1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #ifndef SkFloatingPoint_DEFINED
9 #define SkFloatingPoint_DEFINED
10
11 #include "include/core/SkTypes.h"
12 #include "include/private/SkFloatBits.h"
13 #include "include/private/SkSafe_math.h"
14 #include <float.h>
15 #include <math.h>
16 #include <cmath>
17 #include <cstring>
18 #include <limits>
19
20
21 #if defined(SK_LEGACY_FLOAT_RSQRT)
22 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
23 #include <xmmintrin.h>
24 #elif defined(SK_ARM_HAS_NEON)
25 #include <arm_neon.h>
26 #endif
27 #endif
28
29 // For _POSIX_VERSION
30 #if defined(__unix__) || (defined(__APPLE__) && defined(__MACH__))
31 #include <unistd.h>
32 #endif
33
34 constexpr float SK_FloatSqrt2 = 1.41421356f;
35 constexpr float SK_FloatPI = 3.14159265f;
36 constexpr double SK_DoublePI = 3.14159265358979323846264338327950288;
37
38 // C++98 cmath std::pow seems to be the earliest portable way to get float pow.
39 // However, on Linux including cmath undefines isfinite.
40 // http://gcc.gnu.org/bugzilla/show_bug.cgi?id=14608
sk_float_pow(float base,float exp)41 static inline float sk_float_pow(float base, float exp) {
42 return powf(base, exp);
43 }
44
45 #define sk_float_sqrt(x) sqrtf(x)
46 #define sk_float_sin(x) sinf(x)
47 #define sk_float_cos(x) cosf(x)
48 #define sk_float_tan(x) tanf(x)
49 #define sk_float_floor(x) floorf(x)
50 #define sk_float_ceil(x) ceilf(x)
51 #define sk_float_trunc(x) truncf(x)
52 #ifdef SK_BUILD_FOR_MAC
53 # define sk_float_acos(x) static_cast<float>(acos(x))
54 # define sk_float_asin(x) static_cast<float>(asin(x))
55 #else
56 # define sk_float_acos(x) acosf(x)
57 # define sk_float_asin(x) asinf(x)
58 #endif
59 #define sk_float_atan2(y,x) atan2f(y,x)
60 #define sk_float_abs(x) fabsf(x)
61 #define sk_float_copysign(x, y) copysignf(x, y)
62 #define sk_float_mod(x,y) fmodf(x,y)
63 #define sk_float_exp(x) expf(x)
64 #define sk_float_log(x) logf(x)
65
sk_float_degrees_to_radians(float degrees)66 constexpr float sk_float_degrees_to_radians(float degrees) {
67 return degrees * (SK_FloatPI / 180);
68 }
69
sk_float_radians_to_degrees(float radians)70 constexpr float sk_float_radians_to_degrees(float radians) {
71 return radians * (180 / SK_FloatPI);
72 }
73
74 #define sk_float_round(x) sk_float_floor((x) + 0.5f)
75
76 // can't find log2f on android, but maybe that just a tool bug?
77 #ifdef SK_BUILD_FOR_ANDROID
sk_float_log2(float x)78 static inline float sk_float_log2(float x) {
79 const double inv_ln_2 = 1.44269504088896;
80 return (float)(log(x) * inv_ln_2);
81 }
82 #else
83 #define sk_float_log2(x) log2f(x)
84 #endif
85
sk_float_isfinite(float x)86 static inline bool sk_float_isfinite(float x) {
87 return SkFloatBits_IsFinite(SkFloat2Bits(x));
88 }
89
sk_floats_are_finite(float a,float b)90 static inline bool sk_floats_are_finite(float a, float b) {
91 return sk_float_isfinite(a) && sk_float_isfinite(b);
92 }
93
94 // warning: comparing floating point with == or != is unsafe
95 // storing and comparing against same constants ok.
96 #if defined(__clang__)
97 #pragma clang diagnostic ignored "-Wfloat-equal"
98 #elif defined(__GNUC__)
99 #pragma GCC diagnostic ignored "-Wfloat-equal"
100 #endif
sk_floats_are_finite(const float array[],int count)101 static inline bool sk_floats_are_finite(const float array[], int count) {
102 float prod = 0;
103 for (int i = 0; i < count; ++i) {
104 prod *= array[i];
105 }
106 // At this point, prod will either be NaN or 0
107 return prod == 0; // if prod is NaN, this check will return false
108 }
109
sk_float_isinf(float x)110 static inline bool sk_float_isinf(float x) {
111 return SkFloatBits_IsInf(SkFloat2Bits(x));
112 }
113
sk_float_isnan(float x)114 static inline bool sk_float_isnan(float x) {
115 return !(x == x);
116 }
117
118 #define sk_double_isnan(a) sk_float_isnan(a)
119
120 #define SK_MaxS32FitsInFloat 2147483520
121 #define SK_MinS32FitsInFloat -SK_MaxS32FitsInFloat
122
123 #define SK_MaxS64FitsInFloat (SK_MaxS64 >> (63-24) << (63-24)) // 0x7fffff8000000000
124 #define SK_MinS64FitsInFloat -SK_MaxS64FitsInFloat
125
126 /**
127 * Return the closest int for the given float. Returns SK_MaxS32FitsInFloat for NaN.
128 */
sk_float_saturate2int(float x)129 static inline int sk_float_saturate2int(float x) {
130 x = x < SK_MaxS32FitsInFloat ? x : SK_MaxS32FitsInFloat;
131 x = x > SK_MinS32FitsInFloat ? x : SK_MinS32FitsInFloat;
132 return (int)x;
133 }
134
135 /**
136 * Return the closest int for the given double. Returns SK_MaxS32 for NaN.
137 */
sk_double_saturate2int(double x)138 static inline int sk_double_saturate2int(double x) {
139 x = x < SK_MaxS32 ? x : SK_MaxS32;
140 x = x > SK_MinS32 ? x : SK_MinS32;
141 return (int)x;
142 }
143
144 /**
145 * Return the closest int64_t for the given float. Returns SK_MaxS64FitsInFloat for NaN.
146 */
sk_float_saturate2int64(float x)147 static inline int64_t sk_float_saturate2int64(float x) {
148 x = x < SK_MaxS64FitsInFloat ? x : SK_MaxS64FitsInFloat;
149 x = x > SK_MinS64FitsInFloat ? x : SK_MinS64FitsInFloat;
150 return (int64_t)x;
151 }
152
153 #define sk_float_floor2int(x) sk_float_saturate2int(sk_float_floor(x))
154 #define sk_float_round2int(x) sk_float_saturate2int(sk_float_floor((x) + 0.5f))
155 #define sk_float_ceil2int(x) sk_float_saturate2int(sk_float_ceil(x))
156
157 #define sk_float_floor2int_no_saturate(x) (int)sk_float_floor(x)
158 #define sk_float_round2int_no_saturate(x) (int)sk_float_floor((x) + 0.5f)
159 #define sk_float_ceil2int_no_saturate(x) (int)sk_float_ceil(x)
160
161 #define sk_double_floor(x) floor(x)
162 #define sk_double_round(x) floor((x) + 0.5)
163 #define sk_double_ceil(x) ceil(x)
164 #define sk_double_floor2int(x) (int)floor(x)
165 #define sk_double_round2int(x) (int)floor((x) + 0.5)
166 #define sk_double_ceil2int(x) (int)ceil(x)
167
168 // Cast double to float, ignoring any warning about too-large finite values being cast to float.
169 // Clang thinks this is undefined, but it's actually implementation defined to return either
170 // the largest float or infinity (one of the two bracketing representable floats). Good enough!
171 SK_ATTRIBUTE(no_sanitize("float-cast-overflow"))
sk_double_to_float(double x)172 static inline float sk_double_to_float(double x) {
173 return static_cast<float>(x);
174 }
175
176 #define SK_FloatNaN std::numeric_limits<float>::quiet_NaN()
177 #define SK_FloatInfinity (+std::numeric_limits<float>::infinity())
178 #define SK_FloatNegativeInfinity (-std::numeric_limits<float>::infinity())
179
180 #define SK_DoubleNaN std::numeric_limits<double>::quiet_NaN()
181
182 // Returns false if any of the floats are outside of [0...1]
183 // Returns true if count is 0
184 bool sk_floats_are_unit(const float array[], size_t count);
185
186 #if defined(SK_LEGACY_FLOAT_RSQRT)
sk_float_rsqrt_portable(float x)187 static inline float sk_float_rsqrt_portable(float x) {
188 // Get initial estimate.
189 int i;
190 memcpy(&i, &x, 4);
191 i = 0x5F1FFFF9 - (i>>1);
192 float estimate;
193 memcpy(&estimate, &i, 4);
194
195 // One step of Newton's method to refine.
196 const float estimate_sq = estimate*estimate;
197 estimate *= 0.703952253f*(2.38924456f-x*estimate_sq);
198 return estimate;
199 }
200
201 // Fast, approximate inverse square root.
202 // Compare to name-brand "1.0f / sk_float_sqrt(x)". Should be around 10x faster on SSE, 2x on NEON.
sk_float_rsqrt(float x)203 static inline float sk_float_rsqrt(float x) {
204 // We want all this inlined, so we'll inline SIMD and just take the hit when we don't know we've got
205 // it at compile time. This is going to be too fast to productively hide behind a function pointer.
206 //
207 // We do one step of Newton's method to refine the estimates in the NEON and portable paths. No
208 // refinement is faster, but very innacurate. Two steps is more accurate, but slower than 1/sqrt.
209 //
210 // Optimized constants in the portable path courtesy of http://rrrola.wz.cz/inv_sqrt.html
211 #if SK_CPU_SSE_LEVEL >= SK_CPU_SSE_LEVEL_SSE1
212 return _mm_cvtss_f32(_mm_rsqrt_ss(_mm_set_ss(x)));
213 #elif defined(SK_ARM_HAS_NEON)
214 // Get initial estimate.
215 const float32x2_t xx = vdup_n_f32(x); // Clever readers will note we're doing everything 2x.
216 float32x2_t estimate = vrsqrte_f32(xx);
217
218 // One step of Newton's method to refine.
219 const float32x2_t estimate_sq = vmul_f32(estimate, estimate);
220 estimate = vmul_f32(estimate, vrsqrts_f32(xx, estimate_sq));
221 return vget_lane_f32(estimate, 0); // 1 will work fine too; the answer's in both places.
222 #else
223 return sk_float_rsqrt_portable(x);
224 #endif
225 }
226 #else
227
sk_float_rsqrt_portable(float x)228 static inline float sk_float_rsqrt_portable(float x) { return 1.0f / sk_float_sqrt(x); }
sk_float_rsqrt(float x)229 static inline float sk_float_rsqrt (float x) { return 1.0f / sk_float_sqrt(x); }
230
231 #endif
232
233 // Returns the log2 of the provided value, were that value to be rounded up to the next power of 2.
234 // Returns 0 if value <= 0:
235 // Never returns a negative number, even if value is NaN.
236 //
237 // sk_float_nextlog2((-inf..1]) -> 0
238 // sk_float_nextlog2((1..2]) -> 1
239 // sk_float_nextlog2((2..4]) -> 2
240 // sk_float_nextlog2((4..8]) -> 3
241 // ...
sk_float_nextlog2(float x)242 static inline int sk_float_nextlog2(float x) {
243 uint32_t bits = (uint32_t)SkFloat2Bits(x);
244 bits += (1u << 23) - 1u; // Increment the exponent for non-powers-of-2.
245 int exp = ((int32_t)bits >> 23) - 127;
246 return exp & ~(exp >> 31); // Return 0 for negative or denormalized floats, and exponents < 0.
247 }
248
249 // This is the number of significant digits we can print in a string such that when we read that
250 // string back we get the floating point number we expect. The minimum value C requires is 6, but
251 // most compilers support 9
252 #ifdef FLT_DECIMAL_DIG
253 #define SK_FLT_DECIMAL_DIG FLT_DECIMAL_DIG
254 #else
255 #define SK_FLT_DECIMAL_DIG 9
256 #endif
257
258 // IEEE defines how float divide behaves for non-finite values and zero-denoms, but C does not
259 // so we have a helper that suppresses the possible undefined-behavior warnings.
260
261 SK_ATTRIBUTE(no_sanitize("float-divide-by-zero"))
sk_ieee_float_divide(float numer,float denom)262 static inline float sk_ieee_float_divide(float numer, float denom) {
263 return numer / denom;
264 }
265
266 SK_ATTRIBUTE(no_sanitize("float-divide-by-zero"))
sk_ieee_double_divide(double numer,double denom)267 static inline double sk_ieee_double_divide(double numer, double denom) {
268 return numer / denom;
269 }
270
271 // While we clean up divide by zero, we'll replace places that do divide by zero with this TODO.
sk_ieee_float_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(float n,float d)272 static inline float sk_ieee_float_divide_TODO_IS_DIVIDE_BY_ZERO_SAFE_HERE(float n, float d) {
273 return sk_ieee_float_divide(n,d);
274 }
275
sk_fmaf(float f,float m,float a)276 static inline float sk_fmaf(float f, float m, float a) {
277 #if defined(FP_FAST_FMA)
278 return std::fmaf(f,m,a);
279 #else
280 return f*m+a;
281 #endif
282 }
283
284 #endif
285