEmbeddedObject(rmode_));
163   if (IsDataEmbeddedObject(rmode_)) {
164     WriteUnalignedValue(pc_, target.ptr());
165     // No need to flush icache since no instructions were changed.
166   } else {
167     Assembler::set_target_address_at(pc_, constant_pool_, target.ptr(),
168                                      icache_flush_mode);
169   }
170   if (write_barrier_mode == UPDATE_WRITE_BARRIER && !host().is_null() &&
171       !FLAG_disable_write_barriers) {
172     WriteBarrierForCode(host(), this, target);
173   }
174 }
175 
target_external_reference()176 Address RelocInfo::target_external_reference() {
177   DCHECK(rmode_ == EXTERNAL_REFERENCE);
178   return Assembler::target_address_at(pc_, constant_pool_);
179 }
180 
set_target_external_reference(Address target,ICacheFlushMode icache_flush_mode)181 void RelocInfo::set_target_external_reference(
182     Address target, ICacheFlushMode icache_flush_mode) {
183   DCHECK(rmode_ == RelocInfo::EXTERNAL_REFERENCE);
184   Assembler::set_target_address_at(pc_, constant_pool_, target,
185                                    icache_flush_mode);
186 }
187 
target_internal_reference()188 Address RelocInfo::target_internal_reference() {
189   if (rmode_ == INTERNAL_REFERENCE) {
190     return Memory<Address>(pc_);
191   } else {
192     // Encoded internal references are j/jal instructions.
193     DCHECK(rmode_ == INTERNAL_REFERENCE_ENCODED);
194     Instr instr = Assembler::instr_at(pc_ + 0 * kInstrSize);
195     instr &= kImm26Mask;
196     uint64_t imm28 = instr << 2;
197     uint64_t segment = pc_ & ~static_cast<uint64_t>(kImm28Mask);
198     return static_cast<Address>(segment | imm28);
199   }
200 }
201 
target_internal_reference_address()202 Address RelocInfo::target_internal_reference_address() {
203   DCHECK(rmode_ == INTERNAL_REFERENCE || rmode_ == INTERNAL_REFERENCE_ENCODED);
204   return pc_;
205 }
206 
target_runtime_entry(Assembler * origin)207 Address RelocInfo::target_runtime_entry(Assembler* origin) {
208   DCHECK(IsRuntimeEntry(rmode_));
209   return target_address();
210 }
211 
set_target_runtime_entry(Address target,WriteBarrierMode write_barrier_mode,ICacheFlushMode icache_flush_mode)212 void RelocInfo::set_target_runtime_entry(Address target,
213                                          WriteBarrierMode write_barrier_mode,
214                                          ICacheFlushMode icache_flush_mode) {
215   DCHECK(IsRuntimeEntry(rmode_));
216   if (target_address() != target)
217     set_target_address(target, write_barrier_mode, icache_flush_mode);
218 }
219 
target_off_heap_target()220 Address RelocInfo::target_off_heap_target() {
221   DCHECK(IsOffHeapTarget(rmode_));
222   return Assembler::target_address_at(pc_, constant_pool_);
223 }
224 
WipeOut()225 void RelocInfo::WipeOut() {
226   DCHECK(IsFullEmbeddedObject(rmode_) || IsCodeTarget(rmode_) ||
227          IsRuntimeEntry(rmode_) || IsExternalReference(rmode_) ||
228          IsInternalReference(rmode_) || IsInternalReferenceEncoded(rmode_) ||
229          IsOffHeapTarget(rmode_));
230   if (IsInternalReference(rmode_)) {
231     Memory<Address>(pc_) = kNullAddress;
232   } else if (IsInternalReferenceEncoded(rmode_)) {
233     Assembler::set_target_internal_reference_encoded_at(pc_, kNullAddress);
234   } else {
235     Assembler::set_target_address_at(pc_, constant_pool_, kNullAddress);
236   }
237 }
238 
239 // -----------------------------------------------------------------------------
240 // Assembler.
241 
CheckBuffer()242 void Assembler::CheckBuffer() {
243   if (buffer_space() <= kGap) {
244     GrowBuffer();
245   }
246 }
247 
CheckForEmitInForbiddenSlot()248 void Assembler::CheckForEmitInForbiddenSlot() {
249   if (!is_buffer_growth_blocked()) {
250     CheckBuffer();
251   }
252   if (IsPrevInstrCompactBranch()) {
253     // Nop instruction to precede a CTI in forbidden slot:
254     Instr nop = SPECIAL | SLL;
255     *reinterpret_cast<Instr*>(pc_) = nop;
256     pc_ += kInstrSize;
257 
258     ClearCompactBranchState();
259   }
260 }
261 
EmitHelper(Instr x,CompactBranchType is_compact_branch)262 void Assembler::EmitHelper(Instr x, CompactBranchType is_compact_branch) {
263   if (IsPrevInstrCompactBranch()) {
264     if (Instruction::IsForbiddenAfterBranchInstr(x)) {
265       // Nop instruction to precede a CTI in forbidden slot:
266       Instr nop = SPECIAL | SLL;
267       *reinterpret_cast<Instr*>(pc_) = nop;
268       pc_ += kInstrSize;
269     }
270     ClearCompactBranchState();
271   }
272   *reinterpret_cast<Instr*>(pc_) = x;
273   pc_ += kInstrSize;
274   if (is_compact_branch == CompactBranchType::COMPACT_BRANCH) {
275     EmittedCompactBranchInstruction();
276   }
277   CheckTrampolinePoolQuick();
278 }
279 
280 template <>
281 inline void Assembler::EmitHelper(uint8_t x);
282 
283 template <typename T>
EmitHelper(T x)284 void Assembler::EmitHelper(T x) {
285   *reinterpret_cast<T*>(pc_) = x;
286   pc_ += sizeof(x);
287   CheckTrampolinePoolQuick();
288 }
289 
290 template <>
EmitHelper(uint8_t x)291 void Assembler::EmitHelper(uint8_t x) {
292   *reinterpret_cast<uint8_t*>(pc_) = x;
293   pc_ += sizeof(x);
294   if (reinterpret_cast<intptr_t>(pc_) % kInstrSize == 0) {
295     CheckTrampolinePoolQuick();
296   }
297 }
298 
emit(Instr x,CompactBranchType is_compact_branch)299 void Assembler::emit(Instr x, CompactBranchType is_compact_branch) {
300   if (!is_buffer_growth_blocked()) {
301     CheckBuffer();
302   }
303   EmitHelper(x, is_compact_branch);
304 }
305 
emit(uint64_t data)306 void Assembler::emit(uint64_t data) {
307   CheckForEmitInForbiddenSlot();
308   EmitHelper(data);
309 }
310 
EnsureSpace(Assembler * assembler)311 EnsureSpace::EnsureSpace(Assembler* assembler) { assembler->CheckBuffer(); }
312 
313 }  // namespace internal
314 }  // namespace v8
315 
316 #endif  // V8_CODEGEN_MIPS64_ASSEMBLER_MIPS64_INL_H_
317