1 // Copyright 2021 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include <cstring>
6 #include <limits>
7
8 #include "src/bigint/bigint-internal.h"
9 #include "src/bigint/digit-arithmetic.h"
10 #include "src/bigint/div-helpers.h"
11 #include "src/bigint/util.h"
12 #include "src/bigint/vector-arithmetic.h"
13
14 namespace v8 {
15 namespace bigint {
16
17 namespace {
18
19 // Lookup table for the maximum number of bits required per character of a
20 // base-N string representation of a number. To increase accuracy, the array
21 // value is the actual value multiplied by 32. To generate this table:
22 // for (var i = 0; i <= 36; i++) { print(Math.ceil(Math.log2(i) * 32) + ","); }
23 constexpr uint8_t kMaxBitsPerChar[] = {
24 0, 0, 32, 51, 64, 75, 83, 90, 96, // 0..8
25 102, 107, 111, 115, 119, 122, 126, 128, // 9..16
26 131, 134, 136, 139, 141, 143, 145, 147, // 17..24
27 149, 151, 153, 154, 156, 158, 159, 160, // 25..32
28 162, 163, 165, 166, // 33..36
29 };
30
31 static const int kBitsPerCharTableShift = 5;
32 static const size_t kBitsPerCharTableMultiplier = 1u << kBitsPerCharTableShift;
33
34 static const char kConversionChars[] = "0123456789abcdefghijklmnopqrstuvwxyz";
35
36 // Raises {base} to the power of {exponent}. Does not check for overflow.
digit_pow(digit_t base,digit_t exponent)37 digit_t digit_pow(digit_t base, digit_t exponent) {
38 digit_t result = 1ull;
39 while (exponent > 0) {
40 if (exponent & 1) {
41 result *= base;
42 }
43 exponent >>= 1;
44 base *= base;
45 }
46 return result;
47 }
48
49 // Compile-time version of the above.
digit_pow_rec(digit_t base,digit_t exponent)50 constexpr digit_t digit_pow_rec(digit_t base, digit_t exponent) {
51 return exponent == 1 ? base : base * digit_pow_rec(base, exponent - 1);
52 }
53
54 // A variant of ToStringFormatter::BasecaseLast, specialized for a radix
55 // known at compile-time.
56 template <int radix>
BasecaseFixedLast(digit_t chunk,char * out)57 char* BasecaseFixedLast(digit_t chunk, char* out) {
58 while (chunk != 0) {
59 DCHECK(*(out - 1) == kStringZapValue);
60 if (radix <= 10) {
61 *(--out) = '0' + (chunk % radix);
62 } else {
63 *(--out) = kConversionChars[chunk % radix];
64 }
65 chunk /= radix;
66 }
67 return out;
68 }
69
70 // By making {radix} a compile-time constant and computing {chunk_divisor}
71 // as another compile-time constant from it, we allow the compiler to emit
72 // an optimized instruction sequence based on multiplications with "magic"
73 // numbers (modular multiplicative inverses) instead of actual divisions.
74 // The price we pay is having to work on half digits; the technique doesn't
75 // work with twodigit_t-by-digit_t divisions.
76 // Includes an equivalent of ToStringFormatter::BasecaseMiddle, accordingly
77 // specialized for a radix known at compile time.
78 template <digit_t radix>
DivideByMagic(RWDigits rest,Digits input,char * output)79 char* DivideByMagic(RWDigits rest, Digits input, char* output) {
80 constexpr uint8_t max_bits_per_char = kMaxBitsPerChar[radix];
81 constexpr int chunk_chars =
82 kHalfDigitBits * kBitsPerCharTableMultiplier / max_bits_per_char;
83 constexpr digit_t chunk_divisor = digit_pow_rec(radix, chunk_chars);
84 digit_t remainder = 0;
85 for (int i = input.len() - 1; i >= 0; i--) {
86 digit_t d = input[i];
87 digit_t upper = (remainder << kHalfDigitBits) | (d >> kHalfDigitBits);
88 digit_t u_result = upper / chunk_divisor;
89 remainder = upper % chunk_divisor;
90 digit_t lower = (remainder << kHalfDigitBits) | (d & kHalfDigitMask);
91 digit_t l_result = lower / chunk_divisor;
92 remainder = lower % chunk_divisor;
93 rest[i] = (u_result << kHalfDigitBits) | l_result;
94 }
95 // {remainder} is now the current chunk to be written out.
96 for (int i = 0; i < chunk_chars; i++) {
97 DCHECK(*(output - 1) == kStringZapValue);
98 if (radix <= 10) {
99 *(--output) = '0' + (remainder % radix);
100 } else {
101 *(--output) = kConversionChars[remainder % radix];
102 }
103 remainder /= radix;
104 }
105 DCHECK(remainder == 0);
106 return output;
107 }
108
109 class RecursionLevel;
110
111 // The classic algorithm must check for interrupt requests if no faster
112 // algorithm is available.
113 #if V8_ADVANCED_BIGINT_ALGORITHMS
114 #define MAYBE_INTERRUPT(code) ((void)0)
115 #else
116 #define MAYBE_INTERRUPT(code) code
117 #endif
118
119 class ToStringFormatter {
120 public:
ToStringFormatter(Digits X,int radix,bool sign,char * out,int chars_available,ProcessorImpl * processor)121 ToStringFormatter(Digits X, int radix, bool sign, char* out,
122 int chars_available, ProcessorImpl* processor)
123 : digits_(X),
124 radix_(radix),
125 sign_(sign),
126 out_start_(out),
127 out_end_(out + chars_available),
128 out_(out_end_),
129 processor_(processor) {
130 digits_.Normalize();
131 DCHECK(chars_available >= ToStringResultLength(digits_, radix_, sign_));
132 }
133
134 void Start();
135 int Finish();
136
Classic()137 void Classic() {
138 if (digits_.len() == 0) {
139 *(--out_) = '0';
140 return;
141 }
142 if (digits_.len() == 1) {
143 out_ = BasecaseLast(digits_[0], out_);
144 return;
145 }
146 // {rest} holds the part of the BigInt that we haven't looked at yet.
147 // Not to be confused with "remainder"!
148 ScratchDigits rest(digits_.len());
149 // In the first round, divide the input, allocating a new BigInt for
150 // the result == rest; from then on divide the rest in-place.
151 Digits dividend = digits_;
152 do {
153 if (radix_ == 10) {
154 // Faster but costs binary size, so we optimize the most common case.
155 out_ = DivideByMagic<10>(rest, dividend, out_);
156 MAYBE_INTERRUPT(processor_->AddWorkEstimate(rest.len() * 2));
157 } else {
158 digit_t chunk;
159 processor_->DivideSingle(rest, &chunk, dividend, chunk_divisor_);
160 out_ = BasecaseMiddle(chunk, out_);
161 // Assume that a division is about ten times as expensive as a
162 // multiplication.
163 MAYBE_INTERRUPT(processor_->AddWorkEstimate(rest.len() * 10));
164 }
165 MAYBE_INTERRUPT(if (processor_->should_terminate()) return );
166 rest.Normalize();
167 dividend = rest;
168 } while (rest.len() > 1);
169 out_ = BasecaseLast(rest[0], out_);
170 }
171
172 void BasePowerOfTwo();
173
174 void Fast();
175 char* FillWithZeros(RecursionLevel* level, char* prev_cursor, char* out,
176 bool is_last_on_level);
177 char* ProcessLevel(RecursionLevel* level, Digits chunk, char* out,
178 bool is_last_on_level);
179
180 private:
181 // When processing the last (most significant) digit, don't write leading
182 // zeros.
BasecaseLast(digit_t digit,char * out)183 char* BasecaseLast(digit_t digit, char* out) {
184 if (radix_ == 10) return BasecaseFixedLast<10>(digit, out);
185 do {
186 DCHECK(*(out - 1) == kStringZapValue);
187 *(--out) = kConversionChars[digit % radix_];
188 digit /= radix_;
189 } while (digit > 0);
190 return out;
191 }
192
193 // When processing a middle (non-most significant) digit, always write the
194 // same number of characters (as many '0' as necessary).
BasecaseMiddle(digit_t digit,char * out)195 char* BasecaseMiddle(digit_t digit, char* out) {
196 for (int i = 0; i < chunk_chars_; i++) {
197 DCHECK(*(out - 1) == kStringZapValue);
198 *(--out) = kConversionChars[digit % radix_];
199 digit /= radix_;
200 }
201 DCHECK(digit == 0);
202 return out;
203 }
204
205 Digits digits_;
206 int radix_;
207 int max_bits_per_char_ = 0;
208 int chunk_chars_ = 0;
209 bool sign_;
210 char* out_start_;
211 char* out_end_;
212 char* out_;
213 digit_t chunk_divisor_ = 0;
214 ProcessorImpl* processor_;
215 };
216
217 #undef MAYBE_INTERRUPT
218
219 // Prepares data for {Classic}. Not needed for {BasePowerOfTwo}.
Start()220 void ToStringFormatter::Start() {
221 max_bits_per_char_ = kMaxBitsPerChar[radix_];
222 chunk_chars_ = kDigitBits * kBitsPerCharTableMultiplier / max_bits_per_char_;
223 chunk_divisor_ = digit_pow(radix_, chunk_chars_);
224 // By construction of chunk_chars_, there can't have been overflow.
225 DCHECK(chunk_divisor_ != 0);
226 }
227
Finish()228 int ToStringFormatter::Finish() {
229 DCHECK(out_ >= out_start_);
230 DCHECK(out_ < out_end_); // At least one character was written.
231 while (out_ < out_end_ && *out_ == '0') out_++;
232 if (sign_) *(--out_) = '-';
233 int excess = 0;
234 if (out_ > out_start_) {
235 size_t actual_length = out_end_ - out_;
236 excess = static_cast<int>(out_ - out_start_);
237 std::memmove(out_start_, out_, actual_length);
238 }
239 return excess;
240 }
241
BasePowerOfTwo()242 void ToStringFormatter::BasePowerOfTwo() {
243 const int bits_per_char = CountTrailingZeros(radix_);
244 const int char_mask = radix_ - 1;
245 digit_t digit = 0;
246 // Keeps track of how many unprocessed bits there are in {digit}.
247 int available_bits = 0;
248 for (int i = 0; i < digits_.len() - 1; i++) {
249 digit_t new_digit = digits_[i];
250 // Take any leftover bits from the last iteration into account.
251 int current = (digit | (new_digit << available_bits)) & char_mask;
252 *(--out_) = kConversionChars[current];
253 int consumed_bits = bits_per_char - available_bits;
254 digit = new_digit >> consumed_bits;
255 available_bits = kDigitBits - consumed_bits;
256 while (available_bits >= bits_per_char) {
257 *(--out_) = kConversionChars[digit & char_mask];
258 digit >>= bits_per_char;
259 available_bits -= bits_per_char;
260 }
261 }
262 // Take any leftover bits from the last iteration into account.
263 digit_t msd = digits_.msd();
264 int current = (digit | (msd << available_bits)) & char_mask;
265 *(--out_) = kConversionChars[current];
266 digit = msd >> (bits_per_char - available_bits);
267 while (digit != 0) {
268 *(--out_) = kConversionChars[digit & char_mask];
269 digit >>= bits_per_char;
270 }
271 }
272
273 #if V8_ADVANCED_BIGINT_ALGORITHMS
274
275 // "Fast" divide-and-conquer conversion to string. The basic idea is to
276 // recursively cut the BigInt in half (using a division with remainder,
277 // the divisor being ~half as large (in bits) as the current dividend).
278 //
279 // As preparation, we build up a linked list of metadata for each recursion
280 // level. We do this bottom-up, i.e. start with the level that will produce
281 // two halves that are register-sized and bail out to the base case.
282 // Each higher level (executed earlier, prepared later) uses a divisor that is
283 // the square of the previously-created "next" level's divisor. Preparation
284 // terminates when the current divisor is at least half as large as the bigint.
285 // We also precompute each level's divisor's inverse, so we can use
286 // Barrett division later.
287 //
288 // Example: say we want to format 1234567890123, and we can fit two decimal
289 // digits into a register for the base case.
290 //
291 // 1234567890123
292 // ↓
293 // %100000000 (a) // RecursionLevel 2,
294 // / \ // is_toplevel_ == true.
295 // 12345 67890123
296 // ↓ ↓
297 // (e) %10000 %10000 (b) // RecursionLevel 1
298 // / \ / \
299 // 1 2345 6789 0123
300 // ↓ (f) ↓ ↓ (d) ↓
301 // (g) %100 %100 %100 %100 (c) // RecursionLevel 0
302 // / \ / \ / \ / \
303 // 00 01 23 45 67 89 01 23
304 // ↓ ↓ ↓ ↓ ↓ ↓ ↓ // Base case.
305 // "1" "23" "45" "67" "89" "01" "23"
306 //
307 // We start building RecursionLevels in order 0 -> 1 -> 2, performing the
308 // squarings 100² = 10000 and 10000² = 100000000 each only once. Execution
309 // then happens in order (a) through (g); lower-level divisors are used
310 // repeatedly. We build the string from right to left.
311 // Note that we can skip the division at (g) and fall through directly.
312 // Also, note that there are two chunks with value 1: one of them must produce
313 // a leading "0" in its string representation, the other must not.
314 //
315 // In this example, {base_divisor} is 100 and {base_char_count} is 2.
316
317 // TODO(jkummerow): Investigate whether it is beneficial to build one or two
318 // fewer RecursionLevels, and use the topmost level for more than one division.
319
320 class RecursionLevel {
321 public:
322 static RecursionLevel* CreateLevels(digit_t base_divisor, int base_char_count,
323 int target_bit_length,
324 ProcessorImpl* processor);
~RecursionLevel()325 ~RecursionLevel() { delete next_; }
326
327 void ComputeInverse(ProcessorImpl* proc, int dividend_length = 0);
328 Digits GetInverse(int dividend_length);
329
330 private:
331 friend class ToStringFormatter;
RecursionLevel(digit_t base_divisor,int base_char_count)332 RecursionLevel(digit_t base_divisor, int base_char_count)
333 : char_count_(base_char_count), divisor_(1) {
334 divisor_[0] = base_divisor;
335 }
RecursionLevel(RecursionLevel * next)336 explicit RecursionLevel(RecursionLevel* next)
337 : char_count_(next->char_count_ * 2),
338 next_(next),
339 divisor_(next->divisor_.len() * 2) {
340 next->is_toplevel_ = false;
341 }
342
LeftShiftDivisor()343 void LeftShiftDivisor() {
344 leading_zero_shift_ = CountLeadingZeros(divisor_.msd());
345 LeftShift(divisor_, divisor_, leading_zero_shift_);
346 }
347
348 int leading_zero_shift_{0};
349 // The number of characters generated by *each half* of this level.
350 int char_count_;
351 bool is_toplevel_{true};
352 RecursionLevel* next_{nullptr};
353 ScratchDigits divisor_;
354 std::unique_ptr<Storage> inverse_storage_;
355 Digits inverse_{nullptr, 0};
356 };
357
358 // static
CreateLevels(digit_t base_divisor,int base_char_count,int target_bit_length,ProcessorImpl * processor)359 RecursionLevel* RecursionLevel::CreateLevels(digit_t base_divisor,
360 int base_char_count,
361 int target_bit_length,
362 ProcessorImpl* processor) {
363 RecursionLevel* level = new RecursionLevel(base_divisor, base_char_count);
364 // We can stop creating levels when the next level's divisor, which is the
365 // square of the current level's divisor, would be strictly bigger (in terms
366 // of its numeric value) than the input we're formatting. Since computing that
367 // next divisor is expensive, we want to predict the necessity based on bit
368 // lengths. Bit lengths are an imperfect predictor of numeric value, so we
369 // have to be careful:
370 // - since we can't estimate which one of two numbers of equal bit length
371 // is bigger, we have to aim for a strictly bigger bit length.
372 // - when squaring, the bit length sometimes doubles (e.g. 0b11² == 0b1001),
373 // but usually we "lose" a bit (e.g. 0b10² == 0b100).
374 while (BitLength(level->divisor_) * 2 - 1 <= target_bit_length) {
375 RecursionLevel* prev = level;
376 level = new RecursionLevel(prev);
377 processor->Multiply(level->divisor_, prev->divisor_, prev->divisor_);
378 if (processor->should_terminate()) {
379 delete level;
380 return nullptr;
381 }
382 level->divisor_.Normalize();
383 // Left-shifting the divisor must only happen after it's been used to
384 // compute the next divisor.
385 prev->LeftShiftDivisor();
386 prev->ComputeInverse(processor);
387 }
388 level->LeftShiftDivisor();
389 // Not calling info->ComputeInverse here so that it can take the input's
390 // length into account to save some effort on inverse generation.
391 return level;
392 }
393
394 // The top level might get by with a smaller inverse than we could maximally
395 // compute, so the caller should provide the dividend length.
ComputeInverse(ProcessorImpl * processor,int dividend_length)396 void RecursionLevel::ComputeInverse(ProcessorImpl* processor,
397 int dividend_length) {
398 int inverse_len = divisor_.len();
399 if (dividend_length != 0) {
400 inverse_len = dividend_length - divisor_.len();
401 DCHECK(inverse_len <= divisor_.len());
402 }
403 int scratch_len = InvertScratchSpace(inverse_len);
404 ScratchDigits scratch(scratch_len);
405 Storage* inv_storage = new Storage(inverse_len + 1);
406 inverse_storage_.reset(inv_storage);
407 RWDigits inverse_initializer(inv_storage->get(), inverse_len + 1);
408 Digits input(divisor_, divisor_.len() - inverse_len, inverse_len);
409 processor->Invert(inverse_initializer, input, scratch);
410 inverse_initializer.TrimOne();
411 inverse_ = inverse_initializer;
412 }
413
GetInverse(int dividend_length)414 Digits RecursionLevel::GetInverse(int dividend_length) {
415 DCHECK(inverse_.len() != 0);
416 int inverse_len = dividend_length - divisor_.len();
417 DCHECK(inverse_len <= inverse_.len());
418 return inverse_ + (inverse_.len() - inverse_len);
419 }
420
Fast()421 void ToStringFormatter::Fast() {
422 std::unique_ptr<RecursionLevel> recursion_levels(RecursionLevel::CreateLevels(
423 chunk_divisor_, chunk_chars_, BitLength(digits_), processor_));
424 if (processor_->should_terminate()) return;
425 out_ = ProcessLevel(recursion_levels.get(), digits_, out_, true);
426 }
427
428 // Writes '0' characters right-to-left, starting at {out}-1, until the distance
429 // from {right_boundary} to {out} equals the number of characters that {level}
430 // is supposed to produce.
FillWithZeros(RecursionLevel * level,char * right_boundary,char * out,bool is_last_on_level)431 char* ToStringFormatter::FillWithZeros(RecursionLevel* level,
432 char* right_boundary, char* out,
433 bool is_last_on_level) {
434 // Fill up with zeros up to the character count expected to be generated
435 // on this level; unless this is the left edge of the result.
436 if (is_last_on_level) return out;
437 int chunk_chars = level == nullptr ? chunk_chars_ : level->char_count_ * 2;
438 char* end = right_boundary - chunk_chars;
439 DCHECK(out >= end);
440 while (out > end) {
441 *(--out) = '0';
442 }
443 return out;
444 }
445
ProcessLevel(RecursionLevel * level,Digits chunk,char * out,bool is_last_on_level)446 char* ToStringFormatter::ProcessLevel(RecursionLevel* level, Digits chunk,
447 char* out, bool is_last_on_level) {
448 // Step 0: if only one digit is left, bail out to the base case.
449 Digits normalized = chunk;
450 normalized.Normalize();
451 if (normalized.len() <= 1) {
452 char* right_boundary = out;
453 if (normalized.len() == 1) {
454 out = BasecaseLast(normalized[0], out);
455 }
456 return FillWithZeros(level, right_boundary, out, is_last_on_level);
457 }
458
459 // Step 1: If the chunk is guaranteed to remain smaller than the divisor
460 // even after left-shifting, fall through to the next level immediately.
461 if (normalized.len() < level->divisor_.len()) {
462 char* right_boundary = out;
463 out = ProcessLevel(level->next_, chunk, out, is_last_on_level);
464 return FillWithZeros(level, right_boundary, out, is_last_on_level);
465 }
466 // Step 2: Prepare the chunk.
467 bool allow_inplace_modification = chunk.digits() != digits_.digits();
468 Digits original_chunk = chunk;
469 ShiftedDigits chunk_shifted(chunk, level->leading_zero_shift_,
470 allow_inplace_modification);
471 chunk = chunk_shifted;
472 chunk.Normalize();
473 // Check (now precisely) if the chunk is smaller than the divisor.
474 int comparison = Compare(chunk, level->divisor_);
475 if (comparison <= 0) {
476 char* right_boundary = out;
477 if (comparison < 0) {
478 // If the chunk is strictly smaller than the divisor, we can process
479 // it directly on the next level as the right half, and know that the
480 // left half is all '0'.
481 // In case we shifted {chunk} in-place, we must undo that
482 // before the call...
483 chunk_shifted.Reset();
484 // ...and otherwise undo the {chunk = chunk_shifted} assignment above.
485 chunk = original_chunk;
486 out = ProcessLevel(level->next_, chunk, out, is_last_on_level);
487 } else {
488 DCHECK(comparison == 0);
489 // If the chunk is equal to the divisor, we know that the right half
490 // is all '0', and the left half is '...0001'.
491 // Handling this case specially is an optimization; we could also
492 // fall through to the generic "chunk > divisor" path below.
493 out = FillWithZeros(level->next_, right_boundary, out, false);
494 *(--out) = '1';
495 }
496 // In both cases, make sure the left half is fully written.
497 return FillWithZeros(level, right_boundary, out, is_last_on_level);
498 }
499 // Step 3: Allocate space for the results.
500 // Allocate one extra digit so the next level can left-shift in-place.
501 ScratchDigits right(level->divisor_.len() + 1);
502 // Allocate one extra digit because DivideBarrett requires it.
503 ScratchDigits left(chunk.len() - level->divisor_.len() + 1);
504
505 // Step 4: Divide to split {chunk} into {left} and {right}.
506 int inverse_len = chunk.len() - level->divisor_.len();
507 if (inverse_len == 0) {
508 processor_->DivideSchoolbook(left, right, chunk, level->divisor_);
509 } else if (level->divisor_.len() == 1) {
510 processor_->DivideSingle(left, right.digits(), chunk, level->divisor_[0]);
511 for (int i = 1; i < right.len(); i++) right[i] = 0;
512 } else {
513 ScratchDigits scratch(DivideBarrettScratchSpace(chunk.len()));
514 // The top level only computes its inverse when {chunk.len()} is
515 // available. Other levels have precomputed theirs.
516 if (level->is_toplevel_) {
517 level->ComputeInverse(processor_, chunk.len());
518 if (processor_->should_terminate()) return out;
519 }
520 Digits inverse = level->GetInverse(chunk.len());
521 processor_->DivideBarrett(left, right, chunk, level->divisor_, inverse,
522 scratch);
523 if (processor_->should_terminate()) return out;
524 }
525 RightShift(right, right, level->leading_zero_shift_);
526 #if DEBUG
527 Digits left_test = left;
528 left_test.Normalize();
529 DCHECK(left_test.len() <= level->divisor_.len());
530 #endif
531
532 // Step 5: Recurse.
533 char* end_of_right_part = ProcessLevel(level->next_, right, out, false);
534 // The recursive calls are required and hence designed to write exactly as
535 // many characters as their level is responsible for.
536 DCHECK(end_of_right_part == out - level->char_count_);
537 USE(end_of_right_part);
538 if (processor_->should_terminate()) return out;
539 // We intentionally don't use {end_of_right_part} here to be prepared for
540 // potential future multi-threaded execution.
541 return ProcessLevel(level->next_, left, out - level->char_count_,
542 is_last_on_level);
543 }
544
545 #endif // V8_ADVANCED_BIGINT_ALGORITHMS
546
547 } // namespace
548
ToString(char * out,int * out_length,Digits X,int radix,bool sign)549 void ProcessorImpl::ToString(char* out, int* out_length, Digits X, int radix,
550 bool sign) {
551 const bool use_fast_algorithm = X.len() >= kToStringFastThreshold;
552 ToStringImpl(out, out_length, X, radix, sign, use_fast_algorithm);
553 }
554
555 // Factored out so that tests can call it.
ToStringImpl(char * out,int * out_length,Digits X,int radix,bool sign,bool fast)556 void ProcessorImpl::ToStringImpl(char* out, int* out_length, Digits X,
557 int radix, bool sign, bool fast) {
558 #if DEBUG
559 for (int i = 0; i < *out_length; i++) out[i] = kStringZapValue;
560 #endif
561 ToStringFormatter formatter(X, radix, sign, out, *out_length, this);
562 if (IsPowerOfTwo(radix)) {
563 formatter.BasePowerOfTwo();
564 #if V8_ADVANCED_BIGINT_ALGORITHMS
565 } else if (fast) {
566 formatter.Start();
567 formatter.Fast();
568 if (should_terminate()) return;
569 #else
570 USE(fast);
571 #endif // V8_ADVANCED_BIGINT_ALGORITHMS
572 } else {
573 formatter.Start();
574 formatter.Classic();
575 }
576 int excess = formatter.Finish();
577 *out_length -= excess;
578 }
579
ToString(char * out,int * out_length,Digits X,int radix,bool sign)580 Status Processor::ToString(char* out, int* out_length, Digits X, int radix,
581 bool sign) {
582 ProcessorImpl* impl = static_cast<ProcessorImpl*>(this);
583 impl->ToString(out, out_length, X, radix, sign);
584 return impl->get_and_clear_status();
585 }
586
ToStringResultLength(Digits X,int radix,bool sign)587 int ToStringResultLength(Digits X, int radix, bool sign) {
588 const int bit_length = BitLength(X);
589 int result;
590 if (IsPowerOfTwo(radix)) {
591 const int bits_per_char = CountTrailingZeros(radix);
592 result = DIV_CEIL(bit_length, bits_per_char) + sign;
593 } else {
594 // Maximum number of bits we can represent with one character.
595 const uint8_t max_bits_per_char = kMaxBitsPerChar[radix];
596 // For estimating the result length, we have to be pessimistic and work with
597 // the minimum number of bits one character can represent.
598 const uint8_t min_bits_per_char = max_bits_per_char - 1;
599 // Perform the following computation with uint64_t to avoid overflows.
600 uint64_t chars_required = bit_length;
601 chars_required *= kBitsPerCharTableMultiplier;
602 chars_required = DIV_CEIL(chars_required, min_bits_per_char);
603 DCHECK(chars_required < std::numeric_limits<int>::max());
604 result = static_cast<int>(chars_required);
605 }
606 result += sign;
607 return result;
608 }
609
610 } // namespace bigint
611 } // namespace v8
612