#region Copyright notice and license // Protocol Buffers - Google's data interchange format // Copyright 2008 Google Inc. All rights reserved. // https://developers.google.com/protocol-buffers/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #endregion using System; using System.IO; using Google.Protobuf.TestProtos; using NUnit.Framework; namespace Google.Protobuf { public class CodedOutputStreamTest { /// /// Writes the given value using WriteRawVarint32() and WriteRawVarint64() and /// checks that the result matches the given bytes /// private static void AssertWriteVarint(byte[] data, ulong value) { // Only do 32-bit write if the value fits in 32 bits. if ((value >> 32) == 0) { MemoryStream rawOutput = new MemoryStream(); CodedOutputStream output = new CodedOutputStream(rawOutput); output.WriteRawVarint32((uint) value); output.Flush(); Assert.AreEqual(data, rawOutput.ToArray()); // Also try computing size. Assert.AreEqual(data.Length, CodedOutputStream.ComputeRawVarint32Size((uint) value)); } { MemoryStream rawOutput = new MemoryStream(); CodedOutputStream output = new CodedOutputStream(rawOutput); output.WriteRawVarint64(value); output.Flush(); Assert.AreEqual(data, rawOutput.ToArray()); // Also try computing size. Assert.AreEqual(data.Length, CodedOutputStream.ComputeRawVarint64Size(value)); } // Try different buffer sizes. for (int bufferSize = 1; bufferSize <= 16; bufferSize *= 2) { // Only do 32-bit write if the value fits in 32 bits. if ((value >> 32) == 0) { MemoryStream rawOutput = new MemoryStream(); CodedOutputStream output = new CodedOutputStream(rawOutput, bufferSize); output.WriteRawVarint32((uint) value); output.Flush(); Assert.AreEqual(data, rawOutput.ToArray()); } { MemoryStream rawOutput = new MemoryStream(); CodedOutputStream output = new CodedOutputStream(rawOutput, bufferSize); output.WriteRawVarint64(value); output.Flush(); Assert.AreEqual(data, rawOutput.ToArray()); } } } /// /// Tests WriteRawVarint32() and WriteRawVarint64() /// [Test] public void WriteVarint() { AssertWriteVarint(new byte[] {0x00}, 0); AssertWriteVarint(new byte[] {0x01}, 1); AssertWriteVarint(new byte[] {0x7f}, 127); // 14882 AssertWriteVarint(new byte[] {0xa2, 0x74}, (0x22 << 0) | (0x74 << 7)); // 2961488830 AssertWriteVarint(new byte[] {0xbe, 0xf7, 0x92, 0x84, 0x0b}, (0x3e << 0) | (0x77 << 7) | (0x12 << 14) | (0x04 << 21) | (0x0bL << 28)); // 64-bit // 7256456126 AssertWriteVarint(new byte[] {0xbe, 0xf7, 0x92, 0x84, 0x1b}, (0x3e << 0) | (0x77 << 7) | (0x12 << 14) | (0x04 << 21) | (0x1bL << 28)); // 41256202580718336 AssertWriteVarint( new byte[] {0x80, 0xe6, 0xeb, 0x9c, 0xc3, 0xc9, 0xa4, 0x49}, (0x00 << 0) | (0x66 << 7) | (0x6b << 14) | (0x1c << 21) | (0x43UL << 28) | (0x49L << 35) | (0x24UL << 42) | (0x49UL << 49)); // 11964378330978735131 AssertWriteVarint( new byte[] {0x9b, 0xa8, 0xf9, 0xc2, 0xbb, 0xd6, 0x80, 0x85, 0xa6, 0x01}, unchecked((ulong) ((0x1b << 0) | (0x28 << 7) | (0x79 << 14) | (0x42 << 21) | (0x3bL << 28) | (0x56L << 35) | (0x00L << 42) | (0x05L << 49) | (0x26L << 56) | (0x01L << 63)))); } /// /// Parses the given bytes using WriteRawLittleEndian32() and checks /// that the result matches the given value. /// private static void AssertWriteLittleEndian32(byte[] data, uint value) { MemoryStream rawOutput = new MemoryStream(); CodedOutputStream output = new CodedOutputStream(rawOutput); output.WriteRawLittleEndian32(value); output.Flush(); Assert.AreEqual(data, rawOutput.ToArray()); // Try different buffer sizes. for (int bufferSize = 1; bufferSize <= 16; bufferSize *= 2) { rawOutput = new MemoryStream(); output = new CodedOutputStream(rawOutput, bufferSize); output.WriteRawLittleEndian32(value); output.Flush(); Assert.AreEqual(data, rawOutput.ToArray()); } } /// /// Parses the given bytes using WriteRawLittleEndian64() and checks /// that the result matches the given value. /// private static void AssertWriteLittleEndian64(byte[] data, ulong value) { MemoryStream rawOutput = new MemoryStream(); CodedOutputStream output = new CodedOutputStream(rawOutput); output.WriteRawLittleEndian64(value); output.Flush(); Assert.AreEqual(data, rawOutput.ToArray()); // Try different block sizes. for (int blockSize = 1; blockSize <= 16; blockSize *= 2) { rawOutput = new MemoryStream(); output = new CodedOutputStream(rawOutput, blockSize); output.WriteRawLittleEndian64(value); output.Flush(); Assert.AreEqual(data, rawOutput.ToArray()); } } /// /// Tests writeRawLittleEndian32() and writeRawLittleEndian64(). /// [Test] public void WriteLittleEndian() { AssertWriteLittleEndian32(new byte[] {0x78, 0x56, 0x34, 0x12}, 0x12345678); AssertWriteLittleEndian32(new byte[] {0xf0, 0xde, 0xbc, 0x9a}, 0x9abcdef0); AssertWriteLittleEndian64( new byte[] {0xf0, 0xde, 0xbc, 0x9a, 0x78, 0x56, 0x34, 0x12}, 0x123456789abcdef0L); AssertWriteLittleEndian64( new byte[] {0x78, 0x56, 0x34, 0x12, 0xf0, 0xde, 0xbc, 0x9a}, 0x9abcdef012345678UL); } [Test] public void WriteWholeMessage_VaryingBlockSizes() { TestAllTypes message = SampleMessages.CreateFullTestAllTypes(); byte[] rawBytes = message.ToByteArray(); // Try different block sizes. for (int blockSize = 1; blockSize < 256; blockSize *= 2) { MemoryStream rawOutput = new MemoryStream(); CodedOutputStream output = new CodedOutputStream(rawOutput, blockSize); message.WriteTo(output); output.Flush(); Assert.AreEqual(rawBytes, rawOutput.ToArray()); } } [Test] public void EncodeZigZag32() { Assert.AreEqual(0u, WritingPrimitives.EncodeZigZag32(0)); Assert.AreEqual(1u, WritingPrimitives.EncodeZigZag32(-1)); Assert.AreEqual(2u, WritingPrimitives.EncodeZigZag32(1)); Assert.AreEqual(3u, WritingPrimitives.EncodeZigZag32(-2)); Assert.AreEqual(0x7FFFFFFEu, WritingPrimitives.EncodeZigZag32(0x3FFFFFFF)); Assert.AreEqual(0x7FFFFFFFu, WritingPrimitives.EncodeZigZag32(unchecked((int) 0xC0000000))); Assert.AreEqual(0xFFFFFFFEu, WritingPrimitives.EncodeZigZag32(0x7FFFFFFF)); Assert.AreEqual(0xFFFFFFFFu, WritingPrimitives.EncodeZigZag32(unchecked((int) 0x80000000))); } [Test] public void EncodeZigZag64() { Assert.AreEqual(0u, WritingPrimitives.EncodeZigZag64(0)); Assert.AreEqual(1u, WritingPrimitives.EncodeZigZag64(-1)); Assert.AreEqual(2u, WritingPrimitives.EncodeZigZag64(1)); Assert.AreEqual(3u, WritingPrimitives.EncodeZigZag64(-2)); Assert.AreEqual(0x000000007FFFFFFEuL, WritingPrimitives.EncodeZigZag64(unchecked((long) 0x000000003FFFFFFFUL))); Assert.AreEqual(0x000000007FFFFFFFuL, WritingPrimitives.EncodeZigZag64(unchecked((long) 0xFFFFFFFFC0000000UL))); Assert.AreEqual(0x00000000FFFFFFFEuL, WritingPrimitives.EncodeZigZag64(unchecked((long) 0x000000007FFFFFFFUL))); Assert.AreEqual(0x00000000FFFFFFFFuL, WritingPrimitives.EncodeZigZag64(unchecked((long) 0xFFFFFFFF80000000UL))); Assert.AreEqual(0xFFFFFFFFFFFFFFFEL, WritingPrimitives.EncodeZigZag64(unchecked((long) 0x7FFFFFFFFFFFFFFFUL))); Assert.AreEqual(0xFFFFFFFFFFFFFFFFL, WritingPrimitives.EncodeZigZag64(unchecked((long) 0x8000000000000000UL))); } [Test] public void RoundTripZigZag32() { // Some easier-to-verify round-trip tests. The inputs (other than 0, 1, -1) // were chosen semi-randomly via keyboard bashing. Assert.AreEqual(0, ParsingPrimitives.DecodeZigZag32(WritingPrimitives.EncodeZigZag32(0))); Assert.AreEqual(1, ParsingPrimitives.DecodeZigZag32(WritingPrimitives.EncodeZigZag32(1))); Assert.AreEqual(-1, ParsingPrimitives.DecodeZigZag32(WritingPrimitives.EncodeZigZag32(-1))); Assert.AreEqual(14927, ParsingPrimitives.DecodeZigZag32(WritingPrimitives.EncodeZigZag32(14927))); Assert.AreEqual(-3612, ParsingPrimitives.DecodeZigZag32(WritingPrimitives.EncodeZigZag32(-3612))); } [Test] public void RoundTripZigZag64() { Assert.AreEqual(0, ParsingPrimitives.DecodeZigZag64(WritingPrimitives.EncodeZigZag64(0))); Assert.AreEqual(1, ParsingPrimitives.DecodeZigZag64(WritingPrimitives.EncodeZigZag64(1))); Assert.AreEqual(-1, ParsingPrimitives.DecodeZigZag64(WritingPrimitives.EncodeZigZag64(-1))); Assert.AreEqual(14927, ParsingPrimitives.DecodeZigZag64(WritingPrimitives.EncodeZigZag64(14927))); Assert.AreEqual(-3612, ParsingPrimitives.DecodeZigZag64(WritingPrimitives.EncodeZigZag64(-3612))); Assert.AreEqual(856912304801416L, ParsingPrimitives.DecodeZigZag64(WritingPrimitives.EncodeZigZag64(856912304801416L))); Assert.AreEqual(-75123905439571256L, ParsingPrimitives.DecodeZigZag64(WritingPrimitives.EncodeZigZag64(-75123905439571256L))); } [Test] public void TestNegativeEnumNoTag() { Assert.AreEqual(10, CodedOutputStream.ComputeInt32Size(-2)); Assert.AreEqual(10, CodedOutputStream.ComputeEnumSize((int) SampleEnum.NegativeValue)); byte[] bytes = new byte[10]; CodedOutputStream output = new CodedOutputStream(bytes); output.WriteEnum((int) SampleEnum.NegativeValue); Assert.AreEqual(0, output.SpaceLeft); Assert.AreEqual("FE-FF-FF-FF-FF-FF-FF-FF-FF-01", BitConverter.ToString(bytes)); } [Test] public void TestCodedInputOutputPosition() { byte[] content = new byte[110]; for (int i = 0; i < content.Length; i++) content[i] = (byte)i; byte[] child = new byte[120]; { MemoryStream ms = new MemoryStream(child); CodedOutputStream cout = new CodedOutputStream(ms, 20); // Field 11: numeric value: 500 cout.WriteTag(11, WireFormat.WireType.Varint); Assert.AreEqual(1, cout.Position); cout.WriteInt32(500); Assert.AreEqual(3, cout.Position); //Field 12: length delimited 120 bytes cout.WriteTag(12, WireFormat.WireType.LengthDelimited); Assert.AreEqual(4, cout.Position); cout.WriteBytes(ByteString.CopyFrom(content)); Assert.AreEqual(115, cout.Position); // Field 13: fixed numeric value: 501 cout.WriteTag(13, WireFormat.WireType.Fixed32); Assert.AreEqual(116, cout.Position); cout.WriteSFixed32(501); Assert.AreEqual(120, cout.Position); cout.Flush(); } byte[] bytes = new byte[130]; { CodedOutputStream cout = new CodedOutputStream(bytes); // Field 1: numeric value: 500 cout.WriteTag(1, WireFormat.WireType.Varint); Assert.AreEqual(1, cout.Position); cout.WriteInt32(500); Assert.AreEqual(3, cout.Position); //Field 2: length delimited 120 bytes cout.WriteTag(2, WireFormat.WireType.LengthDelimited); Assert.AreEqual(4, cout.Position); cout.WriteBytes(ByteString.CopyFrom(child)); Assert.AreEqual(125, cout.Position); // Field 3: fixed numeric value: 500 cout.WriteTag(3, WireFormat.WireType.Fixed32); Assert.AreEqual(126, cout.Position); cout.WriteSFixed32(501); Assert.AreEqual(130, cout.Position); cout.Flush(); } // Now test Input stream: { CodedInputStream cin = new CodedInputStream(new MemoryStream(bytes), new byte[50], 0, 0, false); Assert.AreEqual(0, cin.Position); // Field 1: uint tag = cin.ReadTag(); Assert.AreEqual(1, tag >> 3); Assert.AreEqual(1, cin.Position); Assert.AreEqual(500, cin.ReadInt32()); Assert.AreEqual(3, cin.Position); //Field 2: tag = cin.ReadTag(); Assert.AreEqual(2, tag >> 3); Assert.AreEqual(4, cin.Position); int childlen = cin.ReadLength(); Assert.AreEqual(120, childlen); Assert.AreEqual(5, cin.Position); int oldlimit = cin.PushLimit((int)childlen); Assert.AreEqual(5, cin.Position); // Now we are reading child message { // Field 11: numeric value: 500 tag = cin.ReadTag(); Assert.AreEqual(11, tag >> 3); Assert.AreEqual(6, cin.Position); Assert.AreEqual(500, cin.ReadInt32()); Assert.AreEqual(8, cin.Position); //Field 12: length delimited 120 bytes tag = cin.ReadTag(); Assert.AreEqual(12, tag >> 3); Assert.AreEqual(9, cin.Position); ByteString bstr = cin.ReadBytes(); Assert.AreEqual(110, bstr.Length); Assert.AreEqual((byte) 109, bstr[109]); Assert.AreEqual(120, cin.Position); // Field 13: fixed numeric value: 501 tag = cin.ReadTag(); Assert.AreEqual(13, tag >> 3); // ROK - Previously broken here, this returned 126 failing to account for bufferSizeAfterLimit Assert.AreEqual(121, cin.Position); Assert.AreEqual(501, cin.ReadSFixed32()); Assert.AreEqual(125, cin.Position); Assert.IsTrue(cin.IsAtEnd); } cin.PopLimit(oldlimit); Assert.AreEqual(125, cin.Position); // Field 3: fixed numeric value: 501 tag = cin.ReadTag(); Assert.AreEqual(3, tag >> 3); Assert.AreEqual(126, cin.Position); Assert.AreEqual(501, cin.ReadSFixed32()); Assert.AreEqual(130, cin.Position); Assert.IsTrue(cin.IsAtEnd); } } [Test] public void Dispose_DisposesUnderlyingStream() { var memoryStream = new MemoryStream(); Assert.IsTrue(memoryStream.CanWrite); using (var cos = new CodedOutputStream(memoryStream)) { cos.WriteRawBytes(new byte[] {0}); Assert.AreEqual(0, memoryStream.Position); // Not flushed yet } Assert.AreEqual(1, memoryStream.ToArray().Length); // Flushed data from CodedOutputStream to MemoryStream Assert.IsFalse(memoryStream.CanWrite); // Disposed } [Test] public void Dispose_WithLeaveOpen() { var memoryStream = new MemoryStream(); Assert.IsTrue(memoryStream.CanWrite); using (var cos = new CodedOutputStream(memoryStream, true)) { cos.WriteRawBytes(new byte[] {0}); Assert.AreEqual(0, memoryStream.Position); // Not flushed yet } Assert.AreEqual(1, memoryStream.Position); // Flushed data from CodedOutputStream to MemoryStream Assert.IsTrue(memoryStream.CanWrite); // We left the stream open } } }