1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3 * Copyright (C) 2011-2015 Daniel Schwierzeck <daniel.schwierzeck@gmail.com>
4 * Copyright (C) 2016 Hauke Mehrtens <hauke@hauke-m.de>
5 */
6
7 #include <linux/kernel.h>
8 #include <linux/module.h>
9 #include <linux/of_device.h>
10 #include <linux/clk.h>
11 #include <linux/io.h>
12 #include <linux/delay.h>
13 #include <linux/interrupt.h>
14 #include <linux/sched.h>
15 #include <linux/completion.h>
16 #include <linux/spinlock.h>
17 #include <linux/err.h>
18 #include <linux/pm_runtime.h>
19 #include <linux/spi/spi.h>
20
21 #ifdef CONFIG_LANTIQ
22 #include <lantiq_soc.h>
23 #endif
24
25 #define LTQ_SPI_RX_IRQ_NAME "spi_rx"
26 #define LTQ_SPI_TX_IRQ_NAME "spi_tx"
27 #define LTQ_SPI_ERR_IRQ_NAME "spi_err"
28 #define LTQ_SPI_FRM_IRQ_NAME "spi_frm"
29
30 #define LTQ_SPI_CLC 0x00
31 #define LTQ_SPI_PISEL 0x04
32 #define LTQ_SPI_ID 0x08
33 #define LTQ_SPI_CON 0x10
34 #define LTQ_SPI_STAT 0x14
35 #define LTQ_SPI_WHBSTATE 0x18
36 #define LTQ_SPI_TB 0x20
37 #define LTQ_SPI_RB 0x24
38 #define LTQ_SPI_RXFCON 0x30
39 #define LTQ_SPI_TXFCON 0x34
40 #define LTQ_SPI_FSTAT 0x38
41 #define LTQ_SPI_BRT 0x40
42 #define LTQ_SPI_BRSTAT 0x44
43 #define LTQ_SPI_SFCON 0x60
44 #define LTQ_SPI_SFSTAT 0x64
45 #define LTQ_SPI_GPOCON 0x70
46 #define LTQ_SPI_GPOSTAT 0x74
47 #define LTQ_SPI_FPGO 0x78
48 #define LTQ_SPI_RXREQ 0x80
49 #define LTQ_SPI_RXCNT 0x84
50 #define LTQ_SPI_DMACON 0xec
51 #define LTQ_SPI_IRNEN 0xf4
52
53 #define LTQ_SPI_CLC_SMC_S 16 /* Clock divider for sleep mode */
54 #define LTQ_SPI_CLC_SMC_M (0xFF << LTQ_SPI_CLC_SMC_S)
55 #define LTQ_SPI_CLC_RMC_S 8 /* Clock divider for normal run mode */
56 #define LTQ_SPI_CLC_RMC_M (0xFF << LTQ_SPI_CLC_RMC_S)
57 #define LTQ_SPI_CLC_DISS BIT(1) /* Disable status bit */
58 #define LTQ_SPI_CLC_DISR BIT(0) /* Disable request bit */
59
60 #define LTQ_SPI_ID_TXFS_S 24 /* Implemented TX FIFO size */
61 #define LTQ_SPI_ID_RXFS_S 16 /* Implemented RX FIFO size */
62 #define LTQ_SPI_ID_MOD_S 8 /* Module ID */
63 #define LTQ_SPI_ID_MOD_M (0xff << LTQ_SPI_ID_MOD_S)
64 #define LTQ_SPI_ID_CFG_S 5 /* DMA interface support */
65 #define LTQ_SPI_ID_CFG_M (1 << LTQ_SPI_ID_CFG_S)
66 #define LTQ_SPI_ID_REV_M 0x1F /* Hardware revision number */
67
68 #define LTQ_SPI_CON_BM_S 16 /* Data width selection */
69 #define LTQ_SPI_CON_BM_M (0x1F << LTQ_SPI_CON_BM_S)
70 #define LTQ_SPI_CON_EM BIT(24) /* Echo mode */
71 #define LTQ_SPI_CON_IDLE BIT(23) /* Idle bit value */
72 #define LTQ_SPI_CON_ENBV BIT(22) /* Enable byte valid control */
73 #define LTQ_SPI_CON_RUEN BIT(12) /* Receive underflow error enable */
74 #define LTQ_SPI_CON_TUEN BIT(11) /* Transmit underflow error enable */
75 #define LTQ_SPI_CON_AEN BIT(10) /* Abort error enable */
76 #define LTQ_SPI_CON_REN BIT(9) /* Receive overflow error enable */
77 #define LTQ_SPI_CON_TEN BIT(8) /* Transmit overflow error enable */
78 #define LTQ_SPI_CON_LB BIT(7) /* Loopback control */
79 #define LTQ_SPI_CON_PO BIT(6) /* Clock polarity control */
80 #define LTQ_SPI_CON_PH BIT(5) /* Clock phase control */
81 #define LTQ_SPI_CON_HB BIT(4) /* Heading control */
82 #define LTQ_SPI_CON_RXOFF BIT(1) /* Switch receiver off */
83 #define LTQ_SPI_CON_TXOFF BIT(0) /* Switch transmitter off */
84
85 #define LTQ_SPI_STAT_RXBV_S 28
86 #define LTQ_SPI_STAT_RXBV_M (0x7 << LTQ_SPI_STAT_RXBV_S)
87 #define LTQ_SPI_STAT_BSY BIT(13) /* Busy flag */
88 #define LTQ_SPI_STAT_RUE BIT(12) /* Receive underflow error flag */
89 #define LTQ_SPI_STAT_TUE BIT(11) /* Transmit underflow error flag */
90 #define LTQ_SPI_STAT_AE BIT(10) /* Abort error flag */
91 #define LTQ_SPI_STAT_RE BIT(9) /* Receive error flag */
92 #define LTQ_SPI_STAT_TE BIT(8) /* Transmit error flag */
93 #define LTQ_SPI_STAT_ME BIT(7) /* Mode error flag */
94 #define LTQ_SPI_STAT_MS BIT(1) /* Master/slave select bit */
95 #define LTQ_SPI_STAT_EN BIT(0) /* Enable bit */
96 #define LTQ_SPI_STAT_ERRORS (LTQ_SPI_STAT_ME | LTQ_SPI_STAT_TE | \
97 LTQ_SPI_STAT_RE | LTQ_SPI_STAT_AE | \
98 LTQ_SPI_STAT_TUE | LTQ_SPI_STAT_RUE)
99
100 #define LTQ_SPI_WHBSTATE_SETTUE BIT(15) /* Set transmit underflow error flag */
101 #define LTQ_SPI_WHBSTATE_SETAE BIT(14) /* Set abort error flag */
102 #define LTQ_SPI_WHBSTATE_SETRE BIT(13) /* Set receive error flag */
103 #define LTQ_SPI_WHBSTATE_SETTE BIT(12) /* Set transmit error flag */
104 #define LTQ_SPI_WHBSTATE_CLRTUE BIT(11) /* Clear transmit underflow error flag */
105 #define LTQ_SPI_WHBSTATE_CLRAE BIT(10) /* Clear abort error flag */
106 #define LTQ_SPI_WHBSTATE_CLRRE BIT(9) /* Clear receive error flag */
107 #define LTQ_SPI_WHBSTATE_CLRTE BIT(8) /* Clear transmit error flag */
108 #define LTQ_SPI_WHBSTATE_SETME BIT(7) /* Set mode error flag */
109 #define LTQ_SPI_WHBSTATE_CLRME BIT(6) /* Clear mode error flag */
110 #define LTQ_SPI_WHBSTATE_SETRUE BIT(5) /* Set receive underflow error flag */
111 #define LTQ_SPI_WHBSTATE_CLRRUE BIT(4) /* Clear receive underflow error flag */
112 #define LTQ_SPI_WHBSTATE_SETMS BIT(3) /* Set master select bit */
113 #define LTQ_SPI_WHBSTATE_CLRMS BIT(2) /* Clear master select bit */
114 #define LTQ_SPI_WHBSTATE_SETEN BIT(1) /* Set enable bit (operational mode) */
115 #define LTQ_SPI_WHBSTATE_CLREN BIT(0) /* Clear enable bit (config mode */
116 #define LTQ_SPI_WHBSTATE_CLR_ERRORS (LTQ_SPI_WHBSTATE_CLRRUE | \
117 LTQ_SPI_WHBSTATE_CLRME | \
118 LTQ_SPI_WHBSTATE_CLRTE | \
119 LTQ_SPI_WHBSTATE_CLRRE | \
120 LTQ_SPI_WHBSTATE_CLRAE | \
121 LTQ_SPI_WHBSTATE_CLRTUE)
122
123 #define LTQ_SPI_RXFCON_RXFITL_S 8 /* FIFO interrupt trigger level */
124 #define LTQ_SPI_RXFCON_RXFLU BIT(1) /* FIFO flush */
125 #define LTQ_SPI_RXFCON_RXFEN BIT(0) /* FIFO enable */
126
127 #define LTQ_SPI_TXFCON_TXFITL_S 8 /* FIFO interrupt trigger level */
128 #define LTQ_SPI_TXFCON_TXFLU BIT(1) /* FIFO flush */
129 #define LTQ_SPI_TXFCON_TXFEN BIT(0) /* FIFO enable */
130
131 #define LTQ_SPI_FSTAT_RXFFL_S 0
132 #define LTQ_SPI_FSTAT_TXFFL_S 8
133
134 #define LTQ_SPI_GPOCON_ISCSBN_S 8
135 #define LTQ_SPI_GPOCON_INVOUTN_S 0
136
137 #define LTQ_SPI_FGPO_SETOUTN_S 8
138 #define LTQ_SPI_FGPO_CLROUTN_S 0
139
140 #define LTQ_SPI_RXREQ_RXCNT_M 0xFFFF /* Receive count value */
141 #define LTQ_SPI_RXCNT_TODO_M 0xFFFF /* Recevie to-do value */
142
143 #define LTQ_SPI_IRNEN_TFI BIT(4) /* TX finished interrupt */
144 #define LTQ_SPI_IRNEN_F BIT(3) /* Frame end interrupt request */
145 #define LTQ_SPI_IRNEN_E BIT(2) /* Error end interrupt request */
146 #define LTQ_SPI_IRNEN_T_XWAY BIT(1) /* Transmit end interrupt request */
147 #define LTQ_SPI_IRNEN_R_XWAY BIT(0) /* Receive end interrupt request */
148 #define LTQ_SPI_IRNEN_R_XRX BIT(1) /* Transmit end interrupt request */
149 #define LTQ_SPI_IRNEN_T_XRX BIT(0) /* Receive end interrupt request */
150 #define LTQ_SPI_IRNEN_ALL 0x1F
151
152 struct lantiq_ssc_spi;
153
154 struct lantiq_ssc_hwcfg {
155 int (*cfg_irq)(struct platform_device *pdev, struct lantiq_ssc_spi *spi);
156 unsigned int irnen_r;
157 unsigned int irnen_t;
158 unsigned int irncr;
159 unsigned int irnicr;
160 bool irq_ack;
161 u32 fifo_size_mask;
162 };
163
164 struct lantiq_ssc_spi {
165 struct spi_master *master;
166 struct device *dev;
167 void __iomem *regbase;
168 struct clk *spi_clk;
169 struct clk *fpi_clk;
170 const struct lantiq_ssc_hwcfg *hwcfg;
171
172 spinlock_t lock;
173 struct workqueue_struct *wq;
174 struct work_struct work;
175
176 const u8 *tx;
177 u8 *rx;
178 unsigned int tx_todo;
179 unsigned int rx_todo;
180 unsigned int bits_per_word;
181 unsigned int speed_hz;
182 unsigned int tx_fifo_size;
183 unsigned int rx_fifo_size;
184 unsigned int base_cs;
185 unsigned int fdx_tx_level;
186 };
187
lantiq_ssc_readl(const struct lantiq_ssc_spi * spi,u32 reg)188 static u32 lantiq_ssc_readl(const struct lantiq_ssc_spi *spi, u32 reg)
189 {
190 return __raw_readl(spi->regbase + reg);
191 }
192
lantiq_ssc_writel(const struct lantiq_ssc_spi * spi,u32 val,u32 reg)193 static void lantiq_ssc_writel(const struct lantiq_ssc_spi *spi, u32 val,
194 u32 reg)
195 {
196 __raw_writel(val, spi->regbase + reg);
197 }
198
lantiq_ssc_maskl(const struct lantiq_ssc_spi * spi,u32 clr,u32 set,u32 reg)199 static void lantiq_ssc_maskl(const struct lantiq_ssc_spi *spi, u32 clr,
200 u32 set, u32 reg)
201 {
202 u32 val = __raw_readl(spi->regbase + reg);
203
204 val &= ~clr;
205 val |= set;
206 __raw_writel(val, spi->regbase + reg);
207 }
208
tx_fifo_level(const struct lantiq_ssc_spi * spi)209 static unsigned int tx_fifo_level(const struct lantiq_ssc_spi *spi)
210 {
211 const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
212 u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
213
214 return (fstat >> LTQ_SPI_FSTAT_TXFFL_S) & hwcfg->fifo_size_mask;
215 }
216
rx_fifo_level(const struct lantiq_ssc_spi * spi)217 static unsigned int rx_fifo_level(const struct lantiq_ssc_spi *spi)
218 {
219 const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
220 u32 fstat = lantiq_ssc_readl(spi, LTQ_SPI_FSTAT);
221
222 return (fstat >> LTQ_SPI_FSTAT_RXFFL_S) & hwcfg->fifo_size_mask;
223 }
224
tx_fifo_free(const struct lantiq_ssc_spi * spi)225 static unsigned int tx_fifo_free(const struct lantiq_ssc_spi *spi)
226 {
227 return spi->tx_fifo_size - tx_fifo_level(spi);
228 }
229
rx_fifo_reset(const struct lantiq_ssc_spi * spi)230 static void rx_fifo_reset(const struct lantiq_ssc_spi *spi)
231 {
232 u32 val = spi->rx_fifo_size << LTQ_SPI_RXFCON_RXFITL_S;
233
234 val |= LTQ_SPI_RXFCON_RXFEN | LTQ_SPI_RXFCON_RXFLU;
235 lantiq_ssc_writel(spi, val, LTQ_SPI_RXFCON);
236 }
237
tx_fifo_reset(const struct lantiq_ssc_spi * spi)238 static void tx_fifo_reset(const struct lantiq_ssc_spi *spi)
239 {
240 u32 val = 1 << LTQ_SPI_TXFCON_TXFITL_S;
241
242 val |= LTQ_SPI_TXFCON_TXFEN | LTQ_SPI_TXFCON_TXFLU;
243 lantiq_ssc_writel(spi, val, LTQ_SPI_TXFCON);
244 }
245
rx_fifo_flush(const struct lantiq_ssc_spi * spi)246 static void rx_fifo_flush(const struct lantiq_ssc_spi *spi)
247 {
248 lantiq_ssc_maskl(spi, 0, LTQ_SPI_RXFCON_RXFLU, LTQ_SPI_RXFCON);
249 }
250
tx_fifo_flush(const struct lantiq_ssc_spi * spi)251 static void tx_fifo_flush(const struct lantiq_ssc_spi *spi)
252 {
253 lantiq_ssc_maskl(spi, 0, LTQ_SPI_TXFCON_TXFLU, LTQ_SPI_TXFCON);
254 }
255
hw_enter_config_mode(const struct lantiq_ssc_spi * spi)256 static void hw_enter_config_mode(const struct lantiq_ssc_spi *spi)
257 {
258 lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_CLREN, LTQ_SPI_WHBSTATE);
259 }
260
hw_enter_active_mode(const struct lantiq_ssc_spi * spi)261 static void hw_enter_active_mode(const struct lantiq_ssc_spi *spi)
262 {
263 lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETEN, LTQ_SPI_WHBSTATE);
264 }
265
hw_setup_speed_hz(const struct lantiq_ssc_spi * spi,unsigned int max_speed_hz)266 static void hw_setup_speed_hz(const struct lantiq_ssc_spi *spi,
267 unsigned int max_speed_hz)
268 {
269 u32 spi_clk, brt;
270
271 /*
272 * SPI module clock is derived from FPI bus clock dependent on
273 * divider value in CLC.RMS which is always set to 1.
274 *
275 * f_SPI
276 * baudrate = --------------
277 * 2 * (BR + 1)
278 */
279 spi_clk = clk_get_rate(spi->fpi_clk) / 2;
280
281 if (max_speed_hz > spi_clk)
282 brt = 0;
283 else
284 brt = spi_clk / max_speed_hz - 1;
285
286 if (brt > 0xFFFF)
287 brt = 0xFFFF;
288
289 dev_dbg(spi->dev, "spi_clk %u, max_speed_hz %u, brt %u\n",
290 spi_clk, max_speed_hz, brt);
291
292 lantiq_ssc_writel(spi, brt, LTQ_SPI_BRT);
293 }
294
hw_setup_bits_per_word(const struct lantiq_ssc_spi * spi,unsigned int bits_per_word)295 static void hw_setup_bits_per_word(const struct lantiq_ssc_spi *spi,
296 unsigned int bits_per_word)
297 {
298 u32 bm;
299
300 /* CON.BM value = bits_per_word - 1 */
301 bm = (bits_per_word - 1) << LTQ_SPI_CON_BM_S;
302
303 lantiq_ssc_maskl(spi, LTQ_SPI_CON_BM_M, bm, LTQ_SPI_CON);
304 }
305
hw_setup_clock_mode(const struct lantiq_ssc_spi * spi,unsigned int mode)306 static void hw_setup_clock_mode(const struct lantiq_ssc_spi *spi,
307 unsigned int mode)
308 {
309 u32 con_set = 0, con_clr = 0;
310
311 /*
312 * SPI mode mapping in CON register:
313 * Mode CPOL CPHA CON.PO CON.PH
314 * 0 0 0 0 1
315 * 1 0 1 0 0
316 * 2 1 0 1 1
317 * 3 1 1 1 0
318 */
319 if (mode & SPI_CPHA)
320 con_clr |= LTQ_SPI_CON_PH;
321 else
322 con_set |= LTQ_SPI_CON_PH;
323
324 if (mode & SPI_CPOL)
325 con_set |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
326 else
327 con_clr |= LTQ_SPI_CON_PO | LTQ_SPI_CON_IDLE;
328
329 /* Set heading control */
330 if (mode & SPI_LSB_FIRST)
331 con_clr |= LTQ_SPI_CON_HB;
332 else
333 con_set |= LTQ_SPI_CON_HB;
334
335 /* Set loopback mode */
336 if (mode & SPI_LOOP)
337 con_set |= LTQ_SPI_CON_LB;
338 else
339 con_clr |= LTQ_SPI_CON_LB;
340
341 lantiq_ssc_maskl(spi, con_clr, con_set, LTQ_SPI_CON);
342 }
343
lantiq_ssc_hw_init(const struct lantiq_ssc_spi * spi)344 static void lantiq_ssc_hw_init(const struct lantiq_ssc_spi *spi)
345 {
346 const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
347
348 /*
349 * Set clock divider for run mode to 1 to
350 * run at same frequency as FPI bus
351 */
352 lantiq_ssc_writel(spi, 1 << LTQ_SPI_CLC_RMC_S, LTQ_SPI_CLC);
353
354 /* Put controller into config mode */
355 hw_enter_config_mode(spi);
356
357 /* Clear error flags */
358 lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
359
360 /* Enable error checking, disable TX/RX */
361 lantiq_ssc_writel(spi, LTQ_SPI_CON_RUEN | LTQ_SPI_CON_AEN |
362 LTQ_SPI_CON_TEN | LTQ_SPI_CON_REN | LTQ_SPI_CON_TXOFF |
363 LTQ_SPI_CON_RXOFF, LTQ_SPI_CON);
364
365 /* Setup default SPI mode */
366 hw_setup_bits_per_word(spi, spi->bits_per_word);
367 hw_setup_clock_mode(spi, SPI_MODE_0);
368
369 /* Enable master mode and clear error flags */
370 lantiq_ssc_writel(spi, LTQ_SPI_WHBSTATE_SETMS |
371 LTQ_SPI_WHBSTATE_CLR_ERRORS,
372 LTQ_SPI_WHBSTATE);
373
374 /* Reset GPIO/CS registers */
375 lantiq_ssc_writel(spi, 0, LTQ_SPI_GPOCON);
376 lantiq_ssc_writel(spi, 0xFF00, LTQ_SPI_FPGO);
377
378 /* Enable and flush FIFOs */
379 rx_fifo_reset(spi);
380 tx_fifo_reset(spi);
381
382 /* Enable interrupts */
383 lantiq_ssc_writel(spi, hwcfg->irnen_t | hwcfg->irnen_r |
384 LTQ_SPI_IRNEN_E, LTQ_SPI_IRNEN);
385 }
386
lantiq_ssc_setup(struct spi_device * spidev)387 static int lantiq_ssc_setup(struct spi_device *spidev)
388 {
389 struct spi_master *master = spidev->master;
390 struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
391 unsigned int cs = spidev->chip_select;
392 u32 gpocon;
393
394 /* GPIOs are used for CS */
395 if (spidev->cs_gpiod)
396 return 0;
397
398 dev_dbg(spi->dev, "using internal chipselect %u\n", cs);
399
400 if (cs < spi->base_cs) {
401 dev_err(spi->dev,
402 "chipselect %i too small (min %i)\n", cs, spi->base_cs);
403 return -EINVAL;
404 }
405
406 /* set GPO pin to CS mode */
407 gpocon = 1 << ((cs - spi->base_cs) + LTQ_SPI_GPOCON_ISCSBN_S);
408
409 /* invert GPO pin */
410 if (spidev->mode & SPI_CS_HIGH)
411 gpocon |= 1 << (cs - spi->base_cs);
412
413 lantiq_ssc_maskl(spi, 0, gpocon, LTQ_SPI_GPOCON);
414
415 return 0;
416 }
417
lantiq_ssc_prepare_message(struct spi_master * master,struct spi_message * message)418 static int lantiq_ssc_prepare_message(struct spi_master *master,
419 struct spi_message *message)
420 {
421 struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
422
423 hw_enter_config_mode(spi);
424 hw_setup_clock_mode(spi, message->spi->mode);
425 hw_enter_active_mode(spi);
426
427 return 0;
428 }
429
hw_setup_transfer(struct lantiq_ssc_spi * spi,struct spi_device * spidev,struct spi_transfer * t)430 static void hw_setup_transfer(struct lantiq_ssc_spi *spi,
431 struct spi_device *spidev, struct spi_transfer *t)
432 {
433 unsigned int speed_hz = t->speed_hz;
434 unsigned int bits_per_word = t->bits_per_word;
435 u32 con;
436
437 if (bits_per_word != spi->bits_per_word ||
438 speed_hz != spi->speed_hz) {
439 hw_enter_config_mode(spi);
440 hw_setup_speed_hz(spi, speed_hz);
441 hw_setup_bits_per_word(spi, bits_per_word);
442 hw_enter_active_mode(spi);
443
444 spi->speed_hz = speed_hz;
445 spi->bits_per_word = bits_per_word;
446 }
447
448 /* Configure transmitter and receiver */
449 con = lantiq_ssc_readl(spi, LTQ_SPI_CON);
450 if (t->tx_buf)
451 con &= ~LTQ_SPI_CON_TXOFF;
452 else
453 con |= LTQ_SPI_CON_TXOFF;
454
455 if (t->rx_buf)
456 con &= ~LTQ_SPI_CON_RXOFF;
457 else
458 con |= LTQ_SPI_CON_RXOFF;
459
460 lantiq_ssc_writel(spi, con, LTQ_SPI_CON);
461 }
462
lantiq_ssc_unprepare_message(struct spi_master * master,struct spi_message * message)463 static int lantiq_ssc_unprepare_message(struct spi_master *master,
464 struct spi_message *message)
465 {
466 struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
467
468 flush_workqueue(spi->wq);
469
470 /* Disable transmitter and receiver while idle */
471 lantiq_ssc_maskl(spi, 0, LTQ_SPI_CON_TXOFF | LTQ_SPI_CON_RXOFF,
472 LTQ_SPI_CON);
473
474 return 0;
475 }
476
tx_fifo_write(struct lantiq_ssc_spi * spi)477 static void tx_fifo_write(struct lantiq_ssc_spi *spi)
478 {
479 const u8 *tx8;
480 const u16 *tx16;
481 const u32 *tx32;
482 u32 data;
483 unsigned int tx_free = tx_fifo_free(spi);
484
485 spi->fdx_tx_level = 0;
486 while (spi->tx_todo && tx_free) {
487 switch (spi->bits_per_word) {
488 case 2 ... 8:
489 tx8 = spi->tx;
490 data = *tx8;
491 spi->tx_todo--;
492 spi->tx++;
493 break;
494 case 16:
495 tx16 = (u16 *) spi->tx;
496 data = *tx16;
497 spi->tx_todo -= 2;
498 spi->tx += 2;
499 break;
500 case 32:
501 tx32 = (u32 *) spi->tx;
502 data = *tx32;
503 spi->tx_todo -= 4;
504 spi->tx += 4;
505 break;
506 default:
507 WARN_ON(1);
508 data = 0;
509 break;
510 }
511
512 lantiq_ssc_writel(spi, data, LTQ_SPI_TB);
513 tx_free--;
514 spi->fdx_tx_level++;
515 }
516 }
517
rx_fifo_read_full_duplex(struct lantiq_ssc_spi * spi)518 static void rx_fifo_read_full_duplex(struct lantiq_ssc_spi *spi)
519 {
520 u8 *rx8;
521 u16 *rx16;
522 u32 *rx32;
523 u32 data;
524 unsigned int rx_fill = rx_fifo_level(spi);
525
526 /*
527 * Wait until all expected data to be shifted in.
528 * Otherwise, rx overrun may occur.
529 */
530 while (rx_fill != spi->fdx_tx_level)
531 rx_fill = rx_fifo_level(spi);
532
533 while (rx_fill) {
534 data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
535
536 switch (spi->bits_per_word) {
537 case 2 ... 8:
538 rx8 = spi->rx;
539 *rx8 = data;
540 spi->rx_todo--;
541 spi->rx++;
542 break;
543 case 16:
544 rx16 = (u16 *) spi->rx;
545 *rx16 = data;
546 spi->rx_todo -= 2;
547 spi->rx += 2;
548 break;
549 case 32:
550 rx32 = (u32 *) spi->rx;
551 *rx32 = data;
552 spi->rx_todo -= 4;
553 spi->rx += 4;
554 break;
555 default:
556 WARN_ON(1);
557 break;
558 }
559
560 rx_fill--;
561 }
562 }
563
rx_fifo_read_half_duplex(struct lantiq_ssc_spi * spi)564 static void rx_fifo_read_half_duplex(struct lantiq_ssc_spi *spi)
565 {
566 u32 data, *rx32;
567 u8 *rx8;
568 unsigned int rxbv, shift;
569 unsigned int rx_fill = rx_fifo_level(spi);
570
571 /*
572 * In RX-only mode the bits per word value is ignored by HW. A value
573 * of 32 is used instead. Thus all 4 bytes per FIFO must be read.
574 * If remaining RX bytes are less than 4, the FIFO must be read
575 * differently. The amount of received and valid bytes is indicated
576 * by STAT.RXBV register value.
577 */
578 while (rx_fill) {
579 if (spi->rx_todo < 4) {
580 rxbv = (lantiq_ssc_readl(spi, LTQ_SPI_STAT) &
581 LTQ_SPI_STAT_RXBV_M) >> LTQ_SPI_STAT_RXBV_S;
582 data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
583
584 shift = (rxbv - 1) * 8;
585 rx8 = spi->rx;
586
587 while (rxbv) {
588 *rx8++ = (data >> shift) & 0xFF;
589 rxbv--;
590 shift -= 8;
591 spi->rx_todo--;
592 spi->rx++;
593 }
594 } else {
595 data = lantiq_ssc_readl(spi, LTQ_SPI_RB);
596 rx32 = (u32 *) spi->rx;
597
598 *rx32++ = data;
599 spi->rx_todo -= 4;
600 spi->rx += 4;
601 }
602 rx_fill--;
603 }
604 }
605
rx_request(struct lantiq_ssc_spi * spi)606 static void rx_request(struct lantiq_ssc_spi *spi)
607 {
608 unsigned int rxreq, rxreq_max;
609
610 /*
611 * To avoid receive overflows at high clocks it is better to request
612 * only the amount of bytes that fits into all FIFOs. This value
613 * depends on the FIFO size implemented in hardware.
614 */
615 rxreq = spi->rx_todo;
616 rxreq_max = spi->rx_fifo_size * 4;
617 if (rxreq > rxreq_max)
618 rxreq = rxreq_max;
619
620 lantiq_ssc_writel(spi, rxreq, LTQ_SPI_RXREQ);
621 }
622
lantiq_ssc_xmit_interrupt(int irq,void * data)623 static irqreturn_t lantiq_ssc_xmit_interrupt(int irq, void *data)
624 {
625 struct lantiq_ssc_spi *spi = data;
626 const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
627 u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
628
629 spin_lock(&spi->lock);
630 if (hwcfg->irq_ack)
631 lantiq_ssc_writel(spi, val, hwcfg->irncr);
632
633 if (spi->tx) {
634 if (spi->rx && spi->rx_todo)
635 rx_fifo_read_full_duplex(spi);
636
637 if (spi->tx_todo)
638 tx_fifo_write(spi);
639 else if (!tx_fifo_level(spi))
640 goto completed;
641 } else if (spi->rx) {
642 if (spi->rx_todo) {
643 rx_fifo_read_half_duplex(spi);
644
645 if (spi->rx_todo)
646 rx_request(spi);
647 else
648 goto completed;
649 } else {
650 goto completed;
651 }
652 }
653
654 spin_unlock(&spi->lock);
655 return IRQ_HANDLED;
656
657 completed:
658 queue_work(spi->wq, &spi->work);
659 spin_unlock(&spi->lock);
660
661 return IRQ_HANDLED;
662 }
663
lantiq_ssc_err_interrupt(int irq,void * data)664 static irqreturn_t lantiq_ssc_err_interrupt(int irq, void *data)
665 {
666 struct lantiq_ssc_spi *spi = data;
667 const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
668 u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
669 u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
670
671 if (!(stat & LTQ_SPI_STAT_ERRORS))
672 return IRQ_NONE;
673
674 spin_lock(&spi->lock);
675 if (hwcfg->irq_ack)
676 lantiq_ssc_writel(spi, val, hwcfg->irncr);
677
678 if (stat & LTQ_SPI_STAT_RUE)
679 dev_err(spi->dev, "receive underflow error\n");
680 if (stat & LTQ_SPI_STAT_TUE)
681 dev_err(spi->dev, "transmit underflow error\n");
682 if (stat & LTQ_SPI_STAT_AE)
683 dev_err(spi->dev, "abort error\n");
684 if (stat & LTQ_SPI_STAT_RE)
685 dev_err(spi->dev, "receive overflow error\n");
686 if (stat & LTQ_SPI_STAT_TE)
687 dev_err(spi->dev, "transmit overflow error\n");
688 if (stat & LTQ_SPI_STAT_ME)
689 dev_err(spi->dev, "mode error\n");
690
691 /* Clear error flags */
692 lantiq_ssc_maskl(spi, 0, LTQ_SPI_WHBSTATE_CLR_ERRORS, LTQ_SPI_WHBSTATE);
693
694 /* set bad status so it can be retried */
695 if (spi->master->cur_msg)
696 spi->master->cur_msg->status = -EIO;
697 queue_work(spi->wq, &spi->work);
698 spin_unlock(&spi->lock);
699
700 return IRQ_HANDLED;
701 }
702
intel_lgm_ssc_isr(int irq,void * data)703 static irqreturn_t intel_lgm_ssc_isr(int irq, void *data)
704 {
705 struct lantiq_ssc_spi *spi = data;
706 const struct lantiq_ssc_hwcfg *hwcfg = spi->hwcfg;
707 u32 val = lantiq_ssc_readl(spi, hwcfg->irncr);
708
709 if (!(val & LTQ_SPI_IRNEN_ALL))
710 return IRQ_NONE;
711
712 if (val & LTQ_SPI_IRNEN_E)
713 return lantiq_ssc_err_interrupt(irq, data);
714
715 if ((val & hwcfg->irnen_t) || (val & hwcfg->irnen_r))
716 return lantiq_ssc_xmit_interrupt(irq, data);
717
718 return IRQ_HANDLED;
719 }
720
transfer_start(struct lantiq_ssc_spi * spi,struct spi_device * spidev,struct spi_transfer * t)721 static int transfer_start(struct lantiq_ssc_spi *spi, struct spi_device *spidev,
722 struct spi_transfer *t)
723 {
724 unsigned long flags;
725
726 spin_lock_irqsave(&spi->lock, flags);
727
728 spi->tx = t->tx_buf;
729 spi->rx = t->rx_buf;
730
731 if (t->tx_buf) {
732 spi->tx_todo = t->len;
733
734 /* initially fill TX FIFO */
735 tx_fifo_write(spi);
736 }
737
738 if (spi->rx) {
739 spi->rx_todo = t->len;
740
741 /* start shift clock in RX-only mode */
742 if (!spi->tx)
743 rx_request(spi);
744 }
745
746 spin_unlock_irqrestore(&spi->lock, flags);
747
748 return t->len;
749 }
750
751 /*
752 * The driver only gets an interrupt when the FIFO is empty, but there
753 * is an additional shift register from which the data is written to
754 * the wire. We get the last interrupt when the controller starts to
755 * write the last word to the wire, not when it is finished. Do busy
756 * waiting till it finishes.
757 */
lantiq_ssc_bussy_work(struct work_struct * work)758 static void lantiq_ssc_bussy_work(struct work_struct *work)
759 {
760 struct lantiq_ssc_spi *spi;
761 unsigned long long timeout = 8LL * 1000LL;
762 unsigned long end;
763
764 spi = container_of(work, typeof(*spi), work);
765
766 do_div(timeout, spi->speed_hz);
767 timeout += timeout + 100; /* some tolerance */
768
769 end = jiffies + msecs_to_jiffies(timeout);
770 do {
771 u32 stat = lantiq_ssc_readl(spi, LTQ_SPI_STAT);
772
773 if (!(stat & LTQ_SPI_STAT_BSY)) {
774 spi_finalize_current_transfer(spi->master);
775 return;
776 }
777
778 cond_resched();
779 } while (!time_after_eq(jiffies, end));
780
781 if (spi->master->cur_msg)
782 spi->master->cur_msg->status = -EIO;
783 spi_finalize_current_transfer(spi->master);
784 }
785
lantiq_ssc_handle_err(struct spi_master * master,struct spi_message * message)786 static void lantiq_ssc_handle_err(struct spi_master *master,
787 struct spi_message *message)
788 {
789 struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
790
791 /* flush FIFOs on timeout */
792 rx_fifo_flush(spi);
793 tx_fifo_flush(spi);
794 }
795
lantiq_ssc_set_cs(struct spi_device * spidev,bool enable)796 static void lantiq_ssc_set_cs(struct spi_device *spidev, bool enable)
797 {
798 struct lantiq_ssc_spi *spi = spi_master_get_devdata(spidev->master);
799 unsigned int cs = spidev->chip_select;
800 u32 fgpo;
801
802 if (!!(spidev->mode & SPI_CS_HIGH) == enable)
803 fgpo = (1 << (cs - spi->base_cs));
804 else
805 fgpo = (1 << (cs - spi->base_cs + LTQ_SPI_FGPO_SETOUTN_S));
806
807 lantiq_ssc_writel(spi, fgpo, LTQ_SPI_FPGO);
808 }
809
lantiq_ssc_transfer_one(struct spi_master * master,struct spi_device * spidev,struct spi_transfer * t)810 static int lantiq_ssc_transfer_one(struct spi_master *master,
811 struct spi_device *spidev,
812 struct spi_transfer *t)
813 {
814 struct lantiq_ssc_spi *spi = spi_master_get_devdata(master);
815
816 hw_setup_transfer(spi, spidev, t);
817
818 return transfer_start(spi, spidev, t);
819 }
820
intel_lgm_cfg_irq(struct platform_device * pdev,struct lantiq_ssc_spi * spi)821 static int intel_lgm_cfg_irq(struct platform_device *pdev, struct lantiq_ssc_spi *spi)
822 {
823 int irq;
824
825 irq = platform_get_irq(pdev, 0);
826 if (irq < 0)
827 return irq;
828
829 return devm_request_irq(&pdev->dev, irq, intel_lgm_ssc_isr, 0, "spi", spi);
830 }
831
lantiq_cfg_irq(struct platform_device * pdev,struct lantiq_ssc_spi * spi)832 static int lantiq_cfg_irq(struct platform_device *pdev, struct lantiq_ssc_spi *spi)
833 {
834 int irq, err;
835
836 irq = platform_get_irq_byname(pdev, LTQ_SPI_RX_IRQ_NAME);
837 if (irq < 0)
838 return irq;
839
840 err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_xmit_interrupt,
841 0, LTQ_SPI_RX_IRQ_NAME, spi);
842 if (err)
843 return err;
844
845 irq = platform_get_irq_byname(pdev, LTQ_SPI_TX_IRQ_NAME);
846 if (irq < 0)
847 return irq;
848
849 err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_xmit_interrupt,
850 0, LTQ_SPI_TX_IRQ_NAME, spi);
851
852 if (err)
853 return err;
854
855 irq = platform_get_irq_byname(pdev, LTQ_SPI_ERR_IRQ_NAME);
856 if (irq < 0)
857 return irq;
858
859 err = devm_request_irq(&pdev->dev, irq, lantiq_ssc_err_interrupt,
860 0, LTQ_SPI_ERR_IRQ_NAME, spi);
861 return err;
862 }
863
864 static const struct lantiq_ssc_hwcfg lantiq_ssc_xway = {
865 .cfg_irq = lantiq_cfg_irq,
866 .irnen_r = LTQ_SPI_IRNEN_R_XWAY,
867 .irnen_t = LTQ_SPI_IRNEN_T_XWAY,
868 .irnicr = 0xF8,
869 .irncr = 0xFC,
870 .fifo_size_mask = GENMASK(5, 0),
871 .irq_ack = false,
872 };
873
874 static const struct lantiq_ssc_hwcfg lantiq_ssc_xrx = {
875 .cfg_irq = lantiq_cfg_irq,
876 .irnen_r = LTQ_SPI_IRNEN_R_XRX,
877 .irnen_t = LTQ_SPI_IRNEN_T_XRX,
878 .irnicr = 0xF8,
879 .irncr = 0xFC,
880 .fifo_size_mask = GENMASK(5, 0),
881 .irq_ack = false,
882 };
883
884 static const struct lantiq_ssc_hwcfg intel_ssc_lgm = {
885 .cfg_irq = intel_lgm_cfg_irq,
886 .irnen_r = LTQ_SPI_IRNEN_R_XRX,
887 .irnen_t = LTQ_SPI_IRNEN_T_XRX,
888 .irnicr = 0xFC,
889 .irncr = 0xF8,
890 .fifo_size_mask = GENMASK(7, 0),
891 .irq_ack = true,
892 };
893
894 static const struct of_device_id lantiq_ssc_match[] = {
895 { .compatible = "lantiq,ase-spi", .data = &lantiq_ssc_xway, },
896 { .compatible = "lantiq,falcon-spi", .data = &lantiq_ssc_xrx, },
897 { .compatible = "lantiq,xrx100-spi", .data = &lantiq_ssc_xrx, },
898 { .compatible = "intel,lgm-spi", .data = &intel_ssc_lgm, },
899 {},
900 };
901 MODULE_DEVICE_TABLE(of, lantiq_ssc_match);
902
lantiq_ssc_probe(struct platform_device * pdev)903 static int lantiq_ssc_probe(struct platform_device *pdev)
904 {
905 struct device *dev = &pdev->dev;
906 struct spi_master *master;
907 struct lantiq_ssc_spi *spi;
908 const struct lantiq_ssc_hwcfg *hwcfg;
909 const struct of_device_id *match;
910 u32 id, supports_dma, revision;
911 unsigned int num_cs;
912 int err;
913
914 match = of_match_device(lantiq_ssc_match, dev);
915 if (!match) {
916 dev_err(dev, "no device match\n");
917 return -EINVAL;
918 }
919 hwcfg = match->data;
920
921 master = spi_alloc_master(dev, sizeof(struct lantiq_ssc_spi));
922 if (!master)
923 return -ENOMEM;
924
925 spi = spi_master_get_devdata(master);
926 spi->master = master;
927 spi->dev = dev;
928 spi->hwcfg = hwcfg;
929 platform_set_drvdata(pdev, spi);
930 spi->regbase = devm_platform_ioremap_resource(pdev, 0);
931 if (IS_ERR(spi->regbase)) {
932 err = PTR_ERR(spi->regbase);
933 goto err_master_put;
934 }
935
936 err = hwcfg->cfg_irq(pdev, spi);
937 if (err)
938 goto err_master_put;
939
940 spi->spi_clk = devm_clk_get(dev, "gate");
941 if (IS_ERR(spi->spi_clk)) {
942 err = PTR_ERR(spi->spi_clk);
943 goto err_master_put;
944 }
945 err = clk_prepare_enable(spi->spi_clk);
946 if (err)
947 goto err_master_put;
948
949 /*
950 * Use the old clk_get_fpi() function on Lantiq platform, till it
951 * supports common clk.
952 */
953 #if defined(CONFIG_LANTIQ) && !defined(CONFIG_COMMON_CLK)
954 spi->fpi_clk = clk_get_fpi();
955 #else
956 spi->fpi_clk = clk_get(dev, "freq");
957 #endif
958 if (IS_ERR(spi->fpi_clk)) {
959 err = PTR_ERR(spi->fpi_clk);
960 goto err_clk_disable;
961 }
962
963 num_cs = 8;
964 of_property_read_u32(pdev->dev.of_node, "num-cs", &num_cs);
965
966 spi->base_cs = 1;
967 of_property_read_u32(pdev->dev.of_node, "base-cs", &spi->base_cs);
968
969 spin_lock_init(&spi->lock);
970 spi->bits_per_word = 8;
971 spi->speed_hz = 0;
972
973 master->dev.of_node = pdev->dev.of_node;
974 master->num_chipselect = num_cs;
975 master->use_gpio_descriptors = true;
976 master->setup = lantiq_ssc_setup;
977 master->set_cs = lantiq_ssc_set_cs;
978 master->handle_err = lantiq_ssc_handle_err;
979 master->prepare_message = lantiq_ssc_prepare_message;
980 master->unprepare_message = lantiq_ssc_unprepare_message;
981 master->transfer_one = lantiq_ssc_transfer_one;
982 master->mode_bits = SPI_CPOL | SPI_CPHA | SPI_LSB_FIRST | SPI_CS_HIGH |
983 SPI_LOOP;
984 master->bits_per_word_mask = SPI_BPW_RANGE_MASK(2, 8) |
985 SPI_BPW_MASK(16) | SPI_BPW_MASK(32);
986
987 spi->wq = alloc_ordered_workqueue(dev_name(dev), WQ_MEM_RECLAIM);
988 if (!spi->wq) {
989 err = -ENOMEM;
990 goto err_clk_put;
991 }
992 INIT_WORK(&spi->work, lantiq_ssc_bussy_work);
993
994 id = lantiq_ssc_readl(spi, LTQ_SPI_ID);
995 spi->tx_fifo_size = (id >> LTQ_SPI_ID_TXFS_S) & hwcfg->fifo_size_mask;
996 spi->rx_fifo_size = (id >> LTQ_SPI_ID_RXFS_S) & hwcfg->fifo_size_mask;
997 supports_dma = (id & LTQ_SPI_ID_CFG_M) >> LTQ_SPI_ID_CFG_S;
998 revision = id & LTQ_SPI_ID_REV_M;
999
1000 lantiq_ssc_hw_init(spi);
1001
1002 dev_info(dev,
1003 "Lantiq SSC SPI controller (Rev %i, TXFS %u, RXFS %u, DMA %u)\n",
1004 revision, spi->tx_fifo_size, spi->rx_fifo_size, supports_dma);
1005
1006 err = devm_spi_register_master(dev, master);
1007 if (err) {
1008 dev_err(dev, "failed to register spi_master\n");
1009 goto err_wq_destroy;
1010 }
1011
1012 return 0;
1013
1014 err_wq_destroy:
1015 destroy_workqueue(spi->wq);
1016 err_clk_put:
1017 clk_put(spi->fpi_clk);
1018 err_clk_disable:
1019 clk_disable_unprepare(spi->spi_clk);
1020 err_master_put:
1021 spi_master_put(master);
1022
1023 return err;
1024 }
1025
lantiq_ssc_remove(struct platform_device * pdev)1026 static int lantiq_ssc_remove(struct platform_device *pdev)
1027 {
1028 struct lantiq_ssc_spi *spi = platform_get_drvdata(pdev);
1029
1030 lantiq_ssc_writel(spi, 0, LTQ_SPI_IRNEN);
1031 lantiq_ssc_writel(spi, 0, LTQ_SPI_CLC);
1032 rx_fifo_flush(spi);
1033 tx_fifo_flush(spi);
1034 hw_enter_config_mode(spi);
1035
1036 destroy_workqueue(spi->wq);
1037 clk_disable_unprepare(spi->spi_clk);
1038 clk_put(spi->fpi_clk);
1039
1040 return 0;
1041 }
1042
1043 static struct platform_driver lantiq_ssc_driver = {
1044 .probe = lantiq_ssc_probe,
1045 .remove = lantiq_ssc_remove,
1046 .driver = {
1047 .name = "spi-lantiq-ssc",
1048 .of_match_table = lantiq_ssc_match,
1049 },
1050 };
1051 module_platform_driver(lantiq_ssc_driver);
1052
1053 MODULE_DESCRIPTION("Lantiq SSC SPI controller driver");
1054 MODULE_AUTHOR("Daniel Schwierzeck <daniel.schwierzeck@gmail.com>");
1055 MODULE_AUTHOR("Hauke Mehrtens <hauke@hauke-m.de>");
1056 MODULE_LICENSE("GPL");
1057 MODULE_ALIAS("platform:spi-lantiq-ssc");
1058