1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3 * Copyright (C) International Business Machines Corp., 2000-2004
4 * Portions Copyright (C) Tino Reichardt, 2012
5 */
6
7 #include <linux/fs.h>
8 #include <linux/slab.h>
9 #include "jfs_incore.h"
10 #include "jfs_superblock.h"
11 #include "jfs_dmap.h"
12 #include "jfs_imap.h"
13 #include "jfs_lock.h"
14 #include "jfs_metapage.h"
15 #include "jfs_debug.h"
16 #include "jfs_discard.h"
17
18 /*
19 * SERIALIZATION of the Block Allocation Map.
20 *
21 * the working state of the block allocation map is accessed in
22 * two directions:
23 *
24 * 1) allocation and free requests that start at the dmap
25 * level and move up through the dmap control pages (i.e.
26 * the vast majority of requests).
27 *
28 * 2) allocation requests that start at dmap control page
29 * level and work down towards the dmaps.
30 *
31 * the serialization scheme used here is as follows.
32 *
33 * requests which start at the bottom are serialized against each
34 * other through buffers and each requests holds onto its buffers
35 * as it works it way up from a single dmap to the required level
36 * of dmap control page.
37 * requests that start at the top are serialized against each other
38 * and request that start from the bottom by the multiple read/single
39 * write inode lock of the bmap inode. requests starting at the top
40 * take this lock in write mode while request starting at the bottom
41 * take the lock in read mode. a single top-down request may proceed
42 * exclusively while multiple bottoms-up requests may proceed
43 * simultaneously (under the protection of busy buffers).
44 *
45 * in addition to information found in dmaps and dmap control pages,
46 * the working state of the block allocation map also includes read/
47 * write information maintained in the bmap descriptor (i.e. total
48 * free block count, allocation group level free block counts).
49 * a single exclusive lock (BMAP_LOCK) is used to guard this information
50 * in the face of multiple-bottoms up requests.
51 * (lock ordering: IREAD_LOCK, BMAP_LOCK);
52 *
53 * accesses to the persistent state of the block allocation map (limited
54 * to the persistent bitmaps in dmaps) is guarded by (busy) buffers.
55 */
56
57 #define BMAP_LOCK_INIT(bmp) mutex_init(&bmp->db_bmaplock)
58 #define BMAP_LOCK(bmp) mutex_lock(&bmp->db_bmaplock)
59 #define BMAP_UNLOCK(bmp) mutex_unlock(&bmp->db_bmaplock)
60
61 /*
62 * forward references
63 */
64 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
65 int nblocks);
66 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval);
67 static int dbBackSplit(dmtree_t * tp, int leafno);
68 static int dbJoin(dmtree_t * tp, int leafno, int newval);
69 static void dbAdjTree(dmtree_t * tp, int leafno, int newval);
70 static int dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc,
71 int level);
72 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results);
73 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
74 int nblocks);
75 static int dbAllocNear(struct bmap * bmp, struct dmap * dp, s64 blkno,
76 int nblocks,
77 int l2nb, s64 * results);
78 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
79 int nblocks);
80 static int dbAllocDmapLev(struct bmap * bmp, struct dmap * dp, int nblocks,
81 int l2nb,
82 s64 * results);
83 static int dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb,
84 s64 * results);
85 static int dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno,
86 s64 * results);
87 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks);
88 static int dbFindBits(u32 word, int l2nb);
89 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno);
90 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx);
91 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
92 int nblocks);
93 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
94 int nblocks);
95 static int dbMaxBud(u8 * cp);
96 static int blkstol2(s64 nb);
97
98 static int cntlz(u32 value);
99 static int cnttz(u32 word);
100
101 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
102 int nblocks);
103 static int dbInitDmap(struct dmap * dp, s64 blkno, int nblocks);
104 static int dbInitDmapTree(struct dmap * dp);
105 static int dbInitTree(struct dmaptree * dtp);
106 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i);
107 static int dbGetL2AGSize(s64 nblocks);
108
109 /*
110 * buddy table
111 *
112 * table used for determining buddy sizes within characters of
113 * dmap bitmap words. the characters themselves serve as indexes
114 * into the table, with the table elements yielding the maximum
115 * binary buddy of free bits within the character.
116 */
117 static const s8 budtab[256] = {
118 3, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
119 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
120 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
121 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
122 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
123 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
124 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
125 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
126 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
127 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
128 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
129 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
130 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
131 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
132 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0,
133 2, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, -1
134 };
135
136 /*
137 * NAME: dbMount()
138 *
139 * FUNCTION: initializate the block allocation map.
140 *
141 * memory is allocated for the in-core bmap descriptor and
142 * the in-core descriptor is initialized from disk.
143 *
144 * PARAMETERS:
145 * ipbmap - pointer to in-core inode for the block map.
146 *
147 * RETURN VALUES:
148 * 0 - success
149 * -ENOMEM - insufficient memory
150 * -EIO - i/o error
151 * -EINVAL - wrong bmap data
152 */
dbMount(struct inode * ipbmap)153 int dbMount(struct inode *ipbmap)
154 {
155 struct bmap *bmp;
156 struct dbmap_disk *dbmp_le;
157 struct metapage *mp;
158 int i, err;
159
160 /*
161 * allocate/initialize the in-memory bmap descriptor
162 */
163 /* allocate memory for the in-memory bmap descriptor */
164 bmp = kmalloc(sizeof(struct bmap), GFP_KERNEL);
165 if (bmp == NULL)
166 return -ENOMEM;
167
168 /* read the on-disk bmap descriptor. */
169 mp = read_metapage(ipbmap,
170 BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
171 PSIZE, 0);
172 if (mp == NULL) {
173 err = -EIO;
174 goto err_kfree_bmp;
175 }
176
177 /* copy the on-disk bmap descriptor to its in-memory version. */
178 dbmp_le = (struct dbmap_disk *) mp->data;
179 bmp->db_mapsize = le64_to_cpu(dbmp_le->dn_mapsize);
180 bmp->db_nfree = le64_to_cpu(dbmp_le->dn_nfree);
181 bmp->db_l2nbperpage = le32_to_cpu(dbmp_le->dn_l2nbperpage);
182 bmp->db_numag = le32_to_cpu(dbmp_le->dn_numag);
183 if (!bmp->db_numag) {
184 err = -EINVAL;
185 goto err_release_metapage;
186 }
187
188 bmp->db_maxlevel = le32_to_cpu(dbmp_le->dn_maxlevel);
189 bmp->db_maxag = le32_to_cpu(dbmp_le->dn_maxag);
190 bmp->db_agpref = le32_to_cpu(dbmp_le->dn_agpref);
191 bmp->db_aglevel = le32_to_cpu(dbmp_le->dn_aglevel);
192 bmp->db_agheight = le32_to_cpu(dbmp_le->dn_agheight);
193 bmp->db_agwidth = le32_to_cpu(dbmp_le->dn_agwidth);
194 bmp->db_agstart = le32_to_cpu(dbmp_le->dn_agstart);
195 bmp->db_agl2size = le32_to_cpu(dbmp_le->dn_agl2size);
196 if (bmp->db_agl2size > L2MAXL2SIZE - L2MAXAG ||
197 bmp->db_agl2size < 0) {
198 err = -EINVAL;
199 goto err_release_metapage;
200 }
201
202 if (((bmp->db_mapsize - 1) >> bmp->db_agl2size) > MAXAG) {
203 err = -EINVAL;
204 goto err_release_metapage;
205 }
206
207 for (i = 0; i < MAXAG; i++)
208 bmp->db_agfree[i] = le64_to_cpu(dbmp_le->dn_agfree[i]);
209 bmp->db_agsize = le64_to_cpu(dbmp_le->dn_agsize);
210 bmp->db_maxfreebud = dbmp_le->dn_maxfreebud;
211
212 /* release the buffer. */
213 release_metapage(mp);
214
215 /* bind the bmap inode and the bmap descriptor to each other. */
216 bmp->db_ipbmap = ipbmap;
217 JFS_SBI(ipbmap->i_sb)->bmap = bmp;
218
219 memset(bmp->db_active, 0, sizeof(bmp->db_active));
220
221 /*
222 * allocate/initialize the bmap lock
223 */
224 BMAP_LOCK_INIT(bmp);
225
226 return (0);
227
228 err_release_metapage:
229 release_metapage(mp);
230 err_kfree_bmp:
231 kfree(bmp);
232 return err;
233 }
234
235
236 /*
237 * NAME: dbUnmount()
238 *
239 * FUNCTION: terminate the block allocation map in preparation for
240 * file system unmount.
241 *
242 * the in-core bmap descriptor is written to disk and
243 * the memory for this descriptor is freed.
244 *
245 * PARAMETERS:
246 * ipbmap - pointer to in-core inode for the block map.
247 *
248 * RETURN VALUES:
249 * 0 - success
250 * -EIO - i/o error
251 */
dbUnmount(struct inode * ipbmap,int mounterror)252 int dbUnmount(struct inode *ipbmap, int mounterror)
253 {
254 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
255
256 if (!(mounterror || isReadOnly(ipbmap)))
257 dbSync(ipbmap);
258
259 /*
260 * Invalidate the page cache buffers
261 */
262 truncate_inode_pages(ipbmap->i_mapping, 0);
263
264 /* free the memory for the in-memory bmap. */
265 kfree(bmp);
266
267 return (0);
268 }
269
270 /*
271 * dbSync()
272 */
dbSync(struct inode * ipbmap)273 int dbSync(struct inode *ipbmap)
274 {
275 struct dbmap_disk *dbmp_le;
276 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
277 struct metapage *mp;
278 int i;
279
280 /*
281 * write bmap global control page
282 */
283 /* get the buffer for the on-disk bmap descriptor. */
284 mp = read_metapage(ipbmap,
285 BMAPBLKNO << JFS_SBI(ipbmap->i_sb)->l2nbperpage,
286 PSIZE, 0);
287 if (mp == NULL) {
288 jfs_err("dbSync: read_metapage failed!");
289 return -EIO;
290 }
291 /* copy the in-memory version of the bmap to the on-disk version */
292 dbmp_le = (struct dbmap_disk *) mp->data;
293 dbmp_le->dn_mapsize = cpu_to_le64(bmp->db_mapsize);
294 dbmp_le->dn_nfree = cpu_to_le64(bmp->db_nfree);
295 dbmp_le->dn_l2nbperpage = cpu_to_le32(bmp->db_l2nbperpage);
296 dbmp_le->dn_numag = cpu_to_le32(bmp->db_numag);
297 dbmp_le->dn_maxlevel = cpu_to_le32(bmp->db_maxlevel);
298 dbmp_le->dn_maxag = cpu_to_le32(bmp->db_maxag);
299 dbmp_le->dn_agpref = cpu_to_le32(bmp->db_agpref);
300 dbmp_le->dn_aglevel = cpu_to_le32(bmp->db_aglevel);
301 dbmp_le->dn_agheight = cpu_to_le32(bmp->db_agheight);
302 dbmp_le->dn_agwidth = cpu_to_le32(bmp->db_agwidth);
303 dbmp_le->dn_agstart = cpu_to_le32(bmp->db_agstart);
304 dbmp_le->dn_agl2size = cpu_to_le32(bmp->db_agl2size);
305 for (i = 0; i < MAXAG; i++)
306 dbmp_le->dn_agfree[i] = cpu_to_le64(bmp->db_agfree[i]);
307 dbmp_le->dn_agsize = cpu_to_le64(bmp->db_agsize);
308 dbmp_le->dn_maxfreebud = bmp->db_maxfreebud;
309
310 /* write the buffer */
311 write_metapage(mp);
312
313 /*
314 * write out dirty pages of bmap
315 */
316 filemap_write_and_wait(ipbmap->i_mapping);
317
318 diWriteSpecial(ipbmap, 0);
319
320 return (0);
321 }
322
323 /*
324 * NAME: dbFree()
325 *
326 * FUNCTION: free the specified block range from the working block
327 * allocation map.
328 *
329 * the blocks will be free from the working map one dmap
330 * at a time.
331 *
332 * PARAMETERS:
333 * ip - pointer to in-core inode;
334 * blkno - starting block number to be freed.
335 * nblocks - number of blocks to be freed.
336 *
337 * RETURN VALUES:
338 * 0 - success
339 * -EIO - i/o error
340 */
dbFree(struct inode * ip,s64 blkno,s64 nblocks)341 int dbFree(struct inode *ip, s64 blkno, s64 nblocks)
342 {
343 struct metapage *mp;
344 struct dmap *dp;
345 int nb, rc;
346 s64 lblkno, rem;
347 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
348 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
349 struct super_block *sb = ipbmap->i_sb;
350
351 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
352
353 /* block to be freed better be within the mapsize. */
354 if (unlikely((blkno == 0) || (blkno + nblocks > bmp->db_mapsize))) {
355 IREAD_UNLOCK(ipbmap);
356 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
357 (unsigned long long) blkno,
358 (unsigned long long) nblocks);
359 jfs_error(ip->i_sb, "block to be freed is outside the map\n");
360 return -EIO;
361 }
362
363 /**
364 * TRIM the blocks, when mounted with discard option
365 */
366 if (JFS_SBI(sb)->flag & JFS_DISCARD)
367 if (JFS_SBI(sb)->minblks_trim <= nblocks)
368 jfs_issue_discard(ipbmap, blkno, nblocks);
369
370 /*
371 * free the blocks a dmap at a time.
372 */
373 mp = NULL;
374 for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
375 /* release previous dmap if any */
376 if (mp) {
377 write_metapage(mp);
378 }
379
380 /* get the buffer for the current dmap. */
381 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
382 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
383 if (mp == NULL) {
384 IREAD_UNLOCK(ipbmap);
385 return -EIO;
386 }
387 dp = (struct dmap *) mp->data;
388
389 /* determine the number of blocks to be freed from
390 * this dmap.
391 */
392 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
393
394 /* free the blocks. */
395 if ((rc = dbFreeDmap(bmp, dp, blkno, nb))) {
396 jfs_error(ip->i_sb, "error in block map\n");
397 release_metapage(mp);
398 IREAD_UNLOCK(ipbmap);
399 return (rc);
400 }
401 }
402
403 /* write the last buffer. */
404 if (mp)
405 write_metapage(mp);
406
407 IREAD_UNLOCK(ipbmap);
408
409 return (0);
410 }
411
412
413 /*
414 * NAME: dbUpdatePMap()
415 *
416 * FUNCTION: update the allocation state (free or allocate) of the
417 * specified block range in the persistent block allocation map.
418 *
419 * the blocks will be updated in the persistent map one
420 * dmap at a time.
421 *
422 * PARAMETERS:
423 * ipbmap - pointer to in-core inode for the block map.
424 * free - 'true' if block range is to be freed from the persistent
425 * map; 'false' if it is to be allocated.
426 * blkno - starting block number of the range.
427 * nblocks - number of contiguous blocks in the range.
428 * tblk - transaction block;
429 *
430 * RETURN VALUES:
431 * 0 - success
432 * -EIO - i/o error
433 */
434 int
dbUpdatePMap(struct inode * ipbmap,int free,s64 blkno,s64 nblocks,struct tblock * tblk)435 dbUpdatePMap(struct inode *ipbmap,
436 int free, s64 blkno, s64 nblocks, struct tblock * tblk)
437 {
438 int nblks, dbitno, wbitno, rbits;
439 int word, nbits, nwords;
440 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
441 s64 lblkno, rem, lastlblkno;
442 u32 mask;
443 struct dmap *dp;
444 struct metapage *mp;
445 struct jfs_log *log;
446 int lsn, difft, diffp;
447 unsigned long flags;
448
449 /* the blocks better be within the mapsize. */
450 if (blkno + nblocks > bmp->db_mapsize) {
451 printk(KERN_ERR "blkno = %Lx, nblocks = %Lx\n",
452 (unsigned long long) blkno,
453 (unsigned long long) nblocks);
454 jfs_error(ipbmap->i_sb, "blocks are outside the map\n");
455 return -EIO;
456 }
457
458 /* compute delta of transaction lsn from log syncpt */
459 lsn = tblk->lsn;
460 log = (struct jfs_log *) JFS_SBI(tblk->sb)->log;
461 logdiff(difft, lsn, log);
462
463 /*
464 * update the block state a dmap at a time.
465 */
466 mp = NULL;
467 lastlblkno = 0;
468 for (rem = nblocks; rem > 0; rem -= nblks, blkno += nblks) {
469 /* get the buffer for the current dmap. */
470 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
471 if (lblkno != lastlblkno) {
472 if (mp) {
473 write_metapage(mp);
474 }
475
476 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE,
477 0);
478 if (mp == NULL)
479 return -EIO;
480 metapage_wait_for_io(mp);
481 }
482 dp = (struct dmap *) mp->data;
483
484 /* determine the bit number and word within the dmap of
485 * the starting block. also determine how many blocks
486 * are to be updated within this dmap.
487 */
488 dbitno = blkno & (BPERDMAP - 1);
489 word = dbitno >> L2DBWORD;
490 nblks = min(rem, (s64)BPERDMAP - dbitno);
491
492 /* update the bits of the dmap words. the first and last
493 * words may only have a subset of their bits updated. if
494 * this is the case, we'll work against that word (i.e.
495 * partial first and/or last) only in a single pass. a
496 * single pass will also be used to update all words that
497 * are to have all their bits updated.
498 */
499 for (rbits = nblks; rbits > 0;
500 rbits -= nbits, dbitno += nbits) {
501 /* determine the bit number within the word and
502 * the number of bits within the word.
503 */
504 wbitno = dbitno & (DBWORD - 1);
505 nbits = min(rbits, DBWORD - wbitno);
506
507 /* check if only part of the word is to be updated. */
508 if (nbits < DBWORD) {
509 /* update (free or allocate) the bits
510 * in this word.
511 */
512 mask =
513 (ONES << (DBWORD - nbits) >> wbitno);
514 if (free)
515 dp->pmap[word] &=
516 cpu_to_le32(~mask);
517 else
518 dp->pmap[word] |=
519 cpu_to_le32(mask);
520
521 word += 1;
522 } else {
523 /* one or more words are to have all
524 * their bits updated. determine how
525 * many words and how many bits.
526 */
527 nwords = rbits >> L2DBWORD;
528 nbits = nwords << L2DBWORD;
529
530 /* update (free or allocate) the bits
531 * in these words.
532 */
533 if (free)
534 memset(&dp->pmap[word], 0,
535 nwords * 4);
536 else
537 memset(&dp->pmap[word], (int) ONES,
538 nwords * 4);
539
540 word += nwords;
541 }
542 }
543
544 /*
545 * update dmap lsn
546 */
547 if (lblkno == lastlblkno)
548 continue;
549
550 lastlblkno = lblkno;
551
552 LOGSYNC_LOCK(log, flags);
553 if (mp->lsn != 0) {
554 /* inherit older/smaller lsn */
555 logdiff(diffp, mp->lsn, log);
556 if (difft < diffp) {
557 mp->lsn = lsn;
558
559 /* move bp after tblock in logsync list */
560 list_move(&mp->synclist, &tblk->synclist);
561 }
562
563 /* inherit younger/larger clsn */
564 logdiff(difft, tblk->clsn, log);
565 logdiff(diffp, mp->clsn, log);
566 if (difft > diffp)
567 mp->clsn = tblk->clsn;
568 } else {
569 mp->log = log;
570 mp->lsn = lsn;
571
572 /* insert bp after tblock in logsync list */
573 log->count++;
574 list_add(&mp->synclist, &tblk->synclist);
575
576 mp->clsn = tblk->clsn;
577 }
578 LOGSYNC_UNLOCK(log, flags);
579 }
580
581 /* write the last buffer. */
582 if (mp) {
583 write_metapage(mp);
584 }
585
586 return (0);
587 }
588
589
590 /*
591 * NAME: dbNextAG()
592 *
593 * FUNCTION: find the preferred allocation group for new allocations.
594 *
595 * Within the allocation groups, we maintain a preferred
596 * allocation group which consists of a group with at least
597 * average free space. It is the preferred group that we target
598 * new inode allocation towards. The tie-in between inode
599 * allocation and block allocation occurs as we allocate the
600 * first (data) block of an inode and specify the inode (block)
601 * as the allocation hint for this block.
602 *
603 * We try to avoid having more than one open file growing in
604 * an allocation group, as this will lead to fragmentation.
605 * This differs from the old OS/2 method of trying to keep
606 * empty ags around for large allocations.
607 *
608 * PARAMETERS:
609 * ipbmap - pointer to in-core inode for the block map.
610 *
611 * RETURN VALUES:
612 * the preferred allocation group number.
613 */
dbNextAG(struct inode * ipbmap)614 int dbNextAG(struct inode *ipbmap)
615 {
616 s64 avgfree;
617 int agpref;
618 s64 hwm = 0;
619 int i;
620 int next_best = -1;
621 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
622
623 BMAP_LOCK(bmp);
624
625 /* determine the average number of free blocks within the ags. */
626 avgfree = (u32)bmp->db_nfree / bmp->db_numag;
627
628 /*
629 * if the current preferred ag does not have an active allocator
630 * and has at least average freespace, return it
631 */
632 agpref = bmp->db_agpref;
633 if ((atomic_read(&bmp->db_active[agpref]) == 0) &&
634 (bmp->db_agfree[agpref] >= avgfree))
635 goto unlock;
636
637 /* From the last preferred ag, find the next one with at least
638 * average free space.
639 */
640 for (i = 0 ; i < bmp->db_numag; i++, agpref++) {
641 if (agpref == bmp->db_numag)
642 agpref = 0;
643
644 if (atomic_read(&bmp->db_active[agpref]))
645 /* open file is currently growing in this ag */
646 continue;
647 if (bmp->db_agfree[agpref] >= avgfree) {
648 /* Return this one */
649 bmp->db_agpref = agpref;
650 goto unlock;
651 } else if (bmp->db_agfree[agpref] > hwm) {
652 /* Less than avg. freespace, but best so far */
653 hwm = bmp->db_agfree[agpref];
654 next_best = agpref;
655 }
656 }
657
658 /*
659 * If no inactive ag was found with average freespace, use the
660 * next best
661 */
662 if (next_best != -1)
663 bmp->db_agpref = next_best;
664 /* else leave db_agpref unchanged */
665 unlock:
666 BMAP_UNLOCK(bmp);
667
668 /* return the preferred group.
669 */
670 return (bmp->db_agpref);
671 }
672
673 /*
674 * NAME: dbAlloc()
675 *
676 * FUNCTION: attempt to allocate a specified number of contiguous free
677 * blocks from the working allocation block map.
678 *
679 * the block allocation policy uses hints and a multi-step
680 * approach.
681 *
682 * for allocation requests smaller than the number of blocks
683 * per dmap, we first try to allocate the new blocks
684 * immediately following the hint. if these blocks are not
685 * available, we try to allocate blocks near the hint. if
686 * no blocks near the hint are available, we next try to
687 * allocate within the same dmap as contains the hint.
688 *
689 * if no blocks are available in the dmap or the allocation
690 * request is larger than the dmap size, we try to allocate
691 * within the same allocation group as contains the hint. if
692 * this does not succeed, we finally try to allocate anywhere
693 * within the aggregate.
694 *
695 * we also try to allocate anywhere within the aggregate for
696 * for allocation requests larger than the allocation group
697 * size or requests that specify no hint value.
698 *
699 * PARAMETERS:
700 * ip - pointer to in-core inode;
701 * hint - allocation hint.
702 * nblocks - number of contiguous blocks in the range.
703 * results - on successful return, set to the starting block number
704 * of the newly allocated contiguous range.
705 *
706 * RETURN VALUES:
707 * 0 - success
708 * -ENOSPC - insufficient disk resources
709 * -EIO - i/o error
710 */
dbAlloc(struct inode * ip,s64 hint,s64 nblocks,s64 * results)711 int dbAlloc(struct inode *ip, s64 hint, s64 nblocks, s64 * results)
712 {
713 int rc, agno;
714 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
715 struct bmap *bmp;
716 struct metapage *mp;
717 s64 lblkno, blkno;
718 struct dmap *dp;
719 int l2nb;
720 s64 mapSize;
721 int writers;
722
723 /* assert that nblocks is valid */
724 assert(nblocks > 0);
725
726 /* get the log2 number of blocks to be allocated.
727 * if the number of blocks is not a log2 multiple,
728 * it will be rounded up to the next log2 multiple.
729 */
730 l2nb = BLKSTOL2(nblocks);
731
732 bmp = JFS_SBI(ip->i_sb)->bmap;
733
734 mapSize = bmp->db_mapsize;
735
736 /* the hint should be within the map */
737 if (hint >= mapSize) {
738 jfs_error(ip->i_sb, "the hint is outside the map\n");
739 return -EIO;
740 }
741
742 /* if the number of blocks to be allocated is greater than the
743 * allocation group size, try to allocate anywhere.
744 */
745 if (l2nb > bmp->db_agl2size) {
746 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
747
748 rc = dbAllocAny(bmp, nblocks, l2nb, results);
749
750 goto write_unlock;
751 }
752
753 /*
754 * If no hint, let dbNextAG recommend an allocation group
755 */
756 if (hint == 0)
757 goto pref_ag;
758
759 /* we would like to allocate close to the hint. adjust the
760 * hint to the block following the hint since the allocators
761 * will start looking for free space starting at this point.
762 */
763 blkno = hint + 1;
764
765 if (blkno >= bmp->db_mapsize)
766 goto pref_ag;
767
768 agno = blkno >> bmp->db_agl2size;
769
770 /* check if blkno crosses over into a new allocation group.
771 * if so, check if we should allow allocations within this
772 * allocation group.
773 */
774 if ((blkno & (bmp->db_agsize - 1)) == 0)
775 /* check if the AG is currently being written to.
776 * if so, call dbNextAG() to find a non-busy
777 * AG with sufficient free space.
778 */
779 if (atomic_read(&bmp->db_active[agno]))
780 goto pref_ag;
781
782 /* check if the allocation request size can be satisfied from a
783 * single dmap. if so, try to allocate from the dmap containing
784 * the hint using a tiered strategy.
785 */
786 if (nblocks <= BPERDMAP) {
787 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
788
789 /* get the buffer for the dmap containing the hint.
790 */
791 rc = -EIO;
792 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
793 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
794 if (mp == NULL)
795 goto read_unlock;
796
797 dp = (struct dmap *) mp->data;
798
799 /* first, try to satisfy the allocation request with the
800 * blocks beginning at the hint.
801 */
802 if ((rc = dbAllocNext(bmp, dp, blkno, (int) nblocks))
803 != -ENOSPC) {
804 if (rc == 0) {
805 *results = blkno;
806 mark_metapage_dirty(mp);
807 }
808
809 release_metapage(mp);
810 goto read_unlock;
811 }
812
813 writers = atomic_read(&bmp->db_active[agno]);
814 if ((writers > 1) ||
815 ((writers == 1) && (JFS_IP(ip)->active_ag != agno))) {
816 /*
817 * Someone else is writing in this allocation
818 * group. To avoid fragmenting, try another ag
819 */
820 release_metapage(mp);
821 IREAD_UNLOCK(ipbmap);
822 goto pref_ag;
823 }
824
825 /* next, try to satisfy the allocation request with blocks
826 * near the hint.
827 */
828 if ((rc =
829 dbAllocNear(bmp, dp, blkno, (int) nblocks, l2nb, results))
830 != -ENOSPC) {
831 if (rc == 0)
832 mark_metapage_dirty(mp);
833
834 release_metapage(mp);
835 goto read_unlock;
836 }
837
838 /* try to satisfy the allocation request with blocks within
839 * the same dmap as the hint.
840 */
841 if ((rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results))
842 != -ENOSPC) {
843 if (rc == 0)
844 mark_metapage_dirty(mp);
845
846 release_metapage(mp);
847 goto read_unlock;
848 }
849
850 release_metapage(mp);
851 IREAD_UNLOCK(ipbmap);
852 }
853
854 /* try to satisfy the allocation request with blocks within
855 * the same allocation group as the hint.
856 */
857 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
858 if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) != -ENOSPC)
859 goto write_unlock;
860
861 IWRITE_UNLOCK(ipbmap);
862
863
864 pref_ag:
865 /*
866 * Let dbNextAG recommend a preferred allocation group
867 */
868 agno = dbNextAG(ipbmap);
869 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
870
871 /* Try to allocate within this allocation group. if that fails, try to
872 * allocate anywhere in the map.
873 */
874 if ((rc = dbAllocAG(bmp, agno, nblocks, l2nb, results)) == -ENOSPC)
875 rc = dbAllocAny(bmp, nblocks, l2nb, results);
876
877 write_unlock:
878 IWRITE_UNLOCK(ipbmap);
879
880 return (rc);
881
882 read_unlock:
883 IREAD_UNLOCK(ipbmap);
884
885 return (rc);
886 }
887
888 #ifdef _NOTYET
889 /*
890 * NAME: dbAllocExact()
891 *
892 * FUNCTION: try to allocate the requested extent;
893 *
894 * PARAMETERS:
895 * ip - pointer to in-core inode;
896 * blkno - extent address;
897 * nblocks - extent length;
898 *
899 * RETURN VALUES:
900 * 0 - success
901 * -ENOSPC - insufficient disk resources
902 * -EIO - i/o error
903 */
dbAllocExact(struct inode * ip,s64 blkno,int nblocks)904 int dbAllocExact(struct inode *ip, s64 blkno, int nblocks)
905 {
906 int rc;
907 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
908 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
909 struct dmap *dp;
910 s64 lblkno;
911 struct metapage *mp;
912
913 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
914
915 /*
916 * validate extent request:
917 *
918 * note: defragfs policy:
919 * max 64 blocks will be moved.
920 * allocation request size must be satisfied from a single dmap.
921 */
922 if (nblocks <= 0 || nblocks > BPERDMAP || blkno >= bmp->db_mapsize) {
923 IREAD_UNLOCK(ipbmap);
924 return -EINVAL;
925 }
926
927 if (nblocks > ((s64) 1 << bmp->db_maxfreebud)) {
928 /* the free space is no longer available */
929 IREAD_UNLOCK(ipbmap);
930 return -ENOSPC;
931 }
932
933 /* read in the dmap covering the extent */
934 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
935 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
936 if (mp == NULL) {
937 IREAD_UNLOCK(ipbmap);
938 return -EIO;
939 }
940 dp = (struct dmap *) mp->data;
941
942 /* try to allocate the requested extent */
943 rc = dbAllocNext(bmp, dp, blkno, nblocks);
944
945 IREAD_UNLOCK(ipbmap);
946
947 if (rc == 0)
948 mark_metapage_dirty(mp);
949
950 release_metapage(mp);
951
952 return (rc);
953 }
954 #endif /* _NOTYET */
955
956 /*
957 * NAME: dbReAlloc()
958 *
959 * FUNCTION: attempt to extend a current allocation by a specified
960 * number of blocks.
961 *
962 * this routine attempts to satisfy the allocation request
963 * by first trying to extend the existing allocation in
964 * place by allocating the additional blocks as the blocks
965 * immediately following the current allocation. if these
966 * blocks are not available, this routine will attempt to
967 * allocate a new set of contiguous blocks large enough
968 * to cover the existing allocation plus the additional
969 * number of blocks required.
970 *
971 * PARAMETERS:
972 * ip - pointer to in-core inode requiring allocation.
973 * blkno - starting block of the current allocation.
974 * nblocks - number of contiguous blocks within the current
975 * allocation.
976 * addnblocks - number of blocks to add to the allocation.
977 * results - on successful return, set to the starting block number
978 * of the existing allocation if the existing allocation
979 * was extended in place or to a newly allocated contiguous
980 * range if the existing allocation could not be extended
981 * in place.
982 *
983 * RETURN VALUES:
984 * 0 - success
985 * -ENOSPC - insufficient disk resources
986 * -EIO - i/o error
987 */
988 int
dbReAlloc(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks,s64 * results)989 dbReAlloc(struct inode *ip,
990 s64 blkno, s64 nblocks, s64 addnblocks, s64 * results)
991 {
992 int rc;
993
994 /* try to extend the allocation in place.
995 */
996 if ((rc = dbExtend(ip, blkno, nblocks, addnblocks)) == 0) {
997 *results = blkno;
998 return (0);
999 } else {
1000 if (rc != -ENOSPC)
1001 return (rc);
1002 }
1003
1004 /* could not extend the allocation in place, so allocate a
1005 * new set of blocks for the entire request (i.e. try to get
1006 * a range of contiguous blocks large enough to cover the
1007 * existing allocation plus the additional blocks.)
1008 */
1009 return (dbAlloc
1010 (ip, blkno + nblocks - 1, addnblocks + nblocks, results));
1011 }
1012
1013
1014 /*
1015 * NAME: dbExtend()
1016 *
1017 * FUNCTION: attempt to extend a current allocation by a specified
1018 * number of blocks.
1019 *
1020 * this routine attempts to satisfy the allocation request
1021 * by first trying to extend the existing allocation in
1022 * place by allocating the additional blocks as the blocks
1023 * immediately following the current allocation.
1024 *
1025 * PARAMETERS:
1026 * ip - pointer to in-core inode requiring allocation.
1027 * blkno - starting block of the current allocation.
1028 * nblocks - number of contiguous blocks within the current
1029 * allocation.
1030 * addnblocks - number of blocks to add to the allocation.
1031 *
1032 * RETURN VALUES:
1033 * 0 - success
1034 * -ENOSPC - insufficient disk resources
1035 * -EIO - i/o error
1036 */
dbExtend(struct inode * ip,s64 blkno,s64 nblocks,s64 addnblocks)1037 static int dbExtend(struct inode *ip, s64 blkno, s64 nblocks, s64 addnblocks)
1038 {
1039 struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb);
1040 s64 lblkno, lastblkno, extblkno;
1041 uint rel_block;
1042 struct metapage *mp;
1043 struct dmap *dp;
1044 int rc;
1045 struct inode *ipbmap = sbi->ipbmap;
1046 struct bmap *bmp;
1047
1048 /*
1049 * We don't want a non-aligned extent to cross a page boundary
1050 */
1051 if (((rel_block = blkno & (sbi->nbperpage - 1))) &&
1052 (rel_block + nblocks + addnblocks > sbi->nbperpage))
1053 return -ENOSPC;
1054
1055 /* get the last block of the current allocation */
1056 lastblkno = blkno + nblocks - 1;
1057
1058 /* determine the block number of the block following
1059 * the existing allocation.
1060 */
1061 extblkno = lastblkno + 1;
1062
1063 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
1064
1065 /* better be within the file system */
1066 bmp = sbi->bmap;
1067 if (lastblkno < 0 || lastblkno >= bmp->db_mapsize) {
1068 IREAD_UNLOCK(ipbmap);
1069 jfs_error(ip->i_sb, "the block is outside the filesystem\n");
1070 return -EIO;
1071 }
1072
1073 /* we'll attempt to extend the current allocation in place by
1074 * allocating the additional blocks as the blocks immediately
1075 * following the current allocation. we only try to extend the
1076 * current allocation in place if the number of additional blocks
1077 * can fit into a dmap, the last block of the current allocation
1078 * is not the last block of the file system, and the start of the
1079 * inplace extension is not on an allocation group boundary.
1080 */
1081 if (addnblocks > BPERDMAP || extblkno >= bmp->db_mapsize ||
1082 (extblkno & (bmp->db_agsize - 1)) == 0) {
1083 IREAD_UNLOCK(ipbmap);
1084 return -ENOSPC;
1085 }
1086
1087 /* get the buffer for the dmap containing the first block
1088 * of the extension.
1089 */
1090 lblkno = BLKTODMAP(extblkno, bmp->db_l2nbperpage);
1091 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
1092 if (mp == NULL) {
1093 IREAD_UNLOCK(ipbmap);
1094 return -EIO;
1095 }
1096
1097 dp = (struct dmap *) mp->data;
1098
1099 /* try to allocate the blocks immediately following the
1100 * current allocation.
1101 */
1102 rc = dbAllocNext(bmp, dp, extblkno, (int) addnblocks);
1103
1104 IREAD_UNLOCK(ipbmap);
1105
1106 /* were we successful ? */
1107 if (rc == 0)
1108 write_metapage(mp);
1109 else
1110 /* we were not successful */
1111 release_metapage(mp);
1112
1113 return (rc);
1114 }
1115
1116
1117 /*
1118 * NAME: dbAllocNext()
1119 *
1120 * FUNCTION: attempt to allocate the blocks of the specified block
1121 * range within a dmap.
1122 *
1123 * PARAMETERS:
1124 * bmp - pointer to bmap descriptor
1125 * dp - pointer to dmap.
1126 * blkno - starting block number of the range.
1127 * nblocks - number of contiguous free blocks of the range.
1128 *
1129 * RETURN VALUES:
1130 * 0 - success
1131 * -ENOSPC - insufficient disk resources
1132 * -EIO - i/o error
1133 *
1134 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1135 */
dbAllocNext(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)1136 static int dbAllocNext(struct bmap * bmp, struct dmap * dp, s64 blkno,
1137 int nblocks)
1138 {
1139 int dbitno, word, rembits, nb, nwords, wbitno, nw;
1140 int l2size;
1141 s8 *leaf;
1142 u32 mask;
1143
1144 if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1145 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1146 return -EIO;
1147 }
1148
1149 /* pick up a pointer to the leaves of the dmap tree.
1150 */
1151 leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1152
1153 /* determine the bit number and word within the dmap of the
1154 * starting block.
1155 */
1156 dbitno = blkno & (BPERDMAP - 1);
1157 word = dbitno >> L2DBWORD;
1158
1159 /* check if the specified block range is contained within
1160 * this dmap.
1161 */
1162 if (dbitno + nblocks > BPERDMAP)
1163 return -ENOSPC;
1164
1165 /* check if the starting leaf indicates that anything
1166 * is free.
1167 */
1168 if (leaf[word] == NOFREE)
1169 return -ENOSPC;
1170
1171 /* check the dmaps words corresponding to block range to see
1172 * if the block range is free. not all bits of the first and
1173 * last words may be contained within the block range. if this
1174 * is the case, we'll work against those words (i.e. partial first
1175 * and/or last) on an individual basis (a single pass) and examine
1176 * the actual bits to determine if they are free. a single pass
1177 * will be used for all dmap words fully contained within the
1178 * specified range. within this pass, the leaves of the dmap
1179 * tree will be examined to determine if the blocks are free. a
1180 * single leaf may describe the free space of multiple dmap
1181 * words, so we may visit only a subset of the actual leaves
1182 * corresponding to the dmap words of the block range.
1183 */
1184 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
1185 /* determine the bit number within the word and
1186 * the number of bits within the word.
1187 */
1188 wbitno = dbitno & (DBWORD - 1);
1189 nb = min(rembits, DBWORD - wbitno);
1190
1191 /* check if only part of the word is to be examined.
1192 */
1193 if (nb < DBWORD) {
1194 /* check if the bits are free.
1195 */
1196 mask = (ONES << (DBWORD - nb) >> wbitno);
1197 if ((mask & ~le32_to_cpu(dp->wmap[word])) != mask)
1198 return -ENOSPC;
1199
1200 word += 1;
1201 } else {
1202 /* one or more dmap words are fully contained
1203 * within the block range. determine how many
1204 * words and how many bits.
1205 */
1206 nwords = rembits >> L2DBWORD;
1207 nb = nwords << L2DBWORD;
1208
1209 /* now examine the appropriate leaves to determine
1210 * if the blocks are free.
1211 */
1212 while (nwords > 0) {
1213 /* does the leaf describe any free space ?
1214 */
1215 if (leaf[word] < BUDMIN)
1216 return -ENOSPC;
1217
1218 /* determine the l2 number of bits provided
1219 * by this leaf.
1220 */
1221 l2size =
1222 min_t(int, leaf[word], NLSTOL2BSZ(nwords));
1223
1224 /* determine how many words were handled.
1225 */
1226 nw = BUDSIZE(l2size, BUDMIN);
1227
1228 nwords -= nw;
1229 word += nw;
1230 }
1231 }
1232 }
1233
1234 /* allocate the blocks.
1235 */
1236 return (dbAllocDmap(bmp, dp, blkno, nblocks));
1237 }
1238
1239
1240 /*
1241 * NAME: dbAllocNear()
1242 *
1243 * FUNCTION: attempt to allocate a number of contiguous free blocks near
1244 * a specified block (hint) within a dmap.
1245 *
1246 * starting with the dmap leaf that covers the hint, we'll
1247 * check the next four contiguous leaves for sufficient free
1248 * space. if sufficient free space is found, we'll allocate
1249 * the desired free space.
1250 *
1251 * PARAMETERS:
1252 * bmp - pointer to bmap descriptor
1253 * dp - pointer to dmap.
1254 * blkno - block number to allocate near.
1255 * nblocks - actual number of contiguous free blocks desired.
1256 * l2nb - log2 number of contiguous free blocks desired.
1257 * results - on successful return, set to the starting block number
1258 * of the newly allocated range.
1259 *
1260 * RETURN VALUES:
1261 * 0 - success
1262 * -ENOSPC - insufficient disk resources
1263 * -EIO - i/o error
1264 *
1265 * serialization: IREAD_LOCK(ipbmap) held on entry/exit;
1266 */
1267 static int
dbAllocNear(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks,int l2nb,s64 * results)1268 dbAllocNear(struct bmap * bmp,
1269 struct dmap * dp, s64 blkno, int nblocks, int l2nb, s64 * results)
1270 {
1271 int word, lword, rc;
1272 s8 *leaf;
1273
1274 if (dp->tree.leafidx != cpu_to_le32(LEAFIND)) {
1275 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmap page\n");
1276 return -EIO;
1277 }
1278
1279 leaf = dp->tree.stree + le32_to_cpu(dp->tree.leafidx);
1280
1281 /* determine the word within the dmap that holds the hint
1282 * (i.e. blkno). also, determine the last word in the dmap
1283 * that we'll include in our examination.
1284 */
1285 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
1286 lword = min(word + 4, LPERDMAP);
1287
1288 /* examine the leaves for sufficient free space.
1289 */
1290 for (; word < lword; word++) {
1291 /* does the leaf describe sufficient free space ?
1292 */
1293 if (leaf[word] < l2nb)
1294 continue;
1295
1296 /* determine the block number within the file system
1297 * of the first block described by this dmap word.
1298 */
1299 blkno = le64_to_cpu(dp->start) + (word << L2DBWORD);
1300
1301 /* if not all bits of the dmap word are free, get the
1302 * starting bit number within the dmap word of the required
1303 * string of free bits and adjust the block number with the
1304 * value.
1305 */
1306 if (leaf[word] < BUDMIN)
1307 blkno +=
1308 dbFindBits(le32_to_cpu(dp->wmap[word]), l2nb);
1309
1310 /* allocate the blocks.
1311 */
1312 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
1313 *results = blkno;
1314
1315 return (rc);
1316 }
1317
1318 return -ENOSPC;
1319 }
1320
1321
1322 /*
1323 * NAME: dbAllocAG()
1324 *
1325 * FUNCTION: attempt to allocate the specified number of contiguous
1326 * free blocks within the specified allocation group.
1327 *
1328 * unless the allocation group size is equal to the number
1329 * of blocks per dmap, the dmap control pages will be used to
1330 * find the required free space, if available. we start the
1331 * search at the highest dmap control page level which
1332 * distinctly describes the allocation group's free space
1333 * (i.e. the highest level at which the allocation group's
1334 * free space is not mixed in with that of any other group).
1335 * in addition, we start the search within this level at a
1336 * height of the dmapctl dmtree at which the nodes distinctly
1337 * describe the allocation group's free space. at this height,
1338 * the allocation group's free space may be represented by 1
1339 * or two sub-trees, depending on the allocation group size.
1340 * we search the top nodes of these subtrees left to right for
1341 * sufficient free space. if sufficient free space is found,
1342 * the subtree is searched to find the leftmost leaf that
1343 * has free space. once we have made it to the leaf, we
1344 * move the search to the next lower level dmap control page
1345 * corresponding to this leaf. we continue down the dmap control
1346 * pages until we find the dmap that contains or starts the
1347 * sufficient free space and we allocate at this dmap.
1348 *
1349 * if the allocation group size is equal to the dmap size,
1350 * we'll start at the dmap corresponding to the allocation
1351 * group and attempt the allocation at this level.
1352 *
1353 * the dmap control page search is also not performed if the
1354 * allocation group is completely free and we go to the first
1355 * dmap of the allocation group to do the allocation. this is
1356 * done because the allocation group may be part (not the first
1357 * part) of a larger binary buddy system, causing the dmap
1358 * control pages to indicate no free space (NOFREE) within
1359 * the allocation group.
1360 *
1361 * PARAMETERS:
1362 * bmp - pointer to bmap descriptor
1363 * agno - allocation group number.
1364 * nblocks - actual number of contiguous free blocks desired.
1365 * l2nb - log2 number of contiguous free blocks desired.
1366 * results - on successful return, set to the starting block number
1367 * of the newly allocated range.
1368 *
1369 * RETURN VALUES:
1370 * 0 - success
1371 * -ENOSPC - insufficient disk resources
1372 * -EIO - i/o error
1373 *
1374 * note: IWRITE_LOCK(ipmap) held on entry/exit;
1375 */
1376 static int
dbAllocAG(struct bmap * bmp,int agno,s64 nblocks,int l2nb,s64 * results)1377 dbAllocAG(struct bmap * bmp, int agno, s64 nblocks, int l2nb, s64 * results)
1378 {
1379 struct metapage *mp;
1380 struct dmapctl *dcp;
1381 int rc, ti, i, k, m, n, agperlev;
1382 s64 blkno, lblkno;
1383 int budmin;
1384
1385 /* allocation request should not be for more than the
1386 * allocation group size.
1387 */
1388 if (l2nb > bmp->db_agl2size) {
1389 jfs_error(bmp->db_ipbmap->i_sb,
1390 "allocation request is larger than the allocation group size\n");
1391 return -EIO;
1392 }
1393
1394 /* determine the starting block number of the allocation
1395 * group.
1396 */
1397 blkno = (s64) agno << bmp->db_agl2size;
1398
1399 /* check if the allocation group size is the minimum allocation
1400 * group size or if the allocation group is completely free. if
1401 * the allocation group size is the minimum size of BPERDMAP (i.e.
1402 * 1 dmap), there is no need to search the dmap control page (below)
1403 * that fully describes the allocation group since the allocation
1404 * group is already fully described by a dmap. in this case, we
1405 * just call dbAllocCtl() to search the dmap tree and allocate the
1406 * required space if available.
1407 *
1408 * if the allocation group is completely free, dbAllocCtl() is
1409 * also called to allocate the required space. this is done for
1410 * two reasons. first, it makes no sense searching the dmap control
1411 * pages for free space when we know that free space exists. second,
1412 * the dmap control pages may indicate that the allocation group
1413 * has no free space if the allocation group is part (not the first
1414 * part) of a larger binary buddy system.
1415 */
1416 if (bmp->db_agsize == BPERDMAP
1417 || bmp->db_agfree[agno] == bmp->db_agsize) {
1418 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1419 if ((rc == -ENOSPC) &&
1420 (bmp->db_agfree[agno] == bmp->db_agsize)) {
1421 printk(KERN_ERR "blkno = %Lx, blocks = %Lx\n",
1422 (unsigned long long) blkno,
1423 (unsigned long long) nblocks);
1424 jfs_error(bmp->db_ipbmap->i_sb,
1425 "dbAllocCtl failed in free AG\n");
1426 }
1427 return (rc);
1428 }
1429
1430 /* the buffer for the dmap control page that fully describes the
1431 * allocation group.
1432 */
1433 lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, bmp->db_aglevel);
1434 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1435 if (mp == NULL)
1436 return -EIO;
1437 dcp = (struct dmapctl *) mp->data;
1438 budmin = dcp->budmin;
1439
1440 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1441 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
1442 release_metapage(mp);
1443 return -EIO;
1444 }
1445
1446 /* search the subtree(s) of the dmap control page that describes
1447 * the allocation group, looking for sufficient free space. to begin,
1448 * determine how many allocation groups are represented in a dmap
1449 * control page at the control page level (i.e. L0, L1, L2) that
1450 * fully describes an allocation group. next, determine the starting
1451 * tree index of this allocation group within the control page.
1452 */
1453 agperlev =
1454 (1 << (L2LPERCTL - (bmp->db_agheight << 1))) / bmp->db_agwidth;
1455 ti = bmp->db_agstart + bmp->db_agwidth * (agno & (agperlev - 1));
1456
1457 /* dmap control page trees fan-out by 4 and a single allocation
1458 * group may be described by 1 or 2 subtrees within the ag level
1459 * dmap control page, depending upon the ag size. examine the ag's
1460 * subtrees for sufficient free space, starting with the leftmost
1461 * subtree.
1462 */
1463 for (i = 0; i < bmp->db_agwidth; i++, ti++) {
1464 /* is there sufficient free space ?
1465 */
1466 if (l2nb > dcp->stree[ti])
1467 continue;
1468
1469 /* sufficient free space found in a subtree. now search down
1470 * the subtree to find the leftmost leaf that describes this
1471 * free space.
1472 */
1473 for (k = bmp->db_agheight; k > 0; k--) {
1474 for (n = 0, m = (ti << 2) + 1; n < 4; n++) {
1475 if (l2nb <= dcp->stree[m + n]) {
1476 ti = m + n;
1477 break;
1478 }
1479 }
1480 if (n == 4) {
1481 jfs_error(bmp->db_ipbmap->i_sb,
1482 "failed descending stree\n");
1483 release_metapage(mp);
1484 return -EIO;
1485 }
1486 }
1487
1488 /* determine the block number within the file system
1489 * that corresponds to this leaf.
1490 */
1491 if (bmp->db_aglevel == 2)
1492 blkno = 0;
1493 else if (bmp->db_aglevel == 1)
1494 blkno &= ~(MAXL1SIZE - 1);
1495 else /* bmp->db_aglevel == 0 */
1496 blkno &= ~(MAXL0SIZE - 1);
1497
1498 blkno +=
1499 ((s64) (ti - le32_to_cpu(dcp->leafidx))) << budmin;
1500
1501 /* release the buffer in preparation for going down
1502 * the next level of dmap control pages.
1503 */
1504 release_metapage(mp);
1505
1506 /* check if we need to continue to search down the lower
1507 * level dmap control pages. we need to if the number of
1508 * blocks required is less than maximum number of blocks
1509 * described at the next lower level.
1510 */
1511 if (l2nb < budmin) {
1512
1513 /* search the lower level dmap control pages to get
1514 * the starting block number of the dmap that
1515 * contains or starts off the free space.
1516 */
1517 if ((rc =
1518 dbFindCtl(bmp, l2nb, bmp->db_aglevel - 1,
1519 &blkno))) {
1520 if (rc == -ENOSPC) {
1521 jfs_error(bmp->db_ipbmap->i_sb,
1522 "control page inconsistent\n");
1523 return -EIO;
1524 }
1525 return (rc);
1526 }
1527 }
1528
1529 /* allocate the blocks.
1530 */
1531 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1532 if (rc == -ENOSPC) {
1533 jfs_error(bmp->db_ipbmap->i_sb,
1534 "unable to allocate blocks\n");
1535 rc = -EIO;
1536 }
1537 return (rc);
1538 }
1539
1540 /* no space in the allocation group. release the buffer and
1541 * return -ENOSPC.
1542 */
1543 release_metapage(mp);
1544
1545 return -ENOSPC;
1546 }
1547
1548
1549 /*
1550 * NAME: dbAllocAny()
1551 *
1552 * FUNCTION: attempt to allocate the specified number of contiguous
1553 * free blocks anywhere in the file system.
1554 *
1555 * dbAllocAny() attempts to find the sufficient free space by
1556 * searching down the dmap control pages, starting with the
1557 * highest level (i.e. L0, L1, L2) control page. if free space
1558 * large enough to satisfy the desired free space is found, the
1559 * desired free space is allocated.
1560 *
1561 * PARAMETERS:
1562 * bmp - pointer to bmap descriptor
1563 * nblocks - actual number of contiguous free blocks desired.
1564 * l2nb - log2 number of contiguous free blocks desired.
1565 * results - on successful return, set to the starting block number
1566 * of the newly allocated range.
1567 *
1568 * RETURN VALUES:
1569 * 0 - success
1570 * -ENOSPC - insufficient disk resources
1571 * -EIO - i/o error
1572 *
1573 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1574 */
dbAllocAny(struct bmap * bmp,s64 nblocks,int l2nb,s64 * results)1575 static int dbAllocAny(struct bmap * bmp, s64 nblocks, int l2nb, s64 * results)
1576 {
1577 int rc;
1578 s64 blkno = 0;
1579
1580 /* starting with the top level dmap control page, search
1581 * down the dmap control levels for sufficient free space.
1582 * if free space is found, dbFindCtl() returns the starting
1583 * block number of the dmap that contains or starts off the
1584 * range of free space.
1585 */
1586 if ((rc = dbFindCtl(bmp, l2nb, bmp->db_maxlevel, &blkno)))
1587 return (rc);
1588
1589 /* allocate the blocks.
1590 */
1591 rc = dbAllocCtl(bmp, nblocks, l2nb, blkno, results);
1592 if (rc == -ENOSPC) {
1593 jfs_error(bmp->db_ipbmap->i_sb, "unable to allocate blocks\n");
1594 return -EIO;
1595 }
1596 return (rc);
1597 }
1598
1599
1600 /*
1601 * NAME: dbDiscardAG()
1602 *
1603 * FUNCTION: attempt to discard (TRIM) all free blocks of specific AG
1604 *
1605 * algorithm:
1606 * 1) allocate blocks, as large as possible and save them
1607 * while holding IWRITE_LOCK on ipbmap
1608 * 2) trim all these saved block/length values
1609 * 3) mark the blocks free again
1610 *
1611 * benefit:
1612 * - we work only on one ag at some time, minimizing how long we
1613 * need to lock ipbmap
1614 * - reading / writing the fs is possible most time, even on
1615 * trimming
1616 *
1617 * downside:
1618 * - we write two times to the dmapctl and dmap pages
1619 * - but for me, this seems the best way, better ideas?
1620 * /TR 2012
1621 *
1622 * PARAMETERS:
1623 * ip - pointer to in-core inode
1624 * agno - ag to trim
1625 * minlen - minimum value of contiguous blocks
1626 *
1627 * RETURN VALUES:
1628 * s64 - actual number of blocks trimmed
1629 */
dbDiscardAG(struct inode * ip,int agno,s64 minlen)1630 s64 dbDiscardAG(struct inode *ip, int agno, s64 minlen)
1631 {
1632 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
1633 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
1634 s64 nblocks, blkno;
1635 u64 trimmed = 0;
1636 int rc, l2nb;
1637 struct super_block *sb = ipbmap->i_sb;
1638
1639 struct range2trim {
1640 u64 blkno;
1641 u64 nblocks;
1642 } *totrim, *tt;
1643
1644 /* max blkno / nblocks pairs to trim */
1645 int count = 0, range_cnt;
1646 u64 max_ranges;
1647
1648 /* prevent others from writing new stuff here, while trimming */
1649 IWRITE_LOCK(ipbmap, RDWRLOCK_DMAP);
1650
1651 nblocks = bmp->db_agfree[agno];
1652 max_ranges = nblocks;
1653 do_div(max_ranges, minlen);
1654 range_cnt = min_t(u64, max_ranges + 1, 32 * 1024);
1655 totrim = kmalloc_array(range_cnt, sizeof(struct range2trim), GFP_NOFS);
1656 if (totrim == NULL) {
1657 jfs_error(bmp->db_ipbmap->i_sb, "no memory for trim array\n");
1658 IWRITE_UNLOCK(ipbmap);
1659 return 0;
1660 }
1661
1662 tt = totrim;
1663 while (nblocks >= minlen) {
1664 l2nb = BLKSTOL2(nblocks);
1665
1666 /* 0 = okay, -EIO = fatal, -ENOSPC -> try smaller block */
1667 rc = dbAllocAG(bmp, agno, nblocks, l2nb, &blkno);
1668 if (rc == 0) {
1669 tt->blkno = blkno;
1670 tt->nblocks = nblocks;
1671 tt++; count++;
1672
1673 /* the whole ag is free, trim now */
1674 if (bmp->db_agfree[agno] == 0)
1675 break;
1676
1677 /* give a hint for the next while */
1678 nblocks = bmp->db_agfree[agno];
1679 continue;
1680 } else if (rc == -ENOSPC) {
1681 /* search for next smaller log2 block */
1682 l2nb = BLKSTOL2(nblocks) - 1;
1683 nblocks = 1LL << l2nb;
1684 } else {
1685 /* Trim any already allocated blocks */
1686 jfs_error(bmp->db_ipbmap->i_sb, "-EIO\n");
1687 break;
1688 }
1689
1690 /* check, if our trim array is full */
1691 if (unlikely(count >= range_cnt - 1))
1692 break;
1693 }
1694 IWRITE_UNLOCK(ipbmap);
1695
1696 tt->nblocks = 0; /* mark the current end */
1697 for (tt = totrim; tt->nblocks != 0; tt++) {
1698 /* when mounted with online discard, dbFree() will
1699 * call jfs_issue_discard() itself */
1700 if (!(JFS_SBI(sb)->flag & JFS_DISCARD))
1701 jfs_issue_discard(ip, tt->blkno, tt->nblocks);
1702 dbFree(ip, tt->blkno, tt->nblocks);
1703 trimmed += tt->nblocks;
1704 }
1705 kfree(totrim);
1706
1707 return trimmed;
1708 }
1709
1710 /*
1711 * NAME: dbFindCtl()
1712 *
1713 * FUNCTION: starting at a specified dmap control page level and block
1714 * number, search down the dmap control levels for a range of
1715 * contiguous free blocks large enough to satisfy an allocation
1716 * request for the specified number of free blocks.
1717 *
1718 * if sufficient contiguous free blocks are found, this routine
1719 * returns the starting block number within a dmap page that
1720 * contains or starts a range of contiqious free blocks that
1721 * is sufficient in size.
1722 *
1723 * PARAMETERS:
1724 * bmp - pointer to bmap descriptor
1725 * level - starting dmap control page level.
1726 * l2nb - log2 number of contiguous free blocks desired.
1727 * *blkno - on entry, starting block number for conducting the search.
1728 * on successful return, the first block within a dmap page
1729 * that contains or starts a range of contiguous free blocks.
1730 *
1731 * RETURN VALUES:
1732 * 0 - success
1733 * -ENOSPC - insufficient disk resources
1734 * -EIO - i/o error
1735 *
1736 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1737 */
dbFindCtl(struct bmap * bmp,int l2nb,int level,s64 * blkno)1738 static int dbFindCtl(struct bmap * bmp, int l2nb, int level, s64 * blkno)
1739 {
1740 int rc, leafidx, lev;
1741 s64 b, lblkno;
1742 struct dmapctl *dcp;
1743 int budmin;
1744 struct metapage *mp;
1745
1746 /* starting at the specified dmap control page level and block
1747 * number, search down the dmap control levels for the starting
1748 * block number of a dmap page that contains or starts off
1749 * sufficient free blocks.
1750 */
1751 for (lev = level, b = *blkno; lev >= 0; lev--) {
1752 /* get the buffer of the dmap control page for the block
1753 * number and level (i.e. L0, L1, L2).
1754 */
1755 lblkno = BLKTOCTL(b, bmp->db_l2nbperpage, lev);
1756 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1757 if (mp == NULL)
1758 return -EIO;
1759 dcp = (struct dmapctl *) mp->data;
1760 budmin = dcp->budmin;
1761
1762 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
1763 jfs_error(bmp->db_ipbmap->i_sb,
1764 "Corrupt dmapctl page\n");
1765 release_metapage(mp);
1766 return -EIO;
1767 }
1768
1769 /* search the tree within the dmap control page for
1770 * sufficient free space. if sufficient free space is found,
1771 * dbFindLeaf() returns the index of the leaf at which
1772 * free space was found.
1773 */
1774 rc = dbFindLeaf((dmtree_t *) dcp, l2nb, &leafidx);
1775
1776 /* release the buffer.
1777 */
1778 release_metapage(mp);
1779
1780 /* space found ?
1781 */
1782 if (rc) {
1783 if (lev != level) {
1784 jfs_error(bmp->db_ipbmap->i_sb,
1785 "dmap inconsistent\n");
1786 return -EIO;
1787 }
1788 return -ENOSPC;
1789 }
1790
1791 /* adjust the block number to reflect the location within
1792 * the dmap control page (i.e. the leaf) at which free
1793 * space was found.
1794 */
1795 b += (((s64) leafidx) << budmin);
1796
1797 /* we stop the search at this dmap control page level if
1798 * the number of blocks required is greater than or equal
1799 * to the maximum number of blocks described at the next
1800 * (lower) level.
1801 */
1802 if (l2nb >= budmin)
1803 break;
1804 }
1805
1806 *blkno = b;
1807 return (0);
1808 }
1809
1810
1811 /*
1812 * NAME: dbAllocCtl()
1813 *
1814 * FUNCTION: attempt to allocate a specified number of contiguous
1815 * blocks starting within a specific dmap.
1816 *
1817 * this routine is called by higher level routines that search
1818 * the dmap control pages above the actual dmaps for contiguous
1819 * free space. the result of successful searches by these
1820 * routines are the starting block numbers within dmaps, with
1821 * the dmaps themselves containing the desired contiguous free
1822 * space or starting a contiguous free space of desired size
1823 * that is made up of the blocks of one or more dmaps. these
1824 * calls should not fail due to insufficent resources.
1825 *
1826 * this routine is called in some cases where it is not known
1827 * whether it will fail due to insufficient resources. more
1828 * specifically, this occurs when allocating from an allocation
1829 * group whose size is equal to the number of blocks per dmap.
1830 * in this case, the dmap control pages are not examined prior
1831 * to calling this routine (to save pathlength) and the call
1832 * might fail.
1833 *
1834 * for a request size that fits within a dmap, this routine relies
1835 * upon the dmap's dmtree to find the requested contiguous free
1836 * space. for request sizes that are larger than a dmap, the
1837 * requested free space will start at the first block of the
1838 * first dmap (i.e. blkno).
1839 *
1840 * PARAMETERS:
1841 * bmp - pointer to bmap descriptor
1842 * nblocks - actual number of contiguous free blocks to allocate.
1843 * l2nb - log2 number of contiguous free blocks to allocate.
1844 * blkno - starting block number of the dmap to start the allocation
1845 * from.
1846 * results - on successful return, set to the starting block number
1847 * of the newly allocated range.
1848 *
1849 * RETURN VALUES:
1850 * 0 - success
1851 * -ENOSPC - insufficient disk resources
1852 * -EIO - i/o error
1853 *
1854 * serialization: IWRITE_LOCK(ipbmap) held on entry/exit;
1855 */
1856 static int
dbAllocCtl(struct bmap * bmp,s64 nblocks,int l2nb,s64 blkno,s64 * results)1857 dbAllocCtl(struct bmap * bmp, s64 nblocks, int l2nb, s64 blkno, s64 * results)
1858 {
1859 int rc, nb;
1860 s64 b, lblkno, n;
1861 struct metapage *mp;
1862 struct dmap *dp;
1863
1864 /* check if the allocation request is confined to a single dmap.
1865 */
1866 if (l2nb <= L2BPERDMAP) {
1867 /* get the buffer for the dmap.
1868 */
1869 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
1870 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1871 if (mp == NULL)
1872 return -EIO;
1873 dp = (struct dmap *) mp->data;
1874
1875 /* try to allocate the blocks.
1876 */
1877 rc = dbAllocDmapLev(bmp, dp, (int) nblocks, l2nb, results);
1878 if (rc == 0)
1879 mark_metapage_dirty(mp);
1880
1881 release_metapage(mp);
1882
1883 return (rc);
1884 }
1885
1886 /* allocation request involving multiple dmaps. it must start on
1887 * a dmap boundary.
1888 */
1889 assert((blkno & (BPERDMAP - 1)) == 0);
1890
1891 /* allocate the blocks dmap by dmap.
1892 */
1893 for (n = nblocks, b = blkno; n > 0; n -= nb, b += nb) {
1894 /* get the buffer for the dmap.
1895 */
1896 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1897 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1898 if (mp == NULL) {
1899 rc = -EIO;
1900 goto backout;
1901 }
1902 dp = (struct dmap *) mp->data;
1903
1904 /* the dmap better be all free.
1905 */
1906 if (dp->tree.stree[ROOT] != L2BPERDMAP) {
1907 release_metapage(mp);
1908 jfs_error(bmp->db_ipbmap->i_sb,
1909 "the dmap is not all free\n");
1910 rc = -EIO;
1911 goto backout;
1912 }
1913
1914 /* determine how many blocks to allocate from this dmap.
1915 */
1916 nb = min_t(s64, n, BPERDMAP);
1917
1918 /* allocate the blocks from the dmap.
1919 */
1920 if ((rc = dbAllocDmap(bmp, dp, b, nb))) {
1921 release_metapage(mp);
1922 goto backout;
1923 }
1924
1925 /* write the buffer.
1926 */
1927 write_metapage(mp);
1928 }
1929
1930 /* set the results (starting block number) and return.
1931 */
1932 *results = blkno;
1933 return (0);
1934
1935 /* something failed in handling an allocation request involving
1936 * multiple dmaps. we'll try to clean up by backing out any
1937 * allocation that has already happened for this request. if
1938 * we fail in backing out the allocation, we'll mark the file
1939 * system to indicate that blocks have been leaked.
1940 */
1941 backout:
1942
1943 /* try to backout the allocations dmap by dmap.
1944 */
1945 for (n = nblocks - n, b = blkno; n > 0;
1946 n -= BPERDMAP, b += BPERDMAP) {
1947 /* get the buffer for this dmap.
1948 */
1949 lblkno = BLKTODMAP(b, bmp->db_l2nbperpage);
1950 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
1951 if (mp == NULL) {
1952 /* could not back out. mark the file system
1953 * to indicate that we have leaked blocks.
1954 */
1955 jfs_error(bmp->db_ipbmap->i_sb,
1956 "I/O Error: Block Leakage\n");
1957 continue;
1958 }
1959 dp = (struct dmap *) mp->data;
1960
1961 /* free the blocks is this dmap.
1962 */
1963 if (dbFreeDmap(bmp, dp, b, BPERDMAP)) {
1964 /* could not back out. mark the file system
1965 * to indicate that we have leaked blocks.
1966 */
1967 release_metapage(mp);
1968 jfs_error(bmp->db_ipbmap->i_sb, "Block Leakage\n");
1969 continue;
1970 }
1971
1972 /* write the buffer.
1973 */
1974 write_metapage(mp);
1975 }
1976
1977 return (rc);
1978 }
1979
1980
1981 /*
1982 * NAME: dbAllocDmapLev()
1983 *
1984 * FUNCTION: attempt to allocate a specified number of contiguous blocks
1985 * from a specified dmap.
1986 *
1987 * this routine checks if the contiguous blocks are available.
1988 * if so, nblocks of blocks are allocated; otherwise, ENOSPC is
1989 * returned.
1990 *
1991 * PARAMETERS:
1992 * mp - pointer to bmap descriptor
1993 * dp - pointer to dmap to attempt to allocate blocks from.
1994 * l2nb - log2 number of contiguous block desired.
1995 * nblocks - actual number of contiguous block desired.
1996 * results - on successful return, set to the starting block number
1997 * of the newly allocated range.
1998 *
1999 * RETURN VALUES:
2000 * 0 - success
2001 * -ENOSPC - insufficient disk resources
2002 * -EIO - i/o error
2003 *
2004 * serialization: IREAD_LOCK(ipbmap), e.g., from dbAlloc(), or
2005 * IWRITE_LOCK(ipbmap), e.g., dbAllocCtl(), held on entry/exit;
2006 */
2007 static int
dbAllocDmapLev(struct bmap * bmp,struct dmap * dp,int nblocks,int l2nb,s64 * results)2008 dbAllocDmapLev(struct bmap * bmp,
2009 struct dmap * dp, int nblocks, int l2nb, s64 * results)
2010 {
2011 s64 blkno;
2012 int leafidx, rc;
2013
2014 /* can't be more than a dmaps worth of blocks */
2015 assert(l2nb <= L2BPERDMAP);
2016
2017 /* search the tree within the dmap page for sufficient
2018 * free space. if sufficient free space is found, dbFindLeaf()
2019 * returns the index of the leaf at which free space was found.
2020 */
2021 if (dbFindLeaf((dmtree_t *) & dp->tree, l2nb, &leafidx))
2022 return -ENOSPC;
2023
2024 /* determine the block number within the file system corresponding
2025 * to the leaf at which free space was found.
2026 */
2027 blkno = le64_to_cpu(dp->start) + (leafidx << L2DBWORD);
2028
2029 /* if not all bits of the dmap word are free, get the starting
2030 * bit number within the dmap word of the required string of free
2031 * bits and adjust the block number with this value.
2032 */
2033 if (dp->tree.stree[leafidx + LEAFIND] < BUDMIN)
2034 blkno += dbFindBits(le32_to_cpu(dp->wmap[leafidx]), l2nb);
2035
2036 /* allocate the blocks */
2037 if ((rc = dbAllocDmap(bmp, dp, blkno, nblocks)) == 0)
2038 *results = blkno;
2039
2040 return (rc);
2041 }
2042
2043
2044 /*
2045 * NAME: dbAllocDmap()
2046 *
2047 * FUNCTION: adjust the disk allocation map to reflect the allocation
2048 * of a specified block range within a dmap.
2049 *
2050 * this routine allocates the specified blocks from the dmap
2051 * through a call to dbAllocBits(). if the allocation of the
2052 * block range causes the maximum string of free blocks within
2053 * the dmap to change (i.e. the value of the root of the dmap's
2054 * dmtree), this routine will cause this change to be reflected
2055 * up through the appropriate levels of the dmap control pages
2056 * by a call to dbAdjCtl() for the L0 dmap control page that
2057 * covers this dmap.
2058 *
2059 * PARAMETERS:
2060 * bmp - pointer to bmap descriptor
2061 * dp - pointer to dmap to allocate the block range from.
2062 * blkno - starting block number of the block to be allocated.
2063 * nblocks - number of blocks to be allocated.
2064 *
2065 * RETURN VALUES:
2066 * 0 - success
2067 * -EIO - i/o error
2068 *
2069 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2070 */
dbAllocDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2071 static int dbAllocDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2072 int nblocks)
2073 {
2074 s8 oldroot;
2075 int rc;
2076
2077 /* save the current value of the root (i.e. maximum free string)
2078 * of the dmap tree.
2079 */
2080 oldroot = dp->tree.stree[ROOT];
2081
2082 /* allocate the specified (blocks) bits */
2083 dbAllocBits(bmp, dp, blkno, nblocks);
2084
2085 /* if the root has not changed, done. */
2086 if (dp->tree.stree[ROOT] == oldroot)
2087 return (0);
2088
2089 /* root changed. bubble the change up to the dmap control pages.
2090 * if the adjustment of the upper level control pages fails,
2091 * backout the bit allocation (thus making everything consistent).
2092 */
2093 if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 1, 0)))
2094 dbFreeBits(bmp, dp, blkno, nblocks);
2095
2096 return (rc);
2097 }
2098
2099
2100 /*
2101 * NAME: dbFreeDmap()
2102 *
2103 * FUNCTION: adjust the disk allocation map to reflect the allocation
2104 * of a specified block range within a dmap.
2105 *
2106 * this routine frees the specified blocks from the dmap through
2107 * a call to dbFreeBits(). if the deallocation of the block range
2108 * causes the maximum string of free blocks within the dmap to
2109 * change (i.e. the value of the root of the dmap's dmtree), this
2110 * routine will cause this change to be reflected up through the
2111 * appropriate levels of the dmap control pages by a call to
2112 * dbAdjCtl() for the L0 dmap control page that covers this dmap.
2113 *
2114 * PARAMETERS:
2115 * bmp - pointer to bmap descriptor
2116 * dp - pointer to dmap to free the block range from.
2117 * blkno - starting block number of the block to be freed.
2118 * nblocks - number of blocks to be freed.
2119 *
2120 * RETURN VALUES:
2121 * 0 - success
2122 * -EIO - i/o error
2123 *
2124 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2125 */
dbFreeDmap(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2126 static int dbFreeDmap(struct bmap * bmp, struct dmap * dp, s64 blkno,
2127 int nblocks)
2128 {
2129 s8 oldroot;
2130 int rc = 0, word;
2131
2132 /* save the current value of the root (i.e. maximum free string)
2133 * of the dmap tree.
2134 */
2135 oldroot = dp->tree.stree[ROOT];
2136
2137 /* free the specified (blocks) bits */
2138 rc = dbFreeBits(bmp, dp, blkno, nblocks);
2139
2140 /* if error or the root has not changed, done. */
2141 if (rc || (dp->tree.stree[ROOT] == oldroot))
2142 return (rc);
2143
2144 /* root changed. bubble the change up to the dmap control pages.
2145 * if the adjustment of the upper level control pages fails,
2146 * backout the deallocation.
2147 */
2148 if ((rc = dbAdjCtl(bmp, blkno, dp->tree.stree[ROOT], 0, 0))) {
2149 word = (blkno & (BPERDMAP - 1)) >> L2DBWORD;
2150
2151 /* as part of backing out the deallocation, we will have
2152 * to back split the dmap tree if the deallocation caused
2153 * the freed blocks to become part of a larger binary buddy
2154 * system.
2155 */
2156 if (dp->tree.stree[word] == NOFREE)
2157 dbBackSplit((dmtree_t *) & dp->tree, word);
2158
2159 dbAllocBits(bmp, dp, blkno, nblocks);
2160 }
2161
2162 return (rc);
2163 }
2164
2165
2166 /*
2167 * NAME: dbAllocBits()
2168 *
2169 * FUNCTION: allocate a specified block range from a dmap.
2170 *
2171 * this routine updates the dmap to reflect the working
2172 * state allocation of the specified block range. it directly
2173 * updates the bits of the working map and causes the adjustment
2174 * of the binary buddy system described by the dmap's dmtree
2175 * leaves to reflect the bits allocated. it also causes the
2176 * dmap's dmtree, as a whole, to reflect the allocated range.
2177 *
2178 * PARAMETERS:
2179 * bmp - pointer to bmap descriptor
2180 * dp - pointer to dmap to allocate bits from.
2181 * blkno - starting block number of the bits to be allocated.
2182 * nblocks - number of bits to be allocated.
2183 *
2184 * RETURN VALUES: none
2185 *
2186 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2187 */
dbAllocBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2188 static void dbAllocBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2189 int nblocks)
2190 {
2191 int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2192 dmtree_t *tp = (dmtree_t *) & dp->tree;
2193 int size;
2194 s8 *leaf;
2195
2196 /* pick up a pointer to the leaves of the dmap tree */
2197 leaf = dp->tree.stree + LEAFIND;
2198
2199 /* determine the bit number and word within the dmap of the
2200 * starting block.
2201 */
2202 dbitno = blkno & (BPERDMAP - 1);
2203 word = dbitno >> L2DBWORD;
2204
2205 /* block range better be within the dmap */
2206 assert(dbitno + nblocks <= BPERDMAP);
2207
2208 /* allocate the bits of the dmap's words corresponding to the block
2209 * range. not all bits of the first and last words may be contained
2210 * within the block range. if this is the case, we'll work against
2211 * those words (i.e. partial first and/or last) on an individual basis
2212 * (a single pass), allocating the bits of interest by hand and
2213 * updating the leaf corresponding to the dmap word. a single pass
2214 * will be used for all dmap words fully contained within the
2215 * specified range. within this pass, the bits of all fully contained
2216 * dmap words will be marked as free in a single shot and the leaves
2217 * will be updated. a single leaf may describe the free space of
2218 * multiple dmap words, so we may update only a subset of the actual
2219 * leaves corresponding to the dmap words of the block range.
2220 */
2221 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2222 /* determine the bit number within the word and
2223 * the number of bits within the word.
2224 */
2225 wbitno = dbitno & (DBWORD - 1);
2226 nb = min(rembits, DBWORD - wbitno);
2227
2228 /* check if only part of a word is to be allocated.
2229 */
2230 if (nb < DBWORD) {
2231 /* allocate (set to 1) the appropriate bits within
2232 * this dmap word.
2233 */
2234 dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
2235 >> wbitno);
2236
2237 /* update the leaf for this dmap word. in addition
2238 * to setting the leaf value to the binary buddy max
2239 * of the updated dmap word, dbSplit() will split
2240 * the binary system of the leaves if need be.
2241 */
2242 dbSplit(tp, word, BUDMIN,
2243 dbMaxBud((u8 *) & dp->wmap[word]));
2244
2245 word += 1;
2246 } else {
2247 /* one or more dmap words are fully contained
2248 * within the block range. determine how many
2249 * words and allocate (set to 1) the bits of these
2250 * words.
2251 */
2252 nwords = rembits >> L2DBWORD;
2253 memset(&dp->wmap[word], (int) ONES, nwords * 4);
2254
2255 /* determine how many bits.
2256 */
2257 nb = nwords << L2DBWORD;
2258
2259 /* now update the appropriate leaves to reflect
2260 * the allocated words.
2261 */
2262 for (; nwords > 0; nwords -= nw) {
2263 if (leaf[word] < BUDMIN) {
2264 jfs_error(bmp->db_ipbmap->i_sb,
2265 "leaf page corrupt\n");
2266 break;
2267 }
2268
2269 /* determine what the leaf value should be
2270 * updated to as the minimum of the l2 number
2271 * of bits being allocated and the l2 number
2272 * of bits currently described by this leaf.
2273 */
2274 size = min_t(int, leaf[word],
2275 NLSTOL2BSZ(nwords));
2276
2277 /* update the leaf to reflect the allocation.
2278 * in addition to setting the leaf value to
2279 * NOFREE, dbSplit() will split the binary
2280 * system of the leaves to reflect the current
2281 * allocation (size).
2282 */
2283 dbSplit(tp, word, size, NOFREE);
2284
2285 /* get the number of dmap words handled */
2286 nw = BUDSIZE(size, BUDMIN);
2287 word += nw;
2288 }
2289 }
2290 }
2291
2292 /* update the free count for this dmap */
2293 le32_add_cpu(&dp->nfree, -nblocks);
2294
2295 BMAP_LOCK(bmp);
2296
2297 /* if this allocation group is completely free,
2298 * update the maximum allocation group number if this allocation
2299 * group is the new max.
2300 */
2301 agno = blkno >> bmp->db_agl2size;
2302 if (agno > bmp->db_maxag)
2303 bmp->db_maxag = agno;
2304
2305 /* update the free count for the allocation group and map */
2306 bmp->db_agfree[agno] -= nblocks;
2307 bmp->db_nfree -= nblocks;
2308
2309 BMAP_UNLOCK(bmp);
2310 }
2311
2312
2313 /*
2314 * NAME: dbFreeBits()
2315 *
2316 * FUNCTION: free a specified block range from a dmap.
2317 *
2318 * this routine updates the dmap to reflect the working
2319 * state allocation of the specified block range. it directly
2320 * updates the bits of the working map and causes the adjustment
2321 * of the binary buddy system described by the dmap's dmtree
2322 * leaves to reflect the bits freed. it also causes the dmap's
2323 * dmtree, as a whole, to reflect the deallocated range.
2324 *
2325 * PARAMETERS:
2326 * bmp - pointer to bmap descriptor
2327 * dp - pointer to dmap to free bits from.
2328 * blkno - starting block number of the bits to be freed.
2329 * nblocks - number of bits to be freed.
2330 *
2331 * RETURN VALUES: 0 for success
2332 *
2333 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2334 */
dbFreeBits(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)2335 static int dbFreeBits(struct bmap * bmp, struct dmap * dp, s64 blkno,
2336 int nblocks)
2337 {
2338 int dbitno, word, rembits, nb, nwords, wbitno, nw, agno;
2339 dmtree_t *tp = (dmtree_t *) & dp->tree;
2340 int rc = 0;
2341 int size;
2342
2343 /* determine the bit number and word within the dmap of the
2344 * starting block.
2345 */
2346 dbitno = blkno & (BPERDMAP - 1);
2347 word = dbitno >> L2DBWORD;
2348
2349 /* block range better be within the dmap.
2350 */
2351 assert(dbitno + nblocks <= BPERDMAP);
2352
2353 /* free the bits of the dmaps words corresponding to the block range.
2354 * not all bits of the first and last words may be contained within
2355 * the block range. if this is the case, we'll work against those
2356 * words (i.e. partial first and/or last) on an individual basis
2357 * (a single pass), freeing the bits of interest by hand and updating
2358 * the leaf corresponding to the dmap word. a single pass will be used
2359 * for all dmap words fully contained within the specified range.
2360 * within this pass, the bits of all fully contained dmap words will
2361 * be marked as free in a single shot and the leaves will be updated. a
2362 * single leaf may describe the free space of multiple dmap words,
2363 * so we may update only a subset of the actual leaves corresponding
2364 * to the dmap words of the block range.
2365 *
2366 * dbJoin() is used to update leaf values and will join the binary
2367 * buddy system of the leaves if the new leaf values indicate this
2368 * should be done.
2369 */
2370 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
2371 /* determine the bit number within the word and
2372 * the number of bits within the word.
2373 */
2374 wbitno = dbitno & (DBWORD - 1);
2375 nb = min(rembits, DBWORD - wbitno);
2376
2377 /* check if only part of a word is to be freed.
2378 */
2379 if (nb < DBWORD) {
2380 /* free (zero) the appropriate bits within this
2381 * dmap word.
2382 */
2383 dp->wmap[word] &=
2384 cpu_to_le32(~(ONES << (DBWORD - nb)
2385 >> wbitno));
2386
2387 /* update the leaf for this dmap word.
2388 */
2389 rc = dbJoin(tp, word,
2390 dbMaxBud((u8 *) & dp->wmap[word]));
2391 if (rc)
2392 return rc;
2393
2394 word += 1;
2395 } else {
2396 /* one or more dmap words are fully contained
2397 * within the block range. determine how many
2398 * words and free (zero) the bits of these words.
2399 */
2400 nwords = rembits >> L2DBWORD;
2401 memset(&dp->wmap[word], 0, nwords * 4);
2402
2403 /* determine how many bits.
2404 */
2405 nb = nwords << L2DBWORD;
2406
2407 /* now update the appropriate leaves to reflect
2408 * the freed words.
2409 */
2410 for (; nwords > 0; nwords -= nw) {
2411 /* determine what the leaf value should be
2412 * updated to as the minimum of the l2 number
2413 * of bits being freed and the l2 (max) number
2414 * of bits that can be described by this leaf.
2415 */
2416 size =
2417 min(LITOL2BSZ
2418 (word, L2LPERDMAP, BUDMIN),
2419 NLSTOL2BSZ(nwords));
2420
2421 /* update the leaf.
2422 */
2423 rc = dbJoin(tp, word, size);
2424 if (rc)
2425 return rc;
2426
2427 /* get the number of dmap words handled.
2428 */
2429 nw = BUDSIZE(size, BUDMIN);
2430 word += nw;
2431 }
2432 }
2433 }
2434
2435 /* update the free count for this dmap.
2436 */
2437 le32_add_cpu(&dp->nfree, nblocks);
2438
2439 BMAP_LOCK(bmp);
2440
2441 /* update the free count for the allocation group and
2442 * map.
2443 */
2444 agno = blkno >> bmp->db_agl2size;
2445 bmp->db_nfree += nblocks;
2446 bmp->db_agfree[agno] += nblocks;
2447
2448 /* check if this allocation group is not completely free and
2449 * if it is currently the maximum (rightmost) allocation group.
2450 * if so, establish the new maximum allocation group number by
2451 * searching left for the first allocation group with allocation.
2452 */
2453 if ((bmp->db_agfree[agno] == bmp->db_agsize && agno == bmp->db_maxag) ||
2454 (agno == bmp->db_numag - 1 &&
2455 bmp->db_agfree[agno] == (bmp-> db_mapsize & (BPERDMAP - 1)))) {
2456 while (bmp->db_maxag > 0) {
2457 bmp->db_maxag -= 1;
2458 if (bmp->db_agfree[bmp->db_maxag] !=
2459 bmp->db_agsize)
2460 break;
2461 }
2462
2463 /* re-establish the allocation group preference if the
2464 * current preference is right of the maximum allocation
2465 * group.
2466 */
2467 if (bmp->db_agpref > bmp->db_maxag)
2468 bmp->db_agpref = bmp->db_maxag;
2469 }
2470
2471 BMAP_UNLOCK(bmp);
2472
2473 return 0;
2474 }
2475
2476
2477 /*
2478 * NAME: dbAdjCtl()
2479 *
2480 * FUNCTION: adjust a dmap control page at a specified level to reflect
2481 * the change in a lower level dmap or dmap control page's
2482 * maximum string of free blocks (i.e. a change in the root
2483 * of the lower level object's dmtree) due to the allocation
2484 * or deallocation of a range of blocks with a single dmap.
2485 *
2486 * on entry, this routine is provided with the new value of
2487 * the lower level dmap or dmap control page root and the
2488 * starting block number of the block range whose allocation
2489 * or deallocation resulted in the root change. this range
2490 * is respresented by a single leaf of the current dmapctl
2491 * and the leaf will be updated with this value, possibly
2492 * causing a binary buddy system within the leaves to be
2493 * split or joined. the update may also cause the dmapctl's
2494 * dmtree to be updated.
2495 *
2496 * if the adjustment of the dmap control page, itself, causes its
2497 * root to change, this change will be bubbled up to the next dmap
2498 * control level by a recursive call to this routine, specifying
2499 * the new root value and the next dmap control page level to
2500 * be adjusted.
2501 * PARAMETERS:
2502 * bmp - pointer to bmap descriptor
2503 * blkno - the first block of a block range within a dmap. it is
2504 * the allocation or deallocation of this block range that
2505 * requires the dmap control page to be adjusted.
2506 * newval - the new value of the lower level dmap or dmap control
2507 * page root.
2508 * alloc - 'true' if adjustment is due to an allocation.
2509 * level - current level of dmap control page (i.e. L0, L1, L2) to
2510 * be adjusted.
2511 *
2512 * RETURN VALUES:
2513 * 0 - success
2514 * -EIO - i/o error
2515 *
2516 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2517 */
2518 static int
dbAdjCtl(struct bmap * bmp,s64 blkno,int newval,int alloc,int level)2519 dbAdjCtl(struct bmap * bmp, s64 blkno, int newval, int alloc, int level)
2520 {
2521 struct metapage *mp;
2522 s8 oldroot;
2523 int oldval;
2524 s64 lblkno;
2525 struct dmapctl *dcp;
2526 int rc, leafno, ti;
2527
2528 /* get the buffer for the dmap control page for the specified
2529 * block number and control page level.
2530 */
2531 lblkno = BLKTOCTL(blkno, bmp->db_l2nbperpage, level);
2532 mp = read_metapage(bmp->db_ipbmap, lblkno, PSIZE, 0);
2533 if (mp == NULL)
2534 return -EIO;
2535 dcp = (struct dmapctl *) mp->data;
2536
2537 if (dcp->leafidx != cpu_to_le32(CTLLEAFIND)) {
2538 jfs_error(bmp->db_ipbmap->i_sb, "Corrupt dmapctl page\n");
2539 release_metapage(mp);
2540 return -EIO;
2541 }
2542
2543 /* determine the leaf number corresponding to the block and
2544 * the index within the dmap control tree.
2545 */
2546 leafno = BLKTOCTLLEAF(blkno, dcp->budmin);
2547 ti = leafno + le32_to_cpu(dcp->leafidx);
2548
2549 /* save the current leaf value and the current root level (i.e.
2550 * maximum l2 free string described by this dmapctl).
2551 */
2552 oldval = dcp->stree[ti];
2553 oldroot = dcp->stree[ROOT];
2554
2555 /* check if this is a control page update for an allocation.
2556 * if so, update the leaf to reflect the new leaf value using
2557 * dbSplit(); otherwise (deallocation), use dbJoin() to update
2558 * the leaf with the new value. in addition to updating the
2559 * leaf, dbSplit() will also split the binary buddy system of
2560 * the leaves, if required, and bubble new values within the
2561 * dmapctl tree, if required. similarly, dbJoin() will join
2562 * the binary buddy system of leaves and bubble new values up
2563 * the dmapctl tree as required by the new leaf value.
2564 */
2565 if (alloc) {
2566 /* check if we are in the middle of a binary buddy
2567 * system. this happens when we are performing the
2568 * first allocation out of an allocation group that
2569 * is part (not the first part) of a larger binary
2570 * buddy system. if we are in the middle, back split
2571 * the system prior to calling dbSplit() which assumes
2572 * that it is at the front of a binary buddy system.
2573 */
2574 if (oldval == NOFREE) {
2575 rc = dbBackSplit((dmtree_t *) dcp, leafno);
2576 if (rc)
2577 return rc;
2578 oldval = dcp->stree[ti];
2579 }
2580 dbSplit((dmtree_t *) dcp, leafno, dcp->budmin, newval);
2581 } else {
2582 rc = dbJoin((dmtree_t *) dcp, leafno, newval);
2583 if (rc)
2584 return rc;
2585 }
2586
2587 /* check if the root of the current dmap control page changed due
2588 * to the update and if the current dmap control page is not at
2589 * the current top level (i.e. L0, L1, L2) of the map. if so (i.e.
2590 * root changed and this is not the top level), call this routine
2591 * again (recursion) for the next higher level of the mapping to
2592 * reflect the change in root for the current dmap control page.
2593 */
2594 if (dcp->stree[ROOT] != oldroot) {
2595 /* are we below the top level of the map. if so,
2596 * bubble the root up to the next higher level.
2597 */
2598 if (level < bmp->db_maxlevel) {
2599 /* bubble up the new root of this dmap control page to
2600 * the next level.
2601 */
2602 if ((rc =
2603 dbAdjCtl(bmp, blkno, dcp->stree[ROOT], alloc,
2604 level + 1))) {
2605 /* something went wrong in bubbling up the new
2606 * root value, so backout the changes to the
2607 * current dmap control page.
2608 */
2609 if (alloc) {
2610 dbJoin((dmtree_t *) dcp, leafno,
2611 oldval);
2612 } else {
2613 /* the dbJoin() above might have
2614 * caused a larger binary buddy system
2615 * to form and we may now be in the
2616 * middle of it. if this is the case,
2617 * back split the buddies.
2618 */
2619 if (dcp->stree[ti] == NOFREE)
2620 dbBackSplit((dmtree_t *)
2621 dcp, leafno);
2622 dbSplit((dmtree_t *) dcp, leafno,
2623 dcp->budmin, oldval);
2624 }
2625
2626 /* release the buffer and return the error.
2627 */
2628 release_metapage(mp);
2629 return (rc);
2630 }
2631 } else {
2632 /* we're at the top level of the map. update
2633 * the bmap control page to reflect the size
2634 * of the maximum free buddy system.
2635 */
2636 assert(level == bmp->db_maxlevel);
2637 if (bmp->db_maxfreebud != oldroot) {
2638 jfs_error(bmp->db_ipbmap->i_sb,
2639 "the maximum free buddy is not the old root\n");
2640 }
2641 bmp->db_maxfreebud = dcp->stree[ROOT];
2642 }
2643 }
2644
2645 /* write the buffer.
2646 */
2647 write_metapage(mp);
2648
2649 return (0);
2650 }
2651
2652
2653 /*
2654 * NAME: dbSplit()
2655 *
2656 * FUNCTION: update the leaf of a dmtree with a new value, splitting
2657 * the leaf from the binary buddy system of the dmtree's
2658 * leaves, as required.
2659 *
2660 * PARAMETERS:
2661 * tp - pointer to the tree containing the leaf.
2662 * leafno - the number of the leaf to be updated.
2663 * splitsz - the size the binary buddy system starting at the leaf
2664 * must be split to, specified as the log2 number of blocks.
2665 * newval - the new value for the leaf.
2666 *
2667 * RETURN VALUES: none
2668 *
2669 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2670 */
dbSplit(dmtree_t * tp,int leafno,int splitsz,int newval)2671 static void dbSplit(dmtree_t * tp, int leafno, int splitsz, int newval)
2672 {
2673 int budsz;
2674 int cursz;
2675 s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2676
2677 /* check if the leaf needs to be split.
2678 */
2679 if (leaf[leafno] > tp->dmt_budmin) {
2680 /* the split occurs by cutting the buddy system in half
2681 * at the specified leaf until we reach the specified
2682 * size. pick up the starting split size (current size
2683 * - 1 in l2) and the corresponding buddy size.
2684 */
2685 cursz = leaf[leafno] - 1;
2686 budsz = BUDSIZE(cursz, tp->dmt_budmin);
2687
2688 /* split until we reach the specified size.
2689 */
2690 while (cursz >= splitsz) {
2691 /* update the buddy's leaf with its new value.
2692 */
2693 dbAdjTree(tp, leafno ^ budsz, cursz);
2694
2695 /* on to the next size and buddy.
2696 */
2697 cursz -= 1;
2698 budsz >>= 1;
2699 }
2700 }
2701
2702 /* adjust the dmap tree to reflect the specified leaf's new
2703 * value.
2704 */
2705 dbAdjTree(tp, leafno, newval);
2706 }
2707
2708
2709 /*
2710 * NAME: dbBackSplit()
2711 *
2712 * FUNCTION: back split the binary buddy system of dmtree leaves
2713 * that hold a specified leaf until the specified leaf
2714 * starts its own binary buddy system.
2715 *
2716 * the allocators typically perform allocations at the start
2717 * of binary buddy systems and dbSplit() is used to accomplish
2718 * any required splits. in some cases, however, allocation
2719 * may occur in the middle of a binary system and requires a
2720 * back split, with the split proceeding out from the middle of
2721 * the system (less efficient) rather than the start of the
2722 * system (more efficient). the cases in which a back split
2723 * is required are rare and are limited to the first allocation
2724 * within an allocation group which is a part (not first part)
2725 * of a larger binary buddy system and a few exception cases
2726 * in which a previous join operation must be backed out.
2727 *
2728 * PARAMETERS:
2729 * tp - pointer to the tree containing the leaf.
2730 * leafno - the number of the leaf to be updated.
2731 *
2732 * RETURN VALUES: none
2733 *
2734 * serialization: IREAD_LOCK(ipbmap) or IWRITE_LOCK(ipbmap) held on entry/exit;
2735 */
dbBackSplit(dmtree_t * tp,int leafno)2736 static int dbBackSplit(dmtree_t * tp, int leafno)
2737 {
2738 int budsz, bud, w, bsz, size;
2739 int cursz;
2740 s8 *leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2741
2742 /* leaf should be part (not first part) of a binary
2743 * buddy system.
2744 */
2745 assert(leaf[leafno] == NOFREE);
2746
2747 /* the back split is accomplished by iteratively finding the leaf
2748 * that starts the buddy system that contains the specified leaf and
2749 * splitting that system in two. this iteration continues until
2750 * the specified leaf becomes the start of a buddy system.
2751 *
2752 * determine maximum possible l2 size for the specified leaf.
2753 */
2754 size =
2755 LITOL2BSZ(leafno, le32_to_cpu(tp->dmt_l2nleafs),
2756 tp->dmt_budmin);
2757
2758 /* determine the number of leaves covered by this size. this
2759 * is the buddy size that we will start with as we search for
2760 * the buddy system that contains the specified leaf.
2761 */
2762 budsz = BUDSIZE(size, tp->dmt_budmin);
2763
2764 /* back split.
2765 */
2766 while (leaf[leafno] == NOFREE) {
2767 /* find the leftmost buddy leaf.
2768 */
2769 for (w = leafno, bsz = budsz;; bsz <<= 1,
2770 w = (w < bud) ? w : bud) {
2771 if (bsz >= le32_to_cpu(tp->dmt_nleafs)) {
2772 jfs_err("JFS: block map error in dbBackSplit");
2773 return -EIO;
2774 }
2775
2776 /* determine the buddy.
2777 */
2778 bud = w ^ bsz;
2779
2780 /* check if this buddy is the start of the system.
2781 */
2782 if (leaf[bud] != NOFREE) {
2783 /* split the leaf at the start of the
2784 * system in two.
2785 */
2786 cursz = leaf[bud] - 1;
2787 dbSplit(tp, bud, cursz, cursz);
2788 break;
2789 }
2790 }
2791 }
2792
2793 if (leaf[leafno] != size) {
2794 jfs_err("JFS: wrong leaf value in dbBackSplit");
2795 return -EIO;
2796 }
2797 return 0;
2798 }
2799
2800
2801 /*
2802 * NAME: dbJoin()
2803 *
2804 * FUNCTION: update the leaf of a dmtree with a new value, joining
2805 * the leaf with other leaves of the dmtree into a multi-leaf
2806 * binary buddy system, as required.
2807 *
2808 * PARAMETERS:
2809 * tp - pointer to the tree containing the leaf.
2810 * leafno - the number of the leaf to be updated.
2811 * newval - the new value for the leaf.
2812 *
2813 * RETURN VALUES: none
2814 */
dbJoin(dmtree_t * tp,int leafno,int newval)2815 static int dbJoin(dmtree_t * tp, int leafno, int newval)
2816 {
2817 int budsz, buddy;
2818 s8 *leaf;
2819
2820 /* can the new leaf value require a join with other leaves ?
2821 */
2822 if (newval >= tp->dmt_budmin) {
2823 /* pickup a pointer to the leaves of the tree.
2824 */
2825 leaf = tp->dmt_stree + le32_to_cpu(tp->dmt_leafidx);
2826
2827 /* try to join the specified leaf into a large binary
2828 * buddy system. the join proceeds by attempting to join
2829 * the specified leafno with its buddy (leaf) at new value.
2830 * if the join occurs, we attempt to join the left leaf
2831 * of the joined buddies with its buddy at new value + 1.
2832 * we continue to join until we find a buddy that cannot be
2833 * joined (does not have a value equal to the size of the
2834 * last join) or until all leaves have been joined into a
2835 * single system.
2836 *
2837 * get the buddy size (number of words covered) of
2838 * the new value.
2839 */
2840 budsz = BUDSIZE(newval, tp->dmt_budmin);
2841
2842 /* try to join.
2843 */
2844 while (budsz < le32_to_cpu(tp->dmt_nleafs)) {
2845 /* get the buddy leaf.
2846 */
2847 buddy = leafno ^ budsz;
2848
2849 /* if the leaf's new value is greater than its
2850 * buddy's value, we join no more.
2851 */
2852 if (newval > leaf[buddy])
2853 break;
2854
2855 /* It shouldn't be less */
2856 if (newval < leaf[buddy])
2857 return -EIO;
2858
2859 /* check which (leafno or buddy) is the left buddy.
2860 * the left buddy gets to claim the blocks resulting
2861 * from the join while the right gets to claim none.
2862 * the left buddy is also eligible to participate in
2863 * a join at the next higher level while the right
2864 * is not.
2865 *
2866 */
2867 if (leafno < buddy) {
2868 /* leafno is the left buddy.
2869 */
2870 dbAdjTree(tp, buddy, NOFREE);
2871 } else {
2872 /* buddy is the left buddy and becomes
2873 * leafno.
2874 */
2875 dbAdjTree(tp, leafno, NOFREE);
2876 leafno = buddy;
2877 }
2878
2879 /* on to try the next join.
2880 */
2881 newval += 1;
2882 budsz <<= 1;
2883 }
2884 }
2885
2886 /* update the leaf value.
2887 */
2888 dbAdjTree(tp, leafno, newval);
2889
2890 return 0;
2891 }
2892
2893
2894 /*
2895 * NAME: dbAdjTree()
2896 *
2897 * FUNCTION: update a leaf of a dmtree with a new value, adjusting
2898 * the dmtree, as required, to reflect the new leaf value.
2899 * the combination of any buddies must already be done before
2900 * this is called.
2901 *
2902 * PARAMETERS:
2903 * tp - pointer to the tree to be adjusted.
2904 * leafno - the number of the leaf to be updated.
2905 * newval - the new value for the leaf.
2906 *
2907 * RETURN VALUES: none
2908 */
dbAdjTree(dmtree_t * tp,int leafno,int newval)2909 static void dbAdjTree(dmtree_t * tp, int leafno, int newval)
2910 {
2911 int lp, pp, k;
2912 int max;
2913
2914 /* pick up the index of the leaf for this leafno.
2915 */
2916 lp = leafno + le32_to_cpu(tp->dmt_leafidx);
2917
2918 /* is the current value the same as the old value ? if so,
2919 * there is nothing to do.
2920 */
2921 if (tp->dmt_stree[lp] == newval)
2922 return;
2923
2924 /* set the new value.
2925 */
2926 tp->dmt_stree[lp] = newval;
2927
2928 /* bubble the new value up the tree as required.
2929 */
2930 for (k = 0; k < le32_to_cpu(tp->dmt_height); k++) {
2931 /* get the index of the first leaf of the 4 leaf
2932 * group containing the specified leaf (leafno).
2933 */
2934 lp = ((lp - 1) & ~0x03) + 1;
2935
2936 /* get the index of the parent of this 4 leaf group.
2937 */
2938 pp = (lp - 1) >> 2;
2939
2940 /* determine the maximum of the 4 leaves.
2941 */
2942 max = TREEMAX(&tp->dmt_stree[lp]);
2943
2944 /* if the maximum of the 4 is the same as the
2945 * parent's value, we're done.
2946 */
2947 if (tp->dmt_stree[pp] == max)
2948 break;
2949
2950 /* parent gets new value.
2951 */
2952 tp->dmt_stree[pp] = max;
2953
2954 /* parent becomes leaf for next go-round.
2955 */
2956 lp = pp;
2957 }
2958 }
2959
2960
2961 /*
2962 * NAME: dbFindLeaf()
2963 *
2964 * FUNCTION: search a dmtree_t for sufficient free blocks, returning
2965 * the index of a leaf describing the free blocks if
2966 * sufficient free blocks are found.
2967 *
2968 * the search starts at the top of the dmtree_t tree and
2969 * proceeds down the tree to the leftmost leaf with sufficient
2970 * free space.
2971 *
2972 * PARAMETERS:
2973 * tp - pointer to the tree to be searched.
2974 * l2nb - log2 number of free blocks to search for.
2975 * leafidx - return pointer to be set to the index of the leaf
2976 * describing at least l2nb free blocks if sufficient
2977 * free blocks are found.
2978 *
2979 * RETURN VALUES:
2980 * 0 - success
2981 * -ENOSPC - insufficient free blocks.
2982 */
dbFindLeaf(dmtree_t * tp,int l2nb,int * leafidx)2983 static int dbFindLeaf(dmtree_t * tp, int l2nb, int *leafidx)
2984 {
2985 int ti, n = 0, k, x = 0;
2986
2987 /* first check the root of the tree to see if there is
2988 * sufficient free space.
2989 */
2990 if (l2nb > tp->dmt_stree[ROOT])
2991 return -ENOSPC;
2992
2993 /* sufficient free space available. now search down the tree
2994 * starting at the next level for the leftmost leaf that
2995 * describes sufficient free space.
2996 */
2997 for (k = le32_to_cpu(tp->dmt_height), ti = 1;
2998 k > 0; k--, ti = ((ti + n) << 2) + 1) {
2999 /* search the four nodes at this level, starting from
3000 * the left.
3001 */
3002 for (x = ti, n = 0; n < 4; n++) {
3003 /* sufficient free space found. move to the next
3004 * level (or quit if this is the last level).
3005 */
3006 if (l2nb <= tp->dmt_stree[x + n])
3007 break;
3008 }
3009
3010 /* better have found something since the higher
3011 * levels of the tree said it was here.
3012 */
3013 assert(n < 4);
3014 }
3015
3016 /* set the return to the leftmost leaf describing sufficient
3017 * free space.
3018 */
3019 *leafidx = x + n - le32_to_cpu(tp->dmt_leafidx);
3020
3021 return (0);
3022 }
3023
3024
3025 /*
3026 * NAME: dbFindBits()
3027 *
3028 * FUNCTION: find a specified number of binary buddy free bits within a
3029 * dmap bitmap word value.
3030 *
3031 * this routine searches the bitmap value for (1 << l2nb) free
3032 * bits at (1 << l2nb) alignments within the value.
3033 *
3034 * PARAMETERS:
3035 * word - dmap bitmap word value.
3036 * l2nb - number of free bits specified as a log2 number.
3037 *
3038 * RETURN VALUES:
3039 * starting bit number of free bits.
3040 */
dbFindBits(u32 word,int l2nb)3041 static int dbFindBits(u32 word, int l2nb)
3042 {
3043 int bitno, nb;
3044 u32 mask;
3045
3046 /* get the number of bits.
3047 */
3048 nb = 1 << l2nb;
3049 assert(nb <= DBWORD);
3050
3051 /* complement the word so we can use a mask (i.e. 0s represent
3052 * free bits) and compute the mask.
3053 */
3054 word = ~word;
3055 mask = ONES << (DBWORD - nb);
3056
3057 /* scan the word for nb free bits at nb alignments.
3058 */
3059 for (bitno = 0; mask != 0; bitno += nb, mask >>= nb) {
3060 if ((mask & word) == mask)
3061 break;
3062 }
3063
3064 ASSERT(bitno < 32);
3065
3066 /* return the bit number.
3067 */
3068 return (bitno);
3069 }
3070
3071
3072 /*
3073 * NAME: dbMaxBud(u8 *cp)
3074 *
3075 * FUNCTION: determine the largest binary buddy string of free
3076 * bits within 32-bits of the map.
3077 *
3078 * PARAMETERS:
3079 * cp - pointer to the 32-bit value.
3080 *
3081 * RETURN VALUES:
3082 * largest binary buddy of free bits within a dmap word.
3083 */
dbMaxBud(u8 * cp)3084 static int dbMaxBud(u8 * cp)
3085 {
3086 signed char tmp1, tmp2;
3087
3088 /* check if the wmap word is all free. if so, the
3089 * free buddy size is BUDMIN.
3090 */
3091 if (*((uint *) cp) == 0)
3092 return (BUDMIN);
3093
3094 /* check if the wmap word is half free. if so, the
3095 * free buddy size is BUDMIN-1.
3096 */
3097 if (*((u16 *) cp) == 0 || *((u16 *) cp + 1) == 0)
3098 return (BUDMIN - 1);
3099
3100 /* not all free or half free. determine the free buddy
3101 * size thru table lookup using quarters of the wmap word.
3102 */
3103 tmp1 = max(budtab[cp[2]], budtab[cp[3]]);
3104 tmp2 = max(budtab[cp[0]], budtab[cp[1]]);
3105 return (max(tmp1, tmp2));
3106 }
3107
3108
3109 /*
3110 * NAME: cnttz(uint word)
3111 *
3112 * FUNCTION: determine the number of trailing zeros within a 32-bit
3113 * value.
3114 *
3115 * PARAMETERS:
3116 * value - 32-bit value to be examined.
3117 *
3118 * RETURN VALUES:
3119 * count of trailing zeros
3120 */
cnttz(u32 word)3121 static int cnttz(u32 word)
3122 {
3123 int n;
3124
3125 for (n = 0; n < 32; n++, word >>= 1) {
3126 if (word & 0x01)
3127 break;
3128 }
3129
3130 return (n);
3131 }
3132
3133
3134 /*
3135 * NAME: cntlz(u32 value)
3136 *
3137 * FUNCTION: determine the number of leading zeros within a 32-bit
3138 * value.
3139 *
3140 * PARAMETERS:
3141 * value - 32-bit value to be examined.
3142 *
3143 * RETURN VALUES:
3144 * count of leading zeros
3145 */
cntlz(u32 value)3146 static int cntlz(u32 value)
3147 {
3148 int n;
3149
3150 for (n = 0; n < 32; n++, value <<= 1) {
3151 if (value & HIGHORDER)
3152 break;
3153 }
3154 return (n);
3155 }
3156
3157
3158 /*
3159 * NAME: blkstol2(s64 nb)
3160 *
3161 * FUNCTION: convert a block count to its log2 value. if the block
3162 * count is not a l2 multiple, it is rounded up to the next
3163 * larger l2 multiple.
3164 *
3165 * PARAMETERS:
3166 * nb - number of blocks
3167 *
3168 * RETURN VALUES:
3169 * log2 number of blocks
3170 */
blkstol2(s64 nb)3171 static int blkstol2(s64 nb)
3172 {
3173 int l2nb;
3174 s64 mask; /* meant to be signed */
3175
3176 mask = (s64) 1 << (64 - 1);
3177
3178 /* count the leading bits.
3179 */
3180 for (l2nb = 0; l2nb < 64; l2nb++, mask >>= 1) {
3181 /* leading bit found.
3182 */
3183 if (nb & mask) {
3184 /* determine the l2 value.
3185 */
3186 l2nb = (64 - 1) - l2nb;
3187
3188 /* check if we need to round up.
3189 */
3190 if (~mask & nb)
3191 l2nb++;
3192
3193 return (l2nb);
3194 }
3195 }
3196 assert(0);
3197 return 0; /* fix compiler warning */
3198 }
3199
3200
3201 /*
3202 * NAME: dbAllocBottomUp()
3203 *
3204 * FUNCTION: alloc the specified block range from the working block
3205 * allocation map.
3206 *
3207 * the blocks will be alloc from the working map one dmap
3208 * at a time.
3209 *
3210 * PARAMETERS:
3211 * ip - pointer to in-core inode;
3212 * blkno - starting block number to be freed.
3213 * nblocks - number of blocks to be freed.
3214 *
3215 * RETURN VALUES:
3216 * 0 - success
3217 * -EIO - i/o error
3218 */
dbAllocBottomUp(struct inode * ip,s64 blkno,s64 nblocks)3219 int dbAllocBottomUp(struct inode *ip, s64 blkno, s64 nblocks)
3220 {
3221 struct metapage *mp;
3222 struct dmap *dp;
3223 int nb, rc;
3224 s64 lblkno, rem;
3225 struct inode *ipbmap = JFS_SBI(ip->i_sb)->ipbmap;
3226 struct bmap *bmp = JFS_SBI(ip->i_sb)->bmap;
3227
3228 IREAD_LOCK(ipbmap, RDWRLOCK_DMAP);
3229
3230 /* block to be allocated better be within the mapsize. */
3231 ASSERT(nblocks <= bmp->db_mapsize - blkno);
3232
3233 /*
3234 * allocate the blocks a dmap at a time.
3235 */
3236 mp = NULL;
3237 for (rem = nblocks; rem > 0; rem -= nb, blkno += nb) {
3238 /* release previous dmap if any */
3239 if (mp) {
3240 write_metapage(mp);
3241 }
3242
3243 /* get the buffer for the current dmap. */
3244 lblkno = BLKTODMAP(blkno, bmp->db_l2nbperpage);
3245 mp = read_metapage(ipbmap, lblkno, PSIZE, 0);
3246 if (mp == NULL) {
3247 IREAD_UNLOCK(ipbmap);
3248 return -EIO;
3249 }
3250 dp = (struct dmap *) mp->data;
3251
3252 /* determine the number of blocks to be allocated from
3253 * this dmap.
3254 */
3255 nb = min(rem, BPERDMAP - (blkno & (BPERDMAP - 1)));
3256
3257 /* allocate the blocks. */
3258 if ((rc = dbAllocDmapBU(bmp, dp, blkno, nb))) {
3259 release_metapage(mp);
3260 IREAD_UNLOCK(ipbmap);
3261 return (rc);
3262 }
3263 }
3264
3265 /* write the last buffer. */
3266 write_metapage(mp);
3267
3268 IREAD_UNLOCK(ipbmap);
3269
3270 return (0);
3271 }
3272
3273
dbAllocDmapBU(struct bmap * bmp,struct dmap * dp,s64 blkno,int nblocks)3274 static int dbAllocDmapBU(struct bmap * bmp, struct dmap * dp, s64 blkno,
3275 int nblocks)
3276 {
3277 int rc;
3278 int dbitno, word, rembits, nb, nwords, wbitno, agno;
3279 s8 oldroot;
3280 struct dmaptree *tp = (struct dmaptree *) & dp->tree;
3281
3282 /* save the current value of the root (i.e. maximum free string)
3283 * of the dmap tree.
3284 */
3285 oldroot = tp->stree[ROOT];
3286
3287 /* determine the bit number and word within the dmap of the
3288 * starting block.
3289 */
3290 dbitno = blkno & (BPERDMAP - 1);
3291 word = dbitno >> L2DBWORD;
3292
3293 /* block range better be within the dmap */
3294 assert(dbitno + nblocks <= BPERDMAP);
3295
3296 /* allocate the bits of the dmap's words corresponding to the block
3297 * range. not all bits of the first and last words may be contained
3298 * within the block range. if this is the case, we'll work against
3299 * those words (i.e. partial first and/or last) on an individual basis
3300 * (a single pass), allocating the bits of interest by hand and
3301 * updating the leaf corresponding to the dmap word. a single pass
3302 * will be used for all dmap words fully contained within the
3303 * specified range. within this pass, the bits of all fully contained
3304 * dmap words will be marked as free in a single shot and the leaves
3305 * will be updated. a single leaf may describe the free space of
3306 * multiple dmap words, so we may update only a subset of the actual
3307 * leaves corresponding to the dmap words of the block range.
3308 */
3309 for (rembits = nblocks; rembits > 0; rembits -= nb, dbitno += nb) {
3310 /* determine the bit number within the word and
3311 * the number of bits within the word.
3312 */
3313 wbitno = dbitno & (DBWORD - 1);
3314 nb = min(rembits, DBWORD - wbitno);
3315
3316 /* check if only part of a word is to be allocated.
3317 */
3318 if (nb < DBWORD) {
3319 /* allocate (set to 1) the appropriate bits within
3320 * this dmap word.
3321 */
3322 dp->wmap[word] |= cpu_to_le32(ONES << (DBWORD - nb)
3323 >> wbitno);
3324
3325 word++;
3326 } else {
3327 /* one or more dmap words are fully contained
3328 * within the block range. determine how many
3329 * words and allocate (set to 1) the bits of these
3330 * words.
3331 */
3332 nwords = rembits >> L2DBWORD;
3333 memset(&dp->wmap[word], (int) ONES, nwords * 4);
3334
3335 /* determine how many bits */
3336 nb = nwords << L2DBWORD;
3337 word += nwords;
3338 }
3339 }
3340
3341 /* update the free count for this dmap */
3342 le32_add_cpu(&dp->nfree, -nblocks);
3343
3344 /* reconstruct summary tree */
3345 dbInitDmapTree(dp);
3346
3347 BMAP_LOCK(bmp);
3348
3349 /* if this allocation group is completely free,
3350 * update the highest active allocation group number
3351 * if this allocation group is the new max.
3352 */
3353 agno = blkno >> bmp->db_agl2size;
3354 if (agno > bmp->db_maxag)
3355 bmp->db_maxag = agno;
3356
3357 /* update the free count for the allocation group and map */
3358 bmp->db_agfree[agno] -= nblocks;
3359 bmp->db_nfree -= nblocks;
3360
3361 BMAP_UNLOCK(bmp);
3362
3363 /* if the root has not changed, done. */
3364 if (tp->stree[ROOT] == oldroot)
3365 return (0);
3366
3367 /* root changed. bubble the change up to the dmap control pages.
3368 * if the adjustment of the upper level control pages fails,
3369 * backout the bit allocation (thus making everything consistent).
3370 */
3371 if ((rc = dbAdjCtl(bmp, blkno, tp->stree[ROOT], 1, 0)))
3372 dbFreeBits(bmp, dp, blkno, nblocks);
3373
3374 return (rc);
3375 }
3376
3377
3378 /*
3379 * NAME: dbExtendFS()
3380 *
3381 * FUNCTION: extend bmap from blkno for nblocks;
3382 * dbExtendFS() updates bmap ready for dbAllocBottomUp();
3383 *
3384 * L2
3385 * |
3386 * L1---------------------------------L1
3387 * | |
3388 * L0---------L0---------L0 L0---------L0---------L0
3389 * | | | | | |
3390 * d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,...,dn d0,.,dm;
3391 * L2L1L0d0,...,dnL0d0,...,dnL0d0,...,dnL1L0d0,...,dnL0d0,...,dnL0d0,..dm
3392 *
3393 * <---old---><----------------------------extend----------------------->
3394 */
dbExtendFS(struct inode * ipbmap,s64 blkno,s64 nblocks)3395 int dbExtendFS(struct inode *ipbmap, s64 blkno, s64 nblocks)
3396 {
3397 struct jfs_sb_info *sbi = JFS_SBI(ipbmap->i_sb);
3398 int nbperpage = sbi->nbperpage;
3399 int i, i0 = true, j, j0 = true, k, n;
3400 s64 newsize;
3401 s64 p;
3402 struct metapage *mp, *l2mp, *l1mp = NULL, *l0mp = NULL;
3403 struct dmapctl *l2dcp, *l1dcp, *l0dcp;
3404 struct dmap *dp;
3405 s8 *l0leaf, *l1leaf, *l2leaf;
3406 struct bmap *bmp = sbi->bmap;
3407 int agno, l2agsize, oldl2agsize;
3408 s64 ag_rem;
3409
3410 newsize = blkno + nblocks;
3411
3412 jfs_info("dbExtendFS: blkno:%Ld nblocks:%Ld newsize:%Ld",
3413 (long long) blkno, (long long) nblocks, (long long) newsize);
3414
3415 /*
3416 * initialize bmap control page.
3417 *
3418 * all the data in bmap control page should exclude
3419 * the mkfs hidden dmap page.
3420 */
3421
3422 /* update mapsize */
3423 bmp->db_mapsize = newsize;
3424 bmp->db_maxlevel = BMAPSZTOLEV(bmp->db_mapsize);
3425
3426 /* compute new AG size */
3427 l2agsize = dbGetL2AGSize(newsize);
3428 oldl2agsize = bmp->db_agl2size;
3429
3430 bmp->db_agl2size = l2agsize;
3431 bmp->db_agsize = 1 << l2agsize;
3432
3433 /* compute new number of AG */
3434 agno = bmp->db_numag;
3435 bmp->db_numag = newsize >> l2agsize;
3436 bmp->db_numag += ((u32) newsize % (u32) bmp->db_agsize) ? 1 : 0;
3437
3438 /*
3439 * reconfigure db_agfree[]
3440 * from old AG configuration to new AG configuration;
3441 *
3442 * coalesce contiguous k (newAGSize/oldAGSize) AGs;
3443 * i.e., (AGi, ..., AGj) where i = k*n and j = k*(n+1) - 1 to AGn;
3444 * note: new AG size = old AG size * (2**x).
3445 */
3446 if (l2agsize == oldl2agsize)
3447 goto extend;
3448 k = 1 << (l2agsize - oldl2agsize);
3449 ag_rem = bmp->db_agfree[0]; /* save agfree[0] */
3450 for (i = 0, n = 0; i < agno; n++) {
3451 bmp->db_agfree[n] = 0; /* init collection point */
3452
3453 /* coalesce contiguous k AGs; */
3454 for (j = 0; j < k && i < agno; j++, i++) {
3455 /* merge AGi to AGn */
3456 bmp->db_agfree[n] += bmp->db_agfree[i];
3457 }
3458 }
3459 bmp->db_agfree[0] += ag_rem; /* restore agfree[0] */
3460
3461 for (; n < MAXAG; n++)
3462 bmp->db_agfree[n] = 0;
3463
3464 /*
3465 * update highest active ag number
3466 */
3467
3468 bmp->db_maxag = bmp->db_maxag / k;
3469
3470 /*
3471 * extend bmap
3472 *
3473 * update bit maps and corresponding level control pages;
3474 * global control page db_nfree, db_agfree[agno], db_maxfreebud;
3475 */
3476 extend:
3477 /* get L2 page */
3478 p = BMAPBLKNO + nbperpage; /* L2 page */
3479 l2mp = read_metapage(ipbmap, p, PSIZE, 0);
3480 if (!l2mp) {
3481 jfs_error(ipbmap->i_sb, "L2 page could not be read\n");
3482 return -EIO;
3483 }
3484 l2dcp = (struct dmapctl *) l2mp->data;
3485
3486 /* compute start L1 */
3487 k = blkno >> L2MAXL1SIZE;
3488 l2leaf = l2dcp->stree + CTLLEAFIND + k;
3489 p = BLKTOL1(blkno, sbi->l2nbperpage); /* L1 page */
3490
3491 /*
3492 * extend each L1 in L2
3493 */
3494 for (; k < LPERCTL; k++, p += nbperpage) {
3495 /* get L1 page */
3496 if (j0) {
3497 /* read in L1 page: (blkno & (MAXL1SIZE - 1)) */
3498 l1mp = read_metapage(ipbmap, p, PSIZE, 0);
3499 if (l1mp == NULL)
3500 goto errout;
3501 l1dcp = (struct dmapctl *) l1mp->data;
3502
3503 /* compute start L0 */
3504 j = (blkno & (MAXL1SIZE - 1)) >> L2MAXL0SIZE;
3505 l1leaf = l1dcp->stree + CTLLEAFIND + j;
3506 p = BLKTOL0(blkno, sbi->l2nbperpage);
3507 j0 = false;
3508 } else {
3509 /* assign/init L1 page */
3510 l1mp = get_metapage(ipbmap, p, PSIZE, 0);
3511 if (l1mp == NULL)
3512 goto errout;
3513
3514 l1dcp = (struct dmapctl *) l1mp->data;
3515
3516 /* compute start L0 */
3517 j = 0;
3518 l1leaf = l1dcp->stree + CTLLEAFIND;
3519 p += nbperpage; /* 1st L0 of L1.k */
3520 }
3521
3522 /*
3523 * extend each L0 in L1
3524 */
3525 for (; j < LPERCTL; j++) {
3526 /* get L0 page */
3527 if (i0) {
3528 /* read in L0 page: (blkno & (MAXL0SIZE - 1)) */
3529
3530 l0mp = read_metapage(ipbmap, p, PSIZE, 0);
3531 if (l0mp == NULL)
3532 goto errout;
3533 l0dcp = (struct dmapctl *) l0mp->data;
3534
3535 /* compute start dmap */
3536 i = (blkno & (MAXL0SIZE - 1)) >>
3537 L2BPERDMAP;
3538 l0leaf = l0dcp->stree + CTLLEAFIND + i;
3539 p = BLKTODMAP(blkno,
3540 sbi->l2nbperpage);
3541 i0 = false;
3542 } else {
3543 /* assign/init L0 page */
3544 l0mp = get_metapage(ipbmap, p, PSIZE, 0);
3545 if (l0mp == NULL)
3546 goto errout;
3547
3548 l0dcp = (struct dmapctl *) l0mp->data;
3549
3550 /* compute start dmap */
3551 i = 0;
3552 l0leaf = l0dcp->stree + CTLLEAFIND;
3553 p += nbperpage; /* 1st dmap of L0.j */
3554 }
3555
3556 /*
3557 * extend each dmap in L0
3558 */
3559 for (; i < LPERCTL; i++) {
3560 /*
3561 * reconstruct the dmap page, and
3562 * initialize corresponding parent L0 leaf
3563 */
3564 if ((n = blkno & (BPERDMAP - 1))) {
3565 /* read in dmap page: */
3566 mp = read_metapage(ipbmap, p,
3567 PSIZE, 0);
3568 if (mp == NULL)
3569 goto errout;
3570 n = min(nblocks, (s64)BPERDMAP - n);
3571 } else {
3572 /* assign/init dmap page */
3573 mp = read_metapage(ipbmap, p,
3574 PSIZE, 0);
3575 if (mp == NULL)
3576 goto errout;
3577
3578 n = min_t(s64, nblocks, BPERDMAP);
3579 }
3580
3581 dp = (struct dmap *) mp->data;
3582 *l0leaf = dbInitDmap(dp, blkno, n);
3583
3584 bmp->db_nfree += n;
3585 agno = le64_to_cpu(dp->start) >> l2agsize;
3586 bmp->db_agfree[agno] += n;
3587
3588 write_metapage(mp);
3589
3590 l0leaf++;
3591 p += nbperpage;
3592
3593 blkno += n;
3594 nblocks -= n;
3595 if (nblocks == 0)
3596 break;
3597 } /* for each dmap in a L0 */
3598
3599 /*
3600 * build current L0 page from its leaves, and
3601 * initialize corresponding parent L1 leaf
3602 */
3603 *l1leaf = dbInitDmapCtl(l0dcp, 0, ++i);
3604 write_metapage(l0mp);
3605 l0mp = NULL;
3606
3607 if (nblocks)
3608 l1leaf++; /* continue for next L0 */
3609 else {
3610 /* more than 1 L0 ? */
3611 if (j > 0)
3612 break; /* build L1 page */
3613 else {
3614 /* summarize in global bmap page */
3615 bmp->db_maxfreebud = *l1leaf;
3616 release_metapage(l1mp);
3617 release_metapage(l2mp);
3618 goto finalize;
3619 }
3620 }
3621 } /* for each L0 in a L1 */
3622
3623 /*
3624 * build current L1 page from its leaves, and
3625 * initialize corresponding parent L2 leaf
3626 */
3627 *l2leaf = dbInitDmapCtl(l1dcp, 1, ++j);
3628 write_metapage(l1mp);
3629 l1mp = NULL;
3630
3631 if (nblocks)
3632 l2leaf++; /* continue for next L1 */
3633 else {
3634 /* more than 1 L1 ? */
3635 if (k > 0)
3636 break; /* build L2 page */
3637 else {
3638 /* summarize in global bmap page */
3639 bmp->db_maxfreebud = *l2leaf;
3640 release_metapage(l2mp);
3641 goto finalize;
3642 }
3643 }
3644 } /* for each L1 in a L2 */
3645
3646 jfs_error(ipbmap->i_sb, "function has not returned as expected\n");
3647 errout:
3648 if (l0mp)
3649 release_metapage(l0mp);
3650 if (l1mp)
3651 release_metapage(l1mp);
3652 release_metapage(l2mp);
3653 return -EIO;
3654
3655 /*
3656 * finalize bmap control page
3657 */
3658 finalize:
3659
3660 return 0;
3661 }
3662
3663
3664 /*
3665 * dbFinalizeBmap()
3666 */
dbFinalizeBmap(struct inode * ipbmap)3667 void dbFinalizeBmap(struct inode *ipbmap)
3668 {
3669 struct bmap *bmp = JFS_SBI(ipbmap->i_sb)->bmap;
3670 int actags, inactags, l2nl;
3671 s64 ag_rem, actfree, inactfree, avgfree;
3672 int i, n;
3673
3674 /*
3675 * finalize bmap control page
3676 */
3677 //finalize:
3678 /*
3679 * compute db_agpref: preferred ag to allocate from
3680 * (the leftmost ag with average free space in it);
3681 */
3682 //agpref:
3683 /* get the number of active ags and inacitve ags */
3684 actags = bmp->db_maxag + 1;
3685 inactags = bmp->db_numag - actags;
3686 ag_rem = bmp->db_mapsize & (bmp->db_agsize - 1); /* ??? */
3687
3688 /* determine how many blocks are in the inactive allocation
3689 * groups. in doing this, we must account for the fact that
3690 * the rightmost group might be a partial group (i.e. file
3691 * system size is not a multiple of the group size).
3692 */
3693 inactfree = (inactags && ag_rem) ?
3694 ((inactags - 1) << bmp->db_agl2size) + ag_rem
3695 : inactags << bmp->db_agl2size;
3696
3697 /* determine how many free blocks are in the active
3698 * allocation groups plus the average number of free blocks
3699 * within the active ags.
3700 */
3701 actfree = bmp->db_nfree - inactfree;
3702 avgfree = (u32) actfree / (u32) actags;
3703
3704 /* if the preferred allocation group has not average free space.
3705 * re-establish the preferred group as the leftmost
3706 * group with average free space.
3707 */
3708 if (bmp->db_agfree[bmp->db_agpref] < avgfree) {
3709 for (bmp->db_agpref = 0; bmp->db_agpref < actags;
3710 bmp->db_agpref++) {
3711 if (bmp->db_agfree[bmp->db_agpref] >= avgfree)
3712 break;
3713 }
3714 if (bmp->db_agpref >= bmp->db_numag) {
3715 jfs_error(ipbmap->i_sb,
3716 "cannot find ag with average freespace\n");
3717 }
3718 }
3719
3720 /*
3721 * compute db_aglevel, db_agheight, db_width, db_agstart:
3722 * an ag is covered in aglevel dmapctl summary tree,
3723 * at agheight level height (from leaf) with agwidth number of nodes
3724 * each, which starts at agstart index node of the smmary tree node
3725 * array;
3726 */
3727 bmp->db_aglevel = BMAPSZTOLEV(bmp->db_agsize);
3728 l2nl =
3729 bmp->db_agl2size - (L2BPERDMAP + bmp->db_aglevel * L2LPERCTL);
3730 bmp->db_agheight = l2nl >> 1;
3731 bmp->db_agwidth = 1 << (l2nl - (bmp->db_agheight << 1));
3732 for (i = 5 - bmp->db_agheight, bmp->db_agstart = 0, n = 1; i > 0;
3733 i--) {
3734 bmp->db_agstart += n;
3735 n <<= 2;
3736 }
3737
3738 }
3739
3740
3741 /*
3742 * NAME: dbInitDmap()/ujfs_idmap_page()
3743 *
3744 * FUNCTION: initialize working/persistent bitmap of the dmap page
3745 * for the specified number of blocks:
3746 *
3747 * at entry, the bitmaps had been initialized as free (ZEROS);
3748 * The number of blocks will only account for the actually
3749 * existing blocks. Blocks which don't actually exist in
3750 * the aggregate will be marked as allocated (ONES);
3751 *
3752 * PARAMETERS:
3753 * dp - pointer to page of map
3754 * nblocks - number of blocks this page
3755 *
3756 * RETURNS: NONE
3757 */
dbInitDmap(struct dmap * dp,s64 Blkno,int nblocks)3758 static int dbInitDmap(struct dmap * dp, s64 Blkno, int nblocks)
3759 {
3760 int blkno, w, b, r, nw, nb, i;
3761
3762 /* starting block number within the dmap */
3763 blkno = Blkno & (BPERDMAP - 1);
3764
3765 if (blkno == 0) {
3766 dp->nblocks = dp->nfree = cpu_to_le32(nblocks);
3767 dp->start = cpu_to_le64(Blkno);
3768
3769 if (nblocks == BPERDMAP) {
3770 memset(&dp->wmap[0], 0, LPERDMAP * 4);
3771 memset(&dp->pmap[0], 0, LPERDMAP * 4);
3772 goto initTree;
3773 }
3774 } else {
3775 le32_add_cpu(&dp->nblocks, nblocks);
3776 le32_add_cpu(&dp->nfree, nblocks);
3777 }
3778
3779 /* word number containing start block number */
3780 w = blkno >> L2DBWORD;
3781
3782 /*
3783 * free the bits corresponding to the block range (ZEROS):
3784 * note: not all bits of the first and last words may be contained
3785 * within the block range.
3786 */
3787 for (r = nblocks; r > 0; r -= nb, blkno += nb) {
3788 /* number of bits preceding range to be freed in the word */
3789 b = blkno & (DBWORD - 1);
3790 /* number of bits to free in the word */
3791 nb = min(r, DBWORD - b);
3792
3793 /* is partial word to be freed ? */
3794 if (nb < DBWORD) {
3795 /* free (set to 0) from the bitmap word */
3796 dp->wmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3797 >> b));
3798 dp->pmap[w] &= cpu_to_le32(~(ONES << (DBWORD - nb)
3799 >> b));
3800
3801 /* skip the word freed */
3802 w++;
3803 } else {
3804 /* free (set to 0) contiguous bitmap words */
3805 nw = r >> L2DBWORD;
3806 memset(&dp->wmap[w], 0, nw * 4);
3807 memset(&dp->pmap[w], 0, nw * 4);
3808
3809 /* skip the words freed */
3810 nb = nw << L2DBWORD;
3811 w += nw;
3812 }
3813 }
3814
3815 /*
3816 * mark bits following the range to be freed (non-existing
3817 * blocks) as allocated (ONES)
3818 */
3819
3820 if (blkno == BPERDMAP)
3821 goto initTree;
3822
3823 /* the first word beyond the end of existing blocks */
3824 w = blkno >> L2DBWORD;
3825
3826 /* does nblocks fall on a 32-bit boundary ? */
3827 b = blkno & (DBWORD - 1);
3828 if (b) {
3829 /* mark a partial word allocated */
3830 dp->wmap[w] = dp->pmap[w] = cpu_to_le32(ONES >> b);
3831 w++;
3832 }
3833
3834 /* set the rest of the words in the page to allocated (ONES) */
3835 for (i = w; i < LPERDMAP; i++)
3836 dp->pmap[i] = dp->wmap[i] = cpu_to_le32(ONES);
3837
3838 /*
3839 * init tree
3840 */
3841 initTree:
3842 return (dbInitDmapTree(dp));
3843 }
3844
3845
3846 /*
3847 * NAME: dbInitDmapTree()/ujfs_complete_dmap()
3848 *
3849 * FUNCTION: initialize summary tree of the specified dmap:
3850 *
3851 * at entry, bitmap of the dmap has been initialized;
3852 *
3853 * PARAMETERS:
3854 * dp - dmap to complete
3855 * blkno - starting block number for this dmap
3856 * treemax - will be filled in with max free for this dmap
3857 *
3858 * RETURNS: max free string at the root of the tree
3859 */
dbInitDmapTree(struct dmap * dp)3860 static int dbInitDmapTree(struct dmap * dp)
3861 {
3862 struct dmaptree *tp;
3863 s8 *cp;
3864 int i;
3865
3866 /* init fixed info of tree */
3867 tp = &dp->tree;
3868 tp->nleafs = cpu_to_le32(LPERDMAP);
3869 tp->l2nleafs = cpu_to_le32(L2LPERDMAP);
3870 tp->leafidx = cpu_to_le32(LEAFIND);
3871 tp->height = cpu_to_le32(4);
3872 tp->budmin = BUDMIN;
3873
3874 /* init each leaf from corresponding wmap word:
3875 * note: leaf is set to NOFREE(-1) if all blocks of corresponding
3876 * bitmap word are allocated.
3877 */
3878 cp = tp->stree + le32_to_cpu(tp->leafidx);
3879 for (i = 0; i < LPERDMAP; i++)
3880 *cp++ = dbMaxBud((u8 *) & dp->wmap[i]);
3881
3882 /* build the dmap's binary buddy summary tree */
3883 return (dbInitTree(tp));
3884 }
3885
3886
3887 /*
3888 * NAME: dbInitTree()/ujfs_adjtree()
3889 *
3890 * FUNCTION: initialize binary buddy summary tree of a dmap or dmapctl.
3891 *
3892 * at entry, the leaves of the tree has been initialized
3893 * from corresponding bitmap word or root of summary tree
3894 * of the child control page;
3895 * configure binary buddy system at the leaf level, then
3896 * bubble up the values of the leaf nodes up the tree.
3897 *
3898 * PARAMETERS:
3899 * cp - Pointer to the root of the tree
3900 * l2leaves- Number of leaf nodes as a power of 2
3901 * l2min - Number of blocks that can be covered by a leaf
3902 * as a power of 2
3903 *
3904 * RETURNS: max free string at the root of the tree
3905 */
dbInitTree(struct dmaptree * dtp)3906 static int dbInitTree(struct dmaptree * dtp)
3907 {
3908 int l2max, l2free, bsize, nextb, i;
3909 int child, parent, nparent;
3910 s8 *tp, *cp, *cp1;
3911
3912 tp = dtp->stree;
3913
3914 /* Determine the maximum free string possible for the leaves */
3915 l2max = le32_to_cpu(dtp->l2nleafs) + dtp->budmin;
3916
3917 /*
3918 * configure the leaf levevl into binary buddy system
3919 *
3920 * Try to combine buddies starting with a buddy size of 1
3921 * (i.e. two leaves). At a buddy size of 1 two buddy leaves
3922 * can be combined if both buddies have a maximum free of l2min;
3923 * the combination will result in the left-most buddy leaf having
3924 * a maximum free of l2min+1.
3925 * After processing all buddies for a given size, process buddies
3926 * at the next higher buddy size (i.e. current size * 2) and
3927 * the next maximum free (current free + 1).
3928 * This continues until the maximum possible buddy combination
3929 * yields maximum free.
3930 */
3931 for (l2free = dtp->budmin, bsize = 1; l2free < l2max;
3932 l2free++, bsize = nextb) {
3933 /* get next buddy size == current buddy pair size */
3934 nextb = bsize << 1;
3935
3936 /* scan each adjacent buddy pair at current buddy size */
3937 for (i = 0, cp = tp + le32_to_cpu(dtp->leafidx);
3938 i < le32_to_cpu(dtp->nleafs);
3939 i += nextb, cp += nextb) {
3940 /* coalesce if both adjacent buddies are max free */
3941 if (*cp == l2free && *(cp + bsize) == l2free) {
3942 *cp = l2free + 1; /* left take right */
3943 *(cp + bsize) = -1; /* right give left */
3944 }
3945 }
3946 }
3947
3948 /*
3949 * bubble summary information of leaves up the tree.
3950 *
3951 * Starting at the leaf node level, the four nodes described by
3952 * the higher level parent node are compared for a maximum free and
3953 * this maximum becomes the value of the parent node.
3954 * when all lower level nodes are processed in this fashion then
3955 * move up to the next level (parent becomes a lower level node) and
3956 * continue the process for that level.
3957 */
3958 for (child = le32_to_cpu(dtp->leafidx),
3959 nparent = le32_to_cpu(dtp->nleafs) >> 2;
3960 nparent > 0; nparent >>= 2, child = parent) {
3961 /* get index of 1st node of parent level */
3962 parent = (child - 1) >> 2;
3963
3964 /* set the value of the parent node as the maximum
3965 * of the four nodes of the current level.
3966 */
3967 for (i = 0, cp = tp + child, cp1 = tp + parent;
3968 i < nparent; i++, cp += 4, cp1++)
3969 *cp1 = TREEMAX(cp);
3970 }
3971
3972 return (*tp);
3973 }
3974
3975
3976 /*
3977 * dbInitDmapCtl()
3978 *
3979 * function: initialize dmapctl page
3980 */
dbInitDmapCtl(struct dmapctl * dcp,int level,int i)3981 static int dbInitDmapCtl(struct dmapctl * dcp, int level, int i)
3982 { /* start leaf index not covered by range */
3983 s8 *cp;
3984
3985 dcp->nleafs = cpu_to_le32(LPERCTL);
3986 dcp->l2nleafs = cpu_to_le32(L2LPERCTL);
3987 dcp->leafidx = cpu_to_le32(CTLLEAFIND);
3988 dcp->height = cpu_to_le32(5);
3989 dcp->budmin = L2BPERDMAP + L2LPERCTL * level;
3990
3991 /*
3992 * initialize the leaves of current level that were not covered
3993 * by the specified input block range (i.e. the leaves have no
3994 * low level dmapctl or dmap).
3995 */
3996 cp = &dcp->stree[CTLLEAFIND + i];
3997 for (; i < LPERCTL; i++)
3998 *cp++ = NOFREE;
3999
4000 /* build the dmap's binary buddy summary tree */
4001 return (dbInitTree((struct dmaptree *) dcp));
4002 }
4003
4004
4005 /*
4006 * NAME: dbGetL2AGSize()/ujfs_getagl2size()
4007 *
4008 * FUNCTION: Determine log2(allocation group size) from aggregate size
4009 *
4010 * PARAMETERS:
4011 * nblocks - Number of blocks in aggregate
4012 *
4013 * RETURNS: log2(allocation group size) in aggregate blocks
4014 */
dbGetL2AGSize(s64 nblocks)4015 static int dbGetL2AGSize(s64 nblocks)
4016 {
4017 s64 sz;
4018 s64 m;
4019 int l2sz;
4020
4021 if (nblocks < BPERDMAP * MAXAG)
4022 return (L2BPERDMAP);
4023
4024 /* round up aggregate size to power of 2 */
4025 m = ((u64) 1 << (64 - 1));
4026 for (l2sz = 64; l2sz >= 0; l2sz--, m >>= 1) {
4027 if (m & nblocks)
4028 break;
4029 }
4030
4031 sz = (s64) 1 << l2sz;
4032 if (sz < nblocks)
4033 l2sz += 1;
4034
4035 /* agsize = roundupSize/max_number_of_ag */
4036 return (l2sz - L2MAXAG);
4037 }
4038
4039
4040 /*
4041 * NAME: dbMapFileSizeToMapSize()
4042 *
4043 * FUNCTION: compute number of blocks the block allocation map file
4044 * can cover from the map file size;
4045 *
4046 * RETURNS: Number of blocks which can be covered by this block map file;
4047 */
4048
4049 /*
4050 * maximum number of map pages at each level including control pages
4051 */
4052 #define MAXL0PAGES (1 + LPERCTL)
4053 #define MAXL1PAGES (1 + LPERCTL * MAXL0PAGES)
4054
4055 /*
4056 * convert number of map pages to the zero origin top dmapctl level
4057 */
4058 #define BMAPPGTOLEV(npages) \
4059 (((npages) <= 3 + MAXL0PAGES) ? 0 : \
4060 ((npages) <= 2 + MAXL1PAGES) ? 1 : 2)
4061
dbMapFileSizeToMapSize(struct inode * ipbmap)4062 s64 dbMapFileSizeToMapSize(struct inode * ipbmap)
4063 {
4064 struct super_block *sb = ipbmap->i_sb;
4065 s64 nblocks;
4066 s64 npages, ndmaps;
4067 int level, i;
4068 int complete, factor;
4069
4070 nblocks = ipbmap->i_size >> JFS_SBI(sb)->l2bsize;
4071 npages = nblocks >> JFS_SBI(sb)->l2nbperpage;
4072 level = BMAPPGTOLEV(npages);
4073
4074 /* At each level, accumulate the number of dmap pages covered by
4075 * the number of full child levels below it;
4076 * repeat for the last incomplete child level.
4077 */
4078 ndmaps = 0;
4079 npages--; /* skip the first global control page */
4080 /* skip higher level control pages above top level covered by map */
4081 npages -= (2 - level);
4082 npages--; /* skip top level's control page */
4083 for (i = level; i >= 0; i--) {
4084 factor =
4085 (i == 2) ? MAXL1PAGES : ((i == 1) ? MAXL0PAGES : 1);
4086 complete = (u32) npages / factor;
4087 ndmaps += complete * ((i == 2) ? LPERCTL * LPERCTL :
4088 ((i == 1) ? LPERCTL : 1));
4089
4090 /* pages in last/incomplete child */
4091 npages = (u32) npages % factor;
4092 /* skip incomplete child's level control page */
4093 npages--;
4094 }
4095
4096 /* convert the number of dmaps into the number of blocks
4097 * which can be covered by the dmaps;
4098 */
4099 nblocks = ndmaps << L2BPERDMAP;
4100
4101 return (nblocks);
4102 }
4103