#region Copyright notice and license
// Protocol Buffers - Google's data interchange format
// Copyright 2019 Google Inc. All rights reserved.
// https://github.com/protocolbuffers/protobuf
//
// Redistribution and use in source and binary forms, with or without
// modification, are permitted provided that the following conditions are
// met:
//
// * Redistributions of source code must retain the above copyright
// notice, this list of conditions and the following disclaimer.
// * Redistributions in binary form must reproduce the above
// copyright notice, this list of conditions and the following disclaimer
// in the documentation and/or other materials provided with the
// distribution.
// * Neither the name of Google Inc. nor the names of its
// contributors may be used to endorse or promote products derived from
// this software without specific prior written permission.
//
// THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
// "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
// LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
// A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
// OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
// SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
// LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
// DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
// THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
// (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
// OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
#endregion
using BenchmarkDotNet.Attributes;
using System;
using System.Buffers.Binary;
using System.Collections.Generic;
using System.IO;
using System.Buffers;
namespace Google.Protobuf.Benchmarks
{
///
/// Benchmarks throughput when parsing raw primitives.
///
[MemoryDiagnoser]
public class ParseRawPrimitivesBenchmark
{
// key is the encodedSize of varint values
Dictionary varintInputBuffers;
byte[] doubleInputBuffer;
byte[] floatInputBuffer;
byte[] fixedIntInputBuffer;
// key is the encodedSize of string values
Dictionary stringInputBuffers;
Dictionary> stringInputBuffersSegmented;
Random random = new Random(417384220); // random but deterministic seed
public IEnumerable StringEncodedSizes => new[] { 1, 4, 10, 105, 10080 };
public IEnumerable StringSegmentedEncodedSizes => new[] { 105, 10080 };
[GlobalSetup]
public void GlobalSetup()
{
// add some extra values that we won't read just to make sure we are far enough from the end of the buffer
// which allows the parser fastpath to always kick in.
const int paddingValueCount = 100;
varintInputBuffers = new Dictionary();
for (int encodedSize = 1; encodedSize <= 10; encodedSize++)
{
byte[] buffer = CreateBufferWithRandomVarints(random, BytesToParse / encodedSize, encodedSize, paddingValueCount);
varintInputBuffers.Add(encodedSize, buffer);
}
doubleInputBuffer = CreateBufferWithRandomDoubles(random, BytesToParse / sizeof(double), paddingValueCount);
floatInputBuffer = CreateBufferWithRandomFloats(random, BytesToParse / sizeof(float), paddingValueCount);
fixedIntInputBuffer = CreateBufferWithRandomData(random, BytesToParse / sizeof(long), sizeof(long), paddingValueCount);
stringInputBuffers = new Dictionary();
foreach (var encodedSize in StringEncodedSizes)
{
byte[] buffer = CreateBufferWithStrings(BytesToParse / encodedSize, encodedSize, encodedSize < 10 ? 10 : 1 );
stringInputBuffers.Add(encodedSize, buffer);
}
stringInputBuffersSegmented = new Dictionary>();
foreach (var encodedSize in StringSegmentedEncodedSizes)
{
byte[] buffer = CreateBufferWithStrings(BytesToParse / encodedSize, encodedSize, encodedSize < 10 ? 10 : 1);
stringInputBuffersSegmented.Add(encodedSize, ReadOnlySequenceFactory.CreateWithContent(buffer, segmentSize: 128, addEmptySegmentDelimiters: false));
}
}
// Total number of bytes that each benchmark will parse.
// Measuring the time taken to parse buffer of given size makes it easier to compare parsing speed for different
// types and makes it easy to calculate the througput (in MB/s)
// 10800 bytes is chosen because it is divisible by all possible encoded sizes for all primitive types {1..10}
[Params(10080)]
public int BytesToParse { get; set; }
[Benchmark]
[Arguments(1)]
[Arguments(2)]
[Arguments(3)]
[Arguments(4)]
[Arguments(5)]
public int ParseRawVarint32_CodedInputStream(int encodedSize)
{
CodedInputStream cis = new CodedInputStream(varintInputBuffers[encodedSize]);
int sum = 0;
for (int i = 0; i < BytesToParse / encodedSize; i++)
{
sum += cis.ReadInt32();
}
return sum;
}
[Benchmark]
[Arguments(1)]
[Arguments(2)]
[Arguments(3)]
[Arguments(4)]
[Arguments(5)]
public int ParseRawVarint32_ParseContext(int encodedSize)
{
InitializeParseContext(varintInputBuffers[encodedSize], out ParseContext ctx);
int sum = 0;
for (int i = 0; i < BytesToParse / encodedSize; i++)
{
sum += ctx.ReadInt32();
}
return sum;
}
[Benchmark]
[Arguments(1)]
[Arguments(2)]
[Arguments(3)]
[Arguments(4)]
[Arguments(5)]
[Arguments(6)]
[Arguments(7)]
[Arguments(8)]
[Arguments(9)]
[Arguments(10)]
public long ParseRawVarint64_CodedInputStream(int encodedSize)
{
CodedInputStream cis = new CodedInputStream(varintInputBuffers[encodedSize]);
long sum = 0;
for (int i = 0; i < BytesToParse / encodedSize; i++)
{
sum += cis.ReadInt64();
}
return sum;
}
[Benchmark]
[Arguments(1)]
[Arguments(2)]
[Arguments(3)]
[Arguments(4)]
[Arguments(5)]
[Arguments(6)]
[Arguments(7)]
[Arguments(8)]
[Arguments(9)]
[Arguments(10)]
public long ParseRawVarint64_ParseContext(int encodedSize)
{
InitializeParseContext(varintInputBuffers[encodedSize], out ParseContext ctx);
long sum = 0;
for (int i = 0; i < BytesToParse / encodedSize; i++)
{
sum += ctx.ReadInt64();
}
return sum;
}
[Benchmark]
public uint ParseFixed32_CodedInputStream()
{
const int encodedSize = sizeof(uint);
CodedInputStream cis = new CodedInputStream(fixedIntInputBuffer);
uint sum = 0;
for (uint i = 0; i < BytesToParse / encodedSize; i++)
{
sum += cis.ReadFixed32();
}
return sum;
}
[Benchmark]
public uint ParseFixed32_ParseContext()
{
const int encodedSize = sizeof(uint);
InitializeParseContext(fixedIntInputBuffer, out ParseContext ctx);
uint sum = 0;
for (uint i = 0; i < BytesToParse / encodedSize; i++)
{
sum += ctx.ReadFixed32();
}
return sum;
}
[Benchmark]
public ulong ParseFixed64_CodedInputStream()
{
const int encodedSize = sizeof(ulong);
CodedInputStream cis = new CodedInputStream(fixedIntInputBuffer);
ulong sum = 0;
for (int i = 0; i < BytesToParse / encodedSize; i++)
{
sum += cis.ReadFixed64();
}
return sum;
}
[Benchmark]
public ulong ParseFixed64_ParseContext()
{
const int encodedSize = sizeof(ulong);
InitializeParseContext(fixedIntInputBuffer, out ParseContext ctx);
ulong sum = 0;
for (int i = 0; i < BytesToParse / encodedSize; i++)
{
sum += ctx.ReadFixed64();
}
return sum;
}
[Benchmark]
public float ParseRawFloat_CodedInputStream()
{
const int encodedSize = sizeof(float);
CodedInputStream cis = new CodedInputStream(floatInputBuffer);
float sum = 0;
for (int i = 0; i < BytesToParse / encodedSize; i++)
{
sum += cis.ReadFloat();
}
return sum;
}
[Benchmark]
public float ParseRawFloat_ParseContext()
{
const int encodedSize = sizeof(float);
InitializeParseContext(floatInputBuffer, out ParseContext ctx);
float sum = 0;
for (int i = 0; i < BytesToParse / encodedSize; i++)
{
sum += ctx.ReadFloat();
}
return sum;
}
[Benchmark]
public double ParseRawDouble_CodedInputStream()
{
const int encodedSize = sizeof(double);
CodedInputStream cis = new CodedInputStream(doubleInputBuffer);
double sum = 0;
for (int i = 0; i < BytesToParse / encodedSize; i++)
{
sum += cis.ReadDouble();
}
return sum;
}
[Benchmark]
public double ParseRawDouble_ParseContext()
{
const int encodedSize = sizeof(double);
InitializeParseContext(doubleInputBuffer, out ParseContext ctx);
double sum = 0;
for (int i = 0; i < BytesToParse / encodedSize; i++)
{
sum += ctx.ReadDouble();
}
return sum;
}
[Benchmark]
[ArgumentsSource(nameof(StringEncodedSizes))]
public int ParseString_CodedInputStream(int encodedSize)
{
CodedInputStream cis = new CodedInputStream(stringInputBuffers[encodedSize]);
int sum = 0;
for (int i = 0; i < BytesToParse / encodedSize; i++)
{
sum += cis.ReadString().Length;
}
return sum;
}
[Benchmark]
[ArgumentsSource(nameof(StringEncodedSizes))]
public int ParseString_ParseContext(int encodedSize)
{
InitializeParseContext(stringInputBuffers[encodedSize], out ParseContext ctx);
int sum = 0;
for (int i = 0; i < BytesToParse / encodedSize; i++)
{
sum += ctx.ReadString().Length;
}
return sum;
}
[Benchmark]
[ArgumentsSource(nameof(StringSegmentedEncodedSizes))]
public int ParseString_ParseContext_MultipleSegments(int encodedSize)
{
InitializeParseContext(stringInputBuffersSegmented[encodedSize], out ParseContext ctx);
int sum = 0;
for (int i = 0; i < BytesToParse / encodedSize; i++)
{
sum += ctx.ReadString().Length;
}
return sum;
}
[Benchmark]
[ArgumentsSource(nameof(StringEncodedSizes))]
public int ParseBytes_CodedInputStream(int encodedSize)
{
CodedInputStream cis = new CodedInputStream(stringInputBuffers[encodedSize]);
int sum = 0;
for (int i = 0; i < BytesToParse / encodedSize; i++)
{
sum += cis.ReadBytes().Length;
}
return sum;
}
[Benchmark]
[ArgumentsSource(nameof(StringEncodedSizes))]
public int ParseBytes_ParseContext(int encodedSize)
{
InitializeParseContext(stringInputBuffers[encodedSize], out ParseContext ctx);
int sum = 0;
for (int i = 0; i < BytesToParse / encodedSize; i++)
{
sum += ctx.ReadBytes().Length;
}
return sum;
}
[Benchmark]
[ArgumentsSource(nameof(StringSegmentedEncodedSizes))]
public int ParseBytes_ParseContext_MultipleSegments(int encodedSize)
{
InitializeParseContext(stringInputBuffersSegmented[encodedSize], out ParseContext ctx);
int sum = 0;
for (int i = 0; i < BytesToParse / encodedSize; i++)
{
sum += ctx.ReadBytes().Length;
}
return sum;
}
private static void InitializeParseContext(byte[] buffer, out ParseContext ctx)
{
ParseContext.Initialize(new ReadOnlySequence(buffer), out ctx);
}
private static void InitializeParseContext(ReadOnlySequence buffer, out ParseContext ctx)
{
ParseContext.Initialize(buffer, out ctx);
}
private static byte[] CreateBufferWithRandomVarints(Random random, int valueCount, int encodedSize, int paddingValueCount)
{
MemoryStream ms = new MemoryStream();
CodedOutputStream cos = new CodedOutputStream(ms);
for (int i = 0; i < valueCount + paddingValueCount; i++)
{
cos.WriteUInt64(RandomUnsignedVarint(random, encodedSize, false));
}
cos.Flush();
var buffer = ms.ToArray();
if (buffer.Length != encodedSize * (valueCount + paddingValueCount))
{
throw new InvalidOperationException($"Unexpected output buffer length {buffer.Length}");
}
return buffer;
}
private static byte[] CreateBufferWithRandomFloats(Random random, int valueCount, int paddingValueCount)
{
MemoryStream ms = new MemoryStream();
CodedOutputStream cos = new CodedOutputStream(ms);
for (int i = 0; i < valueCount + paddingValueCount; i++)
{
cos.WriteFloat((float)random.NextDouble());
}
cos.Flush();
var buffer = ms.ToArray();
return buffer;
}
private static byte[] CreateBufferWithRandomDoubles(Random random, int valueCount, int paddingValueCount)
{
MemoryStream ms = new MemoryStream();
CodedOutputStream cos = new CodedOutputStream(ms);
for (int i = 0; i < valueCount + paddingValueCount; i++)
{
cos.WriteDouble(random.NextDouble());
}
cos.Flush();
var buffer = ms.ToArray();
return buffer;
}
private static byte[] CreateBufferWithRandomData(Random random, int valueCount, int encodedSize, int paddingValueCount)
{
int bufferSize = (valueCount + paddingValueCount) * encodedSize;
byte[] buffer = new byte[bufferSize];
random.NextBytes(buffer);
return buffer;
}
///
/// Generate a random value that will take exactly "encodedSize" bytes when varint-encoded.
///
public static ulong RandomUnsignedVarint(Random random, int encodedSize, bool fitsIn32Bits)
{
Span randomBytesBuffer = stackalloc byte[8];
if (encodedSize < 1 || encodedSize > 10 || (fitsIn32Bits && encodedSize > 5))
{
throw new ArgumentException("Illegal encodedSize value requested", nameof(encodedSize));
}
const int bitsPerByte = 7;
ulong result = 0;
while (true)
{
random.NextBytes(randomBytesBuffer);
ulong randomValue = BinaryPrimitives.ReadUInt64LittleEndian(randomBytesBuffer);
// only use the number of random bits we need
ulong bitmask = encodedSize < 10 ? ((1UL << (encodedSize * bitsPerByte)) - 1) : ulong.MaxValue;
result = randomValue & bitmask;
if (fitsIn32Bits)
{
// make sure the resulting value is representable by a uint.
result &= uint.MaxValue;
}
if (encodedSize == 10)
{
// for 10-byte values the highest bit always needs to be set (7*9=63)
result |= ulong.MaxValue;
break;
}
// some random values won't require the full "encodedSize" bytes, check that at least
// one of the top 7 bits is set. Retrying is fine since it only happens rarely
if (encodedSize == 1 || (result & (0x7FUL << ((encodedSize - 1) * bitsPerByte))) != 0)
{
break;
}
}
return result;
}
private static byte[] CreateBufferWithStrings(int valueCount, int encodedSize, int paddingValueCount)
{
var str = CreateStringWithEncodedSize(encodedSize);
MemoryStream ms = new MemoryStream();
CodedOutputStream cos = new CodedOutputStream(ms);
for (int i = 0; i < valueCount + paddingValueCount; i++)
{
cos.WriteString(str);
}
cos.Flush();
var buffer = ms.ToArray();
if (buffer.Length != encodedSize * (valueCount + paddingValueCount))
{
throw new InvalidOperationException($"Unexpected output buffer length {buffer.Length}");
}
return buffer;
}
public static string CreateStringWithEncodedSize(int encodedSize)
{
var str = new string('a', encodedSize);
while (CodedOutputStream.ComputeStringSize(str) > encodedSize)
{
str = str.Substring(1);
}
if (CodedOutputStream.ComputeStringSize(str) != encodedSize)
{
throw new InvalidOperationException($"Generated string with wrong encodedSize");
}
return str;
}
public static string CreateNonAsciiStringWithEncodedSize(int encodedSize)
{
if (encodedSize < 3)
{
throw new ArgumentException("Illegal encoded size for a string with non-ascii chars.");
}
var twoByteChar = '\u00DC'; // U-umlaut, UTF8 encoding has 2 bytes
var str = new string(twoByteChar, encodedSize / 2);
while (CodedOutputStream.ComputeStringSize(str) > encodedSize)
{
str = str.Substring(1);
}
// add padding of ascii characters to reach the desired encoded size.
while (CodedOutputStream.ComputeStringSize(str) < encodedSize)
{
str += 'a';
}
// Note that for a few specific encodedSize values, it might be impossible to generate
// the string with the desired encodedSize using the algorithm above. For testing purposes, checking that
// the encoded size we got is actually correct is good enough.
if (CodedOutputStream.ComputeStringSize(str) != encodedSize)
{
throw new InvalidOperationException($"Generated string with wrong encodedSize");
}
return str;
}
}
}