/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * * based in part on anv driver which is: * Copyright © 2015 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "nir/nir.h" #include "nir/nir_builder.h" #include "spirv/nir_spirv.h" #include "util/disk_cache.h" #include "util/mesa-sha1.h" #include "util/os_time.h" #include "util/u_atomic.h" #include "radv_cs.h" #include "radv_debug.h" #include "radv_meta.h" #include "radv_private.h" #include "radv_shader.h" #include "radv_shader_args.h" #include "vk_pipeline.h" #include "vk_util.h" #include "util/debug.h" #include "ac_binary.h" #include "ac_nir.h" #include "ac_shader_util.h" #include "aco_interface.h" #include "sid.h" #include "vk_format.h" struct radv_blend_state { uint32_t blend_enable_4bit; uint32_t need_src_alpha; uint32_t cb_target_mask; uint32_t cb_target_enabled_4bit; uint32_t sx_mrt_blend_opt[8]; uint32_t cb_blend_control[8]; uint32_t spi_shader_col_format; uint32_t col_format_is_int8; uint32_t col_format_is_int10; uint32_t col_format_is_float32; uint32_t cb_shader_mask; uint32_t db_alpha_to_mask; uint32_t commutative_4bit; bool mrt0_is_dual_src; }; struct radv_depth_stencil_state { uint32_t db_render_control; uint32_t db_render_override; uint32_t db_render_override2; }; struct radv_dsa_order_invariance { /* Whether the final result in Z/S buffers is guaranteed to be * invariant under changes to the order in which fragments arrive. */ bool zs; /* Whether the set of fragments that pass the combined Z/S test is * guaranteed to be invariant under changes to the order in which * fragments arrive. */ bool pass_set; }; static bool radv_is_raster_enabled(const struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { return !pCreateInfo->pRasterizationState->rasterizerDiscardEnable || (pipeline->dynamic_states & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE); } static bool radv_is_static_vrs_enabled(const struct radv_graphics_pipeline *pipeline, const struct radv_graphics_pipeline_info *info) { return info->fsr.size.width != 1 || info->fsr.size.height != 1 || info->fsr.combiner_ops[0] != VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR || info->fsr.combiner_ops[1] != VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR; } static bool radv_is_vrs_enabled(const struct radv_graphics_pipeline *pipeline, const struct radv_graphics_pipeline_info *info) { return radv_is_static_vrs_enabled(pipeline, info) || (pipeline->dynamic_states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE); } static bool radv_pipeline_has_ds_attachments(const struct radv_rendering_info *ri_info) { return ri_info->depth_att_format != VK_FORMAT_UNDEFINED || ri_info->stencil_att_format != VK_FORMAT_UNDEFINED; } static bool radv_pipeline_has_color_attachments(const struct radv_rendering_info *ri_info) { for (uint32_t i = 0; i < ri_info->color_att_count; ++i) { if (ri_info->color_att_formats[i] != VK_FORMAT_UNDEFINED) return true; } return false; } static bool radv_pipeline_has_ngg(const struct radv_graphics_pipeline *pipeline) { struct radv_shader *shader = pipeline->base.shaders[pipeline->last_vgt_api_stage]; return shader->info.is_ngg; } bool radv_pipeline_has_ngg_passthrough(const struct radv_graphics_pipeline *pipeline) { assert(radv_pipeline_has_ngg(pipeline)); struct radv_shader *shader = pipeline->base.shaders[pipeline->last_vgt_api_stage]; return shader->info.is_ngg_passthrough; } bool radv_pipeline_has_gs_copy_shader(const struct radv_pipeline *pipeline) { return !!pipeline->gs_copy_shader; } static struct radv_pipeline_slab * radv_pipeline_slab_create(struct radv_device *device, struct radv_pipeline *pipeline, uint32_t code_size) { struct radv_pipeline_slab *slab; slab = calloc(1, sizeof(*slab)); if (!slab) return NULL; slab->ref_count = 1; slab->alloc = radv_alloc_shader_memory(device, code_size, pipeline); if (!slab->alloc) { free(slab); return NULL; } return slab; } void radv_pipeline_slab_destroy(struct radv_device *device, struct radv_pipeline_slab *slab) { if (!p_atomic_dec_zero(&slab->ref_count)) return; radv_free_shader_memory(device, slab->alloc); free(slab); } void radv_pipeline_destroy(struct radv_device *device, struct radv_pipeline *pipeline, const VkAllocationCallbacks *allocator) { if (pipeline->type == RADV_PIPELINE_COMPUTE) { struct radv_compute_pipeline *compute_pipeline = radv_pipeline_to_compute(pipeline); free(compute_pipeline->rt_group_handles); free(compute_pipeline->rt_stack_sizes); } else if (pipeline->type == RADV_PIPELINE_LIBRARY) { struct radv_library_pipeline *library_pipeline = radv_pipeline_to_library(pipeline); free(library_pipeline->groups); for (uint32_t i = 0; i < library_pipeline->stage_count; i++) { RADV_FROM_HANDLE(vk_shader_module, module, library_pipeline->stages[i].module); if (module) { vk_object_base_finish(&module->base); ralloc_free(module); } } free(library_pipeline->stages); free(library_pipeline->identifiers); free(library_pipeline->hashes); } if (pipeline->slab) radv_pipeline_slab_destroy(device, pipeline->slab); for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) if (pipeline->shaders[i]) radv_shader_destroy(device, pipeline->shaders[i]); if (pipeline->gs_copy_shader) radv_shader_destroy(device, pipeline->gs_copy_shader); if (pipeline->cs.buf) free(pipeline->cs.buf); vk_object_base_finish(&pipeline->base); vk_free2(&device->vk.alloc, allocator, pipeline); } VKAPI_ATTR void VKAPI_CALL radv_DestroyPipeline(VkDevice _device, VkPipeline _pipeline, const VkAllocationCallbacks *pAllocator) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_pipeline, pipeline, _pipeline); if (!_pipeline) return; radv_pipeline_destroy(device, pipeline, pAllocator); } uint32_t radv_get_hash_flags(const struct radv_device *device, bool stats) { uint32_t hash_flags = 0; if (device->physical_device->use_ngg_culling) hash_flags |= RADV_HASH_SHADER_USE_NGG_CULLING; if (device->instance->perftest_flags & RADV_PERFTEST_EMULATE_RT) hash_flags |= RADV_HASH_SHADER_EMULATE_RT; if (device->physical_device->rt_wave_size == 64) hash_flags |= RADV_HASH_SHADER_RT_WAVE64; if (device->physical_device->cs_wave_size == 32) hash_flags |= RADV_HASH_SHADER_CS_WAVE32; if (device->physical_device->ps_wave_size == 32) hash_flags |= RADV_HASH_SHADER_PS_WAVE32; if (device->physical_device->ge_wave_size == 32) hash_flags |= RADV_HASH_SHADER_GE_WAVE32; if (device->physical_device->use_llvm) hash_flags |= RADV_HASH_SHADER_LLVM; if (stats) hash_flags |= RADV_HASH_SHADER_KEEP_STATISTICS; if (device->robust_buffer_access) /* forces per-attribute vertex descriptors */ hash_flags |= RADV_HASH_SHADER_ROBUST_BUFFER_ACCESS; if (device->robust_buffer_access2) /* affects load/store vectorizer */ hash_flags |= RADV_HASH_SHADER_ROBUST_BUFFER_ACCESS2; if (device->instance->debug_flags & RADV_DEBUG_SPLIT_FMA) hash_flags |= RADV_HASH_SHADER_SPLIT_FMA; return hash_flags; } static void radv_pipeline_init_scratch(const struct radv_device *device, struct radv_pipeline *pipeline) { unsigned scratch_bytes_per_wave = 0; unsigned max_waves = 0; for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { if (pipeline->shaders[i] && pipeline->shaders[i]->config.scratch_bytes_per_wave) { unsigned max_stage_waves = device->scratch_waves; scratch_bytes_per_wave = MAX2(scratch_bytes_per_wave, pipeline->shaders[i]->config.scratch_bytes_per_wave); max_stage_waves = MIN2(max_stage_waves, 4 * device->physical_device->rad_info.num_cu * radv_get_max_waves(device, pipeline->shaders[i], i)); max_waves = MAX2(max_waves, max_stage_waves); } } pipeline->scratch_bytes_per_wave = scratch_bytes_per_wave; pipeline->max_waves = max_waves; } static uint32_t si_translate_blend_function(VkBlendOp op) { switch (op) { case VK_BLEND_OP_ADD: return V_028780_COMB_DST_PLUS_SRC; case VK_BLEND_OP_SUBTRACT: return V_028780_COMB_SRC_MINUS_DST; case VK_BLEND_OP_REVERSE_SUBTRACT: return V_028780_COMB_DST_MINUS_SRC; case VK_BLEND_OP_MIN: return V_028780_COMB_MIN_DST_SRC; case VK_BLEND_OP_MAX: return V_028780_COMB_MAX_DST_SRC; default: return 0; } } static uint32_t si_translate_blend_factor(enum amd_gfx_level gfx_level, VkBlendFactor factor) { switch (factor) { case VK_BLEND_FACTOR_ZERO: return V_028780_BLEND_ZERO; case VK_BLEND_FACTOR_ONE: return V_028780_BLEND_ONE; case VK_BLEND_FACTOR_SRC_COLOR: return V_028780_BLEND_SRC_COLOR; case VK_BLEND_FACTOR_ONE_MINUS_SRC_COLOR: return V_028780_BLEND_ONE_MINUS_SRC_COLOR; case VK_BLEND_FACTOR_DST_COLOR: return V_028780_BLEND_DST_COLOR; case VK_BLEND_FACTOR_ONE_MINUS_DST_COLOR: return V_028780_BLEND_ONE_MINUS_DST_COLOR; case VK_BLEND_FACTOR_SRC_ALPHA: return V_028780_BLEND_SRC_ALPHA; case VK_BLEND_FACTOR_ONE_MINUS_SRC_ALPHA: return V_028780_BLEND_ONE_MINUS_SRC_ALPHA; case VK_BLEND_FACTOR_DST_ALPHA: return V_028780_BLEND_DST_ALPHA; case VK_BLEND_FACTOR_ONE_MINUS_DST_ALPHA: return V_028780_BLEND_ONE_MINUS_DST_ALPHA; case VK_BLEND_FACTOR_CONSTANT_COLOR: return gfx_level >= GFX11 ? V_028780_BLEND_CONSTANT_COLOR_GFX11 : V_028780_BLEND_CONSTANT_COLOR_GFX6; case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_COLOR: return gfx_level >= GFX11 ? V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR_GFX11 : V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR_GFX6; case VK_BLEND_FACTOR_CONSTANT_ALPHA: return gfx_level >= GFX11 ? V_028780_BLEND_CONSTANT_ALPHA_GFX11 : V_028780_BLEND_CONSTANT_ALPHA_GFX6; case VK_BLEND_FACTOR_ONE_MINUS_CONSTANT_ALPHA: return gfx_level >= GFX11 ? V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA_GFX11 : V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA_GFX6; case VK_BLEND_FACTOR_SRC_ALPHA_SATURATE: return V_028780_BLEND_SRC_ALPHA_SATURATE; case VK_BLEND_FACTOR_SRC1_COLOR: return gfx_level >= GFX11 ? V_028780_BLEND_SRC1_COLOR_GFX11 : V_028780_BLEND_SRC1_COLOR_GFX6; case VK_BLEND_FACTOR_ONE_MINUS_SRC1_COLOR: return gfx_level >= GFX11 ? V_028780_BLEND_INV_SRC1_COLOR_GFX11 : V_028780_BLEND_INV_SRC1_COLOR_GFX6; case VK_BLEND_FACTOR_SRC1_ALPHA: return gfx_level >= GFX11 ? V_028780_BLEND_SRC1_ALPHA_GFX11 : V_028780_BLEND_SRC1_ALPHA_GFX6; case VK_BLEND_FACTOR_ONE_MINUS_SRC1_ALPHA: return gfx_level >= GFX11 ? V_028780_BLEND_INV_SRC1_ALPHA_GFX11 : V_028780_BLEND_INV_SRC1_ALPHA_GFX6; default: return 0; } } static uint32_t si_translate_blend_opt_function(unsigned op) { switch (op) { case V_028780_COMB_DST_PLUS_SRC: return V_028760_OPT_COMB_ADD; case V_028780_COMB_SRC_MINUS_DST: return V_028760_OPT_COMB_SUBTRACT; case V_028780_COMB_DST_MINUS_SRC: return V_028760_OPT_COMB_REVSUBTRACT; case V_028780_COMB_MIN_DST_SRC: return V_028760_OPT_COMB_MIN; case V_028780_COMB_MAX_DST_SRC: return V_028760_OPT_COMB_MAX; default: return V_028760_OPT_COMB_BLEND_DISABLED; } } static uint32_t si_translate_blend_opt_factor(unsigned factor, bool is_alpha) { switch (factor) { case V_028780_BLEND_ZERO: return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_ALL; case V_028780_BLEND_ONE: return V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE; case V_028780_BLEND_SRC_COLOR: return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0 : V_028760_BLEND_OPT_PRESERVE_C1_IGNORE_C0; case V_028780_BLEND_ONE_MINUS_SRC_COLOR: return is_alpha ? V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1 : V_028760_BLEND_OPT_PRESERVE_C0_IGNORE_C1; case V_028780_BLEND_SRC_ALPHA: return V_028760_BLEND_OPT_PRESERVE_A1_IGNORE_A0; case V_028780_BLEND_ONE_MINUS_SRC_ALPHA: return V_028760_BLEND_OPT_PRESERVE_A0_IGNORE_A1; case V_028780_BLEND_SRC_ALPHA_SATURATE: return is_alpha ? V_028760_BLEND_OPT_PRESERVE_ALL_IGNORE_NONE : V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0; default: return V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; } } /** * Get rid of DST in the blend factors by commuting the operands: * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC) */ static void si_blend_remove_dst(unsigned *func, unsigned *src_factor, unsigned *dst_factor, unsigned expected_dst, unsigned replacement_src) { if (*src_factor == expected_dst && *dst_factor == V_028780_BLEND_ZERO) { *src_factor = V_028780_BLEND_ZERO; *dst_factor = replacement_src; /* Commuting the operands requires reversing subtractions. */ if (*func == V_028780_COMB_SRC_MINUS_DST) *func = V_028780_COMB_DST_MINUS_SRC; else if (*func == V_028780_COMB_DST_MINUS_SRC) *func = V_028780_COMB_SRC_MINUS_DST; } } static bool si_blend_factor_uses_dst(unsigned factor) { return factor == V_028780_BLEND_DST_COLOR || factor == V_028780_BLEND_DST_ALPHA || factor == V_028780_BLEND_SRC_ALPHA_SATURATE || factor == V_028780_BLEND_ONE_MINUS_DST_ALPHA || factor == V_028780_BLEND_ONE_MINUS_DST_COLOR; } static bool is_dual_src(enum amd_gfx_level gfx_level, unsigned factor) { if (gfx_level >= GFX11) { switch (factor) { case V_028780_BLEND_SRC1_COLOR_GFX11: case V_028780_BLEND_INV_SRC1_COLOR_GFX11: case V_028780_BLEND_SRC1_ALPHA_GFX11: case V_028780_BLEND_INV_SRC1_ALPHA_GFX11: return true; default: return false; } } else { switch (factor) { case V_028780_BLEND_SRC1_COLOR_GFX6: case V_028780_BLEND_INV_SRC1_COLOR_GFX6: case V_028780_BLEND_SRC1_ALPHA_GFX6: case V_028780_BLEND_INV_SRC1_ALPHA_GFX6: return true; default: return false; } } } static unsigned radv_choose_spi_color_format(const struct radv_device *device, VkFormat vk_format, bool blend_enable, bool blend_need_alpha) { const struct util_format_description *desc = vk_format_description(vk_format); bool use_rbplus = device->physical_device->rad_info.rbplus_allowed; struct ac_spi_color_formats formats = {0}; unsigned format, ntype, swap; format = radv_translate_colorformat(vk_format); ntype = radv_translate_color_numformat(vk_format, desc, vk_format_get_first_non_void_channel(vk_format)); swap = radv_translate_colorswap(vk_format, false); ac_choose_spi_color_formats(format, swap, ntype, false, use_rbplus, &formats); if (blend_enable && blend_need_alpha) return formats.blend_alpha; else if (blend_need_alpha) return formats.alpha; else if (blend_enable) return formats.blend; else return formats.normal; } static bool format_is_int8(VkFormat format) { const struct util_format_description *desc = vk_format_description(format); int channel = vk_format_get_first_non_void_channel(format); return channel >= 0 && desc->channel[channel].pure_integer && desc->channel[channel].size == 8; } static bool format_is_int10(VkFormat format) { const struct util_format_description *desc = vk_format_description(format); if (desc->nr_channels != 4) return false; for (unsigned i = 0; i < 4; i++) { if (desc->channel[i].pure_integer && desc->channel[i].size == 10) return true; } return false; } static bool format_is_float32(VkFormat format) { const struct util_format_description *desc = vk_format_description(format); int channel = vk_format_get_first_non_void_channel(format); return channel >= 0 && desc->channel[channel].type == UTIL_FORMAT_TYPE_FLOAT && desc->channel[channel].size == 32; } static void radv_pipeline_compute_spi_color_formats(const struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, struct radv_blend_state *blend, const struct radv_graphics_pipeline_info *info) { unsigned col_format = 0, is_int8 = 0, is_int10 = 0, is_float32 = 0; unsigned num_targets; for (unsigned i = 0; i < info->ri.color_att_count; ++i) { unsigned cf; VkFormat fmt = info->ri.color_att_formats[i]; if (fmt == VK_FORMAT_UNDEFINED || !(blend->cb_target_mask & (0xfu << (i * 4)))) { cf = V_028714_SPI_SHADER_ZERO; } else { bool blend_enable = blend->blend_enable_4bit & (0xfu << (i * 4)); cf = radv_choose_spi_color_format(pipeline->base.device, fmt, blend_enable, blend->need_src_alpha & (1 << i)); if (format_is_int8(fmt)) is_int8 |= 1 << i; if (format_is_int10(fmt)) is_int10 |= 1 << i; if (format_is_float32(fmt)) is_float32 |= 1 << i; } col_format |= cf << (4 * i); } if (!(col_format & 0xf) && blend->need_src_alpha & (1 << 0)) { /* When a subpass doesn't have any color attachments, write the * alpha channel of MRT0 when alpha coverage is enabled because * the depth attachment needs it. */ col_format |= V_028714_SPI_SHADER_32_AR; } /* If the i-th target format is set, all previous target formats must * be non-zero to avoid hangs. */ num_targets = (util_last_bit(col_format) + 3) / 4; for (unsigned i = 0; i < num_targets; i++) { if (!(col_format & (0xfu << (i * 4)))) { col_format |= V_028714_SPI_SHADER_32_R << (i * 4); } } /* The output for dual source blending should have the same format as * the first output. */ if (blend->mrt0_is_dual_src) { assert(!(col_format >> 4)); col_format |= (col_format & 0xf) << 4; } blend->cb_shader_mask = ac_get_cb_shader_mask(col_format); blend->spi_shader_col_format = col_format; blend->col_format_is_int8 = is_int8; blend->col_format_is_int10 = is_int10; blend->col_format_is_float32 = is_float32; } /* * Ordered so that for each i, * radv_format_meta_fs_key(radv_fs_key_format_exemplars[i]) == i. */ const VkFormat radv_fs_key_format_exemplars[NUM_META_FS_KEYS] = { VK_FORMAT_R32_SFLOAT, VK_FORMAT_R32G32_SFLOAT, VK_FORMAT_R8G8B8A8_UNORM, VK_FORMAT_R16G16B16A16_UNORM, VK_FORMAT_R16G16B16A16_SNORM, VK_FORMAT_R16G16B16A16_UINT, VK_FORMAT_R16G16B16A16_SINT, VK_FORMAT_R32G32B32A32_SFLOAT, VK_FORMAT_R8G8B8A8_UINT, VK_FORMAT_R8G8B8A8_SINT, VK_FORMAT_A2R10G10B10_UINT_PACK32, VK_FORMAT_A2R10G10B10_SINT_PACK32, }; unsigned radv_format_meta_fs_key(struct radv_device *device, VkFormat format) { unsigned col_format = radv_choose_spi_color_format(device, format, false, false); assert(col_format != V_028714_SPI_SHADER_32_AR); bool is_int8 = format_is_int8(format); bool is_int10 = format_is_int10(format); if (col_format == V_028714_SPI_SHADER_UINT16_ABGR && is_int8) return 8; else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR && is_int8) return 9; else if (col_format == V_028714_SPI_SHADER_UINT16_ABGR && is_int10) return 10; else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR && is_int10) return 11; else { if (col_format >= V_028714_SPI_SHADER_32_AR) --col_format; /* Skip V_028714_SPI_SHADER_32_AR since there is no such VkFormat */ --col_format; /* Skip V_028714_SPI_SHADER_ZERO */ return col_format; } } static void radv_blend_check_commutativity(enum amd_gfx_level gfx_level, struct radv_blend_state *blend, unsigned op, unsigned src, unsigned dst, unsigned chanmask) { bool is_src_allowed = false; /* Src factor is allowed when it does not depend on Dst. */ if (src == V_028780_BLEND_ZERO || src == V_028780_BLEND_ONE || src == V_028780_BLEND_SRC_COLOR || src == V_028780_BLEND_SRC_ALPHA || src == V_028780_BLEND_SRC_ALPHA_SATURATE || src == V_028780_BLEND_ONE_MINUS_SRC_COLOR || src == V_028780_BLEND_ONE_MINUS_SRC_ALPHA) { is_src_allowed = true; } if (gfx_level >= GFX11) { if (src == V_028780_BLEND_CONSTANT_COLOR_GFX11 || src == V_028780_BLEND_CONSTANT_ALPHA_GFX11 || src == V_028780_BLEND_SRC1_COLOR_GFX11 || src == V_028780_BLEND_SRC1_ALPHA_GFX11 || src == V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR_GFX11 || src == V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA_GFX11 || src == V_028780_BLEND_INV_SRC1_COLOR_GFX11 || src == V_028780_BLEND_INV_SRC1_ALPHA_GFX11) { is_src_allowed = true; } } else { if (src == V_028780_BLEND_CONSTANT_COLOR_GFX6 || src == V_028780_BLEND_CONSTANT_ALPHA_GFX6 || src == V_028780_BLEND_SRC1_COLOR_GFX6 || src == V_028780_BLEND_SRC1_ALPHA_GFX6 || src == V_028780_BLEND_ONE_MINUS_CONSTANT_COLOR_GFX6 || src == V_028780_BLEND_ONE_MINUS_CONSTANT_ALPHA_GFX6 || src == V_028780_BLEND_INV_SRC1_COLOR_GFX6 || src == V_028780_BLEND_INV_SRC1_ALPHA_GFX6) { is_src_allowed = true; } } if (dst == V_028780_BLEND_ONE && is_src_allowed) { /* Addition is commutative, but floating point addition isn't * associative: subtle changes can be introduced via different * rounding. Be conservative, only enable for min and max. */ if (op == V_028780_COMB_MAX_DST_SRC || op == V_028780_COMB_MIN_DST_SRC) blend->commutative_4bit |= chanmask; } } static struct radv_blend_state radv_pipeline_init_blend_state(struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_info *info) { const struct radv_device *device = pipeline->base.device; struct radv_blend_state blend = {0}; unsigned cb_color_control = 0; const enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level; int i; if (info->cb.logic_op_enable) cb_color_control |= S_028808_ROP3(info->cb.logic_op); else cb_color_control |= S_028808_ROP3(V_028808_ROP3_COPY); if (device->instance->debug_flags & RADV_DEBUG_NO_ATOC_DITHERING) { blend.db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(2) | S_028B70_ALPHA_TO_MASK_OFFSET1(2) | S_028B70_ALPHA_TO_MASK_OFFSET2(2) | S_028B70_ALPHA_TO_MASK_OFFSET3(2) | S_028B70_OFFSET_ROUND(0); } else { blend.db_alpha_to_mask = S_028B70_ALPHA_TO_MASK_OFFSET0(3) | S_028B70_ALPHA_TO_MASK_OFFSET1(1) | S_028B70_ALPHA_TO_MASK_OFFSET2(0) | S_028B70_ALPHA_TO_MASK_OFFSET3(2) | S_028B70_OFFSET_ROUND(1); } if (info->ms.alpha_to_coverage_enable) { blend.db_alpha_to_mask |= S_028B70_ALPHA_TO_MASK_ENABLE(1); blend.need_src_alpha |= 0x1; } blend.cb_target_mask = 0; for (i = 0; i < info->cb.att_count; i++) { unsigned blend_cntl = 0; unsigned srcRGB_opt, dstRGB_opt, srcA_opt, dstA_opt; unsigned eqRGB = info->cb.att[i].color_blend_op; unsigned srcRGB = info->cb.att[i].src_color_blend_factor; unsigned dstRGB = info->cb.att[i].dst_color_blend_factor; unsigned eqA = info->cb.att[i].alpha_blend_op; unsigned srcA = info->cb.att[i].src_alpha_blend_factor; unsigned dstA = info->cb.att[i].dst_alpha_blend_factor; blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED); if (!info->cb.att[i].color_write_mask) continue; /* Ignore other blend targets if dual-source blending * is enabled to prevent wrong behaviour. */ if (blend.mrt0_is_dual_src) continue; blend.cb_target_mask |= (unsigned)info->cb.att[i].color_write_mask << (4 * i); blend.cb_target_enabled_4bit |= 0xfu << (4 * i); if (!info->cb.att[i].blend_enable) { blend.cb_blend_control[i] = blend_cntl; continue; } if (is_dual_src(gfx_level, srcRGB) || is_dual_src(gfx_level, dstRGB) || is_dual_src(gfx_level, srcA) || is_dual_src(gfx_level, dstA)) if (i == 0) blend.mrt0_is_dual_src = true; if (eqRGB == V_028780_COMB_MIN_DST_SRC || eqRGB == V_028780_COMB_MAX_DST_SRC) { srcRGB = V_028780_BLEND_ONE; dstRGB = V_028780_BLEND_ONE; } if (eqA == V_028780_COMB_MIN_DST_SRC || eqA == V_028780_COMB_MAX_DST_SRC) { srcA = V_028780_BLEND_ONE; dstA = V_028780_BLEND_ONE; } radv_blend_check_commutativity(gfx_level, &blend, eqRGB, srcRGB, dstRGB, 0x7u << (4 * i)); radv_blend_check_commutativity(gfx_level, &blend, eqA, srcA, dstA, 0x8u << (4 * i)); /* Blending optimizations for RB+. * These transformations don't change the behavior. * * First, get rid of DST in the blend factors: * func(src * DST, dst * 0) ---> func(src * 0, dst * SRC) */ si_blend_remove_dst(&eqRGB, &srcRGB, &dstRGB, V_028780_BLEND_DST_COLOR, V_028780_BLEND_SRC_COLOR); si_blend_remove_dst(&eqA, &srcA, &dstA, V_028780_BLEND_DST_COLOR, V_028780_BLEND_SRC_COLOR); si_blend_remove_dst(&eqA, &srcA, &dstA, V_028780_BLEND_DST_ALPHA, V_028780_BLEND_SRC_ALPHA); /* Look up the ideal settings from tables. */ srcRGB_opt = si_translate_blend_opt_factor(srcRGB, false); dstRGB_opt = si_translate_blend_opt_factor(dstRGB, false); srcA_opt = si_translate_blend_opt_factor(srcA, true); dstA_opt = si_translate_blend_opt_factor(dstA, true); /* Handle interdependencies. */ if (si_blend_factor_uses_dst(srcRGB)) dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; if (si_blend_factor_uses_dst(srcA)) dstA_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_NONE; if (srcRGB == V_028780_BLEND_SRC_ALPHA_SATURATE && (dstRGB == V_028780_BLEND_ZERO || dstRGB == V_028780_BLEND_SRC_ALPHA || dstRGB == V_028780_BLEND_SRC_ALPHA_SATURATE)) dstRGB_opt = V_028760_BLEND_OPT_PRESERVE_NONE_IGNORE_A0; /* Set the final value. */ blend.sx_mrt_blend_opt[i] = S_028760_COLOR_SRC_OPT(srcRGB_opt) | S_028760_COLOR_DST_OPT(dstRGB_opt) | S_028760_COLOR_COMB_FCN(si_translate_blend_opt_function(eqRGB)) | S_028760_ALPHA_SRC_OPT(srcA_opt) | S_028760_ALPHA_DST_OPT(dstA_opt) | S_028760_ALPHA_COMB_FCN(si_translate_blend_opt_function(eqA)); blend_cntl |= S_028780_ENABLE(1); blend_cntl |= S_028780_COLOR_COMB_FCN(eqRGB); blend_cntl |= S_028780_COLOR_SRCBLEND(srcRGB); blend_cntl |= S_028780_COLOR_DESTBLEND(dstRGB); if (srcA != srcRGB || dstA != dstRGB || eqA != eqRGB) { blend_cntl |= S_028780_SEPARATE_ALPHA_BLEND(1); blend_cntl |= S_028780_ALPHA_COMB_FCN(eqA); blend_cntl |= S_028780_ALPHA_SRCBLEND(srcA); blend_cntl |= S_028780_ALPHA_DESTBLEND(dstA); } blend.cb_blend_control[i] = blend_cntl; blend.blend_enable_4bit |= 0xfu << (i * 4); if (srcRGB == V_028780_BLEND_SRC_ALPHA || dstRGB == V_028780_BLEND_SRC_ALPHA || srcRGB == V_028780_BLEND_SRC_ALPHA_SATURATE || dstRGB == V_028780_BLEND_SRC_ALPHA_SATURATE || srcRGB == V_028780_BLEND_ONE_MINUS_SRC_ALPHA || dstRGB == V_028780_BLEND_ONE_MINUS_SRC_ALPHA) blend.need_src_alpha |= 1 << i; } for (i = info->cb.att_count; i < 8; i++) { blend.cb_blend_control[i] = 0; blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_BLEND_DISABLED); } if (device->physical_device->rad_info.has_rbplus) { /* Disable RB+ blend optimizations for dual source blending. */ if (blend.mrt0_is_dual_src) { for (i = 0; i < 8; i++) { blend.sx_mrt_blend_opt[i] = S_028760_COLOR_COMB_FCN(V_028760_OPT_COMB_NONE) | S_028760_ALPHA_COMB_FCN(V_028760_OPT_COMB_NONE); } } /* RB+ doesn't work with dual source blending, logic op and * RESOLVE. */ if (blend.mrt0_is_dual_src || info->cb.logic_op_enable || (device->physical_device->rad_info.gfx_level >= GFX11 && blend.blend_enable_4bit)) cb_color_control |= S_028808_DISABLE_DUAL_QUAD(1); } if (blend.cb_target_mask) cb_color_control |= S_028808_MODE(V_028808_CB_NORMAL); else cb_color_control |= S_028808_MODE(V_028808_CB_DISABLE); radv_pipeline_compute_spi_color_formats(pipeline, pCreateInfo, &blend, info); pipeline->cb_color_control = cb_color_control; return blend; } static uint32_t si_translate_fill(VkPolygonMode func) { switch (func) { case VK_POLYGON_MODE_FILL: return V_028814_X_DRAW_TRIANGLES; case VK_POLYGON_MODE_LINE: return V_028814_X_DRAW_LINES; case VK_POLYGON_MODE_POINT: return V_028814_X_DRAW_POINTS; default: assert(0); return V_028814_X_DRAW_POINTS; } } static unsigned radv_pipeline_color_samples( const struct radv_graphics_pipeline_info *info) { if (info->color_att_samples && radv_pipeline_has_color_attachments(&info->ri)) { return info->color_att_samples; } return info->ms.raster_samples; } static unsigned radv_pipeline_depth_samples(const struct radv_graphics_pipeline_info *info) { if (info->ds_att_samples && radv_pipeline_has_ds_attachments(&info->ri)) { return info->ds_att_samples; } return info->ms.raster_samples; } static uint8_t radv_pipeline_get_ps_iter_samples(const struct radv_graphics_pipeline_info *info) { uint32_t ps_iter_samples = 1; uint32_t num_samples = radv_pipeline_color_samples(info); if (info->ms.sample_shading_enable) { ps_iter_samples = ceilf(info->ms.min_sample_shading * num_samples); ps_iter_samples = util_next_power_of_two(ps_iter_samples); } return ps_iter_samples; } static bool radv_is_depth_write_enabled(const struct radv_depth_stencil_info *ds_info) { return ds_info->depth_test_enable && ds_info->depth_write_enable && ds_info->depth_compare_op != VK_COMPARE_OP_NEVER; } static bool radv_writes_stencil(const struct radv_stencil_op_info *info) { return info->write_mask && (info->fail_op != VK_STENCIL_OP_KEEP || info->pass_op != VK_STENCIL_OP_KEEP || info->depth_fail_op != VK_STENCIL_OP_KEEP); } static bool radv_is_stencil_write_enabled(const struct radv_depth_stencil_info *ds_info) { return ds_info->stencil_test_enable && (radv_writes_stencil(&ds_info->front) || radv_writes_stencil(&ds_info->back)); } static bool radv_order_invariant_stencil_op(VkStencilOp op) { /* REPLACE is normally order invariant, except when the stencil * reference value is written by the fragment shader. Tracking this * interaction does not seem worth the effort, so be conservative. */ return op != VK_STENCIL_OP_INCREMENT_AND_CLAMP && op != VK_STENCIL_OP_DECREMENT_AND_CLAMP && op != VK_STENCIL_OP_REPLACE; } static bool radv_order_invariant_stencil_state(const struct radv_stencil_op_info *info) { /* Compute whether, assuming Z writes are disabled, this stencil state * is order invariant in the sense that the set of passing fragments as * well as the final stencil buffer result does not depend on the order * of fragments. */ return !info->write_mask || /* The following assumes that Z writes are disabled. */ (info->compare_op == VK_COMPARE_OP_ALWAYS && radv_order_invariant_stencil_op(info->pass_op) && radv_order_invariant_stencil_op(info->depth_fail_op)) || (info->compare_op == VK_COMPARE_OP_NEVER && radv_order_invariant_stencil_op(info->fail_op)); } static bool radv_pipeline_has_dynamic_ds_states(const struct radv_graphics_pipeline *pipeline) { return !!(pipeline->dynamic_states & (RADV_DYNAMIC_DEPTH_TEST_ENABLE | RADV_DYNAMIC_DEPTH_WRITE_ENABLE | RADV_DYNAMIC_DEPTH_COMPARE_OP | RADV_DYNAMIC_STENCIL_TEST_ENABLE | RADV_DYNAMIC_STENCIL_WRITE_MASK | RADV_DYNAMIC_STENCIL_OP)); } static bool radv_pipeline_out_of_order_rast(struct radv_graphics_pipeline *pipeline, const struct radv_blend_state *blend, const struct radv_graphics_pipeline_info *info) { unsigned colormask = blend->cb_target_enabled_4bit; if (!pipeline->base.device->physical_device->out_of_order_rast_allowed) return false; /* Be conservative if a logic operation is enabled with color buffers. */ if (colormask && info->cb.logic_op_enable) return false; /* Be conservative if an extended dynamic depth/stencil state is * enabled because the driver can't update out-of-order rasterization * dynamically. */ if (radv_pipeline_has_dynamic_ds_states(pipeline)) return false; /* Default depth/stencil invariance when no attachment is bound. */ struct radv_dsa_order_invariance dsa_order_invariant = {.zs = true, .pass_set = true}; bool has_stencil = info->ri.stencil_att_format != VK_FORMAT_UNDEFINED; struct radv_dsa_order_invariance order_invariance[2]; struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT]; /* Compute depth/stencil order invariance in order to know if * it's safe to enable out-of-order. */ bool zfunc_is_ordered = info->ds.depth_compare_op == VK_COMPARE_OP_NEVER || info->ds.depth_compare_op == VK_COMPARE_OP_LESS || info->ds.depth_compare_op == VK_COMPARE_OP_LESS_OR_EQUAL || info->ds.depth_compare_op == VK_COMPARE_OP_GREATER || info->ds.depth_compare_op == VK_COMPARE_OP_GREATER_OR_EQUAL; bool depth_write_enabled = radv_is_depth_write_enabled(&info->ds); bool stencil_write_enabled = radv_is_stencil_write_enabled(&info->ds); bool ds_write_enabled = depth_write_enabled || stencil_write_enabled; bool nozwrite_and_order_invariant_stencil = !ds_write_enabled || (!depth_write_enabled && radv_order_invariant_stencil_state(&info->ds.front) && radv_order_invariant_stencil_state(&info->ds.back)); order_invariance[1].zs = nozwrite_and_order_invariant_stencil || (!stencil_write_enabled && zfunc_is_ordered); order_invariance[0].zs = !depth_write_enabled || zfunc_is_ordered; order_invariance[1].pass_set = nozwrite_and_order_invariant_stencil || (!stencil_write_enabled && (info->ds.depth_compare_op == VK_COMPARE_OP_ALWAYS || info->ds.depth_compare_op == VK_COMPARE_OP_NEVER)); order_invariance[0].pass_set = !depth_write_enabled || (info->ds.depth_compare_op == VK_COMPARE_OP_ALWAYS || info->ds.depth_compare_op == VK_COMPARE_OP_NEVER); dsa_order_invariant = order_invariance[has_stencil]; if (!dsa_order_invariant.zs) return false; /* The set of PS invocations is always order invariant, * except when early Z/S tests are requested. */ if (ps && ps->info.ps.writes_memory && ps->info.ps.early_fragment_test && !dsa_order_invariant.pass_set) return false; /* Determine if out-of-order rasterization should be disabled when occlusion queries are used. */ pipeline->disable_out_of_order_rast_for_occlusion = !dsa_order_invariant.pass_set; /* No color buffers are enabled for writing. */ if (!colormask) return true; unsigned blendmask = colormask & blend->blend_enable_4bit; if (blendmask) { /* Only commutative blending. */ if (blendmask & ~blend->commutative_4bit) return false; if (!dsa_order_invariant.pass_set) return false; } if (colormask & ~blendmask) return false; return true; } static void radv_pipeline_init_multisample_state(struct radv_graphics_pipeline *pipeline, const struct radv_blend_state *blend, const struct radv_graphics_pipeline_info *info, unsigned rast_prim) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; struct radv_multisample_state *ms = &pipeline->ms; unsigned num_tile_pipes = pdevice->rad_info.num_tile_pipes; const VkConservativeRasterizationModeEXT mode = info->rs.conservative_mode; bool out_of_order_rast = false; int ps_iter_samples = 1; ms->num_samples = info->ms.raster_samples; /* From the Vulkan 1.1.129 spec, 26.7. Sample Shading: * * "Sample shading is enabled for a graphics pipeline: * * - If the interface of the fragment shader entry point of the * graphics pipeline includes an input variable decorated * with SampleId or SamplePosition. In this case * minSampleShadingFactor takes the value 1.0. * - Else if the sampleShadingEnable member of the * VkPipelineMultisampleStateCreateInfo structure specified * when creating the graphics pipeline is set to VK_TRUE. In * this case minSampleShadingFactor takes the value of * VkPipelineMultisampleStateCreateInfo::minSampleShading. * * Otherwise, sample shading is considered disabled." */ if (pipeline->base.shaders[MESA_SHADER_FRAGMENT]->info.ps.uses_sample_shading) { ps_iter_samples = ms->num_samples; } else { ps_iter_samples = radv_pipeline_get_ps_iter_samples(info); } if (info->rs.order == VK_RASTERIZATION_ORDER_RELAXED_AMD) { /* Out-of-order rasterization is explicitly enabled by the * application. */ out_of_order_rast = true; } else { /* Determine if the driver can enable out-of-order * rasterization internally. */ out_of_order_rast = radv_pipeline_out_of_order_rast(pipeline, blend, info); } ms->pa_sc_aa_config = 0; ms->db_eqaa = S_028804_HIGH_QUALITY_INTERSECTIONS(1) | S_028804_INCOHERENT_EQAA_READS(1) | S_028804_INTERPOLATE_COMP_Z(1) | S_028804_STATIC_ANCHOR_ASSOCIATIONS(1); /* Adjust MSAA state if conservative rasterization is enabled. */ if (mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT) { ms->pa_sc_aa_config |= S_028BE0_AA_MASK_CENTROID_DTMN(1); ms->db_eqaa |= S_028804_ENABLE_POSTZ_OVERRASTERIZATION(1) | S_028804_OVERRASTERIZATION_AMOUNT(4); } ms->pa_sc_mode_cntl_1 = S_028A4C_WALK_FENCE_ENABLE(1) | // TODO linear dst fixes S_028A4C_WALK_FENCE_SIZE(num_tile_pipes == 2 ? 2 : 3) | S_028A4C_OUT_OF_ORDER_PRIMITIVE_ENABLE(out_of_order_rast) | S_028A4C_OUT_OF_ORDER_WATER_MARK(0x7) | /* always 1: */ S_028A4C_WALK_ALIGN8_PRIM_FITS_ST(1) | S_028A4C_SUPERTILE_WALK_ORDER_ENABLE(1) | S_028A4C_TILE_WALK_ORDER_ENABLE(1) | S_028A4C_MULTI_SHADER_ENGINE_PRIM_DISCARD_ENABLE(1) | S_028A4C_FORCE_EOV_CNTDWN_ENABLE(1) | S_028A4C_FORCE_EOV_REZ_ENABLE(1); ms->pa_sc_mode_cntl_0 = S_028A48_ALTERNATE_RBS_PER_TILE(pdevice->rad_info.gfx_level >= GFX9) | S_028A48_VPORT_SCISSOR_ENABLE(1) | S_028A48_LINE_STIPPLE_ENABLE(info->rs.stippled_line_enable); if (info->rs.line_raster_mode == VK_LINE_RASTERIZATION_MODE_BRESENHAM_EXT && radv_rast_prim_is_line(rast_prim)) { /* From the Vulkan spec 1.3.221: * * "When Bresenham lines are being rasterized, sample locations may all be treated as being at * the pixel center (this may affect attribute and depth interpolation)." * * "One consequence of this is that Bresenham lines cover the same pixels regardless of the * number of rasterization samples, and cover all samples in those pixels (unless masked out * or killed)." */ ms->num_samples = 1; } if (ms->num_samples > 1) { uint32_t z_samples = radv_pipeline_depth_samples(info); unsigned log_samples = util_logbase2(ms->num_samples); unsigned log_z_samples = util_logbase2(z_samples); unsigned log_ps_iter_samples = util_logbase2(ps_iter_samples); ms->pa_sc_mode_cntl_0 |= S_028A48_MSAA_ENABLE(1); ms->db_eqaa |= S_028804_MAX_ANCHOR_SAMPLES(log_z_samples) | S_028804_PS_ITER_SAMPLES(log_ps_iter_samples) | S_028804_MASK_EXPORT_NUM_SAMPLES(log_samples) | S_028804_ALPHA_TO_MASK_NUM_SAMPLES(log_samples); ms->pa_sc_aa_config |= S_028BE0_MSAA_NUM_SAMPLES(log_samples) | S_028BE0_MAX_SAMPLE_DIST(radv_get_default_max_sample_dist(log_samples)) | S_028BE0_MSAA_EXPOSED_SAMPLES(log_samples) | /* CM_R_028BE0_PA_SC_AA_CONFIG */ S_028BE0_COVERED_CENTROID_IS_CENTER(pdevice->rad_info.gfx_level >= GFX10_3); ms->pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(ps_iter_samples > 1); if (ps_iter_samples > 1) pipeline->spi_baryc_cntl |= S_0286E0_POS_FLOAT_LOCATION(2); } ms->pa_sc_aa_mask[0] = info->ms.sample_mask | ((uint32_t)info->ms.sample_mask << 16); ms->pa_sc_aa_mask[1] = info->ms.sample_mask | ((uint32_t)info->ms.sample_mask << 16); } static void gfx103_pipeline_init_vrs_state(struct radv_graphics_pipeline *pipeline, const struct radv_graphics_pipeline_info *info) { struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT]; struct radv_multisample_state *ms = &pipeline->ms; struct radv_vrs_state *vrs = &pipeline->vrs; if (info->ms.sample_shading_enable || ps->info.ps.uses_sample_shading || ps->info.ps.reads_sample_mask_in) { /* Disable VRS and use the rates from PS_ITER_SAMPLES if: * * 1) sample shading is enabled or per-sample interpolation is * used by the fragment shader * 2) the fragment shader reads gl_SampleMaskIn because the * 16-bit sample coverage mask isn't enough for MSAA8x and * 2x2 coarse shading isn't enough. */ vrs->pa_cl_vrs_cntl = S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_VRS_COMB_MODE_OVERRIDE); /* Make sure sample shading is enabled even if only MSAA1x is * used because the SAMPLE_ITER combiner is in passthrough * mode if PS_ITER_SAMPLE is 0, and it uses the per-draw rate. * The default VRS rate when sample shading is enabled is 1x1. */ if (!G_028A4C_PS_ITER_SAMPLE(ms->pa_sc_mode_cntl_1)) ms->pa_sc_mode_cntl_1 |= S_028A4C_PS_ITER_SAMPLE(1); } else { vrs->pa_cl_vrs_cntl = S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_VRS_COMB_MODE_PASSTHRU); } } static uint32_t si_conv_tess_prim_to_gs_out(enum tess_primitive_mode prim) { switch (prim) { case TESS_PRIMITIVE_TRIANGLES: case TESS_PRIMITIVE_QUADS: return V_028A6C_TRISTRIP; case TESS_PRIMITIVE_ISOLINES: return V_028A6C_LINESTRIP; default: assert(0); return 0; } } static uint32_t si_conv_gl_prim_to_gs_out(unsigned gl_prim) { switch (gl_prim) { case SHADER_PRIM_POINTS: return V_028A6C_POINTLIST; case SHADER_PRIM_LINES: case SHADER_PRIM_LINE_STRIP: case SHADER_PRIM_LINES_ADJACENCY: return V_028A6C_LINESTRIP; case SHADER_PRIM_TRIANGLES: case SHADER_PRIM_TRIANGLE_STRIP_ADJACENCY: case SHADER_PRIM_TRIANGLE_STRIP: case SHADER_PRIM_QUADS: return V_028A6C_TRISTRIP; default: assert(0); return 0; } } static uint64_t radv_dynamic_state_mask(VkDynamicState state) { switch (state) { case VK_DYNAMIC_STATE_VIEWPORT: case VK_DYNAMIC_STATE_VIEWPORT_WITH_COUNT: return RADV_DYNAMIC_VIEWPORT; case VK_DYNAMIC_STATE_SCISSOR: case VK_DYNAMIC_STATE_SCISSOR_WITH_COUNT: return RADV_DYNAMIC_SCISSOR; case VK_DYNAMIC_STATE_LINE_WIDTH: return RADV_DYNAMIC_LINE_WIDTH; case VK_DYNAMIC_STATE_DEPTH_BIAS: return RADV_DYNAMIC_DEPTH_BIAS; case VK_DYNAMIC_STATE_BLEND_CONSTANTS: return RADV_DYNAMIC_BLEND_CONSTANTS; case VK_DYNAMIC_STATE_DEPTH_BOUNDS: return RADV_DYNAMIC_DEPTH_BOUNDS; case VK_DYNAMIC_STATE_STENCIL_COMPARE_MASK: return RADV_DYNAMIC_STENCIL_COMPARE_MASK; case VK_DYNAMIC_STATE_STENCIL_WRITE_MASK: return RADV_DYNAMIC_STENCIL_WRITE_MASK; case VK_DYNAMIC_STATE_STENCIL_REFERENCE: return RADV_DYNAMIC_STENCIL_REFERENCE; case VK_DYNAMIC_STATE_DISCARD_RECTANGLE_EXT: return RADV_DYNAMIC_DISCARD_RECTANGLE; case VK_DYNAMIC_STATE_SAMPLE_LOCATIONS_EXT: return RADV_DYNAMIC_SAMPLE_LOCATIONS; case VK_DYNAMIC_STATE_LINE_STIPPLE_EXT: return RADV_DYNAMIC_LINE_STIPPLE; case VK_DYNAMIC_STATE_CULL_MODE: return RADV_DYNAMIC_CULL_MODE; case VK_DYNAMIC_STATE_FRONT_FACE: return RADV_DYNAMIC_FRONT_FACE; case VK_DYNAMIC_STATE_PRIMITIVE_TOPOLOGY: return RADV_DYNAMIC_PRIMITIVE_TOPOLOGY; case VK_DYNAMIC_STATE_DEPTH_TEST_ENABLE: return RADV_DYNAMIC_DEPTH_TEST_ENABLE; case VK_DYNAMIC_STATE_DEPTH_WRITE_ENABLE: return RADV_DYNAMIC_DEPTH_WRITE_ENABLE; case VK_DYNAMIC_STATE_DEPTH_COMPARE_OP: return RADV_DYNAMIC_DEPTH_COMPARE_OP; case VK_DYNAMIC_STATE_DEPTH_BOUNDS_TEST_ENABLE: return RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE; case VK_DYNAMIC_STATE_STENCIL_TEST_ENABLE: return RADV_DYNAMIC_STENCIL_TEST_ENABLE; case VK_DYNAMIC_STATE_STENCIL_OP: return RADV_DYNAMIC_STENCIL_OP; case VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE: return RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE; case VK_DYNAMIC_STATE_FRAGMENT_SHADING_RATE_KHR: return RADV_DYNAMIC_FRAGMENT_SHADING_RATE; case VK_DYNAMIC_STATE_PATCH_CONTROL_POINTS_EXT: return RADV_DYNAMIC_PATCH_CONTROL_POINTS; case VK_DYNAMIC_STATE_RASTERIZER_DISCARD_ENABLE: return RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE; case VK_DYNAMIC_STATE_DEPTH_BIAS_ENABLE: return RADV_DYNAMIC_DEPTH_BIAS_ENABLE; case VK_DYNAMIC_STATE_LOGIC_OP_EXT: return RADV_DYNAMIC_LOGIC_OP; case VK_DYNAMIC_STATE_PRIMITIVE_RESTART_ENABLE: return RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE; case VK_DYNAMIC_STATE_COLOR_WRITE_ENABLE_EXT: return RADV_DYNAMIC_COLOR_WRITE_ENABLE; case VK_DYNAMIC_STATE_VERTEX_INPUT_EXT: return RADV_DYNAMIC_VERTEX_INPUT; default: unreachable("Unhandled dynamic state"); } } static bool radv_pipeline_is_blend_enabled(const struct radv_graphics_pipeline *pipeline, const struct radv_color_blend_info *cb_info) { for (uint32_t i = 0; i < cb_info->att_count; i++) { if (cb_info->att[i].color_write_mask && cb_info->att[i].blend_enable) return true; } return false; } static uint64_t radv_pipeline_needed_dynamic_state(const struct radv_graphics_pipeline *pipeline, const struct radv_graphics_pipeline_info *info) { bool has_color_att = radv_pipeline_has_color_attachments(&info->ri); bool raster_enabled = !info->rs.discard_enable || (pipeline->dynamic_states & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE); uint64_t states = RADV_DYNAMIC_ALL; /* Disable dynamic states that are useless to mesh shading. */ if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) { if (!raster_enabled) return RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE; states &= ~(RADV_DYNAMIC_VERTEX_INPUT | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE | RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE | RADV_DYNAMIC_PRIMITIVE_TOPOLOGY); } /* If rasterization is disabled we do not care about any of the * dynamic states, since they are all rasterization related only, * except primitive topology, primitive restart enable, vertex * binding stride and rasterization discard itself. */ if (!raster_enabled) { return RADV_DYNAMIC_PRIMITIVE_TOPOLOGY | RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE | RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE | RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE | RADV_DYNAMIC_VERTEX_INPUT; } if (!info->rs.depth_bias_enable && !(pipeline->dynamic_states & RADV_DYNAMIC_DEPTH_BIAS_ENABLE)) states &= ~RADV_DYNAMIC_DEPTH_BIAS; if (!info->ds.depth_bounds_test_enable && !(pipeline->dynamic_states & RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE)) states &= ~RADV_DYNAMIC_DEPTH_BOUNDS; if (!info->ds.stencil_test_enable && !(pipeline->dynamic_states & RADV_DYNAMIC_STENCIL_TEST_ENABLE)) states &= ~(RADV_DYNAMIC_STENCIL_COMPARE_MASK | RADV_DYNAMIC_STENCIL_WRITE_MASK | RADV_DYNAMIC_STENCIL_REFERENCE | RADV_DYNAMIC_STENCIL_OP); if (!info->dr.count) states &= ~RADV_DYNAMIC_DISCARD_RECTANGLE; if (!info->ms.sample_locs_enable) states &= ~RADV_DYNAMIC_SAMPLE_LOCATIONS; if (!info->rs.stippled_line_enable) states &= ~RADV_DYNAMIC_LINE_STIPPLE; if (!radv_is_vrs_enabled(pipeline, info)) states &= ~RADV_DYNAMIC_FRAGMENT_SHADING_RATE; if (!has_color_att || !radv_pipeline_is_blend_enabled(pipeline, &info->cb)) states &= ~RADV_DYNAMIC_BLEND_CONSTANTS; if (!has_color_att) states &= ~RADV_DYNAMIC_COLOR_WRITE_ENABLE; return states; } static struct radv_ia_multi_vgt_param_helpers radv_compute_ia_multi_vgt_param_helpers(struct radv_graphics_pipeline *pipeline) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; struct radv_ia_multi_vgt_param_helpers ia_multi_vgt_param = {0}; if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) ia_multi_vgt_param.primgroup_size = pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.num_tess_patches; else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) ia_multi_vgt_param.primgroup_size = 64; else ia_multi_vgt_param.primgroup_size = 128; /* recommended without a GS */ /* GS requirement. */ ia_multi_vgt_param.partial_es_wave = false; if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY) && pdevice->rad_info.gfx_level <= GFX8) if (SI_GS_PER_ES / ia_multi_vgt_param.primgroup_size >= pdevice->gs_table_depth - 3) ia_multi_vgt_param.partial_es_wave = true; ia_multi_vgt_param.ia_switch_on_eoi = false; if (pipeline->base.shaders[MESA_SHADER_FRAGMENT]->info.ps.prim_id_input) ia_multi_vgt_param.ia_switch_on_eoi = true; if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY) && pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.uses_prim_id) ia_multi_vgt_param.ia_switch_on_eoi = true; if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) { /* SWITCH_ON_EOI must be set if PrimID is used. */ if (pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id || radv_get_shader(&pipeline->base, MESA_SHADER_TESS_EVAL)->info.uses_prim_id) ia_multi_vgt_param.ia_switch_on_eoi = true; } ia_multi_vgt_param.partial_vs_wave = false; if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) { /* Bug with tessellation and GS on Bonaire and older 2 SE chips. */ if ((pdevice->rad_info.family == CHIP_TAHITI || pdevice->rad_info.family == CHIP_PITCAIRN || pdevice->rad_info.family == CHIP_BONAIRE) && radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) ia_multi_vgt_param.partial_vs_wave = true; /* Needed for 028B6C_DISTRIBUTION_MODE != 0 */ if (pdevice->rad_info.has_distributed_tess) { if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) { if (pdevice->rad_info.gfx_level <= GFX8) ia_multi_vgt_param.partial_es_wave = true; } else { ia_multi_vgt_param.partial_vs_wave = true; } } } if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) { /* On these chips there is the possibility of a hang if the * pipeline uses a GS and partial_vs_wave is not set. * * This mostly does not hit 4-SE chips, as those typically set * ia_switch_on_eoi and then partial_vs_wave is set for pipelines * with GS due to another workaround. * * Reproducer: https://bugs.freedesktop.org/show_bug.cgi?id=109242 */ if (pdevice->rad_info.family == CHIP_TONGA || pdevice->rad_info.family == CHIP_FIJI || pdevice->rad_info.family == CHIP_POLARIS10 || pdevice->rad_info.family == CHIP_POLARIS11 || pdevice->rad_info.family == CHIP_POLARIS12 || pdevice->rad_info.family == CHIP_VEGAM) { ia_multi_vgt_param.partial_vs_wave = true; } } ia_multi_vgt_param.base = S_028AA8_PRIMGROUP_SIZE(ia_multi_vgt_param.primgroup_size - 1) | /* The following field was moved to VGT_SHADER_STAGES_EN in GFX9. */ S_028AA8_MAX_PRIMGRP_IN_WAVE(pdevice->rad_info.gfx_level == GFX8 ? 2 : 0) | S_030960_EN_INST_OPT_BASIC(pdevice->rad_info.gfx_level >= GFX9) | S_030960_EN_INST_OPT_ADV(pdevice->rad_info.gfx_level >= GFX9); return ia_multi_vgt_param; } static uint32_t radv_get_attrib_stride(const VkPipelineVertexInputStateCreateInfo *vi, uint32_t attrib_binding) { for (uint32_t i = 0; i < vi->vertexBindingDescriptionCount; i++) { const VkVertexInputBindingDescription *input_binding = &vi->pVertexBindingDescriptions[i]; if (input_binding->binding == attrib_binding) return input_binding->stride; } return 0; } static struct radv_vertex_input_info radv_pipeline_init_vertex_input_info(struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; const VkPipelineVertexInputStateCreateInfo *vi = pCreateInfo->pVertexInputState; struct radv_vertex_input_info info = {0}; if (!(pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT)) { /* Vertex input */ const VkPipelineVertexInputDivisorStateCreateInfoEXT *divisor_state = vk_find_struct_const(vi->pNext, PIPELINE_VERTEX_INPUT_DIVISOR_STATE_CREATE_INFO_EXT); uint32_t binding_input_rate = 0; uint32_t instance_rate_divisors[MAX_VERTEX_ATTRIBS]; for (unsigned i = 0; i < vi->vertexBindingDescriptionCount; ++i) { const VkVertexInputBindingDescription *desc = &vi->pVertexBindingDescriptions[i]; if (desc->inputRate) { unsigned binding = vi->pVertexBindingDescriptions[i].binding; binding_input_rate |= 1u << binding; instance_rate_divisors[binding] = 1; } info.binding_stride[desc->binding] = desc->stride; } if (divisor_state) { for (unsigned i = 0; i < divisor_state->vertexBindingDivisorCount; ++i) { instance_rate_divisors[divisor_state->pVertexBindingDivisors[i].binding] = divisor_state->pVertexBindingDivisors[i].divisor; } } for (unsigned i = 0; i < vi->vertexAttributeDescriptionCount; ++i) { const VkVertexInputAttributeDescription *desc = &vi->pVertexAttributeDescriptions[i]; const struct util_format_description *format_desc; unsigned location = desc->location; unsigned binding = desc->binding; unsigned num_format, data_format; bool post_shuffle; if (binding_input_rate & (1u << binding)) { info.instance_rate_inputs |= 1u << location; info.instance_rate_divisors[location] = instance_rate_divisors[binding]; } format_desc = vk_format_description(desc->format); radv_translate_vertex_format(pdevice, desc->format, format_desc, &data_format, &num_format, &post_shuffle, &info.vertex_alpha_adjust[location]); info.vertex_attribute_formats[location] = data_format | (num_format << 4); info.vertex_attribute_bindings[location] = desc->binding; info.vertex_attribute_offsets[location] = desc->offset; const struct ac_data_format_info *dfmt_info = ac_get_data_format_info(data_format); unsigned attrib_align = dfmt_info->chan_byte_size ? dfmt_info->chan_byte_size : dfmt_info->element_size; /* If desc->offset is misaligned, then the buffer offset must be too. Just * skip updating vertex_binding_align in this case. */ if (desc->offset % attrib_align == 0) info.vertex_binding_align[desc->binding] = MAX2(info.vertex_binding_align[desc->binding], attrib_align); if (!(pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE)) { /* From the Vulkan spec 1.2.157: * * "If the bound pipeline state object was created * with the * VK_DYNAMIC_STATE_VERTEX_INPUT_BINDING_STRIDE * dynamic state enabled then pStrides[i] specifies * the distance in bytes between two consecutive * elements within the corresponding buffer. In this * case the VkVertexInputBindingDescription::stride * state from the pipeline state object is ignored." * * Make sure the vertex attribute stride is zero to * avoid computing a wrong offset if it's initialized * to something else than zero. */ info.vertex_attribute_strides[location] = radv_get_attrib_stride(vi, desc->binding); } if (post_shuffle) info.vertex_post_shuffle |= 1 << location; uint32_t end = desc->offset + vk_format_get_blocksize(desc->format); info.attrib_ends[desc->location] = end; if (info.binding_stride[desc->binding]) info.attrib_index_offset[desc->location] = desc->offset / info.binding_stride[desc->binding]; info.attrib_bindings[desc->location] = desc->binding; } } return info; } static struct radv_input_assembly_info radv_pipeline_init_input_assembly_info(struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineInputAssemblyStateCreateInfo *ia = pCreateInfo->pInputAssemblyState; struct radv_input_assembly_info info = {0}; info.primitive_topology = si_translate_prim(ia->topology); info.primitive_restart_enable = !!ia->primitiveRestartEnable; return info; } static struct radv_tessellation_info radv_pipeline_init_tessellation_info(struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineTessellationStateCreateInfo *ts = pCreateInfo->pTessellationState; const VkShaderStageFlagBits tess_stages = VK_SHADER_STAGE_TESSELLATION_CONTROL_BIT | VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT; struct radv_tessellation_info info = {0}; if ((pipeline->active_stages & tess_stages) == tess_stages) { info.patch_control_points = ts->patchControlPoints; const VkPipelineTessellationDomainOriginStateCreateInfo *domain_origin_state = vk_find_struct_const(ts->pNext, PIPELINE_TESSELLATION_DOMAIN_ORIGIN_STATE_CREATE_INFO); if (domain_origin_state) { info.domain_origin = domain_origin_state->domainOrigin; } } return info; } static struct radv_viewport_info radv_pipeline_init_viewport_info(struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineViewportStateCreateInfo *vp = pCreateInfo->pViewportState; struct radv_viewport_info info = {0}; if (radv_is_raster_enabled(pipeline, pCreateInfo)) { if (!(pipeline->dynamic_states & RADV_DYNAMIC_VIEWPORT)) { typed_memcpy(info.viewports, vp->pViewports, vp->viewportCount); } info.viewport_count = vp->viewportCount; if (!(pipeline->dynamic_states & RADV_DYNAMIC_SCISSOR)) { typed_memcpy(info.scissors, vp->pScissors, vp->scissorCount); } info.scissor_count = vp->scissorCount; const VkPipelineViewportDepthClipControlCreateInfoEXT *depth_clip_control = vk_find_struct_const(vp->pNext, PIPELINE_VIEWPORT_DEPTH_CLIP_CONTROL_CREATE_INFO_EXT); if (depth_clip_control) { info.negative_one_to_one = !!depth_clip_control->negativeOneToOne; } } return info; } static struct radv_rasterization_info radv_pipeline_init_rasterization_info(struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineRasterizationStateCreateInfo *rs = pCreateInfo->pRasterizationState; struct radv_rasterization_info info = {0}; info.discard_enable = rs->rasterizerDiscardEnable; info.front_face = rs->frontFace; info.cull_mode = rs->cullMode; info.polygon_mode = si_translate_fill(rs->polygonMode); info.depth_bias_enable = rs->depthBiasEnable; info.depth_clamp_enable = rs->depthClampEnable; info.line_width = rs->lineWidth; info.depth_bias_constant_factor = rs->depthBiasConstantFactor; info.depth_bias_clamp = rs->depthBiasClamp; info.depth_bias_slope_factor = rs->depthBiasSlopeFactor; info.depth_clip_disable = rs->depthClampEnable; const VkPipelineRasterizationProvokingVertexStateCreateInfoEXT *provoking_vtx_info = vk_find_struct_const(rs->pNext, PIPELINE_RASTERIZATION_PROVOKING_VERTEX_STATE_CREATE_INFO_EXT); if (provoking_vtx_info && provoking_vtx_info->provokingVertexMode == VK_PROVOKING_VERTEX_MODE_LAST_VERTEX_EXT) { info.provoking_vtx_last = true; } const VkPipelineRasterizationConservativeStateCreateInfoEXT *conservative_raster = vk_find_struct_const(rs->pNext, PIPELINE_RASTERIZATION_CONSERVATIVE_STATE_CREATE_INFO_EXT); if (conservative_raster) { info.conservative_mode = conservative_raster->conservativeRasterizationMode; } const VkPipelineRasterizationLineStateCreateInfoEXT *rast_line_info = vk_find_struct_const(rs->pNext, PIPELINE_RASTERIZATION_LINE_STATE_CREATE_INFO_EXT); if (rast_line_info) { info.stippled_line_enable = rast_line_info->stippledLineEnable; info.line_raster_mode = rast_line_info->lineRasterizationMode; info.line_stipple_factor = rast_line_info->lineStippleFactor; info.line_stipple_pattern = rast_line_info->lineStipplePattern; } const VkPipelineRasterizationDepthClipStateCreateInfoEXT *depth_clip_state = vk_find_struct_const(rs->pNext, PIPELINE_RASTERIZATION_DEPTH_CLIP_STATE_CREATE_INFO_EXT); if (depth_clip_state) { info.depth_clip_disable = !depth_clip_state->depthClipEnable; } const VkPipelineRasterizationStateRasterizationOrderAMD *raster_order = vk_find_struct_const(rs->pNext, PIPELINE_RASTERIZATION_STATE_RASTERIZATION_ORDER_AMD); if (raster_order) { info.order = raster_order->rasterizationOrder; } return info; } static struct radv_discard_rectangle_info radv_pipeline_init_discard_rectangle_info(struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineDiscardRectangleStateCreateInfoEXT *discard_rectangle_info = vk_find_struct_const(pCreateInfo->pNext, PIPELINE_DISCARD_RECTANGLE_STATE_CREATE_INFO_EXT); struct radv_discard_rectangle_info info = {0}; if (discard_rectangle_info) { info.mode = discard_rectangle_info->discardRectangleMode; if (!(pipeline->dynamic_states & RADV_DYNAMIC_DISCARD_RECTANGLE)) { typed_memcpy(info.rects, discard_rectangle_info->pDiscardRectangles, discard_rectangle_info->discardRectangleCount); } info.count = discard_rectangle_info->discardRectangleCount; } return info; } static struct radv_multisample_info radv_pipeline_init_multisample_info(struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineMultisampleStateCreateInfo *ms = pCreateInfo->pMultisampleState; struct radv_multisample_info info = {0}; if (radv_is_raster_enabled(pipeline, pCreateInfo)) { info.raster_samples = ms->rasterizationSamples; info.sample_shading_enable = ms->sampleShadingEnable; info.min_sample_shading = ms->minSampleShading; info.alpha_to_coverage_enable = ms->alphaToCoverageEnable; if (ms->pSampleMask) { info.sample_mask = ms->pSampleMask[0] & 0xffff; } else { info.sample_mask = 0xffff; } const VkPipelineSampleLocationsStateCreateInfoEXT *sample_location_info = vk_find_struct_const(ms->pNext, PIPELINE_SAMPLE_LOCATIONS_STATE_CREATE_INFO_EXT); if (sample_location_info) { /* If sampleLocationsEnable is VK_FALSE, the default sample locations are used and the * values specified in sampleLocationsInfo are ignored. */ info.sample_locs_enable = sample_location_info->sampleLocationsEnable; if (sample_location_info->sampleLocationsEnable) { const VkSampleLocationsInfoEXT *pSampleLocationsInfo = &sample_location_info->sampleLocationsInfo; assert(pSampleLocationsInfo->sampleLocationsCount <= MAX_SAMPLE_LOCATIONS); info.sample_locs_per_pixel = pSampleLocationsInfo->sampleLocationsPerPixel; info.sample_locs_grid_size = pSampleLocationsInfo->sampleLocationGridSize; for (uint32_t i = 0; i < pSampleLocationsInfo->sampleLocationsCount; i++) { info.sample_locs[i] = pSampleLocationsInfo->pSampleLocations[i]; } info.sample_locs_count = pSampleLocationsInfo->sampleLocationsCount; } } } else { info.raster_samples = VK_SAMPLE_COUNT_1_BIT; } return info; } static struct radv_depth_stencil_info radv_pipeline_init_depth_stencil_info(struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineDepthStencilStateCreateInfo *ds = pCreateInfo->pDepthStencilState; const VkPipelineRenderingCreateInfo *ri = vk_find_struct_const(pCreateInfo->pNext, PIPELINE_RENDERING_CREATE_INFO); struct radv_depth_stencil_info info = {0}; if (radv_is_raster_enabled(pipeline, pCreateInfo) && (ri->depthAttachmentFormat != VK_FORMAT_UNDEFINED || ri->stencilAttachmentFormat != VK_FORMAT_UNDEFINED)) { info.depth_bounds_test_enable = ds->depthBoundsTestEnable; info.depth_bounds.min = ds->minDepthBounds; info.depth_bounds.max = ds->maxDepthBounds; info.stencil_test_enable = ds->stencilTestEnable; info.front.fail_op = ds->front.failOp; info.front.pass_op = ds->front.passOp; info.front.depth_fail_op = ds->front.depthFailOp; info.front.compare_op = ds->front.compareOp; info.front.compare_mask = ds->front.compareMask; info.front.write_mask = ds->front.writeMask; info.front.reference = ds->front.reference; info.back.fail_op = ds->back.failOp; info.back.pass_op = ds->back.passOp; info.back.depth_fail_op = ds->back.depthFailOp; info.back.compare_op = ds->back.compareOp; info.back.compare_mask = ds->back.compareMask; info.back.write_mask = ds->back.writeMask; info.back.reference = ds->back.reference; info.depth_test_enable = ds->depthTestEnable; info.depth_write_enable = ds->depthWriteEnable; info.depth_compare_op = ds->depthCompareOp; } return info; } static struct radv_rendering_info radv_pipeline_init_rendering_info(struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineRenderingCreateInfo *ri = vk_find_struct_const(pCreateInfo->pNext, PIPELINE_RENDERING_CREATE_INFO); struct radv_rendering_info info = {0}; info.view_mask = ri->viewMask; for (uint32_t i = 0; i < ri->colorAttachmentCount; i++) { info.color_att_formats[i] = ri->pColorAttachmentFormats[i]; } info.color_att_count = ri->colorAttachmentCount; info.depth_att_format = ri->depthAttachmentFormat; info.stencil_att_format = ri->stencilAttachmentFormat; return info; } static struct radv_color_blend_info radv_pipeline_init_color_blend_info(struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; const VkPipelineColorBlendStateCreateInfo *cb = pCreateInfo->pColorBlendState; const VkPipelineRenderingCreateInfo *ri = vk_find_struct_const(pCreateInfo->pNext, PIPELINE_RENDERING_CREATE_INFO); struct radv_color_blend_info info = {0}; bool has_color_att = false; for (uint32_t i = 0; i < ri->colorAttachmentCount; ++i) { if (ri->pColorAttachmentFormats[i] != VK_FORMAT_UNDEFINED) { has_color_att = true; break; } } if (radv_is_raster_enabled(pipeline, pCreateInfo) && has_color_att) { for (uint32_t i = 0; i < cb->attachmentCount; i++) { const VkPipelineColorBlendAttachmentState *att = &cb->pAttachments[i]; info.att[i].color_write_mask = att->colorWriteMask; info.att[i].blend_enable = att->blendEnable; info.att[i].color_blend_op = si_translate_blend_function(att->colorBlendOp); info.att[i].alpha_blend_op = si_translate_blend_function(att->alphaBlendOp); info.att[i].src_color_blend_factor = si_translate_blend_factor(pdevice->rad_info.gfx_level, att->srcColorBlendFactor); info.att[i].dst_color_blend_factor = si_translate_blend_factor(pdevice->rad_info.gfx_level, att->dstColorBlendFactor); info.att[i].src_alpha_blend_factor = si_translate_blend_factor(pdevice->rad_info.gfx_level, att->srcAlphaBlendFactor); info.att[i].dst_alpha_blend_factor = si_translate_blend_factor(pdevice->rad_info.gfx_level, att->dstAlphaBlendFactor); } info.att_count = cb->attachmentCount; for (uint32_t i = 0; i < 4; i++) { info.blend_constants[i] = cb->blendConstants[i]; } info.logic_op_enable = cb->logicOpEnable; if (info.logic_op_enable) info.logic_op = si_translate_blend_logic_op(cb->logicOp); const VkPipelineColorWriteCreateInfoEXT *color_write_info = vk_find_struct_const(cb->pNext, PIPELINE_COLOR_WRITE_CREATE_INFO_EXT); if (color_write_info) { for (uint32_t i = 0; i < color_write_info->attachmentCount; i++) { info.color_write_enable |= color_write_info->pColorWriteEnables[i] ? (0xfu << (i * 4)) : 0; } } else { info.color_write_enable = 0xffffffffu; } } return info; } static struct radv_fragment_shading_rate_info radv_pipeline_init_fragment_shading_rate_info(struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { const VkPipelineFragmentShadingRateStateCreateInfoKHR *shading_rate = vk_find_struct_const(pCreateInfo->pNext, PIPELINE_FRAGMENT_SHADING_RATE_STATE_CREATE_INFO_KHR); struct radv_fragment_shading_rate_info info = {0}; if (shading_rate && !(pipeline->dynamic_states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE)) { info.size = shading_rate->fragmentSize; for (int i = 0; i < 2; i++) info.combiner_ops[i] = shading_rate->combinerOps[i]; } else { info.size = (VkExtent2D){ 1, 1 }; info.combiner_ops[0] = VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR; info.combiner_ops[1] = VK_FRAGMENT_SHADING_RATE_COMBINER_OP_KEEP_KHR; } return info; } static struct radv_graphics_pipeline_info radv_pipeline_init_graphics_info(struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo) { struct radv_graphics_pipeline_info info = {0}; /* Vertex input interface structs have to be ignored if the pipeline includes a mesh shader. */ if (!(pipeline->active_stages & VK_SHADER_STAGE_MESH_BIT_NV)) { info.vi = radv_pipeline_init_vertex_input_info(pipeline, pCreateInfo); info.ia = radv_pipeline_init_input_assembly_info(pipeline, pCreateInfo); } info.ts = radv_pipeline_init_tessellation_info(pipeline, pCreateInfo); info.vp = radv_pipeline_init_viewport_info(pipeline, pCreateInfo); info.rs = radv_pipeline_init_rasterization_info(pipeline, pCreateInfo); info.dr = radv_pipeline_init_discard_rectangle_info(pipeline, pCreateInfo); info.ms = radv_pipeline_init_multisample_info(pipeline, pCreateInfo); info.ds = radv_pipeline_init_depth_stencil_info(pipeline, pCreateInfo); info.ri = radv_pipeline_init_rendering_info(pipeline, pCreateInfo); info.cb = radv_pipeline_init_color_blend_info(pipeline, pCreateInfo); info.fsr = radv_pipeline_init_fragment_shading_rate_info(pipeline, pCreateInfo); /* VK_AMD_mixed_attachment_samples */ const VkAttachmentSampleCountInfoAMD *sample_info = vk_find_struct_const(pCreateInfo->pNext, ATTACHMENT_SAMPLE_COUNT_INFO_AMD); if (sample_info) { for (uint32_t i = 0; i < sample_info->colorAttachmentCount; ++i) { if (info.ri.color_att_formats[i] != VK_FORMAT_UNDEFINED) { info.color_att_samples = MAX2(info.color_att_samples, sample_info->pColorAttachmentSamples[i]); } } info.ds_att_samples = sample_info->depthStencilAttachmentSamples; } return info; } static void radv_pipeline_init_input_assembly_state(struct radv_graphics_pipeline *pipeline, const struct radv_graphics_pipeline_info *info) { pipeline->ia_multi_vgt_param = radv_compute_ia_multi_vgt_param_helpers(pipeline); } static void radv_pipeline_init_dynamic_state(struct radv_graphics_pipeline *pipeline, const struct radv_graphics_pipeline_info *info) { uint64_t needed_states = radv_pipeline_needed_dynamic_state(pipeline, info); uint64_t states = needed_states; pipeline->dynamic_state = default_dynamic_state; pipeline->needed_dynamic_state = needed_states; states &= ~pipeline->dynamic_states; struct radv_dynamic_state *dynamic = &pipeline->dynamic_state; if (needed_states & RADV_DYNAMIC_VIEWPORT) { dynamic->viewport.count = info->vp.viewport_count; if (states & RADV_DYNAMIC_VIEWPORT) { typed_memcpy(dynamic->viewport.viewports, info->vp.viewports, info->vp.viewport_count); for (unsigned i = 0; i < dynamic->viewport.count; i++) radv_get_viewport_xform(&dynamic->viewport.viewports[i], dynamic->viewport.xform[i].scale, dynamic->viewport.xform[i].translate); } } if (needed_states & RADV_DYNAMIC_SCISSOR) { dynamic->scissor.count = info->vp.scissor_count; if (states & RADV_DYNAMIC_SCISSOR) { typed_memcpy(dynamic->scissor.scissors, info->vp.scissors, info->vp.scissor_count); } } if (states & RADV_DYNAMIC_LINE_WIDTH) { dynamic->line_width = info->rs.line_width; } if (states & RADV_DYNAMIC_DEPTH_BIAS) { dynamic->depth_bias.bias = info->rs.depth_bias_constant_factor; dynamic->depth_bias.clamp = info->rs.depth_bias_clamp; dynamic->depth_bias.slope = info->rs.depth_bias_slope_factor; } /* Section 9.2 of the Vulkan 1.0.15 spec says: * * pColorBlendState is [...] NULL if the pipeline has rasterization * disabled or if the subpass of the render pass the pipeline is * created against does not use any color attachments. */ if (states & RADV_DYNAMIC_BLEND_CONSTANTS) { typed_memcpy(dynamic->blend_constants, info->cb.blend_constants, 4); } if (states & RADV_DYNAMIC_CULL_MODE) { dynamic->cull_mode = info->rs.cull_mode; } if (states & RADV_DYNAMIC_FRONT_FACE) { dynamic->front_face = info->rs.front_face; } if (states & RADV_DYNAMIC_PRIMITIVE_TOPOLOGY) { dynamic->primitive_topology = info->ia.primitive_topology; } /* If there is no depthstencil attachment, then don't read * pDepthStencilState. The Vulkan spec states that pDepthStencilState may * be NULL in this case. Even if pDepthStencilState is non-NULL, there is * no need to override the depthstencil defaults in * radv_pipeline::dynamic_state when there is no depthstencil attachment. * * Section 9.2 of the Vulkan 1.0.15 spec says: * * pDepthStencilState is [...] NULL if the pipeline has rasterization * disabled or if the subpass of the render pass the pipeline is created * against does not use a depth/stencil attachment. */ if (needed_states && radv_pipeline_has_ds_attachments(&info->ri)) { if (states & RADV_DYNAMIC_DEPTH_BOUNDS) { dynamic->depth_bounds.min = info->ds.depth_bounds.min; dynamic->depth_bounds.max = info->ds.depth_bounds.max; } if (states & RADV_DYNAMIC_STENCIL_COMPARE_MASK) { dynamic->stencil_compare_mask.front = info->ds.front.compare_mask; dynamic->stencil_compare_mask.back = info->ds.back.compare_mask; } if (states & RADV_DYNAMIC_STENCIL_WRITE_MASK) { dynamic->stencil_write_mask.front = info->ds.front.write_mask; dynamic->stencil_write_mask.back = info->ds.back.write_mask; } if (states & RADV_DYNAMIC_STENCIL_REFERENCE) { dynamic->stencil_reference.front = info->ds.front.reference; dynamic->stencil_reference.back = info->ds.back.reference; } if (states & RADV_DYNAMIC_DEPTH_TEST_ENABLE) { dynamic->depth_test_enable = info->ds.depth_test_enable; } if (states & RADV_DYNAMIC_DEPTH_WRITE_ENABLE) { dynamic->depth_write_enable = info->ds.depth_write_enable; } if (states & RADV_DYNAMIC_DEPTH_COMPARE_OP) { dynamic->depth_compare_op = info->ds.depth_compare_op; } if (states & RADV_DYNAMIC_DEPTH_BOUNDS_TEST_ENABLE) { dynamic->depth_bounds_test_enable = info->ds.depth_bounds_test_enable; } if (states & RADV_DYNAMIC_STENCIL_TEST_ENABLE) { dynamic->stencil_test_enable = info->ds.stencil_test_enable; } if (states & RADV_DYNAMIC_STENCIL_OP) { dynamic->stencil_op.front.compare_op = info->ds.front.compare_op; dynamic->stencil_op.front.fail_op = info->ds.front.fail_op; dynamic->stencil_op.front.pass_op = info->ds.front.pass_op; dynamic->stencil_op.front.depth_fail_op = info->ds.front.depth_fail_op; dynamic->stencil_op.back.compare_op = info->ds.back.compare_op; dynamic->stencil_op.back.fail_op = info->ds.back.fail_op; dynamic->stencil_op.back.pass_op = info->ds.back.pass_op; dynamic->stencil_op.back.depth_fail_op = info->ds.back.depth_fail_op; } } if (needed_states & RADV_DYNAMIC_DISCARD_RECTANGLE) { dynamic->discard_rectangle.count = info->dr.count; if (states & RADV_DYNAMIC_DISCARD_RECTANGLE) { typed_memcpy(dynamic->discard_rectangle.rectangles, info->dr.rects, info->dr.count); } } if (needed_states & RADV_DYNAMIC_SAMPLE_LOCATIONS) { if (info->ms.sample_locs_enable) { dynamic->sample_location.per_pixel = info->ms.sample_locs_per_pixel; dynamic->sample_location.grid_size = info->ms.sample_locs_grid_size; dynamic->sample_location.count = info->ms.sample_locs_count; typed_memcpy(&dynamic->sample_location.locations[0], info->ms.sample_locs, info->ms.sample_locs_count); } } if (needed_states & RADV_DYNAMIC_LINE_STIPPLE) { dynamic->line_stipple.factor = info->rs.line_stipple_factor; dynamic->line_stipple.pattern = info->rs.line_stipple_pattern; } if (!(states & RADV_DYNAMIC_VERTEX_INPUT_BINDING_STRIDE) || !(states & RADV_DYNAMIC_VERTEX_INPUT)) pipeline->uses_dynamic_stride = true; if (states & RADV_DYNAMIC_FRAGMENT_SHADING_RATE) { dynamic->fragment_shading_rate.size = info->fsr.size; for (int i = 0; i < 2; i++) dynamic->fragment_shading_rate.combiner_ops[i] = info->fsr.combiner_ops[i]; } if (states & RADV_DYNAMIC_DEPTH_BIAS_ENABLE) { dynamic->depth_bias_enable = info->rs.depth_bias_enable; } if (states & RADV_DYNAMIC_PRIMITIVE_RESTART_ENABLE) { dynamic->primitive_restart_enable = info->ia.primitive_restart_enable; } if (states & RADV_DYNAMIC_RASTERIZER_DISCARD_ENABLE) { dynamic->rasterizer_discard_enable = info->rs.discard_enable; } if (radv_pipeline_has_color_attachments(&info->ri) && states & RADV_DYNAMIC_LOGIC_OP) { if (info->cb.logic_op_enable) { dynamic->logic_op = info->cb.logic_op; } else { dynamic->logic_op = V_028808_ROP3_COPY; } } if (states & RADV_DYNAMIC_COLOR_WRITE_ENABLE) { dynamic->color_write_enable = info->cb.color_write_enable; } pipeline->dynamic_state.mask = states; } static void radv_pipeline_init_raster_state(struct radv_graphics_pipeline *pipeline, const struct radv_graphics_pipeline_info *info) { const struct radv_device *device = pipeline->base.device; pipeline->pa_su_sc_mode_cntl = S_028814_FACE(info->rs.front_face) | S_028814_CULL_FRONT(!!(info->rs.cull_mode & VK_CULL_MODE_FRONT_BIT)) | S_028814_CULL_BACK(!!(info->rs.cull_mode & VK_CULL_MODE_BACK_BIT)) | S_028814_POLY_MODE(info->rs.polygon_mode != V_028814_X_DRAW_TRIANGLES) | S_028814_POLYMODE_FRONT_PTYPE(info->rs.polygon_mode) | S_028814_POLYMODE_BACK_PTYPE(info->rs.polygon_mode) | S_028814_POLY_OFFSET_FRONT_ENABLE(info->rs.depth_bias_enable) | S_028814_POLY_OFFSET_BACK_ENABLE(info->rs.depth_bias_enable) | S_028814_POLY_OFFSET_PARA_ENABLE(info->rs.depth_bias_enable) | S_028814_PROVOKING_VTX_LAST(info->rs.provoking_vtx_last); if (device->physical_device->rad_info.gfx_level >= GFX10) { /* It should also be set if PERPENDICULAR_ENDCAP_ENA is set. */ pipeline->pa_su_sc_mode_cntl |= S_028814_KEEP_TOGETHER_ENABLE(info->rs.polygon_mode != V_028814_X_DRAW_TRIANGLES); } pipeline->pa_cl_clip_cntl = S_028810_DX_CLIP_SPACE_DEF(!pipeline->negative_one_to_one) | S_028810_ZCLIP_NEAR_DISABLE(info->rs.depth_clip_disable) | S_028810_ZCLIP_FAR_DISABLE(info->rs.depth_clip_disable) | S_028810_DX_RASTERIZATION_KILL(info->rs.discard_enable) | S_028810_DX_LINEAR_ATTR_CLIP_ENA(1); pipeline->uses_conservative_overestimate = info->rs.conservative_mode == VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT; pipeline->depth_clamp_mode = RADV_DEPTH_CLAMP_MODE_VIEWPORT; if (!info->rs.depth_clamp_enable) { /* For optimal performance, depth clamping should always be enabled except if the * application disables clamping explicitly or uses depth values outside of the [0.0, 1.0] * range. */ if (info->rs.depth_clip_disable || device->vk.enabled_extensions.EXT_depth_range_unrestricted) { pipeline->depth_clamp_mode = RADV_DEPTH_CLAMP_MODE_DISABLED; } else { pipeline->depth_clamp_mode = RADV_DEPTH_CLAMP_MODE_ZERO_TO_ONE; } } } static struct radv_depth_stencil_state radv_pipeline_init_depth_stencil_state(struct radv_graphics_pipeline *pipeline, const struct radv_graphics_pipeline_info *info) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; struct radv_depth_stencil_state ds_state = {0}; uint32_t db_depth_control = 0; bool has_depth_attachment = info->ri.depth_att_format != VK_FORMAT_UNDEFINED; bool has_stencil_attachment = info->ri.stencil_att_format != VK_FORMAT_UNDEFINED; if (has_depth_attachment) { /* from amdvlk: For 4xAA and 8xAA need to decompress on flush for better performance */ ds_state.db_render_override2 |= S_028010_DECOMPRESS_Z_ON_FLUSH(info->ms.raster_samples > 2); if (pdevice->rad_info.gfx_level >= GFX10_3) ds_state.db_render_override2 |= S_028010_CENTROID_COMPUTATION_MODE(1); db_depth_control = S_028800_Z_ENABLE(info->ds.depth_test_enable) | S_028800_Z_WRITE_ENABLE(info->ds.depth_write_enable) | S_028800_ZFUNC(info->ds.depth_compare_op) | S_028800_DEPTH_BOUNDS_ENABLE(info->ds.depth_bounds_test_enable); } if (has_stencil_attachment && info->ds.stencil_test_enable) { db_depth_control |= S_028800_STENCIL_ENABLE(1) | S_028800_BACKFACE_ENABLE(1); db_depth_control |= S_028800_STENCILFUNC(info->ds.front.compare_op); db_depth_control |= S_028800_STENCILFUNC_BF(info->ds.back.compare_op); } ds_state.db_render_override |= S_02800C_FORCE_HIS_ENABLE0(V_02800C_FORCE_DISABLE) | S_02800C_FORCE_HIS_ENABLE1(V_02800C_FORCE_DISABLE); if (pipeline->depth_clamp_mode == RADV_DEPTH_CLAMP_MODE_DISABLED) ds_state.db_render_override |= S_02800C_DISABLE_VIEWPORT_CLAMP(1); if (pdevice->rad_info.gfx_level >= GFX11) { unsigned max_allowed_tiles_in_wave = 0; unsigned num_samples = MAX2(radv_pipeline_color_samples(info), radv_pipeline_depth_samples(info)); if (pdevice->rad_info.has_dedicated_vram) { if (num_samples == 8) max_allowed_tiles_in_wave = 7; else if (num_samples == 4) max_allowed_tiles_in_wave = 14; } else { if (num_samples == 8) max_allowed_tiles_in_wave = 8; } /* TODO: We may want to disable this workaround for future chips. */ if (num_samples >= 4) { if (max_allowed_tiles_in_wave) max_allowed_tiles_in_wave--; else max_allowed_tiles_in_wave = 15; } ds_state.db_render_control |= S_028000_OREO_MODE(V_028000_OMODE_O_THEN_B) | S_028000_MAX_ALLOWED_TILES_IN_WAVE(max_allowed_tiles_in_wave); } pipeline->db_depth_control = db_depth_control; return ds_state; } static void gfx9_get_gs_info(const struct radv_pipeline_key *key, const struct radv_pipeline *pipeline, struct radv_pipeline_stage *stages, struct gfx9_gs_info *out) { const struct radv_physical_device *pdevice = pipeline->device->physical_device; struct radv_shader_info *gs_info = &stages[MESA_SHADER_GEOMETRY].info; struct radv_es_output_info *es_info; bool has_tess = !!stages[MESA_SHADER_TESS_CTRL].nir; if (pdevice->rad_info.gfx_level >= GFX9) es_info = has_tess ? &gs_info->tes.es_info : &gs_info->vs.es_info; else es_info = has_tess ? &stages[MESA_SHADER_TESS_EVAL].info.tes.es_info : &stages[MESA_SHADER_VERTEX].info.vs.es_info; unsigned gs_num_invocations = MAX2(gs_info->gs.invocations, 1); bool uses_adjacency; switch (key->vs.topology) { case V_008958_DI_PT_LINELIST_ADJ: case V_008958_DI_PT_LINESTRIP_ADJ: case V_008958_DI_PT_TRILIST_ADJ: case V_008958_DI_PT_TRISTRIP_ADJ: uses_adjacency = true; break; default: uses_adjacency = false; break; } /* All these are in dwords: */ /* We can't allow using the whole LDS, because GS waves compete with * other shader stages for LDS space. */ const unsigned max_lds_size = 8 * 1024; const unsigned esgs_itemsize = es_info->esgs_itemsize / 4; unsigned esgs_lds_size; /* All these are per subgroup: */ const unsigned max_out_prims = 32 * 1024; const unsigned max_es_verts = 255; const unsigned ideal_gs_prims = 64; unsigned max_gs_prims, gs_prims; unsigned min_es_verts, es_verts, worst_case_es_verts; if (uses_adjacency || gs_num_invocations > 1) max_gs_prims = 127 / gs_num_invocations; else max_gs_prims = 255; /* MAX_PRIMS_PER_SUBGROUP = gs_prims * max_vert_out * gs_invocations. * Make sure we don't go over the maximum value. */ if (gs_info->gs.vertices_out > 0) { max_gs_prims = MIN2(max_gs_prims, max_out_prims / (gs_info->gs.vertices_out * gs_num_invocations)); } assert(max_gs_prims > 0); /* If the primitive has adjacency, halve the number of vertices * that will be reused in multiple primitives. */ min_es_verts = gs_info->gs.vertices_in / (uses_adjacency ? 2 : 1); gs_prims = MIN2(ideal_gs_prims, max_gs_prims); worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts); /* Compute ESGS LDS size based on the worst case number of ES vertices * needed to create the target number of GS prims per subgroup. */ esgs_lds_size = esgs_itemsize * worst_case_es_verts; /* If total LDS usage is too big, refactor partitions based on ratio * of ESGS item sizes. */ if (esgs_lds_size > max_lds_size) { /* Our target GS Prims Per Subgroup was too large. Calculate * the maximum number of GS Prims Per Subgroup that will fit * into LDS, capped by the maximum that the hardware can support. */ gs_prims = MIN2((max_lds_size / (esgs_itemsize * min_es_verts)), max_gs_prims); assert(gs_prims > 0); worst_case_es_verts = MIN2(min_es_verts * gs_prims, max_es_verts); esgs_lds_size = esgs_itemsize * worst_case_es_verts; assert(esgs_lds_size <= max_lds_size); } /* Now calculate remaining ESGS information. */ if (esgs_lds_size) es_verts = MIN2(esgs_lds_size / esgs_itemsize, max_es_verts); else es_verts = max_es_verts; /* Vertices for adjacency primitives are not always reused, so restore * it for ES_VERTS_PER_SUBGRP. */ min_es_verts = gs_info->gs.vertices_in; /* For normal primitives, the VGT only checks if they are past the ES * verts per subgroup after allocating a full GS primitive and if they * are, kick off a new subgroup. But if those additional ES verts are * unique (e.g. not reused) we need to make sure there is enough LDS * space to account for those ES verts beyond ES_VERTS_PER_SUBGRP. */ es_verts -= min_es_verts - 1; uint32_t es_verts_per_subgroup = es_verts; uint32_t gs_prims_per_subgroup = gs_prims; uint32_t gs_inst_prims_in_subgroup = gs_prims * gs_num_invocations; uint32_t max_prims_per_subgroup = gs_inst_prims_in_subgroup * gs_info->gs.vertices_out; out->lds_size = align(esgs_lds_size, 128) / 128; out->vgt_gs_onchip_cntl = S_028A44_ES_VERTS_PER_SUBGRP(es_verts_per_subgroup) | S_028A44_GS_PRIMS_PER_SUBGRP(gs_prims_per_subgroup) | S_028A44_GS_INST_PRIMS_IN_SUBGRP(gs_inst_prims_in_subgroup); out->vgt_gs_max_prims_per_subgroup = S_028A94_MAX_PRIMS_PER_SUBGROUP(max_prims_per_subgroup); out->vgt_esgs_ring_itemsize = esgs_itemsize; assert(max_prims_per_subgroup <= max_out_prims); gl_shader_stage es_stage = has_tess ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX; unsigned workgroup_size = ac_compute_esgs_workgroup_size( pdevice->rad_info.gfx_level, stages[es_stage].info.wave_size, es_verts_per_subgroup, gs_inst_prims_in_subgroup); stages[es_stage].info.workgroup_size = workgroup_size; stages[MESA_SHADER_GEOMETRY].info.workgroup_size = workgroup_size; } static void clamp_gsprims_to_esverts(unsigned *max_gsprims, unsigned max_esverts, unsigned min_verts_per_prim, bool use_adjacency) { unsigned max_reuse = max_esverts - min_verts_per_prim; if (use_adjacency) max_reuse /= 2; *max_gsprims = MIN2(*max_gsprims, 1 + max_reuse); } static unsigned radv_get_num_input_vertices(const struct radv_pipeline_stage *stages) { if (stages[MESA_SHADER_GEOMETRY].nir) { nir_shader *gs = stages[MESA_SHADER_GEOMETRY].nir; return gs->info.gs.vertices_in; } if (stages[MESA_SHADER_TESS_CTRL].nir) { nir_shader *tes = stages[MESA_SHADER_TESS_EVAL].nir; if (tes->info.tess.point_mode) return 1; if (tes->info.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES) return 2; return 3; } return 3; } static void gfx10_emit_ge_pc_alloc(struct radeon_cmdbuf *cs, enum amd_gfx_level gfx_level, uint32_t oversub_pc_lines) { radeon_set_uconfig_reg( cs, R_030980_GE_PC_ALLOC, S_030980_OVERSUB_EN(oversub_pc_lines > 0) | S_030980_NUM_PC_LINES(oversub_pc_lines - 1)); } static void gfx10_get_ngg_ms_info(struct radv_pipeline_stage *stage, struct gfx10_ngg_info *ngg) { /* Special case for mesh shader workgroups. * * Mesh shaders don't have any real vertex input, but they can produce * an arbitrary number of vertices and primitives (up to 256). * We need to precisely control the number of mesh shader workgroups * that are launched from draw calls. * * To achieve that, we set: * - input primitive topology to point list * - input vertex and primitive count to 1 * - max output vertex count and primitive amplification factor * to the boundaries of the shader * * With that, in the draw call: * - drawing 1 input vertex ~ launching 1 mesh shader workgroup * * In the shader: * - base vertex ~ first workgroup index (firstTask in NV_mesh_shader) * - input vertex id ~ workgroup id (in 1D - shader needs to calculate in 3D) * * Notes: * - without GS_EN=1 PRIM_AMP_FACTOR and MAX_VERTS_PER_SUBGROUP don't seem to work * - with GS_EN=1 we must also set VGT_GS_MAX_VERT_OUT (otherwise the GPU hangs) * - with GS_FAST_LAUNCH=1 every lane's VGPRs are initialized to the same input vertex index * */ nir_shader *ms = stage->nir; ngg->enable_vertex_grouping = true; ngg->esgs_ring_size = 1; ngg->hw_max_esverts = 1; ngg->max_gsprims = 1; ngg->max_out_verts = ms->info.mesh.max_vertices_out; ngg->max_vert_out_per_gs_instance = false; ngg->ngg_emit_size = 0; ngg->prim_amp_factor = ms->info.mesh.max_primitives_out; ngg->vgt_esgs_ring_itemsize = 1; unsigned min_ngg_workgroup_size = ac_compute_ngg_workgroup_size(ngg->hw_max_esverts, ngg->max_gsprims, ngg->max_out_verts, ngg->prim_amp_factor); unsigned api_workgroup_size = ac_compute_cs_workgroup_size(ms->info.workgroup_size, false, UINT32_MAX); stage->info.workgroup_size = MAX2(min_ngg_workgroup_size, api_workgroup_size); } static void gfx10_get_ngg_info(const struct radv_pipeline_key *key, struct radv_pipeline *pipeline, struct radv_pipeline_stage *stages, struct gfx10_ngg_info *ngg) { const struct radv_physical_device *pdevice = pipeline->device->physical_device; struct radv_shader_info *gs_info = &stages[MESA_SHADER_GEOMETRY].info; struct radv_es_output_info *es_info = stages[MESA_SHADER_TESS_CTRL].nir ? &gs_info->tes.es_info : &gs_info->vs.es_info; unsigned gs_type = stages[MESA_SHADER_GEOMETRY].nir ? MESA_SHADER_GEOMETRY : MESA_SHADER_VERTEX; unsigned max_verts_per_prim = radv_get_num_input_vertices(stages); unsigned min_verts_per_prim = gs_type == MESA_SHADER_GEOMETRY ? max_verts_per_prim : 1; unsigned gs_num_invocations = stages[MESA_SHADER_GEOMETRY].nir ? MAX2(gs_info->gs.invocations, 1) : 1; bool uses_adjacency; switch (key->vs.topology) { case V_008958_DI_PT_LINELIST_ADJ: case V_008958_DI_PT_LINESTRIP_ADJ: case V_008958_DI_PT_TRILIST_ADJ: case V_008958_DI_PT_TRISTRIP_ADJ: uses_adjacency = true; break; default: uses_adjacency = false; break; } /* All these are in dwords: */ /* We can't allow using the whole LDS, because GS waves compete with * other shader stages for LDS space. * * TODO: We should really take the shader's internal LDS use into * account. The linker will fail if the size is greater than * 8K dwords. */ const unsigned max_lds_size = 8 * 1024 - 768; const unsigned target_lds_size = max_lds_size; unsigned esvert_lds_size = 0; unsigned gsprim_lds_size = 0; /* All these are per subgroup: */ const unsigned min_esverts = pdevice->rad_info.gfx_level >= GFX10_3 ? 29 : 24; bool max_vert_out_per_gs_instance = false; unsigned max_esverts_base = 128; unsigned max_gsprims_base = 128; /* default prim group size clamp */ /* Hardware has the following non-natural restrictions on the value * of GE_CNTL.VERT_GRP_SIZE based on based on the primitive type of * the draw: * - at most 252 for any line input primitive type * - at most 251 for any quad input primitive type * - at most 251 for triangle strips with adjacency (this happens to * be the natural limit for triangle *lists* with adjacency) */ max_esverts_base = MIN2(max_esverts_base, 251 + max_verts_per_prim - 1); if (gs_type == MESA_SHADER_GEOMETRY) { unsigned max_out_verts_per_gsprim = gs_info->gs.vertices_out * gs_num_invocations; if (max_out_verts_per_gsprim <= 256) { if (max_out_verts_per_gsprim) { max_gsprims_base = MIN2(max_gsprims_base, 256 / max_out_verts_per_gsprim); } } else { /* Use special multi-cycling mode in which each GS * instance gets its own subgroup. Does not work with * tessellation. */ max_vert_out_per_gs_instance = true; max_gsprims_base = 1; max_out_verts_per_gsprim = gs_info->gs.vertices_out; } esvert_lds_size = es_info->esgs_itemsize / 4; gsprim_lds_size = (gs_info->gs.gsvs_vertex_size / 4 + 1) * max_out_verts_per_gsprim; } else { /* VS and TES. */ /* LDS size for passing data from GS to ES. */ struct radv_streamout_info *so_info = stages[MESA_SHADER_TESS_CTRL].nir ? &stages[MESA_SHADER_TESS_EVAL].info.so : &stages[MESA_SHADER_VERTEX].info.so; if (so_info->num_outputs) esvert_lds_size = 4 * so_info->num_outputs + 1; /* GS stores Primitive IDs (one DWORD) into LDS at the address * corresponding to the ES thread of the provoking vertex. All * ES threads load and export PrimitiveID for their thread. */ if (!stages[MESA_SHADER_TESS_CTRL].nir && stages[MESA_SHADER_VERTEX].info.vs.outinfo.export_prim_id) esvert_lds_size = MAX2(esvert_lds_size, 1); } unsigned max_gsprims = max_gsprims_base; unsigned max_esverts = max_esverts_base; if (esvert_lds_size) max_esverts = MIN2(max_esverts, target_lds_size / esvert_lds_size); if (gsprim_lds_size) max_gsprims = MIN2(max_gsprims, target_lds_size / gsprim_lds_size); max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency); assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1); if (esvert_lds_size || gsprim_lds_size) { /* Now that we have a rough proportionality between esverts * and gsprims based on the primitive type, scale both of them * down simultaneously based on required LDS space. * * We could be smarter about this if we knew how much vertex * reuse to expect. */ unsigned lds_total = max_esverts * esvert_lds_size + max_gsprims * gsprim_lds_size; if (lds_total > target_lds_size) { max_esverts = max_esverts * target_lds_size / lds_total; max_gsprims = max_gsprims * target_lds_size / lds_total; max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency); assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1); } } /* Round up towards full wave sizes for better ALU utilization. */ if (!max_vert_out_per_gs_instance) { unsigned orig_max_esverts; unsigned orig_max_gsprims; unsigned wavesize; if (gs_type == MESA_SHADER_GEOMETRY) { wavesize = gs_info->wave_size; } else { wavesize = stages[MESA_SHADER_TESS_CTRL].nir ? stages[MESA_SHADER_TESS_EVAL].info.wave_size : stages[MESA_SHADER_VERTEX].info.wave_size; } do { orig_max_esverts = max_esverts; orig_max_gsprims = max_gsprims; max_esverts = align(max_esverts, wavesize); max_esverts = MIN2(max_esverts, max_esverts_base); if (esvert_lds_size) max_esverts = MIN2(max_esverts, (max_lds_size - max_gsprims * gsprim_lds_size) / esvert_lds_size); max_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); /* Hardware restriction: minimum value of max_esverts */ if (pdevice->rad_info.gfx_level == GFX10) max_esverts = MAX2(max_esverts, min_esverts - 1 + max_verts_per_prim); else max_esverts = MAX2(max_esverts, min_esverts); max_gsprims = align(max_gsprims, wavesize); max_gsprims = MIN2(max_gsprims, max_gsprims_base); if (gsprim_lds_size) { /* Don't count unusable vertices to the LDS * size. Those are vertices above the maximum * number of vertices that can occur in the * workgroup, which is e.g. max_gsprims * 3 * for triangles. */ unsigned usable_esverts = MIN2(max_esverts, max_gsprims * max_verts_per_prim); max_gsprims = MIN2(max_gsprims, (max_lds_size - usable_esverts * esvert_lds_size) / gsprim_lds_size); } clamp_gsprims_to_esverts(&max_gsprims, max_esverts, min_verts_per_prim, uses_adjacency); assert(max_esverts >= max_verts_per_prim && max_gsprims >= 1); } while (orig_max_esverts != max_esverts || orig_max_gsprims != max_gsprims); /* Verify the restriction. */ if (pdevice->rad_info.gfx_level == GFX10) assert(max_esverts >= min_esverts - 1 + max_verts_per_prim); else assert(max_esverts >= min_esverts); } else { /* Hardware restriction: minimum value of max_esverts */ if (pdevice->rad_info.gfx_level == GFX10) max_esverts = MAX2(max_esverts, min_esverts - 1 + max_verts_per_prim); else max_esverts = MAX2(max_esverts, min_esverts); } unsigned max_out_vertices = max_vert_out_per_gs_instance ? gs_info->gs.vertices_out : gs_type == MESA_SHADER_GEOMETRY ? max_gsprims * gs_num_invocations * gs_info->gs.vertices_out : max_esverts; assert(max_out_vertices <= 256); unsigned prim_amp_factor = 1; if (gs_type == MESA_SHADER_GEOMETRY) { /* Number of output primitives per GS input primitive after * GS instancing. */ prim_amp_factor = gs_info->gs.vertices_out; } /* On Gfx10, the GE only checks against the maximum number of ES verts * after allocating a full GS primitive. So we need to ensure that * whenever this check passes, there is enough space for a full * primitive without vertex reuse. */ if (pdevice->rad_info.gfx_level == GFX10) ngg->hw_max_esverts = max_esverts - max_verts_per_prim + 1; else ngg->hw_max_esverts = max_esverts; ngg->max_gsprims = max_gsprims; ngg->max_out_verts = max_out_vertices; ngg->prim_amp_factor = prim_amp_factor; ngg->max_vert_out_per_gs_instance = max_vert_out_per_gs_instance; ngg->ngg_emit_size = max_gsprims * gsprim_lds_size; ngg->enable_vertex_grouping = true; /* Don't count unusable vertices. */ ngg->esgs_ring_size = MIN2(max_esverts, max_gsprims * max_verts_per_prim) * esvert_lds_size * 4; if (gs_type == MESA_SHADER_GEOMETRY) { ngg->vgt_esgs_ring_itemsize = es_info->esgs_itemsize / 4; } else { ngg->vgt_esgs_ring_itemsize = 1; } assert(ngg->hw_max_esverts >= min_esverts); /* HW limitation */ gl_shader_stage es_stage = stages[MESA_SHADER_TESS_CTRL].nir ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX; unsigned workgroup_size = ac_compute_ngg_workgroup_size( max_esverts, max_gsprims * gs_num_invocations, max_out_vertices, prim_amp_factor); stages[MESA_SHADER_GEOMETRY].info.workgroup_size = workgroup_size; stages[es_stage].info.workgroup_size = workgroup_size; } static void radv_pipeline_init_gs_ring_state(struct radv_graphics_pipeline *pipeline, const struct gfx9_gs_info *gs) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; unsigned num_se = pdevice->rad_info.max_se; unsigned wave_size = 64; unsigned max_gs_waves = 32 * num_se; /* max 32 per SE on GCN */ /* On GFX6-GFX7, the value comes from VGT_GS_VERTEX_REUSE = 16. * On GFX8+, the value comes from VGT_VERTEX_REUSE_BLOCK_CNTL = 30 (+2). */ unsigned gs_vertex_reuse = (pdevice->rad_info.gfx_level >= GFX8 ? 32 : 16) * num_se; unsigned alignment = 256 * num_se; /* The maximum size is 63.999 MB per SE. */ unsigned max_size = ((unsigned)(63.999 * 1024 * 1024) & ~255) * num_se; struct radv_shader_info *gs_info = &pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info; /* Calculate the minimum size. */ unsigned min_esgs_ring_size = align(gs->vgt_esgs_ring_itemsize * 4 * gs_vertex_reuse * wave_size, alignment); /* These are recommended sizes, not minimum sizes. */ unsigned esgs_ring_size = max_gs_waves * 2 * wave_size * gs->vgt_esgs_ring_itemsize * 4 * gs_info->gs.vertices_in; unsigned gsvs_ring_size = max_gs_waves * 2 * wave_size * gs_info->gs.max_gsvs_emit_size; min_esgs_ring_size = align(min_esgs_ring_size, alignment); esgs_ring_size = align(esgs_ring_size, alignment); gsvs_ring_size = align(gsvs_ring_size, alignment); if (pdevice->rad_info.gfx_level <= GFX8) pipeline->esgs_ring_size = CLAMP(esgs_ring_size, min_esgs_ring_size, max_size); pipeline->gsvs_ring_size = MIN2(gsvs_ring_size, max_size); } struct radv_shader * radv_get_shader(const struct radv_pipeline *pipeline, gl_shader_stage stage) { if (stage == MESA_SHADER_VERTEX) { if (pipeline->shaders[MESA_SHADER_VERTEX]) return pipeline->shaders[MESA_SHADER_VERTEX]; if (pipeline->shaders[MESA_SHADER_TESS_CTRL]) return pipeline->shaders[MESA_SHADER_TESS_CTRL]; if (pipeline->shaders[MESA_SHADER_GEOMETRY]) return pipeline->shaders[MESA_SHADER_GEOMETRY]; } else if (stage == MESA_SHADER_TESS_EVAL) { if (!pipeline->shaders[MESA_SHADER_TESS_CTRL]) return NULL; if (pipeline->shaders[MESA_SHADER_TESS_EVAL]) return pipeline->shaders[MESA_SHADER_TESS_EVAL]; if (pipeline->shaders[MESA_SHADER_GEOMETRY]) return pipeline->shaders[MESA_SHADER_GEOMETRY]; } return pipeline->shaders[stage]; } static const struct radv_vs_output_info * get_vs_output_info(const struct radv_graphics_pipeline *pipeline) { if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) if (radv_pipeline_has_ngg(pipeline)) return &pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.vs.outinfo; else return &pipeline->base.gs_copy_shader->info.vs.outinfo; else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) return &pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->info.tes.outinfo; else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) return &pipeline->base.shaders[MESA_SHADER_MESH]->info.ms.outinfo; else return &pipeline->base.shaders[MESA_SHADER_VERTEX]->info.vs.outinfo; } static bool radv_lower_viewport_to_zero(nir_shader *nir) { nir_function_impl *impl = nir_shader_get_entrypoint(nir); bool progress = false; nir_builder b; nir_builder_init(&b, impl); /* There should be only one deref load for VIEWPORT after lower_io_to_temporaries. */ nir_foreach_block(block, impl) { nir_foreach_instr(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); if (intr->intrinsic != nir_intrinsic_load_deref) continue; nir_variable *var = nir_intrinsic_get_var(intr, 0); if (var->data.mode != nir_var_shader_in || var->data.location != VARYING_SLOT_VIEWPORT) continue; b.cursor = nir_before_instr(instr); nir_ssa_def_rewrite_uses(&intr->dest.ssa, nir_imm_zero(&b, 1, 32)); progress = true; break; } if (progress) break; } if (progress) nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); else nir_metadata_preserve(impl, nir_metadata_all); return progress; } static nir_variable * find_layer_out_var(nir_shader *nir) { nir_variable *var = nir_find_variable_with_location(nir, nir_var_shader_out, VARYING_SLOT_LAYER); if (var != NULL) return var; var = nir_variable_create(nir, nir_var_shader_out, glsl_int_type(), "layer id"); var->data.location = VARYING_SLOT_LAYER; var->data.interpolation = INTERP_MODE_NONE; return var; } static bool radv_lower_multiview(nir_shader *nir) { /* This pass is not suitable for mesh shaders, because it can't know * the mapping between API mesh shader invocations and output primitives. * Needs to be handled in ac_nir_lower_ngg. */ if (nir->info.stage == MESA_SHADER_MESH) return false; nir_function_impl *impl = nir_shader_get_entrypoint(nir); bool progress = false; nir_builder b; nir_builder_init(&b, impl); /* Iterate in reverse order since there should be only one deref store to POS after * lower_io_to_temporaries for vertex shaders and inject the layer there. For geometry shaders, * the layer is injected right before every emit_vertex_with_counter. */ nir_variable *layer = NULL; nir_foreach_block_reverse(block, impl) { nir_foreach_instr_reverse(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; if (nir->info.stage == MESA_SHADER_GEOMETRY) { nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); if (intr->intrinsic != nir_intrinsic_emit_vertex_with_counter) continue; b.cursor = nir_before_instr(instr); } else { nir_intrinsic_instr *intr = nir_instr_as_intrinsic(instr); if (intr->intrinsic != nir_intrinsic_store_deref) continue; nir_variable *var = nir_intrinsic_get_var(intr, 0); if (var->data.mode != nir_var_shader_out || var->data.location != VARYING_SLOT_POS) continue; b.cursor = nir_after_instr(instr); } if (!layer) layer = find_layer_out_var(nir); nir_store_var(&b, layer, nir_load_view_index(&b), 1); /* Update outputs_written to reflect that the pass added a new output. */ nir->info.outputs_written |= BITFIELD64_BIT(VARYING_SLOT_LAYER); progress = true; if (nir->info.stage == MESA_SHADER_VERTEX) break; } if (nir->info.stage == MESA_SHADER_VERTEX && progress) break; } if (progress) nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); else nir_metadata_preserve(impl, nir_metadata_all); return progress; } static bool radv_export_implicit_primitive_id(nir_shader *nir) { nir_function_impl *impl = nir_shader_get_entrypoint(nir); nir_builder b; nir_builder_init(&b, impl); b.cursor = nir_after_cf_list(&impl->body); nir_variable *var = nir_variable_create(nir, nir_var_shader_out, glsl_int_type(), NULL); var->data.location = VARYING_SLOT_PRIMITIVE_ID; var->data.interpolation = INTERP_MODE_NONE; nir_store_var(&b, var, nir_load_primitive_id(&b), 1); /* Update outputs_written to reflect that the pass added a new output. */ nir->info.outputs_written |= BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_ID); nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); return true; } static void radv_link_shaders(struct radv_pipeline *pipeline, const struct radv_pipeline_key *pipeline_key, const struct radv_pipeline_stage *stages, bool optimize_conservatively, gl_shader_stage last_vgt_api_stage) { const struct radv_physical_device *pdevice = pipeline->device->physical_device; nir_shader *ordered_shaders[MESA_VULKAN_SHADER_STAGES]; int shader_count = 0; if (stages[MESA_SHADER_FRAGMENT].nir) { ordered_shaders[shader_count++] = stages[MESA_SHADER_FRAGMENT].nir; } if (stages[MESA_SHADER_GEOMETRY].nir) { ordered_shaders[shader_count++] = stages[MESA_SHADER_GEOMETRY].nir; } if (stages[MESA_SHADER_TESS_EVAL].nir) { ordered_shaders[shader_count++] = stages[MESA_SHADER_TESS_EVAL].nir; } if (stages[MESA_SHADER_TESS_CTRL].nir) { ordered_shaders[shader_count++] = stages[MESA_SHADER_TESS_CTRL].nir; } if (stages[MESA_SHADER_VERTEX].nir) { ordered_shaders[shader_count++] = stages[MESA_SHADER_VERTEX].nir; } if (stages[MESA_SHADER_MESH].nir) { ordered_shaders[shader_count++] = stages[MESA_SHADER_MESH].nir; } if (stages[MESA_SHADER_TASK].nir) { ordered_shaders[shader_count++] = stages[MESA_SHADER_TASK].nir; } if (stages[MESA_SHADER_COMPUTE].nir) { ordered_shaders[shader_count++] = stages[MESA_SHADER_COMPUTE].nir; } if (stages[MESA_SHADER_MESH].nir && stages[MESA_SHADER_FRAGMENT].nir) { nir_shader *ps = stages[MESA_SHADER_FRAGMENT].nir; nir_foreach_shader_in_variable(var, ps) { /* These variables are per-primitive when used with a mesh shader. */ if (var->data.location == VARYING_SLOT_PRIMITIVE_ID || var->data.location == VARYING_SLOT_VIEWPORT || var->data.location == VARYING_SLOT_LAYER) var->data.per_primitive = true; } } bool has_geom_tess = stages[MESA_SHADER_GEOMETRY].nir || stages[MESA_SHADER_TESS_CTRL].nir; bool merged_gs = stages[MESA_SHADER_GEOMETRY].nir && pdevice->rad_info.gfx_level >= GFX9; if (!optimize_conservatively && shader_count > 1) { unsigned first = ordered_shaders[shader_count - 1]->info.stage; unsigned last = ordered_shaders[0]->info.stage; if (ordered_shaders[0]->info.stage == MESA_SHADER_FRAGMENT && ordered_shaders[1]->info.has_transform_feedback_varyings) nir_link_xfb_varyings(ordered_shaders[1], ordered_shaders[0]); for (int i = 1; i < shader_count; ++i) { nir_lower_io_arrays_to_elements(ordered_shaders[i], ordered_shaders[i - 1]); nir_validate_shader(ordered_shaders[i], "after nir_lower_io_arrays_to_elements"); nir_validate_shader(ordered_shaders[i - 1], "after nir_lower_io_arrays_to_elements"); } for (int i = 0; i < shader_count; ++i) { nir_variable_mode mask = 0; if (ordered_shaders[i]->info.stage != first) mask = mask | nir_var_shader_in; if (ordered_shaders[i]->info.stage != last) mask = mask | nir_var_shader_out; bool progress = false; NIR_PASS(progress, ordered_shaders[i], nir_lower_io_to_scalar_early, mask); if (progress) { /* Optimize the new vector code and then remove dead vars */ NIR_PASS(_, ordered_shaders[i], nir_copy_prop); NIR_PASS(_, ordered_shaders[i], nir_opt_shrink_vectors); if (ordered_shaders[i]->info.stage != last) { /* Optimize swizzled movs of load_const for * nir_link_opt_varyings's constant propagation */ NIR_PASS(_, ordered_shaders[i], nir_opt_constant_folding); /* For nir_link_opt_varyings's duplicate input opt */ NIR_PASS(_, ordered_shaders[i], nir_opt_cse); } /* Run copy-propagation to help remove dead * output variables (some shaders have useless * copies to/from an output), so compaction * later will be more effective. * * This will have been done earlier but it might * not have worked because the outputs were vector. */ if (ordered_shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) NIR_PASS(_, ordered_shaders[i], nir_opt_copy_prop_vars); NIR_PASS(_, ordered_shaders[i], nir_opt_dce); NIR_PASS(_, ordered_shaders[i], nir_remove_dead_variables, nir_var_function_temp | nir_var_shader_in | nir_var_shader_out, NULL); } } } /* Export the primitive ID when VS or TES don't export it because it's implicit, while it's * required for GS or MS. The primitive ID is added during lowering for NGG. */ if (stages[MESA_SHADER_FRAGMENT].nir && (stages[MESA_SHADER_FRAGMENT].nir->info.inputs_read & VARYING_BIT_PRIMITIVE_ID) && !(stages[last_vgt_api_stage].nir->info.outputs_written & VARYING_BIT_PRIMITIVE_ID) && ((last_vgt_api_stage == MESA_SHADER_VERTEX && !stages[MESA_SHADER_VERTEX].info.is_ngg) || (last_vgt_api_stage == MESA_SHADER_TESS_EVAL && !stages[MESA_SHADER_TESS_EVAL].info.is_ngg))) { radv_export_implicit_primitive_id(stages[last_vgt_api_stage].nir); } if (!optimize_conservatively) { bool uses_xfb = last_vgt_api_stage != -1 && stages[last_vgt_api_stage].nir->xfb_info; for (unsigned i = 0; i < shader_count; ++i) { shader_info *info = &ordered_shaders[i]->info; /* Remove exports without color attachment or writemask. */ if (info->stage == MESA_SHADER_FRAGMENT) { bool fixup_derefs = false; nir_foreach_variable_with_modes(var, ordered_shaders[i], nir_var_shader_out) { int idx = var->data.location; idx -= FRAG_RESULT_DATA0; if (idx < 0) continue; unsigned col_format = (pipeline_key->ps.col_format >> (4 * idx)) & 0xf; unsigned cb_target_mask = (pipeline_key->ps.cb_target_mask >> (4 * idx)) & 0xf; if (col_format == V_028714_SPI_SHADER_ZERO || (col_format == V_028714_SPI_SHADER_32_R && !cb_target_mask && !pipeline_key->ps.mrt0_is_dual_src)) { /* Remove the color export if it's unused or in presence of holes. */ info->outputs_written &= ~BITFIELD64_BIT(var->data.location); var->data.location = 0; var->data.mode = nir_var_shader_temp; fixup_derefs = true; } } if (fixup_derefs) { NIR_PASS_V(ordered_shaders[i], nir_fixup_deref_modes); NIR_PASS(_, ordered_shaders[i], nir_remove_dead_variables, nir_var_shader_temp, NULL); NIR_PASS(_, ordered_shaders[i], nir_opt_dce); } continue; } /* Remove PSIZ from shaders when it's not needed. * This is typically produced by translation layers like Zink or D9VK. */ if (uses_xfb || !(info->outputs_written & VARYING_BIT_PSIZ)) continue; bool next_stage_needs_psiz = i != 0 && /* ordered_shaders is backwards, so next stage is: i - 1 */ ordered_shaders[i - 1]->info.inputs_read & VARYING_BIT_PSIZ; bool topology_uses_psiz = info->stage == last_vgt_api_stage && ((info->stage == MESA_SHADER_VERTEX && pipeline_key->vs.topology == V_008958_DI_PT_POINTLIST) || (info->stage == MESA_SHADER_TESS_EVAL && info->tess.point_mode) || (info->stage == MESA_SHADER_GEOMETRY && info->gs.output_primitive == SHADER_PRIM_POINTS) || (info->stage == MESA_SHADER_MESH && info->mesh.primitive_type == SHADER_PRIM_POINTS)); nir_variable *psiz_var = nir_find_variable_with_location(ordered_shaders[i], nir_var_shader_out, VARYING_SLOT_PSIZ); if (!next_stage_needs_psiz && !topology_uses_psiz && psiz_var) { /* Change PSIZ to a global variable which allows it to be DCE'd. */ psiz_var->data.location = 0; psiz_var->data.mode = nir_var_shader_temp; info->outputs_written &= ~VARYING_BIT_PSIZ; NIR_PASS_V(ordered_shaders[i], nir_fixup_deref_modes); NIR_PASS(_, ordered_shaders[i], nir_remove_dead_variables, nir_var_shader_temp, NULL); NIR_PASS(_, ordered_shaders[i], nir_opt_dce); } } } /* Lower the viewport index to zero when the last vertex stage doesn't export it. */ if (stages[MESA_SHADER_FRAGMENT].nir && (stages[MESA_SHADER_FRAGMENT].nir->info.inputs_read & VARYING_BIT_VIEWPORT) && !(stages[last_vgt_api_stage].nir->info.outputs_written & VARYING_BIT_VIEWPORT)) { NIR_PASS(_, stages[MESA_SHADER_FRAGMENT].nir, radv_lower_viewport_to_zero); } /* Export the layer in the last VGT stage if multiview is used. */ if (pipeline_key->has_multiview_view_index && last_vgt_api_stage != -1 && !(stages[last_vgt_api_stage].nir->info.outputs_written & VARYING_BIT_LAYER)) { nir_shader *last_vgt_shader = stages[last_vgt_api_stage].nir; NIR_PASS(_, last_vgt_shader, radv_lower_multiview); } for (int i = 1; !optimize_conservatively && (i < shader_count); ++i) { if (nir_link_opt_varyings(ordered_shaders[i], ordered_shaders[i - 1])) { nir_validate_shader(ordered_shaders[i], "after nir_link_opt_varyings"); nir_validate_shader(ordered_shaders[i - 1], "after nir_link_opt_varyings"); NIR_PASS(_, ordered_shaders[i - 1], nir_opt_constant_folding); NIR_PASS(_, ordered_shaders[i - 1], nir_opt_algebraic); NIR_PASS(_, ordered_shaders[i - 1], nir_opt_dce); } NIR_PASS(_, ordered_shaders[i], nir_remove_dead_variables, nir_var_shader_out, NULL); NIR_PASS(_, ordered_shaders[i - 1], nir_remove_dead_variables, nir_var_shader_in, NULL); bool progress = nir_remove_unused_varyings(ordered_shaders[i], ordered_shaders[i - 1]); nir_compact_varyings(ordered_shaders[i], ordered_shaders[i - 1], true); nir_validate_shader(ordered_shaders[i], "after nir_compact_varyings"); nir_validate_shader(ordered_shaders[i - 1], "after nir_compact_varyings"); if (ordered_shaders[i]->info.stage == MESA_SHADER_MESH) { /* nir_compact_varyings can change the location of per-vertex and per-primitive outputs */ nir_shader_gather_info(ordered_shaders[i], nir_shader_get_entrypoint(ordered_shaders[i])); } if (ordered_shaders[i]->info.stage == MESA_SHADER_TESS_CTRL || ordered_shaders[i]->info.stage == MESA_SHADER_MESH || (ordered_shaders[i]->info.stage == MESA_SHADER_VERTEX && has_geom_tess) || (ordered_shaders[i]->info.stage == MESA_SHADER_TESS_EVAL && merged_gs)) { NIR_PASS(_, ordered_shaders[i], nir_lower_io_to_vector, nir_var_shader_out); if (ordered_shaders[i]->info.stage == MESA_SHADER_TESS_CTRL) NIR_PASS(_, ordered_shaders[i], nir_vectorize_tess_levels); NIR_PASS(_, ordered_shaders[i], nir_opt_combine_stores, nir_var_shader_out); } if (ordered_shaders[i - 1]->info.stage == MESA_SHADER_GEOMETRY || ordered_shaders[i - 1]->info.stage == MESA_SHADER_TESS_CTRL || ordered_shaders[i - 1]->info.stage == MESA_SHADER_TESS_EVAL) { NIR_PASS(_, ordered_shaders[i - 1], nir_lower_io_to_vector, nir_var_shader_in); } if (progress) { progress = false; NIR_PASS(progress, ordered_shaders[i], nir_lower_global_vars_to_local); if (progress) { ac_nir_lower_indirect_derefs(ordered_shaders[i], pdevice->rad_info.gfx_level); /* remove dead writes, which can remove input loads */ NIR_PASS(_, ordered_shaders[i], nir_lower_vars_to_ssa); NIR_PASS(_, ordered_shaders[i], nir_opt_dce); } progress = false; NIR_PASS(progress, ordered_shaders[i - 1], nir_lower_global_vars_to_local); if (progress) { ac_nir_lower_indirect_derefs(ordered_shaders[i - 1], pdevice->rad_info.gfx_level); } } } } static void radv_set_driver_locations(struct radv_pipeline *pipeline, struct radv_pipeline_stage *stages, gl_shader_stage last_vgt_api_stage) { const struct radv_physical_device *pdevice = pipeline->device->physical_device; if (stages[MESA_SHADER_FRAGMENT].nir) { nir_foreach_shader_out_variable(var, stages[MESA_SHADER_FRAGMENT].nir) { var->data.driver_location = var->data.location + var->data.index; } } if (stages[MESA_SHADER_MESH].nir) { /* ac_nir_lower_ngg ignores driver locations for mesh shaders, * but set them to all zero just to be on the safe side. */ nir_foreach_shader_out_variable(var, stages[MESA_SHADER_MESH].nir) { var->data.driver_location = 0; } return; } if (!stages[MESA_SHADER_VERTEX].nir) return; bool has_tess = stages[MESA_SHADER_TESS_CTRL].nir; bool has_gs = stages[MESA_SHADER_GEOMETRY].nir; /* Merged stage for VS and TES */ unsigned vs_info_idx = MESA_SHADER_VERTEX; unsigned tes_info_idx = MESA_SHADER_TESS_EVAL; if (pdevice->rad_info.gfx_level >= GFX9) { /* These are merged into the next stage */ vs_info_idx = has_tess ? MESA_SHADER_TESS_CTRL : MESA_SHADER_GEOMETRY; tes_info_idx = has_gs ? MESA_SHADER_GEOMETRY : MESA_SHADER_TESS_EVAL; } nir_foreach_shader_in_variable (var, stages[MESA_SHADER_VERTEX].nir) { var->data.driver_location = var->data.location; } if (has_tess) { nir_linked_io_var_info vs2tcs = nir_assign_linked_io_var_locations( stages[MESA_SHADER_VERTEX].nir, stages[MESA_SHADER_TESS_CTRL].nir); nir_linked_io_var_info tcs2tes = nir_assign_linked_io_var_locations( stages[MESA_SHADER_TESS_CTRL].nir, stages[MESA_SHADER_TESS_EVAL].nir); stages[MESA_SHADER_VERTEX].info.vs.num_linked_outputs = vs2tcs.num_linked_io_vars; stages[MESA_SHADER_TESS_CTRL].info.tcs.num_linked_inputs = vs2tcs.num_linked_io_vars; stages[MESA_SHADER_TESS_CTRL].info.tcs.num_linked_outputs = tcs2tes.num_linked_io_vars; stages[MESA_SHADER_TESS_CTRL].info.tcs.num_linked_patch_outputs = tcs2tes.num_linked_patch_io_vars; stages[MESA_SHADER_TESS_EVAL].info.tes.num_linked_inputs = tcs2tes.num_linked_io_vars; stages[MESA_SHADER_TESS_EVAL].info.tes.num_linked_patch_inputs = tcs2tes.num_linked_patch_io_vars; /* Copy data to merged stage */ stages[vs_info_idx].info.vs.num_linked_outputs = vs2tcs.num_linked_io_vars; stages[tes_info_idx].info.tes.num_linked_inputs = tcs2tes.num_linked_io_vars; stages[tes_info_idx].info.tes.num_linked_patch_inputs = tcs2tes.num_linked_patch_io_vars; if (has_gs) { nir_linked_io_var_info tes2gs = nir_assign_linked_io_var_locations( stages[MESA_SHADER_TESS_EVAL].nir, stages[MESA_SHADER_GEOMETRY].nir); stages[MESA_SHADER_TESS_EVAL].info.tes.num_linked_outputs = tes2gs.num_linked_io_vars; stages[MESA_SHADER_GEOMETRY].info.gs.num_linked_inputs = tes2gs.num_linked_io_vars; /* Copy data to merged stage */ stages[tes_info_idx].info.tes.num_linked_outputs = tes2gs.num_linked_io_vars; } } else if (has_gs) { nir_linked_io_var_info vs2gs = nir_assign_linked_io_var_locations( stages[MESA_SHADER_VERTEX].nir, stages[MESA_SHADER_GEOMETRY].nir); stages[MESA_SHADER_VERTEX].info.vs.num_linked_outputs = vs2gs.num_linked_io_vars; stages[MESA_SHADER_GEOMETRY].info.gs.num_linked_inputs = vs2gs.num_linked_io_vars; /* Copy data to merged stage */ stages[vs_info_idx].info.vs.num_linked_outputs = vs2gs.num_linked_io_vars; } assert(last_vgt_api_stage != MESA_SHADER_NONE); nir_foreach_shader_out_variable(var, stages[last_vgt_api_stage].nir) { var->data.driver_location = var->data.location; } } static struct radv_pipeline_key radv_generate_pipeline_key(const struct radv_pipeline *pipeline, VkPipelineCreateFlags flags) { struct radv_device *device = pipeline->device; struct radv_pipeline_key key; memset(&key, 0, sizeof(key)); if (flags & VK_PIPELINE_CREATE_DISABLE_OPTIMIZATION_BIT) key.optimisations_disabled = 1; key.disable_aniso_single_level = device->instance->disable_aniso_single_level && device->physical_device->rad_info.gfx_level < GFX8; key.image_2d_view_of_3d = device->image_2d_view_of_3d && device->physical_device->rad_info.gfx_level == GFX9; return key; } static struct radv_pipeline_key radv_generate_graphics_pipeline_key(const struct radv_graphics_pipeline *pipeline, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_info *info, const struct radv_blend_state *blend) { struct radv_device *device = pipeline->base.device; struct radv_pipeline_key key = radv_generate_pipeline_key(&pipeline->base, pCreateInfo->flags); key.has_multiview_view_index = !!info->ri.view_mask; if (pipeline->dynamic_states & RADV_DYNAMIC_VERTEX_INPUT) { key.vs.dynamic_input_state = true; } /* Vertex input state */ key.vs.instance_rate_inputs = info->vi.instance_rate_inputs; key.vs.vertex_post_shuffle = info->vi.vertex_post_shuffle; for (uint32_t i = 0; i < MAX_VERTEX_ATTRIBS; i++) { key.vs.instance_rate_divisors[i] = info->vi.instance_rate_divisors[i]; key.vs.vertex_attribute_formats[i] = info->vi.vertex_attribute_formats[i]; key.vs.vertex_attribute_bindings[i] = info->vi.vertex_attribute_bindings[i]; key.vs.vertex_attribute_offsets[i] = info->vi.vertex_attribute_offsets[i]; key.vs.vertex_attribute_strides[i] = info->vi.vertex_attribute_strides[i]; key.vs.vertex_alpha_adjust[i] = info->vi.vertex_alpha_adjust[i]; } for (uint32_t i = 0; i < MAX_VBS; i++) { key.vs.vertex_binding_align[i] = info->vi.vertex_binding_align[i]; } key.tcs.tess_input_vertices = info->ts.patch_control_points; if (info->ms.raster_samples > 1) { uint32_t ps_iter_samples = radv_pipeline_get_ps_iter_samples(info); key.ps.num_samples = info->ms.raster_samples; key.ps.log2_ps_iter_samples = util_logbase2(ps_iter_samples); } key.ps.col_format = blend->spi_shader_col_format; key.ps.cb_target_mask = blend->cb_target_mask; key.ps.mrt0_is_dual_src = blend->mrt0_is_dual_src; if (device->physical_device->rad_info.gfx_level < GFX8) { key.ps.is_int8 = blend->col_format_is_int8; key.ps.is_int10 = blend->col_format_is_int10; } if (device->physical_device->rad_info.gfx_level >= GFX11) { key.ps.alpha_to_coverage_via_mrtz = info->ms.alpha_to_coverage_enable; } key.vs.topology = info->ia.primitive_topology; if (device->physical_device->rad_info.gfx_level >= GFX10) { key.vs.provoking_vtx_last = info->rs.provoking_vtx_last; } if (device->instance->debug_flags & RADV_DEBUG_DISCARD_TO_DEMOTE) key.ps.lower_discard_to_demote = true; if (device->instance->enable_mrt_output_nan_fixup) key.ps.enable_mrt_output_nan_fixup = blend->col_format_is_float32; key.ps.force_vrs_enabled = device->force_vrs_enabled; if (device->instance->debug_flags & RADV_DEBUG_INVARIANT_GEOM) key.invariant_geom = true; key.use_ngg = device->physical_device->use_ngg; if ((radv_is_vrs_enabled(pipeline, info) || device->force_vrs_enabled) && (device->physical_device->rad_info.family == CHIP_NAVI21 || device->physical_device->rad_info.family == CHIP_NAVI22 || device->physical_device->rad_info.family == CHIP_VANGOGH)) key.adjust_frag_coord_z = true; if (device->instance->disable_sinking_load_input_fs) key.disable_sinking_load_input_fs = true; if (device->primitives_generated_query) key.primitives_generated_query = true; key.ps.has_epilog = false; /* TODO: hook up PS epilogs */ return key; } static uint8_t radv_get_wave_size(struct radv_device *device, gl_shader_stage stage, const struct radv_shader_info *info) { if (stage == MESA_SHADER_GEOMETRY && !info->is_ngg) return 64; else if (stage == MESA_SHADER_COMPUTE) { return info->cs.subgroup_size; } else if (stage == MESA_SHADER_FRAGMENT) return device->physical_device->ps_wave_size; else if (stage == MESA_SHADER_TASK) return device->physical_device->cs_wave_size; else return device->physical_device->ge_wave_size; } static uint8_t radv_get_ballot_bit_size(struct radv_device *device, gl_shader_stage stage, const struct radv_shader_info *info) { if (stage == MESA_SHADER_COMPUTE && info->cs.subgroup_size) return info->cs.subgroup_size; return 64; } static void radv_determine_ngg_settings(struct radv_pipeline *pipeline, const struct radv_pipeline_key *pipeline_key, struct radv_pipeline_stage *stages, gl_shader_stage last_vgt_api_stage) { const struct radv_physical_device *pdevice = pipeline->device->physical_device; /* Shader settings for VS or TES without GS. */ if (last_vgt_api_stage == MESA_SHADER_VERTEX || last_vgt_api_stage == MESA_SHADER_TESS_EVAL) { uint64_t ps_inputs_read = stages[MESA_SHADER_FRAGMENT].nir ? stages[MESA_SHADER_FRAGMENT].nir->info.inputs_read : 0; gl_shader_stage es_stage = last_vgt_api_stage; unsigned num_vertices_per_prim = si_conv_prim_to_gs_out(pipeline_key->vs.topology) + 1; if (es_stage == MESA_SHADER_TESS_EVAL) num_vertices_per_prim = stages[es_stage].nir->info.tess.point_mode ? 1 : stages[es_stage].nir->info.tess._primitive_mode == TESS_PRIMITIVE_ISOLINES ? 2 : 3; /* TODO: Enable culling for LLVM. */ stages[es_stage].info.has_ngg_culling = radv_consider_culling( pdevice, stages[es_stage].nir, ps_inputs_read, num_vertices_per_prim, &stages[es_stage].info) && !radv_use_llvm_for_stage(pipeline->device, es_stage); nir_function_impl *impl = nir_shader_get_entrypoint(stages[es_stage].nir); stages[es_stage].info.has_ngg_early_prim_export = exec_list_is_singular(&impl->body); /* Invocations that process an input vertex */ const struct gfx10_ngg_info *ngg_info = &stages[es_stage].info.ngg_info; unsigned max_vtx_in = MIN2(256, ngg_info->enable_vertex_grouping ? ngg_info->hw_max_esverts : num_vertices_per_prim * ngg_info->max_gsprims); unsigned lds_bytes_if_culling_off = 0; /* We need LDS space when VS needs to export the primitive ID. */ if (es_stage == MESA_SHADER_VERTEX && stages[es_stage].info.vs.outinfo.export_prim_id) lds_bytes_if_culling_off = max_vtx_in * 4u; stages[es_stage].info.num_lds_blocks_when_not_culling = DIV_ROUND_UP(lds_bytes_if_culling_off, pdevice->rad_info.lds_encode_granularity); /* NGG passthrough mode should be disabled when culling and when the vertex shader exports the * primitive ID. */ stages[es_stage].info.is_ngg_passthrough = stages[es_stage].info.is_ngg_passthrough && !stages[es_stage].info.has_ngg_culling && !(es_stage == MESA_SHADER_VERTEX && stages[es_stage].info.vs.outinfo.export_prim_id); } } static void radv_fill_shader_info_ngg(struct radv_pipeline *pipeline, const struct radv_pipeline_key *pipeline_key, struct radv_pipeline_stage *stages) { struct radv_device *device = pipeline->device; if (pipeline_key->use_ngg) { if (stages[MESA_SHADER_TESS_CTRL].nir) { stages[MESA_SHADER_TESS_EVAL].info.is_ngg = true; } else if (stages[MESA_SHADER_VERTEX].nir) { stages[MESA_SHADER_VERTEX].info.is_ngg = true; } else if (stages[MESA_SHADER_MESH].nir) { stages[MESA_SHADER_MESH].info.is_ngg = true; } if (stages[MESA_SHADER_TESS_CTRL].nir && stages[MESA_SHADER_GEOMETRY].nir && stages[MESA_SHADER_GEOMETRY].nir->info.gs.invocations * stages[MESA_SHADER_GEOMETRY].nir->info.gs.vertices_out > 256) { /* Fallback to the legacy path if tessellation is * enabled with extreme geometry because * EN_MAX_VERT_OUT_PER_GS_INSTANCE doesn't work and it * might hang. */ stages[MESA_SHADER_TESS_EVAL].info.is_ngg = false; /* GFX11+ requires NGG. */ assert(device->physical_device->rad_info.gfx_level < GFX11); } gl_shader_stage last_xfb_stage = MESA_SHADER_VERTEX; for (int i = MESA_SHADER_VERTEX; i <= MESA_SHADER_GEOMETRY; i++) { if (stages[i].nir) last_xfb_stage = i; } bool uses_xfb = stages[last_xfb_stage].nir && stages[last_xfb_stage].nir->xfb_info; if (!device->physical_device->use_ngg_streamout && uses_xfb) { /* GFX11+ requires NGG. */ assert(device->physical_device->rad_info.gfx_level < GFX11); if (stages[MESA_SHADER_TESS_CTRL].nir) stages[MESA_SHADER_TESS_EVAL].info.is_ngg = false; else stages[MESA_SHADER_VERTEX].info.is_ngg = false; } /* Determine if the pipeline is eligible for the NGG passthrough * mode. It can't be enabled for geometry shaders, for NGG * streamout or for vertex shaders that export the primitive ID * (this is checked later because we don't have the info here.) */ if (!stages[MESA_SHADER_GEOMETRY].nir && !uses_xfb) { if (stages[MESA_SHADER_TESS_CTRL].nir && stages[MESA_SHADER_TESS_EVAL].info.is_ngg) { stages[MESA_SHADER_TESS_EVAL].info.is_ngg_passthrough = true; } else if (stages[MESA_SHADER_VERTEX].nir && stages[MESA_SHADER_VERTEX].info.is_ngg) { stages[MESA_SHADER_VERTEX].info.is_ngg_passthrough = true; } } } } static void radv_fill_shader_info(struct radv_pipeline *pipeline, struct radv_pipeline_layout *pipeline_layout, const struct radv_pipeline_key *pipeline_key, struct radv_pipeline_stage *stages, gl_shader_stage last_vgt_api_stage) { struct radv_device *device = pipeline->device; unsigned active_stages = 0; unsigned filled_stages = 0; for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) { if (stages[i].nir) active_stages |= (1 << i); } if (stages[MESA_SHADER_TESS_CTRL].nir) { stages[MESA_SHADER_VERTEX].info.vs.as_ls = true; } if (stages[MESA_SHADER_GEOMETRY].nir) { if (stages[MESA_SHADER_TESS_CTRL].nir) stages[MESA_SHADER_TESS_EVAL].info.tes.as_es = true; else stages[MESA_SHADER_VERTEX].info.vs.as_es = true; } if (stages[MESA_SHADER_FRAGMENT].nir) { radv_nir_shader_info_init(&stages[MESA_SHADER_FRAGMENT].info); radv_nir_shader_info_pass(device, stages[MESA_SHADER_FRAGMENT].nir, pipeline_layout, pipeline_key, &stages[MESA_SHADER_FRAGMENT].info); assert(last_vgt_api_stage != MESA_SHADER_NONE); struct radv_shader_info *pre_ps_info = &stages[last_vgt_api_stage].info; struct radv_vs_output_info *outinfo = NULL; if (last_vgt_api_stage == MESA_SHADER_VERTEX || last_vgt_api_stage == MESA_SHADER_GEOMETRY) { outinfo = &pre_ps_info->vs.outinfo; } else if (last_vgt_api_stage == MESA_SHADER_TESS_EVAL) { outinfo = &pre_ps_info->tes.outinfo; } else if (last_vgt_api_stage == MESA_SHADER_MESH) { outinfo = &pre_ps_info->ms.outinfo; } /* Add PS input requirements to the output of the pre-PS stage. */ bool ps_prim_id_in = stages[MESA_SHADER_FRAGMENT].info.ps.prim_id_input; bool ps_clip_dists_in = !!stages[MESA_SHADER_FRAGMENT].info.ps.num_input_clips_culls; assert(outinfo); outinfo->export_clip_dists |= ps_clip_dists_in; if (last_vgt_api_stage == MESA_SHADER_VERTEX || last_vgt_api_stage == MESA_SHADER_TESS_EVAL) { outinfo->export_prim_id |= ps_prim_id_in; } filled_stages |= (1 << MESA_SHADER_FRAGMENT); } if (device->physical_device->rad_info.gfx_level >= GFX9 && stages[MESA_SHADER_TESS_CTRL].nir) { struct nir_shader *combined_nir[] = {stages[MESA_SHADER_VERTEX].nir, stages[MESA_SHADER_TESS_CTRL].nir}; radv_nir_shader_info_init(&stages[MESA_SHADER_TESS_CTRL].info); /* Copy data to merged stage. */ stages[MESA_SHADER_TESS_CTRL].info.vs.as_ls = true; for (int i = 0; i < 2; i++) { radv_nir_shader_info_pass(device, combined_nir[i], pipeline_layout, pipeline_key, &stages[MESA_SHADER_TESS_CTRL].info); } filled_stages |= (1 << MESA_SHADER_VERTEX); filled_stages |= (1 << MESA_SHADER_TESS_CTRL); } if (device->physical_device->rad_info.gfx_level >= GFX9 && stages[MESA_SHADER_GEOMETRY].nir) { gl_shader_stage pre_stage = stages[MESA_SHADER_TESS_EVAL].nir ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX; struct nir_shader *combined_nir[] = {stages[pre_stage].nir, stages[MESA_SHADER_GEOMETRY].nir}; radv_nir_shader_info_init(&stages[MESA_SHADER_GEOMETRY].info); /* Copy data to merged stage. */ if (pre_stage == MESA_SHADER_VERTEX) { stages[MESA_SHADER_GEOMETRY].info.vs.as_es = stages[MESA_SHADER_VERTEX].info.vs.as_es; } else { stages[MESA_SHADER_GEOMETRY].info.tes.as_es = stages[MESA_SHADER_TESS_EVAL].info.tes.as_es; } stages[MESA_SHADER_GEOMETRY].info.is_ngg = stages[pre_stage].info.is_ngg; stages[MESA_SHADER_GEOMETRY].info.gs.es_type = pre_stage; for (int i = 0; i < 2; i++) { radv_nir_shader_info_pass(device, combined_nir[i], pipeline_layout, pipeline_key, &stages[MESA_SHADER_GEOMETRY].info); } filled_stages |= (1 << pre_stage); filled_stages |= (1 << MESA_SHADER_GEOMETRY); } active_stages ^= filled_stages; while (active_stages) { int i = u_bit_scan(&active_stages); radv_nir_shader_info_init(&stages[i].info); radv_nir_shader_info_pass(device, stages[i].nir, pipeline_layout, pipeline_key, &stages[i].info); } if (stages[MESA_SHADER_COMPUTE].nir) { unsigned subgroup_size = pipeline_key->cs.compute_subgroup_size; unsigned req_subgroup_size = subgroup_size; bool require_full_subgroups = pipeline_key->cs.require_full_subgroups; if (!subgroup_size) subgroup_size = device->physical_device->cs_wave_size; unsigned local_size = stages[MESA_SHADER_COMPUTE].nir->info.workgroup_size[0] * stages[MESA_SHADER_COMPUTE].nir->info.workgroup_size[1] * stages[MESA_SHADER_COMPUTE].nir->info.workgroup_size[2]; /* Games don't always request full subgroups when they should, * which can cause bugs if cswave32 is enabled. */ if (device->physical_device->cs_wave_size == 32 && stages[MESA_SHADER_COMPUTE].nir->info.cs.uses_wide_subgroup_intrinsics && !req_subgroup_size && local_size % RADV_SUBGROUP_SIZE == 0) require_full_subgroups = true; if (require_full_subgroups && !req_subgroup_size) { /* don't use wave32 pretending to be wave64 */ subgroup_size = RADV_SUBGROUP_SIZE; } stages[MESA_SHADER_COMPUTE].info.cs.subgroup_size = subgroup_size; } for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) { if (stages[i].nir) { stages[i].info.wave_size = radv_get_wave_size(device, i, &stages[i].info); stages[i].info.ballot_bit_size = radv_get_ballot_bit_size(device, i, &stages[i].info); } } /* PS always operates without workgroups. */ if (stages[MESA_SHADER_FRAGMENT].nir) stages[MESA_SHADER_FRAGMENT].info.workgroup_size = stages[MESA_SHADER_FRAGMENT].info.wave_size; if (stages[MESA_SHADER_COMPUTE].nir) { /* Variable workgroup size is not supported by Vulkan. */ assert(!stages[MESA_SHADER_COMPUTE].nir->info.workgroup_size_variable); stages[MESA_SHADER_COMPUTE].info.workgroup_size = ac_compute_cs_workgroup_size( stages[MESA_SHADER_COMPUTE].nir->info.workgroup_size, false, UINT32_MAX); } if (stages[MESA_SHADER_TASK].nir) { /* Task/mesh I/O uses the task ring buffers. */ stages[MESA_SHADER_TASK].info.cs.uses_task_rings = true; stages[MESA_SHADER_MESH].info.cs.uses_task_rings = true; stages[MESA_SHADER_TASK].info.workgroup_size = ac_compute_cs_workgroup_size( stages[MESA_SHADER_TASK].nir->info.workgroup_size, false, UINT32_MAX); } } static void radv_declare_pipeline_args(struct radv_device *device, struct radv_pipeline_stage *stages, const struct radv_pipeline_key *pipeline_key) { enum amd_gfx_level gfx_level = device->physical_device->rad_info.gfx_level; unsigned active_stages = 0; for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) { if (stages[i].nir) active_stages |= (1 << i); } for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { stages[i].args.is_gs_copy_shader = false; stages[i].args.explicit_scratch_args = !radv_use_llvm_for_stage(device, i); stages[i].args.remap_spi_ps_input = !radv_use_llvm_for_stage(device, i); stages[i].args.load_grid_size_from_user_sgpr = device->load_grid_size_from_user_sgpr; } if (gfx_level >= GFX9 && stages[MESA_SHADER_TESS_CTRL].nir) { radv_declare_shader_args(gfx_level, pipeline_key, &stages[MESA_SHADER_TESS_CTRL].info, MESA_SHADER_TESS_CTRL, true, MESA_SHADER_VERTEX, &stages[MESA_SHADER_TESS_CTRL].args); stages[MESA_SHADER_TESS_CTRL].info.user_sgprs_locs = stages[MESA_SHADER_TESS_CTRL].args.user_sgprs_locs; stages[MESA_SHADER_TESS_CTRL].info.inline_push_constant_mask = stages[MESA_SHADER_TESS_CTRL].args.ac.inline_push_const_mask; stages[MESA_SHADER_VERTEX].args = stages[MESA_SHADER_TESS_CTRL].args; active_stages &= ~(1 << MESA_SHADER_VERTEX); active_stages &= ~(1 << MESA_SHADER_TESS_CTRL); } if (gfx_level >= GFX9 && stages[MESA_SHADER_GEOMETRY].nir) { gl_shader_stage pre_stage = stages[MESA_SHADER_TESS_EVAL].nir ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX; radv_declare_shader_args(gfx_level, pipeline_key, &stages[MESA_SHADER_GEOMETRY].info, MESA_SHADER_GEOMETRY, true, pre_stage, &stages[MESA_SHADER_GEOMETRY].args); stages[MESA_SHADER_GEOMETRY].info.user_sgprs_locs = stages[MESA_SHADER_GEOMETRY].args.user_sgprs_locs; stages[MESA_SHADER_GEOMETRY].info.inline_push_constant_mask = stages[MESA_SHADER_GEOMETRY].args.ac.inline_push_const_mask; stages[pre_stage].args = stages[MESA_SHADER_GEOMETRY].args; active_stages &= ~(1 << pre_stage); active_stages &= ~(1 << MESA_SHADER_GEOMETRY); } u_foreach_bit(i, active_stages) { radv_declare_shader_args(gfx_level, pipeline_key, &stages[i].info, i, false, MESA_SHADER_VERTEX, &stages[i].args); stages[i].info.user_sgprs_locs = stages[i].args.user_sgprs_locs; stages[i].info.inline_push_constant_mask = stages[i].args.ac.inline_push_const_mask; } } static void merge_tess_info(struct shader_info *tes_info, struct shader_info *tcs_info) { /* The Vulkan 1.0.38 spec, section 21.1 Tessellator says: * * "PointMode. Controls generation of points rather than triangles * or lines. This functionality defaults to disabled, and is * enabled if either shader stage includes the execution mode. * * and about Triangles, Quads, IsoLines, VertexOrderCw, VertexOrderCcw, * PointMode, SpacingEqual, SpacingFractionalEven, SpacingFractionalOdd, * and OutputVertices, it says: * * "One mode must be set in at least one of the tessellation * shader stages." * * So, the fields can be set in either the TCS or TES, but they must * agree if set in both. Our backend looks at TES, so bitwise-or in * the values from the TCS. */ assert(tcs_info->tess.tcs_vertices_out == 0 || tes_info->tess.tcs_vertices_out == 0 || tcs_info->tess.tcs_vertices_out == tes_info->tess.tcs_vertices_out); tes_info->tess.tcs_vertices_out |= tcs_info->tess.tcs_vertices_out; assert(tcs_info->tess.spacing == TESS_SPACING_UNSPECIFIED || tes_info->tess.spacing == TESS_SPACING_UNSPECIFIED || tcs_info->tess.spacing == tes_info->tess.spacing); tes_info->tess.spacing |= tcs_info->tess.spacing; assert(tcs_info->tess._primitive_mode == TESS_PRIMITIVE_UNSPECIFIED || tes_info->tess._primitive_mode == TESS_PRIMITIVE_UNSPECIFIED || tcs_info->tess._primitive_mode == tes_info->tess._primitive_mode); tes_info->tess._primitive_mode |= tcs_info->tess._primitive_mode; tes_info->tess.ccw |= tcs_info->tess.ccw; tes_info->tess.point_mode |= tcs_info->tess.point_mode; /* Copy the merged info back to the TCS */ tcs_info->tess.tcs_vertices_out = tes_info->tess.tcs_vertices_out; tcs_info->tess.spacing = tes_info->tess.spacing; tcs_info->tess._primitive_mode = tes_info->tess._primitive_mode; tcs_info->tess.ccw = tes_info->tess.ccw; tcs_info->tess.point_mode = tes_info->tess.point_mode; } static void gather_tess_info(struct radv_device *device, struct radv_pipeline_stage *stages, const struct radv_pipeline_key *pipeline_key) { merge_tess_info(&stages[MESA_SHADER_TESS_EVAL].nir->info, &stages[MESA_SHADER_TESS_CTRL].nir->info); unsigned tess_in_patch_size = pipeline_key->tcs.tess_input_vertices; unsigned tess_out_patch_size = stages[MESA_SHADER_TESS_CTRL].nir->info.tess.tcs_vertices_out; /* Number of tessellation patches per workgroup processed by the current pipeline. */ unsigned num_patches = get_tcs_num_patches( tess_in_patch_size, tess_out_patch_size, stages[MESA_SHADER_TESS_CTRL].info.tcs.num_linked_inputs, stages[MESA_SHADER_TESS_CTRL].info.tcs.num_linked_outputs, stages[MESA_SHADER_TESS_CTRL].info.tcs.num_linked_patch_outputs, device->physical_device->hs.tess_offchip_block_dw_size, device->physical_device->rad_info.gfx_level, device->physical_device->rad_info.family); /* LDS size used by VS+TCS for storing TCS inputs and outputs. */ unsigned tcs_lds_size = calculate_tess_lds_size( device->physical_device->rad_info.gfx_level, tess_in_patch_size, tess_out_patch_size, stages[MESA_SHADER_TESS_CTRL].info.tcs.num_linked_inputs, num_patches, stages[MESA_SHADER_TESS_CTRL].info.tcs.num_linked_outputs, stages[MESA_SHADER_TESS_CTRL].info.tcs.num_linked_patch_outputs); stages[MESA_SHADER_TESS_CTRL].info.num_tess_patches = num_patches; stages[MESA_SHADER_TESS_CTRL].info.tcs.num_lds_blocks = tcs_lds_size; stages[MESA_SHADER_TESS_CTRL].info.tcs.tes_reads_tess_factors = !!(stages[MESA_SHADER_TESS_EVAL].nir->info.inputs_read & (VARYING_BIT_TESS_LEVEL_INNER | VARYING_BIT_TESS_LEVEL_OUTER)); stages[MESA_SHADER_TESS_CTRL].info.tcs.tes_inputs_read = stages[MESA_SHADER_TESS_EVAL].nir->info.inputs_read; stages[MESA_SHADER_TESS_CTRL].info.tcs.tes_patch_inputs_read = stages[MESA_SHADER_TESS_EVAL].nir->info.patch_inputs_read; stages[MESA_SHADER_TESS_EVAL].info.num_tess_patches = num_patches; stages[MESA_SHADER_GEOMETRY].info.num_tess_patches = num_patches; stages[MESA_SHADER_VERTEX].info.num_tess_patches = num_patches; stages[MESA_SHADER_TESS_CTRL].info.tcs.tcs_vertices_out = tess_out_patch_size; stages[MESA_SHADER_VERTEX].info.tcs.tcs_vertices_out = tess_out_patch_size; if (!radv_use_llvm_for_stage(device, MESA_SHADER_VERTEX)) { /* When the number of TCS input and output vertices are the same (typically 3): * - There is an equal amount of LS and HS invocations * - In case of merged LSHS shaders, the LS and HS halves of the shader * always process the exact same vertex. We can use this knowledge to optimize them. * * We don't set tcs_in_out_eq if the float controls differ because that might * involve different float modes for the same block and our optimizer * doesn't handle a instruction dominating another with a different mode. */ stages[MESA_SHADER_VERTEX].info.vs.tcs_in_out_eq = device->physical_device->rad_info.gfx_level >= GFX9 && tess_in_patch_size == tess_out_patch_size && stages[MESA_SHADER_VERTEX].nir->info.float_controls_execution_mode == stages[MESA_SHADER_TESS_CTRL].nir->info.float_controls_execution_mode; if (stages[MESA_SHADER_VERTEX].info.vs.tcs_in_out_eq) stages[MESA_SHADER_VERTEX].info.vs.tcs_temp_only_input_mask = stages[MESA_SHADER_TESS_CTRL].nir->info.inputs_read & stages[MESA_SHADER_VERTEX].nir->info.outputs_written & ~stages[MESA_SHADER_TESS_CTRL].nir->info.tess.tcs_cross_invocation_inputs_read & ~stages[MESA_SHADER_TESS_CTRL].nir->info.inputs_read_indirectly & ~stages[MESA_SHADER_VERTEX].nir->info.outputs_accessed_indirectly; /* Copy data to TCS so it can be accessed by the backend if they are merged. */ stages[MESA_SHADER_TESS_CTRL].info.vs.tcs_in_out_eq = stages[MESA_SHADER_VERTEX].info.vs.tcs_in_out_eq; stages[MESA_SHADER_TESS_CTRL].info.vs.tcs_temp_only_input_mask = stages[MESA_SHADER_VERTEX].info.vs.tcs_temp_only_input_mask; } for (gl_shader_stage s = MESA_SHADER_VERTEX; s <= MESA_SHADER_TESS_CTRL; ++s) stages[s].info.workgroup_size = ac_compute_lshs_workgroup_size(device->physical_device->rad_info.gfx_level, s, num_patches, tess_in_patch_size, tess_out_patch_size); } static bool mem_vectorize_callback(unsigned align_mul, unsigned align_offset, unsigned bit_size, unsigned num_components, nir_intrinsic_instr *low, nir_intrinsic_instr *high, void *data) { if (num_components > 4) return false; /* >128 bit loads are split except with SMEM */ if (bit_size * num_components > 128) return false; uint32_t align; if (align_offset) align = 1 << (ffs(align_offset) - 1); else align = align_mul; switch (low->intrinsic) { case nir_intrinsic_load_global: case nir_intrinsic_store_global: case nir_intrinsic_store_ssbo: case nir_intrinsic_load_ssbo: case nir_intrinsic_load_ubo: case nir_intrinsic_load_push_constant: { unsigned max_components; if (align % 4 == 0) max_components = NIR_MAX_VEC_COMPONENTS; else if (align % 2 == 0) max_components = 16u / bit_size; else max_components = 8u / bit_size; return (align % (bit_size / 8u)) == 0 && num_components <= max_components; } case nir_intrinsic_load_deref: case nir_intrinsic_store_deref: assert(nir_deref_mode_is(nir_src_as_deref(low->src[0]), nir_var_mem_shared)); FALLTHROUGH; case nir_intrinsic_load_shared: case nir_intrinsic_store_shared: if (bit_size * num_components == 96) { /* 96 bit loads require 128 bit alignment and are split otherwise */ return align % 16 == 0; } else if (bit_size == 16 && (align % 4)) { /* AMD hardware can't do 2-byte aligned f16vec2 loads, but they are useful for ALU * vectorization, because our vectorizer requires the scalar IR to already contain vectors. */ return (align % 2 == 0) && num_components <= 2; } else { if (num_components == 3) { /* AMD hardware can't do 3-component loads except for 96-bit loads, handled above. */ return false; } unsigned req = bit_size * num_components; if (req == 64 || req == 128) /* 64-bit and 128-bit loads can use ds_read2_b{32,64} */ req /= 2u; return align % (req / 8u) == 0; } default: return false; } return false; } static unsigned lower_bit_size_callback(const nir_instr *instr, void *_) { struct radv_device *device = _; enum amd_gfx_level chip = device->physical_device->rad_info.gfx_level; if (instr->type != nir_instr_type_alu) return 0; nir_alu_instr *alu = nir_instr_as_alu(instr); /* If an instruction is not scalarized by this point, * it can be emitted as packed instruction */ if (alu->dest.dest.ssa.num_components > 1) return 0; if (alu->dest.dest.ssa.bit_size & (8 | 16)) { unsigned bit_size = alu->dest.dest.ssa.bit_size; switch (alu->op) { case nir_op_bitfield_select: case nir_op_imul_high: case nir_op_umul_high: return 32; case nir_op_iabs: case nir_op_imax: case nir_op_umax: case nir_op_imin: case nir_op_umin: case nir_op_ishr: case nir_op_ushr: case nir_op_ishl: case nir_op_isign: case nir_op_uadd_sat: case nir_op_usub_sat: return (bit_size == 8 || !(chip >= GFX8 && nir_dest_is_divergent(alu->dest.dest))) ? 32 : 0; case nir_op_iadd_sat: case nir_op_isub_sat: return bit_size == 8 || !nir_dest_is_divergent(alu->dest.dest) ? 32 : 0; default: return 0; } } if (nir_src_bit_size(alu->src[0].src) & (8 | 16)) { unsigned bit_size = nir_src_bit_size(alu->src[0].src); switch (alu->op) { case nir_op_bit_count: case nir_op_find_lsb: case nir_op_ufind_msb: case nir_op_i2b1: return 32; case nir_op_ilt: case nir_op_ige: case nir_op_ieq: case nir_op_ine: case nir_op_ult: case nir_op_uge: return (bit_size == 8 || !(chip >= GFX8 && nir_dest_is_divergent(alu->dest.dest))) ? 32 : 0; default: return 0; } } return 0; } static uint8_t opt_vectorize_callback(const nir_instr *instr, const void *_) { if (instr->type != nir_instr_type_alu) return 0; const struct radv_device *device = _; enum amd_gfx_level chip = device->physical_device->rad_info.gfx_level; if (chip < GFX9) return 1; const nir_alu_instr *alu = nir_instr_as_alu(instr); const unsigned bit_size = alu->dest.dest.ssa.bit_size; if (bit_size != 16) return 1; switch (alu->op) { case nir_op_fadd: case nir_op_fsub: case nir_op_fmul: case nir_op_ffma: case nir_op_fdiv: case nir_op_flrp: case nir_op_fabs: case nir_op_fneg: case nir_op_fsat: case nir_op_fmin: case nir_op_fmax: case nir_op_iabs: case nir_op_iadd: case nir_op_iadd_sat: case nir_op_uadd_sat: case nir_op_isub: case nir_op_isub_sat: case nir_op_usub_sat: case nir_op_ineg: case nir_op_imul: case nir_op_imin: case nir_op_imax: case nir_op_umin: case nir_op_umax: return 2; case nir_op_ishl: /* TODO: in NIR, these have 32bit shift operands */ case nir_op_ishr: /* while Radeon needs 16bit operands when vectorized */ case nir_op_ushr: default: return 1; } } static nir_component_mask_t non_uniform_access_callback(const nir_src *src, void *_) { if (src->ssa->num_components == 1) return 0x1; return nir_chase_binding(*src).success ? 0x2 : 0x3; } VkResult radv_upload_shaders(struct radv_device *device, struct radv_pipeline *pipeline, struct radv_shader_binary **binaries, struct radv_shader_binary *gs_copy_binary) { uint32_t code_size = 0; /* Compute the total code size. */ for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) { struct radv_shader *shader = pipeline->shaders[i]; if (!shader) continue; code_size += align(shader->code_size, RADV_SHADER_ALLOC_ALIGNMENT); } if (pipeline->gs_copy_shader) { code_size += align(pipeline->gs_copy_shader->code_size, RADV_SHADER_ALLOC_ALIGNMENT); } /* Allocate memory for all shader binaries. */ pipeline->slab = radv_pipeline_slab_create(device, pipeline, code_size); if (!pipeline->slab) return VK_ERROR_OUT_OF_DEVICE_MEMORY; pipeline->slab_bo = pipeline->slab->alloc->arena->bo; /* Upload shader binaries. */ uint64_t slab_va = radv_buffer_get_va(pipeline->slab_bo); uint32_t slab_offset = pipeline->slab->alloc->offset; char *slab_ptr = pipeline->slab->alloc->arena->ptr; for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { struct radv_shader *shader = pipeline->shaders[i]; if (!shader) continue; shader->va = slab_va + slab_offset; void *dest_ptr = slab_ptr + slab_offset; if (!radv_shader_binary_upload(device, binaries[i], shader, dest_ptr)) return VK_ERROR_OUT_OF_HOST_MEMORY; slab_offset += align(shader->code_size, RADV_SHADER_ALLOC_ALIGNMENT); } if (pipeline->gs_copy_shader) { pipeline->gs_copy_shader->va = slab_va + slab_offset; void *dest_ptr = slab_ptr + slab_offset; if (!radv_shader_binary_upload(device, gs_copy_binary, pipeline->gs_copy_shader, dest_ptr)) return VK_ERROR_OUT_OF_HOST_MEMORY; } return VK_SUCCESS; } static bool radv_consider_force_vrs(const struct radv_pipeline *pipeline, bool noop_fs, const struct radv_pipeline_stage *stages, gl_shader_stage last_vgt_api_stage) { struct radv_device *device = pipeline->device; if (!device->force_vrs_enabled) return false; if (last_vgt_api_stage != MESA_SHADER_VERTEX && last_vgt_api_stage != MESA_SHADER_TESS_EVAL && last_vgt_api_stage != MESA_SHADER_GEOMETRY) return false; nir_shader *last_vgt_shader = stages[last_vgt_api_stage].nir; if (last_vgt_shader->info.outputs_written & BITFIELD64_BIT(VARYING_SLOT_PRIMITIVE_SHADING_RATE)) return false; /* VRS has no effect if there is no pixel shader. */ if (noop_fs) return false; /* Do not enable if the PS uses gl_FragCoord because it breaks postprocessing in some games. */ nir_shader *fs_shader = stages[MESA_SHADER_FRAGMENT].nir; if (fs_shader && BITSET_TEST(fs_shader->info.system_values_read, SYSTEM_VALUE_FRAG_COORD)) { return false; } return true; } static nir_ssa_def * radv_adjust_vertex_fetch_alpha(nir_builder *b, enum radv_vs_input_alpha_adjust alpha_adjust, nir_ssa_def *alpha) { if (alpha_adjust == ALPHA_ADJUST_SSCALED) alpha = nir_f2u32(b, alpha); /* For the integer-like cases, do a natural sign extension. * * For the SNORM case, the values are 0.0, 0.333, 0.666, 1.0 and happen to contain 0, 1, 2, 3 as * the two LSBs of the exponent. */ unsigned offset = alpha_adjust == ALPHA_ADJUST_SNORM ? 23u : 0u; alpha = nir_ibfe_imm(b, alpha, offset, 2u); /* Convert back to the right type. */ if (alpha_adjust == ALPHA_ADJUST_SNORM) { alpha = nir_i2f32(b, alpha); alpha = nir_fmax(b, alpha, nir_imm_float(b, -1.0f)); } else if (alpha_adjust == ALPHA_ADJUST_SSCALED) { alpha = nir_i2f32(b, alpha); } return alpha; } static bool radv_lower_vs_input(nir_shader *nir, const struct radv_pipeline_key *pipeline_key) { nir_function_impl *impl = nir_shader_get_entrypoint(nir); bool progress = false; if (pipeline_key->vs.dynamic_input_state) return false; nir_builder b; nir_builder_init(&b, impl); nir_foreach_block(block, impl) { nir_foreach_instr(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); if (intrin->intrinsic != nir_intrinsic_load_input) continue; unsigned location = nir_intrinsic_base(intrin) - VERT_ATTRIB_GENERIC0; enum radv_vs_input_alpha_adjust alpha_adjust = pipeline_key->vs.vertex_alpha_adjust[location]; bool post_shuffle = pipeline_key->vs.vertex_post_shuffle & (1 << location); unsigned component = nir_intrinsic_component(intrin); unsigned num_components = intrin->dest.ssa.num_components; unsigned attrib_format = pipeline_key->vs.vertex_attribute_formats[location]; unsigned dfmt = attrib_format & 0xf; unsigned nfmt = (attrib_format >> 4) & 0x7; const struct ac_data_format_info *vtx_info = ac_get_data_format_info(dfmt); bool is_float = nfmt != V_008F0C_BUF_NUM_FORMAT_UINT && nfmt != V_008F0C_BUF_NUM_FORMAT_SINT; unsigned mask = nir_ssa_def_components_read(&intrin->dest.ssa) << component; unsigned num_channels = MIN2(util_last_bit(mask), vtx_info->num_channels); static const unsigned swizzle_normal[4] = {0, 1, 2, 3}; static const unsigned swizzle_post_shuffle[4] = {2, 1, 0, 3}; const unsigned *swizzle = post_shuffle ? swizzle_post_shuffle : swizzle_normal; b.cursor = nir_after_instr(instr); nir_ssa_def *channels[4]; if (post_shuffle) { /* Expand to load 3 components because it's shuffled like X<->Z. */ intrin->num_components = MAX2(component + num_components, 3); intrin->dest.ssa.num_components = intrin->num_components; nir_intrinsic_set_component(intrin, 0); num_channels = MAX2(num_channels, 3); } for (uint32_t i = 0; i < num_components; i++) { unsigned idx = i + (post_shuffle ? component : 0); if (swizzle[i + component] < num_channels) { channels[i] = nir_channel(&b, &intrin->dest.ssa, swizzle[idx]); } else if (i + component == 3) { channels[i] = is_float ? nir_imm_floatN_t(&b, 1.0f, intrin->dest.ssa.bit_size) : nir_imm_intN_t(&b, 1u, intrin->dest.ssa.bit_size); } else { channels[i] = nir_imm_zero(&b, 1, intrin->dest.ssa.bit_size); } } if (alpha_adjust != ALPHA_ADJUST_NONE && component + num_components == 4) { unsigned idx = num_components - 1; channels[idx] = radv_adjust_vertex_fetch_alpha(&b, alpha_adjust, channels[idx]); } nir_ssa_def *new_dest = nir_vec(&b, channels, num_components); nir_ssa_def_rewrite_uses_after(&intrin->dest.ssa, new_dest, new_dest->parent_instr); progress = true; } } if (progress) nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); else nir_metadata_preserve(impl, nir_metadata_all); return progress; } static bool radv_lower_fs_output(nir_shader *nir, const struct radv_pipeline_key *pipeline_key) { nir_function_impl *impl = nir_shader_get_entrypoint(nir); bool progress = false; nir_builder b; nir_builder_init(&b, impl); nir_foreach_block(block, impl) { nir_foreach_instr(instr, block) { if (instr->type != nir_instr_type_intrinsic) continue; nir_intrinsic_instr *intrin = nir_instr_as_intrinsic(instr); if (intrin->intrinsic != nir_intrinsic_store_output) continue; int slot = nir_intrinsic_base(intrin) - FRAG_RESULT_DATA0; if (slot < 0) continue; unsigned write_mask = nir_intrinsic_write_mask(intrin); unsigned col_format = (pipeline_key->ps.col_format >> (4 * slot)) & 0xf; bool is_int8 = (pipeline_key->ps.is_int8 >> slot) & 1; bool is_int10 = (pipeline_key->ps.is_int10 >> slot) & 1; bool enable_mrt_output_nan_fixup = (pipeline_key->ps.enable_mrt_output_nan_fixup >> slot) & 1; bool is_16bit = intrin->src[0].ssa->bit_size == 16; if (col_format == V_028714_SPI_SHADER_ZERO) continue; b.cursor = nir_before_instr(instr); nir_ssa_def *values[4]; /* Extract the export values. */ for (unsigned i = 0; i < 4; i++) { if (write_mask & (1 << i)) { values[i] = nir_channel(&b, intrin->src[0].ssa, i); } else { values[i] = nir_ssa_undef(&b, 1, 32); } } /* Replace NaN by zero (for 32-bit float formats) to fix game bugs if requested. */ if (enable_mrt_output_nan_fixup && !nir->info.internal && !is_16bit) { u_foreach_bit(i, write_mask) { const bool save_exact = b.exact; b.exact = true; nir_ssa_def *isnan = nir_fneu(&b, values[i], values[i]); b.exact = save_exact; values[i] = nir_bcsel(&b, isnan, nir_imm_zero(&b, 1, 32), values[i]); } } if (col_format == V_028714_SPI_SHADER_FP16_ABGR || col_format == V_028714_SPI_SHADER_UNORM16_ABGR || col_format == V_028714_SPI_SHADER_SNORM16_ABGR || col_format == V_028714_SPI_SHADER_UINT16_ABGR || col_format == V_028714_SPI_SHADER_SINT16_ABGR) { /* Convert and/or clamp the export values. */ switch (col_format) { case V_028714_SPI_SHADER_UINT16_ABGR: { unsigned max_rgb = is_int8 ? 255 : is_int10 ? 1023 : 0; u_foreach_bit(i, write_mask) { if (is_int8 || is_int10) { values[i] = nir_umin(&b, values[i], i == 3 && is_int10 ? nir_imm_int(&b, 3u) : nir_imm_int(&b, max_rgb)); } else if (is_16bit) { values[i] = nir_u2u32(&b, values[i]); } } break; } case V_028714_SPI_SHADER_SINT16_ABGR: { unsigned max_rgb = is_int8 ? 127 : is_int10 ? 511 : 0; unsigned min_rgb = is_int8 ? -128 : is_int10 ? -512 : 0; u_foreach_bit(i, write_mask) { if (is_int8 || is_int10) { values[i] = nir_imin(&b, values[i], i == 3 && is_int10 ? nir_imm_int(&b, 1u) : nir_imm_int(&b, max_rgb)); values[i] = nir_imax(&b, values[i], i == 3 && is_int10 ? nir_imm_int(&b, -2u) : nir_imm_int(&b, min_rgb)); } else if (is_16bit) { values[i] = nir_i2i32(&b, values[i]); } } break; } case V_028714_SPI_SHADER_UNORM16_ABGR: case V_028714_SPI_SHADER_SNORM16_ABGR: u_foreach_bit(i, write_mask) { if (is_16bit) { values[i] = nir_f2f32(&b, values[i]); } } break; default: break; } /* Only nir_pack_32_2x16_split needs 16-bit inputs. */ bool input_16_bit = col_format == V_028714_SPI_SHADER_FP16_ABGR && is_16bit; unsigned new_write_mask = 0; /* Pack the export values. */ for (unsigned i = 0; i < 2; i++) { bool enabled = (write_mask >> (i * 2)) & 0x3; if (!enabled) { values[i] = nir_ssa_undef(&b, 1, 32); continue; } nir_ssa_def *src0 = values[i * 2]; nir_ssa_def *src1 = values[i * 2 + 1]; if (!(write_mask & (1 << (i * 2)))) src0 = nir_imm_zero(&b, 1, input_16_bit ? 16 : 32); if (!(write_mask & (1 << (i * 2 + 1)))) src1 = nir_imm_zero(&b, 1, input_16_bit ? 16 : 32); if (col_format == V_028714_SPI_SHADER_FP16_ABGR) { if (is_16bit) { values[i] = nir_pack_32_2x16_split(&b, src0, src1); } else { values[i] = nir_pack_half_2x16_split(&b, src0, src1); } } else if (col_format == V_028714_SPI_SHADER_UNORM16_ABGR) { values[i] = nir_pack_unorm_2x16(&b, nir_vec2(&b, src0, src1)); } else if (col_format == V_028714_SPI_SHADER_SNORM16_ABGR) { values[i] = nir_pack_snorm_2x16(&b, nir_vec2(&b, src0, src1)); } else if (col_format == V_028714_SPI_SHADER_UINT16_ABGR) { values[i] = nir_pack_uint_2x16(&b, nir_vec2(&b, src0, src1)); } else if (col_format == V_028714_SPI_SHADER_SINT16_ABGR) { values[i] = nir_pack_sint_2x16(&b, nir_vec2(&b, src0, src1)); } new_write_mask |= 1 << i; } /* Update the write mask for compressed outputs. */ nir_intrinsic_set_write_mask(intrin, new_write_mask); intrin->num_components = util_last_bit(new_write_mask); } nir_ssa_def *new_src = nir_vec(&b, values, intrin->num_components); nir_instr_rewrite_src(&intrin->instr, &intrin->src[0], nir_src_for_ssa(new_src)); progress = true; } } if (progress) nir_metadata_preserve(impl, nir_metadata_block_index | nir_metadata_dominance); else nir_metadata_preserve(impl, nir_metadata_all); return progress; } void radv_pipeline_stage_init(const VkPipelineShaderStageCreateInfo *sinfo, struct radv_pipeline_stage *out_stage, gl_shader_stage stage) { const VkShaderModuleCreateInfo *minfo = vk_find_struct_const(sinfo->pNext, SHADER_MODULE_CREATE_INFO); const VkPipelineShaderStageModuleIdentifierCreateInfoEXT *iinfo = vk_find_struct_const(sinfo->pNext, PIPELINE_SHADER_STAGE_MODULE_IDENTIFIER_CREATE_INFO_EXT); if (sinfo->module == VK_NULL_HANDLE && !minfo && !iinfo) return; memset(out_stage, 0, sizeof(*out_stage)); out_stage->stage = stage; out_stage->entrypoint = sinfo->pName; out_stage->spec_info = sinfo->pSpecializationInfo; out_stage->feedback.flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT; if (sinfo->module != VK_NULL_HANDLE) { struct vk_shader_module *module = vk_shader_module_from_handle(sinfo->module); STATIC_ASSERT(sizeof(out_stage->spirv.sha1) == sizeof(module->sha1)); out_stage->spirv.data = module->data; out_stage->spirv.size = module->size; out_stage->spirv.object = &module->base; if (module->nir) out_stage->internal_nir = module->nir; } else if (minfo) { out_stage->spirv.data = (const char *) minfo->pCode; out_stage->spirv.size = minfo->codeSize; } vk_pipeline_hash_shader_stage(sinfo, out_stage->shader_sha1); } static struct radv_shader * radv_pipeline_create_gs_copy_shader(struct radv_pipeline *pipeline, struct radv_pipeline_stage *stages, const struct radv_pipeline_key *pipeline_key, const struct radv_pipeline_layout *pipeline_layout, bool keep_executable_info, bool keep_statistic_info, struct radv_shader_binary **gs_copy_binary) { struct radv_device *device = pipeline->device; struct radv_shader_info info = {0}; if (stages[MESA_SHADER_GEOMETRY].info.vs.outinfo.export_clip_dists) info.vs.outinfo.export_clip_dists = true; radv_nir_shader_info_pass(device, stages[MESA_SHADER_GEOMETRY].nir, pipeline_layout, pipeline_key, &info); info.wave_size = 64; /* Wave32 not supported. */ info.workgroup_size = 64; /* HW VS: separate waves, no workgroups */ info.ballot_bit_size = 64; struct radv_shader_args gs_copy_args = {0}; gs_copy_args.is_gs_copy_shader = true; gs_copy_args.explicit_scratch_args = !radv_use_llvm_for_stage(device, MESA_SHADER_VERTEX); radv_declare_shader_args(device->physical_device->rad_info.gfx_level, pipeline_key, &info, MESA_SHADER_VERTEX, false, MESA_SHADER_VERTEX, &gs_copy_args); info.user_sgprs_locs = gs_copy_args.user_sgprs_locs; info.inline_push_constant_mask = gs_copy_args.ac.inline_push_const_mask; return radv_create_gs_copy_shader(device, stages[MESA_SHADER_GEOMETRY].nir, &info, &gs_copy_args, gs_copy_binary, keep_executable_info, keep_statistic_info, pipeline_key->optimisations_disabled); } static void radv_pipeline_nir_to_asm(struct radv_pipeline *pipeline, struct radv_pipeline_stage *stages, const struct radv_pipeline_key *pipeline_key, const struct radv_pipeline_layout *pipeline_layout, bool keep_executable_info, bool keep_statistic_info, gl_shader_stage last_vgt_api_stage, struct radv_shader_binary **binaries, struct radv_shader_binary **gs_copy_binary) { struct radv_device *device = pipeline->device; unsigned active_stages = 0; for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) { if (stages[i].nir) active_stages |= (1 << i); } bool pipeline_has_ngg = last_vgt_api_stage != MESA_SHADER_NONE && stages[last_vgt_api_stage].info.is_ngg; if (stages[MESA_SHADER_GEOMETRY].nir && !pipeline_has_ngg) { pipeline->gs_copy_shader = radv_pipeline_create_gs_copy_shader(pipeline, stages, pipeline_key, pipeline_layout, keep_executable_info, keep_statistic_info, gs_copy_binary); } for (int s = MESA_VULKAN_SHADER_STAGES - 1; s >= 0; s--) { if (!(active_stages & (1 << s)) || pipeline->shaders[s]) continue; nir_shader *shaders[2] = { stages[s].nir, NULL }; unsigned shader_count = 1; /* On GFX9+, TES is merged with GS and VS is merged with TCS or GS. */ if (device->physical_device->rad_info.gfx_level >= GFX9 && (s == MESA_SHADER_TESS_CTRL || s == MESA_SHADER_GEOMETRY)) { gl_shader_stage pre_stage; if (s == MESA_SHADER_GEOMETRY && stages[MESA_SHADER_TESS_EVAL].nir) { pre_stage = MESA_SHADER_TESS_EVAL; } else { pre_stage = MESA_SHADER_VERTEX; } shaders[0] = stages[pre_stage].nir; shaders[1] = stages[s].nir; shader_count = 2; } int64_t stage_start = os_time_get_nano(); pipeline->shaders[s] = radv_shader_nir_to_asm(device, &stages[s], shaders, shader_count, pipeline_key, keep_executable_info, keep_statistic_info, &binaries[s]); stages[s].feedback.duration += os_time_get_nano() - stage_start; active_stages &= ~(1 << shaders[0]->info.stage); if (shaders[1]) active_stages &= ~(1 << shaders[1]->info.stage); } } VkResult radv_create_shaders(struct radv_pipeline *pipeline, struct radv_pipeline_layout *pipeline_layout, struct radv_device *device, struct radv_pipeline_cache *cache, const struct radv_pipeline_key *pipeline_key, const VkPipelineShaderStageCreateInfo *pStages, uint32_t stageCount, const VkPipelineCreateFlags flags, const uint8_t *custom_hash, const VkPipelineCreationFeedbackCreateInfo *creation_feedback, struct radv_pipeline_shader_stack_size **stack_sizes, uint32_t *num_stack_sizes, gl_shader_stage *last_vgt_api_stage) { const char *noop_fs_entrypoint = "noop_fs"; struct radv_shader_binary *binaries[MESA_VULKAN_SHADER_STAGES] = {NULL}; struct radv_shader_binary *gs_copy_binary = NULL; unsigned char hash[20]; bool keep_executable_info = (flags & VK_PIPELINE_CREATE_CAPTURE_INTERNAL_REPRESENTATIONS_BIT_KHR) || device->keep_shader_info; bool keep_statistic_info = (flags & VK_PIPELINE_CREATE_CAPTURE_STATISTICS_BIT_KHR) || (device->instance->debug_flags & RADV_DEBUG_DUMP_SHADER_STATS) || device->keep_shader_info; struct radv_pipeline_stage stages[MESA_VULKAN_SHADER_STAGES] = {0}; VkPipelineCreationFeedback pipeline_feedback = { .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT, }; bool noop_fs = false; VkResult result = VK_SUCCESS; int64_t pipeline_start = os_time_get_nano(); for (uint32_t i = 0; i < stageCount; i++) { const VkPipelineShaderStageCreateInfo *sinfo = &pStages[i]; gl_shader_stage stage = vk_to_mesa_shader_stage(sinfo->stage); radv_pipeline_stage_init(sinfo, &stages[stage], stage); } for (unsigned s = 0; s < MESA_VULKAN_SHADER_STAGES; s++) { if (!stages[s].entrypoint) continue; if (stages[s].stage < MESA_SHADER_FRAGMENT || stages[s].stage == MESA_SHADER_MESH) *last_vgt_api_stage = stages[s].stage; } ASSERTED bool primitive_shading = stages[MESA_SHADER_VERTEX].entrypoint || stages[MESA_SHADER_TESS_CTRL].entrypoint || stages[MESA_SHADER_TESS_EVAL].entrypoint || stages[MESA_SHADER_GEOMETRY].entrypoint; ASSERTED bool mesh_shading = stages[MESA_SHADER_MESH].entrypoint; /* Primitive and mesh shading must not be mixed in the same pipeline. */ assert(!primitive_shading || !mesh_shading); /* Mesh shaders are mandatory in mesh shading pipelines. */ assert(mesh_shading == !!stages[MESA_SHADER_MESH].entrypoint); /* Mesh shaders always need NGG. */ assert(!mesh_shading || pipeline_key->use_ngg); if (custom_hash) memcpy(hash, custom_hash, 20); else { radv_hash_shaders(hash, stages, pipeline_layout, pipeline_key, radv_get_hash_flags(device, keep_statistic_info)); } pipeline->pipeline_hash = *(uint64_t *)hash; bool found_in_application_cache = true; if (!keep_executable_info && radv_create_shaders_from_pipeline_cache(device, cache, hash, pipeline, stack_sizes, num_stack_sizes, &found_in_application_cache)) { if (found_in_application_cache) pipeline_feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT; result = VK_SUCCESS; goto done; } if (flags & VK_PIPELINE_CREATE_FAIL_ON_PIPELINE_COMPILE_REQUIRED_BIT) { if (found_in_application_cache) pipeline_feedback.flags |= VK_PIPELINE_CREATION_FEEDBACK_APPLICATION_PIPELINE_CACHE_HIT_BIT; result = VK_PIPELINE_COMPILE_REQUIRED; goto done; } if (pipeline->type == RADV_PIPELINE_GRAPHICS && !stages[MESA_SHADER_FRAGMENT].entrypoint) { nir_builder fs_b = radv_meta_init_shader(device, MESA_SHADER_FRAGMENT, "noop_fs"); stages[MESA_SHADER_FRAGMENT] = (struct radv_pipeline_stage) { .stage = MESA_SHADER_FRAGMENT, .internal_nir = fs_b.shader, .entrypoint = noop_fs_entrypoint, .feedback = { .flags = VK_PIPELINE_CREATION_FEEDBACK_VALID_BIT, }, }; noop_fs = true; } for (unsigned s = 0; s < MESA_VULKAN_SHADER_STAGES; s++) { if (!stages[s].entrypoint) continue; int64_t stage_start = os_time_get_nano(); stages[s].nir = radv_shader_spirv_to_nir(device, &stages[s], pipeline_key); stages[s].feedback.duration += os_time_get_nano() - stage_start; } /* Force per-vertex VRS. */ if (radv_consider_force_vrs(pipeline, noop_fs, stages, *last_vgt_api_stage)) { assert(*last_vgt_api_stage == MESA_SHADER_VERTEX || *last_vgt_api_stage == MESA_SHADER_TESS_EVAL || *last_vgt_api_stage == MESA_SHADER_GEOMETRY); nir_shader *last_vgt_shader = stages[*last_vgt_api_stage].nir; NIR_PASS(_, last_vgt_shader, radv_force_primitive_shading_rate, device); } bool optimize_conservatively = pipeline_key->optimisations_disabled; /* Determine if shaders uses NGG before linking because it's needed for some NIR pass. */ radv_fill_shader_info_ngg(pipeline, pipeline_key, stages); bool pipeline_has_ngg = (stages[MESA_SHADER_VERTEX].nir && stages[MESA_SHADER_VERTEX].info.is_ngg) || (stages[MESA_SHADER_TESS_EVAL].nir && stages[MESA_SHADER_TESS_EVAL].info.is_ngg) || (stages[MESA_SHADER_MESH].nir && stages[MESA_SHADER_MESH].info.is_ngg); if (stages[MESA_SHADER_GEOMETRY].nir) { unsigned nir_gs_flags = nir_lower_gs_intrinsics_per_stream; if (pipeline_has_ngg) { nir_gs_flags |= nir_lower_gs_intrinsics_count_primitives | nir_lower_gs_intrinsics_count_vertices_per_primitive | nir_lower_gs_intrinsics_overwrite_incomplete; } NIR_PASS(_, stages[MESA_SHADER_GEOMETRY].nir, nir_lower_gs_intrinsics, nir_gs_flags); } radv_link_shaders(pipeline, pipeline_key, stages, optimize_conservatively, *last_vgt_api_stage); radv_set_driver_locations(pipeline, stages, *last_vgt_api_stage); for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { if (stages[i].nir) { int64_t stage_start = os_time_get_nano(); radv_optimize_nir(stages[i].nir, optimize_conservatively, false); /* Gather info again, information such as outputs_read can be out-of-date. */ nir_shader_gather_info(stages[i].nir, nir_shader_get_entrypoint(stages[i].nir)); radv_lower_io(device, stages[i].nir, stages[MESA_SHADER_MESH].nir); stages[i].feedback.duration += os_time_get_nano() - stage_start; } } if (stages[MESA_SHADER_TESS_CTRL].nir) { nir_lower_patch_vertices(stages[MESA_SHADER_TESS_EVAL].nir, stages[MESA_SHADER_TESS_CTRL].nir->info.tess.tcs_vertices_out, NULL); gather_tess_info(device, stages, pipeline_key); } if (stages[MESA_SHADER_VERTEX].nir) { NIR_PASS(_, stages[MESA_SHADER_VERTEX].nir, radv_lower_vs_input, pipeline_key); } if (stages[MESA_SHADER_FRAGMENT].nir && !radv_use_llvm_for_stage(device, MESA_SHADER_FRAGMENT)) { /* TODO: Convert the LLVM backend. */ NIR_PASS(_, stages[MESA_SHADER_FRAGMENT].nir, radv_lower_fs_output, pipeline_key); } radv_fill_shader_info(pipeline, pipeline_layout, pipeline_key, stages, *last_vgt_api_stage); if (pipeline_has_ngg) { struct gfx10_ngg_info *ngg_info; if (stages[MESA_SHADER_GEOMETRY].nir) ngg_info = &stages[MESA_SHADER_GEOMETRY].info.ngg_info; else if (stages[MESA_SHADER_TESS_CTRL].nir) ngg_info = &stages[MESA_SHADER_TESS_EVAL].info.ngg_info; else if (stages[MESA_SHADER_VERTEX].nir) ngg_info = &stages[MESA_SHADER_VERTEX].info.ngg_info; else if (stages[MESA_SHADER_MESH].nir) ngg_info = &stages[MESA_SHADER_MESH].info.ngg_info; else unreachable("Missing NGG shader stage."); if (*last_vgt_api_stage == MESA_SHADER_MESH) gfx10_get_ngg_ms_info(&stages[MESA_SHADER_MESH], ngg_info); else gfx10_get_ngg_info(pipeline_key, pipeline, stages, ngg_info); } else if (stages[MESA_SHADER_GEOMETRY].nir) { struct gfx9_gs_info *gs_info = &stages[MESA_SHADER_GEOMETRY].info.gs_ring_info; gfx9_get_gs_info(pipeline_key, pipeline, stages, gs_info); } else { gl_shader_stage hw_vs_api_stage = stages[MESA_SHADER_TESS_EVAL].nir ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX; stages[hw_vs_api_stage].info.workgroup_size = stages[hw_vs_api_stage].info.wave_size; } radv_determine_ngg_settings(pipeline, pipeline_key, stages, *last_vgt_api_stage); radv_declare_pipeline_args(device, stages, pipeline_key); if (stages[MESA_SHADER_FRAGMENT].nir) { NIR_PASS(_, stages[MESA_SHADER_FRAGMENT].nir, radv_lower_fs_intrinsics, &stages[MESA_SHADER_FRAGMENT], pipeline_key); } for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { if (stages[i].nir) { int64_t stage_start = os_time_get_nano(); /* Wave and workgroup size should already be filled. */ assert(stages[i].info.wave_size && stages[i].info.workgroup_size); if (!radv_use_llvm_for_stage(device, i)) { nir_lower_non_uniform_access_options options = { .types = nir_lower_non_uniform_ubo_access | nir_lower_non_uniform_ssbo_access | nir_lower_non_uniform_texture_access | nir_lower_non_uniform_image_access, .callback = &non_uniform_access_callback, .callback_data = NULL, }; NIR_PASS(_, stages[i].nir, nir_lower_non_uniform_access, &options); } NIR_PASS(_, stages[i].nir, nir_lower_memory_model); nir_load_store_vectorize_options vectorize_opts = { .modes = nir_var_mem_ssbo | nir_var_mem_ubo | nir_var_mem_push_const | nir_var_mem_shared | nir_var_mem_global, .callback = mem_vectorize_callback, .robust_modes = 0, /* On GFX6, read2/write2 is out-of-bounds if the offset register is negative, even if * the final offset is not. */ .has_shared2_amd = device->physical_device->rad_info.gfx_level >= GFX7, }; if (device->robust_buffer_access2) { vectorize_opts.robust_modes = nir_var_mem_ubo | nir_var_mem_ssbo | nir_var_mem_push_const; } bool progress = false; NIR_PASS(progress, stages[i].nir, nir_opt_load_store_vectorize, &vectorize_opts); if (progress) { NIR_PASS(_, stages[i].nir, nir_copy_prop); NIR_PASS(_, stages[i].nir, nir_opt_shrink_stores, !device->instance->disable_shrink_image_store); /* Gather info again, to update whether 8/16-bit are used. */ nir_shader_gather_info(stages[i].nir, nir_shader_get_entrypoint(stages[i].nir)); } struct radv_shader_info *info = &stages[i].info; if (pipeline->device->physical_device->rad_info.gfx_level >= GFX9) { if (i == MESA_SHADER_VERTEX && stages[MESA_SHADER_TESS_CTRL].nir) info = &stages[MESA_SHADER_TESS_CTRL].info; else if (i == MESA_SHADER_VERTEX && stages[MESA_SHADER_GEOMETRY].nir) info = &stages[MESA_SHADER_GEOMETRY].info; else if (i == MESA_SHADER_TESS_EVAL && stages[MESA_SHADER_GEOMETRY].nir) info = &stages[MESA_SHADER_GEOMETRY].info; } NIR_PASS(_, stages[i].nir, radv_nir_lower_ycbcr_textures, pipeline_layout); NIR_PASS_V(stages[i].nir, radv_nir_apply_pipeline_layout, device, pipeline_layout, info, &stages[i].args); NIR_PASS(_, stages[i].nir, nir_opt_shrink_vectors); NIR_PASS(_, stages[i].nir, nir_lower_alu_width, opt_vectorize_callback, device); /* lower ALU operations */ NIR_PASS(_, stages[i].nir, nir_lower_int64); NIR_PASS(_, stages[i].nir, nir_opt_idiv_const, 8); NIR_PASS(_, stages[i].nir, nir_lower_idiv, &(nir_lower_idiv_options){ .imprecise_32bit_lowering = false, .allow_fp16 = device->physical_device->rad_info.gfx_level >= GFX9, }); nir_move_options sink_opts = nir_move_const_undef | nir_move_copies; if (i != MESA_SHADER_FRAGMENT || !pipeline_key->disable_sinking_load_input_fs) sink_opts |= nir_move_load_input; NIR_PASS(_, stages[i].nir, nir_opt_sink, sink_opts); NIR_PASS(_, stages[i].nir, nir_opt_move, nir_move_load_input | nir_move_const_undef | nir_move_copies); /* Lower I/O intrinsics to memory instructions. */ bool io_to_mem = radv_lower_io_to_mem(device, &stages[i], pipeline_key); bool lowered_ngg = pipeline_has_ngg && i == *last_vgt_api_stage; if (lowered_ngg) radv_lower_ngg(device, &stages[i], pipeline_key); NIR_PASS(_, stages[i].nir, ac_nir_lower_global_access); NIR_PASS_V(stages[i].nir, radv_nir_lower_abi, device->physical_device->rad_info.gfx_level, &stages[i].info, &stages[i].args, pipeline_key, radv_use_llvm_for_stage(device, i)); radv_optimize_nir_algebraic( stages[i].nir, io_to_mem || lowered_ngg || i == MESA_SHADER_COMPUTE || i == MESA_SHADER_TASK); if (stages[i].nir->info.bit_sizes_int & (8 | 16)) { if (device->physical_device->rad_info.gfx_level >= GFX8) { NIR_PASS(_, stages[i].nir, nir_convert_to_lcssa, true, true); nir_divergence_analysis(stages[i].nir); } if (nir_lower_bit_size(stages[i].nir, lower_bit_size_callback, device)) { NIR_PASS(_, stages[i].nir, nir_opt_constant_folding); } if (device->physical_device->rad_info.gfx_level >= GFX8) NIR_PASS(_, stages[i].nir, nir_opt_remove_phis); /* cleanup LCSSA phis */ } if (((stages[i].nir->info.bit_sizes_int | stages[i].nir->info.bit_sizes_float) & 16) && device->physical_device->rad_info.gfx_level >= GFX9) { bool separate_g16 = device->physical_device->rad_info.gfx_level >= GFX10; struct nir_fold_tex_srcs_options fold_srcs_options[] = { { .sampler_dims = ~(BITFIELD_BIT(GLSL_SAMPLER_DIM_CUBE) | BITFIELD_BIT(GLSL_SAMPLER_DIM_BUF)), .src_types = (1 << nir_tex_src_coord) | (1 << nir_tex_src_lod) | (1 << nir_tex_src_bias) | (1 << nir_tex_src_min_lod) | (1 << nir_tex_src_ms_index) | (separate_g16 ? 0 : (1 << nir_tex_src_ddx) | (1 << nir_tex_src_ddy)), }, { .sampler_dims = ~BITFIELD_BIT(GLSL_SAMPLER_DIM_CUBE), .src_types = (1 << nir_tex_src_ddx) | (1 << nir_tex_src_ddy), }, }; struct nir_fold_16bit_tex_image_options fold_16bit_options = { .rounding_mode = nir_rounding_mode_rtne, .fold_tex_dest = true, .fold_image_load_store_data = true, .fold_srcs_options_count = separate_g16 ? 2 : 1, .fold_srcs_options = fold_srcs_options, }; NIR_PASS(_, stages[i].nir, nir_fold_16bit_tex_image, &fold_16bit_options); NIR_PASS(_, stages[i].nir, nir_opt_vectorize, opt_vectorize_callback, device); } /* cleanup passes */ NIR_PASS(_, stages[i].nir, nir_lower_alu_width, opt_vectorize_callback, device); NIR_PASS(_, stages[i].nir, nir_lower_load_const_to_scalar); NIR_PASS(_, stages[i].nir, nir_copy_prop); NIR_PASS(_, stages[i].nir, nir_opt_dce); sink_opts |= nir_move_comparisons | nir_move_load_ubo | nir_move_load_ssbo; NIR_PASS(_, stages[i].nir, nir_opt_sink, sink_opts); nir_move_options move_opts = nir_move_const_undef | nir_move_load_ubo | nir_move_load_input | nir_move_comparisons | nir_move_copies; NIR_PASS(_, stages[i].nir, nir_opt_move, move_opts); stages[i].feedback.duration += os_time_get_nano() - stage_start; } } for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { if (stages[i].nir) { if (radv_can_dump_shader(device, stages[i].nir, false)) nir_print_shader(stages[i].nir, stderr); } } /* Compile NIR shaders to AMD assembly. */ radv_pipeline_nir_to_asm(pipeline, stages, pipeline_key, pipeline_layout, keep_executable_info, keep_statistic_info, *last_vgt_api_stage, binaries, &gs_copy_binary); if (keep_executable_info) { for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { struct radv_shader *shader = pipeline->shaders[i]; if (!shader) continue; if (!stages[i].spirv.size) continue; shader->spirv = malloc(stages[i].spirv.size); memcpy(shader->spirv, stages[i].spirv.data, stages[i].spirv.size); shader->spirv_size = stages[i].spirv.size; } } /* Upload shader binaries. */ radv_upload_shaders(device, pipeline, binaries, gs_copy_binary); if (!keep_executable_info) { if (pipeline->gs_copy_shader) { assert(!binaries[MESA_SHADER_COMPUTE] && !pipeline->shaders[MESA_SHADER_COMPUTE]); binaries[MESA_SHADER_COMPUTE] = gs_copy_binary; pipeline->shaders[MESA_SHADER_COMPUTE] = pipeline->gs_copy_shader; } radv_pipeline_cache_insert_shaders(device, cache, hash, pipeline, binaries, stack_sizes ? *stack_sizes : NULL, num_stack_sizes ? *num_stack_sizes : 0); if (pipeline->gs_copy_shader) { pipeline->gs_copy_shader = pipeline->shaders[MESA_SHADER_COMPUTE]; pipeline->shaders[MESA_SHADER_COMPUTE] = NULL; binaries[MESA_SHADER_COMPUTE] = NULL; } } free(gs_copy_binary); for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { free(binaries[i]); if (stages[i].nir) { if (radv_can_dump_shader_stats(device, stages[i].nir) && pipeline->shaders[i]) { radv_dump_shader_stats(device, pipeline, i, stderr); } ralloc_free(stages[i].nir); } } done: pipeline_feedback.duration = os_time_get_nano() - pipeline_start; if (creation_feedback) { *creation_feedback->pPipelineCreationFeedback = pipeline_feedback; uint32_t stage_count = creation_feedback->pipelineStageCreationFeedbackCount; assert(stage_count == 0 || stageCount == stage_count); for (uint32_t i = 0; i < stage_count; i++) { gl_shader_stage s = vk_to_mesa_shader_stage(pStages[i].stage); creation_feedback->pPipelineStageCreationFeedbacks[i] = stages[s].feedback; } } return result; } static uint32_t radv_pipeline_stage_to_user_data_0(struct radv_graphics_pipeline *pipeline, gl_shader_stage stage, enum amd_gfx_level gfx_level) { bool has_gs = radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY); bool has_tess = radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL); bool has_ngg = radv_pipeline_has_ngg(pipeline); switch (stage) { case MESA_SHADER_FRAGMENT: return R_00B030_SPI_SHADER_USER_DATA_PS_0; case MESA_SHADER_VERTEX: if (has_tess) { if (gfx_level >= GFX10) { return R_00B430_SPI_SHADER_USER_DATA_HS_0; } else if (gfx_level == GFX9) { return R_00B430_SPI_SHADER_USER_DATA_LS_0; } else { return R_00B530_SPI_SHADER_USER_DATA_LS_0; } } if (has_gs) { if (gfx_level >= GFX10) { return R_00B230_SPI_SHADER_USER_DATA_GS_0; } else { return R_00B330_SPI_SHADER_USER_DATA_ES_0; } } if (has_ngg) return R_00B230_SPI_SHADER_USER_DATA_GS_0; return R_00B130_SPI_SHADER_USER_DATA_VS_0; case MESA_SHADER_GEOMETRY: return gfx_level == GFX9 ? R_00B330_SPI_SHADER_USER_DATA_ES_0 : R_00B230_SPI_SHADER_USER_DATA_GS_0; case MESA_SHADER_COMPUTE: case MESA_SHADER_TASK: return R_00B900_COMPUTE_USER_DATA_0; case MESA_SHADER_TESS_CTRL: return gfx_level == GFX9 ? R_00B430_SPI_SHADER_USER_DATA_LS_0 : R_00B430_SPI_SHADER_USER_DATA_HS_0; case MESA_SHADER_TESS_EVAL: if (has_gs) { return gfx_level >= GFX10 ? R_00B230_SPI_SHADER_USER_DATA_GS_0 : R_00B330_SPI_SHADER_USER_DATA_ES_0; } else if (has_ngg) { return R_00B230_SPI_SHADER_USER_DATA_GS_0; } else { return R_00B130_SPI_SHADER_USER_DATA_VS_0; } case MESA_SHADER_MESH: assert(has_ngg); return R_00B230_SPI_SHADER_USER_DATA_GS_0; default: unreachable("unknown shader"); } } struct radv_bin_size_entry { unsigned bpp; VkExtent2D extent; }; static VkExtent2D radv_gfx9_compute_bin_size(const struct radv_graphics_pipeline *pipeline, const struct radv_graphics_pipeline_info *info) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; static const struct radv_bin_size_entry color_size_table[][3][9] = { { /* One RB / SE */ { /* One shader engine */ {0, {128, 128}}, {1, {64, 128}}, {2, {32, 128}}, {3, {16, 128}}, {17, {0, 0}}, {UINT_MAX, {0, 0}}, }, { /* Two shader engines */ {0, {128, 128}}, {2, {64, 128}}, {3, {32, 128}}, {5, {16, 128}}, {17, {0, 0}}, {UINT_MAX, {0, 0}}, }, { /* Four shader engines */ {0, {128, 128}}, {3, {64, 128}}, {5, {16, 128}}, {17, {0, 0}}, {UINT_MAX, {0, 0}}, }, }, { /* Two RB / SE */ { /* One shader engine */ {0, {128, 128}}, {2, {64, 128}}, {3, {32, 128}}, {5, {16, 128}}, {33, {0, 0}}, {UINT_MAX, {0, 0}}, }, { /* Two shader engines */ {0, {128, 128}}, {3, {64, 128}}, {5, {32, 128}}, {9, {16, 128}}, {33, {0, 0}}, {UINT_MAX, {0, 0}}, }, { /* Four shader engines */ {0, {256, 256}}, {2, {128, 256}}, {3, {128, 128}}, {5, {64, 128}}, {9, {16, 128}}, {33, {0, 0}}, {UINT_MAX, {0, 0}}, }, }, { /* Four RB / SE */ { /* One shader engine */ {0, {128, 256}}, {2, {128, 128}}, {3, {64, 128}}, {5, {32, 128}}, {9, {16, 128}}, {33, {0, 0}}, {UINT_MAX, {0, 0}}, }, { /* Two shader engines */ {0, {256, 256}}, {2, {128, 256}}, {3, {128, 128}}, {5, {64, 128}}, {9, {32, 128}}, {17, {16, 128}}, {33, {0, 0}}, {UINT_MAX, {0, 0}}, }, { /* Four shader engines */ {0, {256, 512}}, {2, {256, 256}}, {3, {128, 256}}, {5, {128, 128}}, {9, {64, 128}}, {17, {16, 128}}, {33, {0, 0}}, {UINT_MAX, {0, 0}}, }, }, }; static const struct radv_bin_size_entry ds_size_table[][3][9] = { { // One RB / SE { // One shader engine {0, {128, 256}}, {2, {128, 128}}, {4, {64, 128}}, {7, {32, 128}}, {13, {16, 128}}, {49, {0, 0}}, {UINT_MAX, {0, 0}}, }, { // Two shader engines {0, {256, 256}}, {2, {128, 256}}, {4, {128, 128}}, {7, {64, 128}}, {13, {32, 128}}, {25, {16, 128}}, {49, {0, 0}}, {UINT_MAX, {0, 0}}, }, { // Four shader engines {0, {256, 512}}, {2, {256, 256}}, {4, {128, 256}}, {7, {128, 128}}, {13, {64, 128}}, {25, {16, 128}}, {49, {0, 0}}, {UINT_MAX, {0, 0}}, }, }, { // Two RB / SE { // One shader engine {0, {256, 256}}, {2, {128, 256}}, {4, {128, 128}}, {7, {64, 128}}, {13, {32, 128}}, {25, {16, 128}}, {97, {0, 0}}, {UINT_MAX, {0, 0}}, }, { // Two shader engines {0, {256, 512}}, {2, {256, 256}}, {4, {128, 256}}, {7, {128, 128}}, {13, {64, 128}}, {25, {32, 128}}, {49, {16, 128}}, {97, {0, 0}}, {UINT_MAX, {0, 0}}, }, { // Four shader engines {0, {512, 512}}, {2, {256, 512}}, {4, {256, 256}}, {7, {128, 256}}, {13, {128, 128}}, {25, {64, 128}}, {49, {16, 128}}, {97, {0, 0}}, {UINT_MAX, {0, 0}}, }, }, { // Four RB / SE { // One shader engine {0, {256, 512}}, {2, {256, 256}}, {4, {128, 256}}, {7, {128, 128}}, {13, {64, 128}}, {25, {32, 128}}, {49, {16, 128}}, {UINT_MAX, {0, 0}}, }, { // Two shader engines {0, {512, 512}}, {2, {256, 512}}, {4, {256, 256}}, {7, {128, 256}}, {13, {128, 128}}, {25, {64, 128}}, {49, {32, 128}}, {97, {16, 128}}, {UINT_MAX, {0, 0}}, }, { // Four shader engines {0, {512, 512}}, {4, {256, 512}}, {7, {256, 256}}, {13, {128, 256}}, {25, {128, 128}}, {49, {64, 128}}, {97, {16, 128}}, {UINT_MAX, {0, 0}}, }, }, }; VkExtent2D extent = {512, 512}; unsigned log_num_rb_per_se = util_logbase2_ceil(pdevice->rad_info.max_render_backends / pdevice->rad_info.max_se); unsigned log_num_se = util_logbase2_ceil(pdevice->rad_info.max_se); unsigned total_samples = 1u << G_028BE0_MSAA_NUM_SAMPLES(pipeline->ms.pa_sc_aa_config); unsigned ps_iter_samples = 1u << G_028804_PS_ITER_SAMPLES(pipeline->ms.db_eqaa); unsigned effective_samples = total_samples; unsigned color_bytes_per_pixel = 0; for (unsigned i = 0; i < info->ri.color_att_count; i++) { if (!info->cb.att[i].color_write_mask) continue; if (info->ri.color_att_formats[i] == VK_FORMAT_UNDEFINED) continue; color_bytes_per_pixel += vk_format_get_blocksize(info->ri.color_att_formats[i]); } /* MSAA images typically don't use all samples all the time. */ if (effective_samples >= 2 && ps_iter_samples <= 1) effective_samples = 2; color_bytes_per_pixel *= effective_samples; const struct radv_bin_size_entry *color_entry = color_size_table[log_num_rb_per_se][log_num_se]; while (color_entry[1].bpp <= color_bytes_per_pixel) ++color_entry; extent = color_entry->extent; if (radv_pipeline_has_ds_attachments(&info->ri)) { /* Coefficients taken from AMDVLK */ unsigned depth_coeff = info->ri.depth_att_format != VK_FORMAT_UNDEFINED ? 5 : 0; unsigned stencil_coeff = info->ri.stencil_att_format != VK_FORMAT_UNDEFINED ? 1 : 0; unsigned ds_bytes_per_pixel = 4 * (depth_coeff + stencil_coeff) * total_samples; const struct radv_bin_size_entry *ds_entry = ds_size_table[log_num_rb_per_se][log_num_se]; while (ds_entry[1].bpp <= ds_bytes_per_pixel) ++ds_entry; if (ds_entry->extent.width * ds_entry->extent.height < extent.width * extent.height) extent = ds_entry->extent; } return extent; } static VkExtent2D radv_gfx10_compute_bin_size(const struct radv_graphics_pipeline *pipeline, const struct radv_graphics_pipeline_info *info) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; VkExtent2D extent = {512, 512}; const unsigned db_tag_size = 64; const unsigned db_tag_count = 312; const unsigned color_tag_size = 1024; const unsigned color_tag_count = 31; const unsigned fmask_tag_size = 256; const unsigned fmask_tag_count = 44; const unsigned rb_count = pdevice->rad_info.max_render_backends; const unsigned pipe_count = MAX2(rb_count, pdevice->rad_info.num_tcc_blocks); const unsigned db_tag_part = (db_tag_count * rb_count / pipe_count) * db_tag_size * pipe_count; const unsigned color_tag_part = (color_tag_count * rb_count / pipe_count) * color_tag_size * pipe_count; const unsigned fmask_tag_part = (fmask_tag_count * rb_count / pipe_count) * fmask_tag_size * pipe_count; const unsigned total_samples = 1u << G_028BE0_MSAA_NUM_SAMPLES(pipeline->ms.pa_sc_aa_config); const unsigned samples_log = util_logbase2_ceil(total_samples); unsigned color_bytes_per_pixel = 0; unsigned fmask_bytes_per_pixel = 0; for (unsigned i = 0; i < info->ri.color_att_count; i++) { if (!info->cb.att[i].color_write_mask) continue; if (info->ri.color_att_formats[i] == VK_FORMAT_UNDEFINED) continue; color_bytes_per_pixel += vk_format_get_blocksize(info->ri.color_att_formats[i]); if (total_samples > 1) { assert(samples_log <= 3); const unsigned fmask_array[] = {0, 1, 1, 4}; fmask_bytes_per_pixel += fmask_array[samples_log]; } } color_bytes_per_pixel *= total_samples; color_bytes_per_pixel = MAX2(color_bytes_per_pixel, 1); const unsigned color_pixel_count_log = util_logbase2(color_tag_part / color_bytes_per_pixel); extent.width = 1ull << ((color_pixel_count_log + 1) / 2); extent.height = 1ull << (color_pixel_count_log / 2); if (fmask_bytes_per_pixel) { const unsigned fmask_pixel_count_log = util_logbase2(fmask_tag_part / fmask_bytes_per_pixel); const VkExtent2D fmask_extent = (VkExtent2D){.width = 1ull << ((fmask_pixel_count_log + 1) / 2), .height = 1ull << (color_pixel_count_log / 2)}; if (fmask_extent.width * fmask_extent.height < extent.width * extent.height) extent = fmask_extent; } if (radv_pipeline_has_ds_attachments(&info->ri)) { /* Coefficients taken from AMDVLK */ unsigned depth_coeff = info->ri.depth_att_format != VK_FORMAT_UNDEFINED ? 5 : 0; unsigned stencil_coeff = info->ri.stencil_att_format != VK_FORMAT_UNDEFINED ? 1 : 0; unsigned db_bytes_per_pixel = (depth_coeff + stencil_coeff) * total_samples; const unsigned db_pixel_count_log = util_logbase2(db_tag_part / db_bytes_per_pixel); const VkExtent2D db_extent = (VkExtent2D){.width = 1ull << ((db_pixel_count_log + 1) / 2), .height = 1ull << (color_pixel_count_log / 2)}; if (db_extent.width * db_extent.height < extent.width * extent.height) extent = db_extent; } extent.width = MAX2(extent.width, 128); extent.height = MAX2(extent.width, 64); return extent; } static void radv_pipeline_init_disabled_binning_state(struct radv_graphics_pipeline *pipeline, const struct radv_graphics_pipeline_info *info) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; uint32_t pa_sc_binner_cntl_0 = S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_LEGACY_SC) | S_028C44_DISABLE_START_OF_PRIM(1); if (pdevice->rad_info.gfx_level >= GFX10) { unsigned min_bytes_per_pixel = 0; for (unsigned i = 0; i < info->ri.color_att_count; i++) { if (!info->cb.att[i].color_write_mask) continue; if (info->ri.color_att_formats[i] == VK_FORMAT_UNDEFINED) continue; unsigned bytes = vk_format_get_blocksize(info->ri.color_att_formats[i]); if (!min_bytes_per_pixel || bytes < min_bytes_per_pixel) min_bytes_per_pixel = bytes; } pa_sc_binner_cntl_0 = S_028C44_BINNING_MODE(V_028C44_DISABLE_BINNING_USE_NEW_SC) | S_028C44_BIN_SIZE_X(0) | S_028C44_BIN_SIZE_Y(0) | S_028C44_BIN_SIZE_X_EXTEND(2) | /* 128 */ S_028C44_BIN_SIZE_Y_EXTEND(min_bytes_per_pixel <= 4 ? 2 : 1) | /* 128 or 64 */ S_028C44_DISABLE_START_OF_PRIM(1); } pipeline->binning.pa_sc_binner_cntl_0 = pa_sc_binner_cntl_0; } struct radv_binning_settings radv_get_binning_settings(const struct radv_physical_device *pdev) { struct radv_binning_settings settings; if (pdev->rad_info.has_dedicated_vram) { if (pdev->rad_info.max_render_backends > 4) { settings.context_states_per_bin = 1; settings.persistent_states_per_bin = 1; } else { settings.context_states_per_bin = 3; settings.persistent_states_per_bin = 8; } settings.fpovs_per_batch = 63; } else { /* The context states are affected by the scissor bug. */ settings.context_states_per_bin = 6; /* 32 causes hangs for RAVEN. */ settings.persistent_states_per_bin = 16; settings.fpovs_per_batch = 63; } if (pdev->rad_info.has_gfx9_scissor_bug) settings.context_states_per_bin = 1; return settings; } static void radv_pipeline_init_binning_state(struct radv_graphics_pipeline *pipeline, const struct radv_blend_state *blend, const struct radv_graphics_pipeline_info *info) { const struct radv_device *device = pipeline->base.device; if (device->physical_device->rad_info.gfx_level < GFX9) return; VkExtent2D bin_size; if (device->physical_device->rad_info.gfx_level >= GFX10) { bin_size = radv_gfx10_compute_bin_size(pipeline, info); } else if (device->physical_device->rad_info.gfx_level == GFX9) { bin_size = radv_gfx9_compute_bin_size(pipeline, info); } else unreachable("Unhandled generation for binning bin size calculation"); if (device->pbb_allowed && bin_size.width && bin_size.height) { struct radv_binning_settings settings = radv_get_binning_settings(device->physical_device); const uint32_t pa_sc_binner_cntl_0 = S_028C44_BINNING_MODE(V_028C44_BINNING_ALLOWED) | S_028C44_BIN_SIZE_X(bin_size.width == 16) | S_028C44_BIN_SIZE_Y(bin_size.height == 16) | S_028C44_BIN_SIZE_X_EXTEND(util_logbase2(MAX2(bin_size.width, 32)) - 5) | S_028C44_BIN_SIZE_Y_EXTEND(util_logbase2(MAX2(bin_size.height, 32)) - 5) | S_028C44_CONTEXT_STATES_PER_BIN(settings.context_states_per_bin - 1) | S_028C44_PERSISTENT_STATES_PER_BIN(settings.persistent_states_per_bin - 1) | S_028C44_DISABLE_START_OF_PRIM(1) | S_028C44_FPOVS_PER_BATCH(settings.fpovs_per_batch) | S_028C44_OPTIMAL_BIN_SELECTION(1); pipeline->binning.pa_sc_binner_cntl_0 = pa_sc_binner_cntl_0; } else radv_pipeline_init_disabled_binning_state(pipeline, info); } static void radv_pipeline_emit_depth_stencil_state(struct radeon_cmdbuf *ctx_cs, const struct radv_depth_stencil_state *ds_state) { radeon_set_context_reg(ctx_cs, R_028000_DB_RENDER_CONTROL, ds_state->db_render_control); radeon_set_context_reg_seq(ctx_cs, R_02800C_DB_RENDER_OVERRIDE, 2); radeon_emit(ctx_cs, ds_state->db_render_override); radeon_emit(ctx_cs, ds_state->db_render_override2); } static void radv_pipeline_emit_blend_state(struct radeon_cmdbuf *ctx_cs, const struct radv_graphics_pipeline *pipeline, const struct radv_blend_state *blend) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; radeon_set_context_reg_seq(ctx_cs, R_028780_CB_BLEND0_CONTROL, 8); radeon_emit_array(ctx_cs, blend->cb_blend_control, 8); radeon_set_context_reg(ctx_cs, R_028B70_DB_ALPHA_TO_MASK, blend->db_alpha_to_mask); if (pdevice->rad_info.has_rbplus) { radeon_set_context_reg_seq(ctx_cs, R_028760_SX_MRT0_BLEND_OPT, 8); radeon_emit_array(ctx_cs, blend->sx_mrt_blend_opt, 8); } radeon_set_context_reg(ctx_cs, R_028714_SPI_SHADER_COL_FORMAT, blend->spi_shader_col_format); radeon_set_context_reg(ctx_cs, R_02823C_CB_SHADER_MASK, blend->cb_shader_mask); } static void radv_pipeline_emit_raster_state(struct radeon_cmdbuf *ctx_cs, const struct radv_graphics_pipeline *pipeline, const struct radv_graphics_pipeline_info *info) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; const VkConservativeRasterizationModeEXT mode = info->rs.conservative_mode; uint32_t pa_sc_conservative_rast = S_028C4C_NULL_SQUAD_AA_MASK_ENABLE(1); if (pdevice->rad_info.gfx_level >= GFX9) { /* Conservative rasterization. */ if (mode != VK_CONSERVATIVE_RASTERIZATION_MODE_DISABLED_EXT) { pa_sc_conservative_rast = S_028C4C_PREZ_AA_MASK_ENABLE(1) | S_028C4C_POSTZ_AA_MASK_ENABLE(1) | S_028C4C_CENTROID_SAMPLE_OVERRIDE(1); if (mode == VK_CONSERVATIVE_RASTERIZATION_MODE_OVERESTIMATE_EXT) { pa_sc_conservative_rast |= S_028C4C_OVER_RAST_ENABLE(1) | S_028C4C_OVER_RAST_SAMPLE_SELECT(0) | S_028C4C_UNDER_RAST_ENABLE(0) | S_028C4C_UNDER_RAST_SAMPLE_SELECT(1) | S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(1); } else { assert(mode == VK_CONSERVATIVE_RASTERIZATION_MODE_UNDERESTIMATE_EXT); pa_sc_conservative_rast |= S_028C4C_OVER_RAST_ENABLE(0) | S_028C4C_OVER_RAST_SAMPLE_SELECT(1) | S_028C4C_UNDER_RAST_ENABLE(1) | S_028C4C_UNDER_RAST_SAMPLE_SELECT(0) | S_028C4C_PBB_UNCERTAINTY_REGION_ENABLE(0); } } radeon_set_context_reg(ctx_cs, R_028C4C_PA_SC_CONSERVATIVE_RASTERIZATION_CNTL, pa_sc_conservative_rast); } } static void radv_pipeline_emit_multisample_state(struct radeon_cmdbuf *ctx_cs, const struct radv_graphics_pipeline *pipeline) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; const struct radv_multisample_state *ms = &pipeline->ms; radeon_set_context_reg_seq(ctx_cs, R_028C38_PA_SC_AA_MASK_X0Y0_X1Y0, 2); radeon_emit(ctx_cs, ms->pa_sc_aa_mask[0]); radeon_emit(ctx_cs, ms->pa_sc_aa_mask[1]); radeon_set_context_reg(ctx_cs, R_028804_DB_EQAA, ms->db_eqaa); radeon_set_context_reg(ctx_cs, R_028BE0_PA_SC_AA_CONFIG, ms->pa_sc_aa_config); radeon_set_context_reg_seq(ctx_cs, R_028A48_PA_SC_MODE_CNTL_0, 2); radeon_emit(ctx_cs, ms->pa_sc_mode_cntl_0); radeon_emit(ctx_cs, ms->pa_sc_mode_cntl_1); /* The exclusion bits can be set to improve rasterization efficiency * if no sample lies on the pixel boundary (-8 sample offset). It's * currently always TRUE because the driver doesn't support 16 samples. */ bool exclusion = pdevice->rad_info.gfx_level >= GFX7; radeon_set_context_reg( ctx_cs, R_02882C_PA_SU_PRIM_FILTER_CNTL, S_02882C_XMAX_RIGHT_EXCLUSION(exclusion) | S_02882C_YMAX_BOTTOM_EXCLUSION(exclusion)); } static void radv_pipeline_emit_vgt_gs_mode(struct radeon_cmdbuf *ctx_cs, const struct radv_graphics_pipeline *pipeline) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); const struct radv_shader *vs = pipeline->base.shaders[MESA_SHADER_TESS_EVAL] ? pipeline->base.shaders[MESA_SHADER_TESS_EVAL] : pipeline->base.shaders[MESA_SHADER_VERTEX]; unsigned vgt_primitiveid_en = 0; uint32_t vgt_gs_mode = 0; if (radv_pipeline_has_ngg(pipeline)) return; if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) { const struct radv_shader *gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY]; vgt_gs_mode = ac_vgt_gs_mode(gs->info.gs.vertices_out, pdevice->rad_info.gfx_level); } else if (outinfo->export_prim_id || vs->info.uses_prim_id) { vgt_gs_mode = S_028A40_MODE(V_028A40_GS_SCENARIO_A); vgt_primitiveid_en |= S_028A84_PRIMITIVEID_EN(1); } radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN, vgt_primitiveid_en); radeon_set_context_reg(ctx_cs, R_028A40_VGT_GS_MODE, vgt_gs_mode); } static void radv_pipeline_emit_hw_vs(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, const struct radv_graphics_pipeline *pipeline, const struct radv_shader *shader) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; uint64_t va = radv_shader_get_va(shader); radeon_set_sh_reg_seq(cs, R_00B120_SPI_SHADER_PGM_LO_VS, 4); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B124_MEM_BASE(va >> 40)); radeon_emit(cs, shader->config.rsrc1); radeon_emit(cs, shader->config.rsrc2); const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); unsigned clip_dist_mask, cull_dist_mask, total_mask; clip_dist_mask = outinfo->clip_dist_mask; cull_dist_mask = outinfo->cull_dist_mask; total_mask = clip_dist_mask | cull_dist_mask; bool misc_vec_ena = outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index || outinfo->writes_primitive_shading_rate; unsigned spi_vs_out_config, nparams; /* VS is required to export at least one param. */ nparams = MAX2(outinfo->param_exports, 1); spi_vs_out_config = S_0286C4_VS_EXPORT_COUNT(nparams - 1); if (pdevice->rad_info.gfx_level >= GFX10) { spi_vs_out_config |= S_0286C4_NO_PC_EXPORT(outinfo->param_exports == 0); } radeon_set_context_reg(ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG, spi_vs_out_config); radeon_set_context_reg( ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT, S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) | S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) | S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) | S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE)); radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL, S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) | S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) | S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) | S_02881C_USE_VTX_VRS_RATE(outinfo->writes_primitive_shading_rate) | S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) | S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) | S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) | S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) | total_mask << 8 | clip_dist_mask); if (pdevice->rad_info.gfx_level <= GFX8) radeon_set_context_reg(ctx_cs, R_028AB4_VGT_REUSE_OFF, outinfo->writes_viewport_index); unsigned late_alloc_wave64, cu_mask; ac_compute_late_alloc(&pdevice->rad_info, false, false, shader->config.scratch_bytes_per_wave > 0, &late_alloc_wave64, &cu_mask); if (pdevice->rad_info.gfx_level >= GFX7) { if (pdevice->rad_info.gfx_level >= GFX10) { ac_set_reg_cu_en(cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS, S_00B118_CU_EN(cu_mask) | S_00B118_WAVE_LIMIT(0x3F), C_00B118_CU_EN, 0, &pdevice->rad_info, (void*)gfx10_set_sh_reg_idx3); } else { radeon_set_sh_reg_idx(pdevice, cs, R_00B118_SPI_SHADER_PGM_RSRC3_VS, 3, S_00B118_CU_EN(cu_mask) | S_00B118_WAVE_LIMIT(0x3F)); } radeon_set_sh_reg(cs, R_00B11C_SPI_SHADER_LATE_ALLOC_VS, S_00B11C_LIMIT(late_alloc_wave64)); } if (pdevice->rad_info.gfx_level >= GFX10) { uint32_t oversub_pc_lines = late_alloc_wave64 ? pdevice->rad_info.pc_lines / 4 : 0; gfx10_emit_ge_pc_alloc(cs, pdevice->rad_info.gfx_level, oversub_pc_lines); } } static void radv_pipeline_emit_hw_es(struct radeon_cmdbuf *cs, const struct radv_graphics_pipeline *pipeline, const struct radv_shader *shader) { uint64_t va = radv_shader_get_va(shader); radeon_set_sh_reg_seq(cs, R_00B320_SPI_SHADER_PGM_LO_ES, 4); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B324_MEM_BASE(va >> 40)); radeon_emit(cs, shader->config.rsrc1); radeon_emit(cs, shader->config.rsrc2); } static void radv_pipeline_emit_hw_ls(struct radeon_cmdbuf *cs, const struct radv_graphics_pipeline *pipeline, const struct radv_shader *shader) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; unsigned num_lds_blocks = pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.tcs.num_lds_blocks; uint64_t va = radv_shader_get_va(shader); uint32_t rsrc2 = shader->config.rsrc2; radeon_set_sh_reg(cs, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8); rsrc2 |= S_00B52C_LDS_SIZE(num_lds_blocks); if (pdevice->rad_info.gfx_level == GFX7 && pdevice->rad_info.family != CHIP_HAWAII) radeon_set_sh_reg(cs, R_00B52C_SPI_SHADER_PGM_RSRC2_LS, rsrc2); radeon_set_sh_reg_seq(cs, R_00B528_SPI_SHADER_PGM_RSRC1_LS, 2); radeon_emit(cs, shader->config.rsrc1); radeon_emit(cs, rsrc2); } static void radv_pipeline_emit_hw_ngg(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, const struct radv_graphics_pipeline *pipeline, const struct radv_shader *shader) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; uint64_t va = radv_shader_get_va(shader); gl_shader_stage es_type = radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH) ? MESA_SHADER_MESH : radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL) ? MESA_SHADER_TESS_EVAL : MESA_SHADER_VERTEX; struct radv_shader *es = pipeline->base.shaders[es_type]; const struct gfx10_ngg_info *ngg_state = &shader->info.ngg_info; radeon_set_sh_reg(cs, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8); radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2); radeon_emit(cs, shader->config.rsrc1); radeon_emit(cs, shader->config.rsrc2); const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); unsigned clip_dist_mask, cull_dist_mask, total_mask; clip_dist_mask = outinfo->clip_dist_mask; cull_dist_mask = outinfo->cull_dist_mask; total_mask = clip_dist_mask | cull_dist_mask; bool misc_vec_ena = outinfo->writes_pointsize || outinfo->writes_layer || outinfo->writes_viewport_index || outinfo->writes_primitive_shading_rate; bool es_enable_prim_id = outinfo->export_prim_id || (es && es->info.uses_prim_id); bool break_wave_at_eoi = false; unsigned ge_cntl; if (es_type == MESA_SHADER_TESS_EVAL) { struct radv_shader *gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY]; if (es_enable_prim_id || (gs && gs->info.uses_prim_id)) break_wave_at_eoi = true; } bool no_pc_export = outinfo->param_exports == 0 && outinfo->prim_param_exports == 0; unsigned num_params = MAX2(outinfo->param_exports, 1); unsigned num_prim_params = outinfo->prim_param_exports; radeon_set_context_reg( ctx_cs, R_0286C4_SPI_VS_OUT_CONFIG, S_0286C4_VS_EXPORT_COUNT(num_params - 1) | S_0286C4_PRIM_EXPORT_COUNT(num_prim_params) | S_0286C4_NO_PC_EXPORT(no_pc_export)); unsigned idx_format = V_028708_SPI_SHADER_1COMP; if (outinfo->writes_layer_per_primitive || outinfo->writes_viewport_index_per_primitive || outinfo->writes_primitive_shading_rate_per_primitive) idx_format = V_028708_SPI_SHADER_2COMP; radeon_set_context_reg(ctx_cs, R_028708_SPI_SHADER_IDX_FORMAT, S_028708_IDX0_EXPORT_FORMAT(idx_format)); radeon_set_context_reg( ctx_cs, R_02870C_SPI_SHADER_POS_FORMAT, S_02870C_POS0_EXPORT_FORMAT(V_02870C_SPI_SHADER_4COMP) | S_02870C_POS1_EXPORT_FORMAT(outinfo->pos_exports > 1 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) | S_02870C_POS2_EXPORT_FORMAT(outinfo->pos_exports > 2 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE) | S_02870C_POS3_EXPORT_FORMAT(outinfo->pos_exports > 3 ? V_02870C_SPI_SHADER_4COMP : V_02870C_SPI_SHADER_NONE)); radeon_set_context_reg(ctx_cs, R_02881C_PA_CL_VS_OUT_CNTL, S_02881C_USE_VTX_POINT_SIZE(outinfo->writes_pointsize) | S_02881C_USE_VTX_RENDER_TARGET_INDX(outinfo->writes_layer) | S_02881C_USE_VTX_VIEWPORT_INDX(outinfo->writes_viewport_index) | S_02881C_USE_VTX_VRS_RATE(outinfo->writes_primitive_shading_rate) | S_02881C_VS_OUT_MISC_VEC_ENA(misc_vec_ena) | S_02881C_VS_OUT_MISC_SIDE_BUS_ENA(misc_vec_ena) | S_02881C_VS_OUT_CCDIST0_VEC_ENA((total_mask & 0x0f) != 0) | S_02881C_VS_OUT_CCDIST1_VEC_ENA((total_mask & 0xf0) != 0) | total_mask << 8 | clip_dist_mask); radeon_set_context_reg(ctx_cs, R_028A84_VGT_PRIMITIVEID_EN, S_028A84_PRIMITIVEID_EN(es_enable_prim_id) | S_028A84_NGG_DISABLE_PROVOK_REUSE(outinfo->export_prim_id)); radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE, ngg_state->vgt_esgs_ring_itemsize); /* NGG specific registers. */ struct radv_shader *gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY]; uint32_t gs_num_invocations = gs ? gs->info.gs.invocations : 1; if (pdevice->rad_info.gfx_level < GFX11) { radeon_set_context_reg( ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, S_028A44_ES_VERTS_PER_SUBGRP(ngg_state->hw_max_esverts) | S_028A44_GS_PRIMS_PER_SUBGRP(ngg_state->max_gsprims) | S_028A44_GS_INST_PRIMS_IN_SUBGRP(ngg_state->max_gsprims * gs_num_invocations)); } radeon_set_context_reg(ctx_cs, R_0287FC_GE_MAX_OUTPUT_PER_SUBGROUP, S_0287FC_MAX_VERTS_PER_SUBGROUP(ngg_state->max_out_verts)); radeon_set_context_reg(ctx_cs, R_028B4C_GE_NGG_SUBGRP_CNTL, S_028B4C_PRIM_AMP_FACTOR(ngg_state->prim_amp_factor) | S_028B4C_THDS_PER_SUBGRP(0)); /* for fast launch */ radeon_set_context_reg( ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT, S_028B90_CNT(gs_num_invocations) | S_028B90_ENABLE(gs_num_invocations > 1) | S_028B90_EN_MAX_VERT_OUT_PER_GS_INSTANCE(ngg_state->max_vert_out_per_gs_instance)); if (pdevice->rad_info.gfx_level >= GFX11) { ge_cntl = S_03096C_PRIMS_PER_SUBGRP(ngg_state->max_gsprims) | S_03096C_VERTS_PER_SUBGRP(ngg_state->enable_vertex_grouping ? ngg_state->hw_max_esverts : 256) | /* 256 = disable vertex grouping */ S_03096C_BREAK_PRIMGRP_AT_EOI(break_wave_at_eoi) | S_03096C_PRIM_GRP_SIZE_GFX11(256); } else { ge_cntl = S_03096C_PRIM_GRP_SIZE_GFX10(ngg_state->max_gsprims) | S_03096C_VERT_GRP_SIZE(ngg_state->enable_vertex_grouping ? ngg_state->hw_max_esverts : 256) | /* 256 = disable vertex grouping */ S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi); } /* Bug workaround for a possible hang with non-tessellation cases. * Tessellation always sets GE_CNTL.VERT_GRP_SIZE = 0 * * Requirement: GE_CNTL.VERT_GRP_SIZE = VGT_GS_ONCHIP_CNTL.ES_VERTS_PER_SUBGRP - 5 */ if (pdevice->rad_info.gfx_level == GFX10 && !radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL) && ngg_state->hw_max_esverts != 256) { ge_cntl &= C_03096C_VERT_GRP_SIZE; if (ngg_state->hw_max_esverts > 5) { ge_cntl |= S_03096C_VERT_GRP_SIZE(ngg_state->hw_max_esverts - 5); } } radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL, ge_cntl); unsigned late_alloc_wave64, cu_mask; ac_compute_late_alloc(&pdevice->rad_info, true, shader->info.has_ngg_culling, shader->config.scratch_bytes_per_wave > 0, &late_alloc_wave64, &cu_mask); if (pdevice->rad_info.gfx_level >= GFX11) { /* TODO: figure out how S_00B204_CU_EN_GFX11 interacts with ac_set_reg_cu_en */ gfx10_set_sh_reg_idx3(cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, S_00B21C_CU_EN(cu_mask) | S_00B21C_WAVE_LIMIT(0x3F)); gfx10_set_sh_reg_idx3( cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, S_00B204_CU_EN_GFX11(0x1) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64)); } else if (pdevice->rad_info.gfx_level >= GFX10) { ac_set_reg_cu_en(cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, S_00B21C_CU_EN(cu_mask) | S_00B21C_WAVE_LIMIT(0x3F), C_00B21C_CU_EN, 0, &pdevice->rad_info, (void*)gfx10_set_sh_reg_idx3); ac_set_reg_cu_en(cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64), C_00B204_CU_EN_GFX10, 16, &pdevice->rad_info, (void*)gfx10_set_sh_reg_idx3); } else { radeon_set_sh_reg_idx( pdevice, cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, 3, S_00B21C_CU_EN(cu_mask) | S_00B21C_WAVE_LIMIT(0x3F)); radeon_set_sh_reg_idx( pdevice, cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3, S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(late_alloc_wave64)); } uint32_t oversub_pc_lines = late_alloc_wave64 ? pdevice->rad_info.pc_lines / 4 : 0; if (shader->info.has_ngg_culling) { unsigned oversub_factor = 2; if (outinfo->param_exports > 4) oversub_factor = 4; else if (outinfo->param_exports > 2) oversub_factor = 3; oversub_pc_lines *= oversub_factor; } gfx10_emit_ge_pc_alloc(cs, pdevice->rad_info.gfx_level, oversub_pc_lines); } static void radv_pipeline_emit_hw_hs(struct radeon_cmdbuf *cs, const struct radv_graphics_pipeline *pipeline, const struct radv_shader *shader) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; uint64_t va = radv_shader_get_va(shader); if (pdevice->rad_info.gfx_level >= GFX9) { if (pdevice->rad_info.gfx_level >= GFX10) { radeon_set_sh_reg(cs, R_00B520_SPI_SHADER_PGM_LO_LS, va >> 8); } else { radeon_set_sh_reg(cs, R_00B410_SPI_SHADER_PGM_LO_LS, va >> 8); } radeon_set_sh_reg_seq(cs, R_00B428_SPI_SHADER_PGM_RSRC1_HS, 2); radeon_emit(cs, shader->config.rsrc1); radeon_emit(cs, shader->config.rsrc2); } else { radeon_set_sh_reg_seq(cs, R_00B420_SPI_SHADER_PGM_LO_HS, 4); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B424_MEM_BASE(va >> 40)); radeon_emit(cs, shader->config.rsrc1); radeon_emit(cs, shader->config.rsrc2); } } static void radv_pipeline_emit_vertex_shader(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, const struct radv_graphics_pipeline *pipeline) { struct radv_shader *vs; /* Skip shaders merged into HS/GS */ vs = pipeline->base.shaders[MESA_SHADER_VERTEX]; if (!vs) return; if (vs->info.vs.as_ls) radv_pipeline_emit_hw_ls(cs, pipeline, vs); else if (vs->info.vs.as_es) radv_pipeline_emit_hw_es(cs, pipeline, vs); else if (vs->info.is_ngg) radv_pipeline_emit_hw_ngg(ctx_cs, cs, pipeline, vs); else radv_pipeline_emit_hw_vs(ctx_cs, cs, pipeline, vs); } static void radv_pipeline_emit_tess_shaders(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, const struct radv_graphics_pipeline *pipeline) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; struct radv_shader *tes, *tcs; tcs = pipeline->base.shaders[MESA_SHADER_TESS_CTRL]; tes = pipeline->base.shaders[MESA_SHADER_TESS_EVAL]; if (tes) { if (tes->info.is_ngg) { radv_pipeline_emit_hw_ngg(ctx_cs, cs, pipeline, tes); } else if (tes->info.tes.as_es) radv_pipeline_emit_hw_es(cs, pipeline, tes); else radv_pipeline_emit_hw_vs(ctx_cs, cs, pipeline, tes); } radv_pipeline_emit_hw_hs(cs, pipeline, tcs); if (pdevice->rad_info.gfx_level >= GFX10 && !radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY) && !radv_pipeline_has_ngg(pipeline)) { radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, S_028A44_ES_VERTS_PER_SUBGRP(250) | S_028A44_GS_PRIMS_PER_SUBGRP(126) | S_028A44_GS_INST_PRIMS_IN_SUBGRP(126)); } } static void radv_pipeline_emit_tess_state(struct radeon_cmdbuf *ctx_cs, const struct radv_graphics_pipeline *pipeline, const struct radv_graphics_pipeline_info *info) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; struct radv_shader *tes = radv_get_shader(&pipeline->base, MESA_SHADER_TESS_EVAL); unsigned type = 0, partitioning = 0, topology = 0, distribution_mode = 0; unsigned num_tcs_input_cp, num_tcs_output_cp, num_patches; unsigned ls_hs_config; num_tcs_input_cp = info->ts.patch_control_points; num_tcs_output_cp = pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.tcs.tcs_vertices_out; // TCS VERTICES OUT num_patches = pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.num_tess_patches; ls_hs_config = S_028B58_NUM_PATCHES(num_patches) | S_028B58_HS_NUM_INPUT_CP(num_tcs_input_cp) | S_028B58_HS_NUM_OUTPUT_CP(num_tcs_output_cp); if (pdevice->rad_info.gfx_level >= GFX7) { radeon_set_context_reg_idx(ctx_cs, R_028B58_VGT_LS_HS_CONFIG, 2, ls_hs_config); } else { radeon_set_context_reg(ctx_cs, R_028B58_VGT_LS_HS_CONFIG, ls_hs_config); } switch (tes->info.tes._primitive_mode) { case TESS_PRIMITIVE_TRIANGLES: type = V_028B6C_TESS_TRIANGLE; break; case TESS_PRIMITIVE_QUADS: type = V_028B6C_TESS_QUAD; break; case TESS_PRIMITIVE_ISOLINES: type = V_028B6C_TESS_ISOLINE; break; default: break; } switch (tes->info.tes.spacing) { case TESS_SPACING_EQUAL: partitioning = V_028B6C_PART_INTEGER; break; case TESS_SPACING_FRACTIONAL_ODD: partitioning = V_028B6C_PART_FRAC_ODD; break; case TESS_SPACING_FRACTIONAL_EVEN: partitioning = V_028B6C_PART_FRAC_EVEN; break; default: break; } bool ccw = tes->info.tes.ccw; if (info->ts.domain_origin != VK_TESSELLATION_DOMAIN_ORIGIN_UPPER_LEFT) ccw = !ccw; if (tes->info.tes.point_mode) topology = V_028B6C_OUTPUT_POINT; else if (tes->info.tes._primitive_mode == TESS_PRIMITIVE_ISOLINES) topology = V_028B6C_OUTPUT_LINE; else if (ccw) topology = V_028B6C_OUTPUT_TRIANGLE_CCW; else topology = V_028B6C_OUTPUT_TRIANGLE_CW; if (pdevice->rad_info.has_distributed_tess) { if (pdevice->rad_info.family == CHIP_FIJI || pdevice->rad_info.family >= CHIP_POLARIS10) distribution_mode = V_028B6C_TRAPEZOIDS; else distribution_mode = V_028B6C_DONUTS; } else distribution_mode = V_028B6C_NO_DIST; radeon_set_context_reg(ctx_cs, R_028B6C_VGT_TF_PARAM, S_028B6C_TYPE(type) | S_028B6C_PARTITIONING(partitioning) | S_028B6C_TOPOLOGY(topology) | S_028B6C_DISTRIBUTION_MODE(distribution_mode)); } static void radv_pipeline_emit_hw_gs(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, const struct radv_graphics_pipeline *pipeline, const struct radv_shader *gs) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; const struct gfx9_gs_info *gs_state = &gs->info.gs_ring_info; unsigned gs_max_out_vertices; const uint8_t *num_components; uint8_t max_stream; unsigned offset; uint64_t va; gs_max_out_vertices = gs->info.gs.vertices_out; max_stream = gs->info.gs.max_stream; num_components = gs->info.gs.num_stream_output_components; offset = num_components[0] * gs_max_out_vertices; radeon_set_context_reg_seq(ctx_cs, R_028A60_VGT_GSVS_RING_OFFSET_1, 3); radeon_emit(ctx_cs, offset); if (max_stream >= 1) offset += num_components[1] * gs_max_out_vertices; radeon_emit(ctx_cs, offset); if (max_stream >= 2) offset += num_components[2] * gs_max_out_vertices; radeon_emit(ctx_cs, offset); if (max_stream >= 3) offset += num_components[3] * gs_max_out_vertices; radeon_set_context_reg(ctx_cs, R_028AB0_VGT_GSVS_RING_ITEMSIZE, offset); radeon_set_context_reg_seq(ctx_cs, R_028B5C_VGT_GS_VERT_ITEMSIZE, 4); radeon_emit(ctx_cs, num_components[0]); radeon_emit(ctx_cs, (max_stream >= 1) ? num_components[1] : 0); radeon_emit(ctx_cs, (max_stream >= 2) ? num_components[2] : 0); radeon_emit(ctx_cs, (max_stream >= 3) ? num_components[3] : 0); uint32_t gs_num_invocations = gs->info.gs.invocations; radeon_set_context_reg( ctx_cs, R_028B90_VGT_GS_INSTANCE_CNT, S_028B90_CNT(MIN2(gs_num_invocations, 127)) | S_028B90_ENABLE(gs_num_invocations > 0)); radeon_set_context_reg(ctx_cs, R_028AAC_VGT_ESGS_RING_ITEMSIZE, gs_state->vgt_esgs_ring_itemsize); va = radv_shader_get_va(gs); if (pdevice->rad_info.gfx_level >= GFX9) { if (pdevice->rad_info.gfx_level >= GFX10) { radeon_set_sh_reg(cs, R_00B320_SPI_SHADER_PGM_LO_ES, va >> 8); } else { radeon_set_sh_reg(cs, R_00B210_SPI_SHADER_PGM_LO_ES, va >> 8); } radeon_set_sh_reg_seq(cs, R_00B228_SPI_SHADER_PGM_RSRC1_GS, 2); radeon_emit(cs, gs->config.rsrc1); radeon_emit(cs, gs->config.rsrc2 | S_00B22C_LDS_SIZE(gs_state->lds_size)); radeon_set_context_reg(ctx_cs, R_028A44_VGT_GS_ONCHIP_CNTL, gs_state->vgt_gs_onchip_cntl); radeon_set_context_reg(ctx_cs, R_028A94_VGT_GS_MAX_PRIMS_PER_SUBGROUP, gs_state->vgt_gs_max_prims_per_subgroup); } else { radeon_set_sh_reg_seq(cs, R_00B220_SPI_SHADER_PGM_LO_GS, 4); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B224_MEM_BASE(va >> 40)); radeon_emit(cs, gs->config.rsrc1); radeon_emit(cs, gs->config.rsrc2); } if (pdevice->rad_info.gfx_level >= GFX10) { ac_set_reg_cu_en(cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, S_00B21C_CU_EN(0xffff) | S_00B21C_WAVE_LIMIT(0x3F), C_00B21C_CU_EN, 0, &pdevice->rad_info, (void*)gfx10_set_sh_reg_idx3); ac_set_reg_cu_en(cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0), C_00B204_CU_EN_GFX10, 16, &pdevice->rad_info, (void*)gfx10_set_sh_reg_idx3); } else if (pdevice->rad_info.gfx_level >= GFX7) { radeon_set_sh_reg_idx( pdevice, cs, R_00B21C_SPI_SHADER_PGM_RSRC3_GS, 3, S_00B21C_CU_EN(0xffff) | S_00B21C_WAVE_LIMIT(0x3F)); if (pdevice->rad_info.gfx_level >= GFX10) { radeon_set_sh_reg_idx( pdevice, cs, R_00B204_SPI_SHADER_PGM_RSRC4_GS, 3, S_00B204_CU_EN_GFX10(0xffff) | S_00B204_SPI_SHADER_LATE_ALLOC_GS_GFX10(0)); } } radv_pipeline_emit_hw_vs(ctx_cs, cs, pipeline, pipeline->base.gs_copy_shader); } static void radv_pipeline_emit_geometry_shader(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, const struct radv_graphics_pipeline *pipeline) { struct radv_shader *gs; gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY]; if (!gs) return; if (gs->info.is_ngg) radv_pipeline_emit_hw_ngg(ctx_cs, cs, pipeline, gs); else radv_pipeline_emit_hw_gs(ctx_cs, cs, pipeline, gs); radeon_set_context_reg(ctx_cs, R_028B38_VGT_GS_MAX_VERT_OUT, gs->info.gs.vertices_out); } static void radv_pipeline_emit_mesh_shader(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, const struct radv_graphics_pipeline *pipeline) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; struct radv_shader *ms = pipeline->base.shaders[MESA_SHADER_MESH]; if (!ms) return; radv_pipeline_emit_hw_ngg(ctx_cs, cs, pipeline, ms); radeon_set_context_reg(ctx_cs, R_028B38_VGT_GS_MAX_VERT_OUT, ms->info.workgroup_size); radeon_set_uconfig_reg_idx(pdevice, ctx_cs, R_030908_VGT_PRIMITIVE_TYPE, 1, V_008958_DI_PT_POINTLIST); } static uint32_t offset_to_ps_input(uint32_t offset, bool flat_shade, bool explicit, bool float16) { uint32_t ps_input_cntl; if (offset <= AC_EXP_PARAM_OFFSET_31) { ps_input_cntl = S_028644_OFFSET(offset); if (flat_shade || explicit) ps_input_cntl |= S_028644_FLAT_SHADE(1); if (explicit) { /* Force parameter cache to be read in passthrough * mode. */ ps_input_cntl |= S_028644_OFFSET(1 << 5); } if (float16) { ps_input_cntl |= S_028644_FP16_INTERP_MODE(1) | S_028644_ATTR0_VALID(1); } } else { /* The input is a DEFAULT_VAL constant. */ assert(offset >= AC_EXP_PARAM_DEFAULT_VAL_0000 && offset <= AC_EXP_PARAM_DEFAULT_VAL_1111); offset -= AC_EXP_PARAM_DEFAULT_VAL_0000; ps_input_cntl = S_028644_OFFSET(0x20) | S_028644_DEFAULT_VAL(offset); } return ps_input_cntl; } static void single_slot_to_ps_input(const struct radv_vs_output_info *outinfo, unsigned slot, uint32_t *ps_input_cntl, unsigned *ps_offset, bool skip_undef, bool use_default_0, bool flat_shade) { unsigned vs_offset = outinfo->vs_output_param_offset[slot]; if (vs_offset == AC_EXP_PARAM_UNDEFINED) { if (skip_undef) return; else if (use_default_0) vs_offset = AC_EXP_PARAM_DEFAULT_VAL_0000; else unreachable("vs_offset should not be AC_EXP_PARAM_UNDEFINED."); } ps_input_cntl[*ps_offset] = offset_to_ps_input(vs_offset, flat_shade, false, false); ++(*ps_offset); } static void input_mask_to_ps_inputs(const struct radv_vs_output_info *outinfo, const struct radv_shader *ps, uint32_t input_mask, uint32_t *ps_input_cntl, unsigned *ps_offset) { u_foreach_bit(i, input_mask) { unsigned vs_offset = outinfo->vs_output_param_offset[VARYING_SLOT_VAR0 + i]; if (vs_offset == AC_EXP_PARAM_UNDEFINED) { ps_input_cntl[*ps_offset] = S_028644_OFFSET(0x20); ++(*ps_offset); continue; } bool flat_shade = !!(ps->info.ps.flat_shaded_mask & (1u << *ps_offset)); bool explicit = !!(ps->info.ps.explicit_shaded_mask & (1u << *ps_offset)); bool float16 = !!(ps->info.ps.float16_shaded_mask & (1u << *ps_offset)); ps_input_cntl[*ps_offset] = offset_to_ps_input(vs_offset, flat_shade, explicit, float16); ++(*ps_offset); } } static void radv_pipeline_emit_ps_inputs(struct radeon_cmdbuf *ctx_cs, const struct radv_graphics_pipeline *pipeline) { struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT]; const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); bool mesh = radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH); uint32_t ps_input_cntl[32]; unsigned ps_offset = 0; if (ps->info.ps.prim_id_input && !mesh) single_slot_to_ps_input(outinfo, VARYING_SLOT_PRIMITIVE_ID, ps_input_cntl, &ps_offset, true, false, true); if (ps->info.ps.layer_input && !mesh) single_slot_to_ps_input(outinfo, VARYING_SLOT_LAYER, ps_input_cntl, &ps_offset, false, true, true); if (ps->info.ps.viewport_index_input && !mesh) single_slot_to_ps_input(outinfo, VARYING_SLOT_VIEWPORT, ps_input_cntl, &ps_offset, false, false, true); if (ps->info.ps.has_pcoord) ps_input_cntl[ps_offset++] = S_028644_PT_SPRITE_TEX(1) | S_028644_OFFSET(0x20); if (ps->info.ps.num_input_clips_culls) { single_slot_to_ps_input(outinfo, VARYING_SLOT_CLIP_DIST0, ps_input_cntl, &ps_offset, true, false, false); if (ps->info.ps.num_input_clips_culls > 4) single_slot_to_ps_input(outinfo, VARYING_SLOT_CLIP_DIST1, ps_input_cntl, &ps_offset, true, false, false); } input_mask_to_ps_inputs(outinfo, ps, ps->info.ps.input_mask, ps_input_cntl, &ps_offset); /* Per-primitive PS inputs: the HW needs these to be last. */ if (ps->info.ps.prim_id_input && mesh) single_slot_to_ps_input(outinfo, VARYING_SLOT_PRIMITIVE_ID, ps_input_cntl, &ps_offset, true, false, false); if (ps->info.ps.layer_input && mesh) single_slot_to_ps_input(outinfo, VARYING_SLOT_LAYER, ps_input_cntl, &ps_offset, false, true, false); if (ps->info.ps.viewport_index_input && mesh) single_slot_to_ps_input(outinfo, VARYING_SLOT_VIEWPORT, ps_input_cntl, &ps_offset, false, false, false); input_mask_to_ps_inputs(outinfo, ps, ps->info.ps.input_per_primitive_mask, ps_input_cntl, &ps_offset); if (ps_offset) { radeon_set_context_reg_seq(ctx_cs, R_028644_SPI_PS_INPUT_CNTL_0, ps_offset); for (unsigned i = 0; i < ps_offset; i++) { radeon_emit(ctx_cs, ps_input_cntl[i]); } } } static uint32_t radv_compute_db_shader_control(const struct radv_physical_device *pdevice, const struct radv_graphics_pipeline *pipeline, const struct radv_shader *ps) { unsigned conservative_z_export = V_02880C_EXPORT_ANY_Z; unsigned z_order; if (ps->info.ps.early_fragment_test || !ps->info.ps.writes_memory) z_order = V_02880C_EARLY_Z_THEN_LATE_Z; else z_order = V_02880C_LATE_Z; if (ps->info.ps.depth_layout == FRAG_DEPTH_LAYOUT_GREATER) conservative_z_export = V_02880C_EXPORT_GREATER_THAN_Z; else if (ps->info.ps.depth_layout == FRAG_DEPTH_LAYOUT_LESS) conservative_z_export = V_02880C_EXPORT_LESS_THAN_Z; bool disable_rbplus = pdevice->rad_info.has_rbplus && !pdevice->rad_info.rbplus_allowed; /* It shouldn't be needed to export gl_SampleMask when MSAA is disabled * but this appears to break Project Cars (DXVK). See * https://bugs.freedesktop.org/show_bug.cgi?id=109401 */ bool mask_export_enable = ps->info.ps.writes_sample_mask; return S_02880C_Z_EXPORT_ENABLE(ps->info.ps.writes_z) | S_02880C_STENCIL_TEST_VAL_EXPORT_ENABLE(ps->info.ps.writes_stencil) | S_02880C_KILL_ENABLE(!!ps->info.ps.can_discard) | S_02880C_MASK_EXPORT_ENABLE(mask_export_enable) | S_02880C_CONSERVATIVE_Z_EXPORT(conservative_z_export) | S_02880C_Z_ORDER(z_order) | S_02880C_DEPTH_BEFORE_SHADER(ps->info.ps.early_fragment_test) | S_02880C_PRE_SHADER_DEPTH_COVERAGE_ENABLE(ps->info.ps.post_depth_coverage) | S_02880C_EXEC_ON_HIER_FAIL(ps->info.ps.writes_memory) | S_02880C_EXEC_ON_NOOP(ps->info.ps.writes_memory) | S_02880C_DUAL_QUAD_DISABLE(disable_rbplus); } static void radv_pipeline_emit_fragment_shader(struct radeon_cmdbuf *ctx_cs, struct radeon_cmdbuf *cs, const struct radv_graphics_pipeline *pipeline) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; struct radv_shader *ps; bool param_gen; uint64_t va; assert(pipeline->base.shaders[MESA_SHADER_FRAGMENT]); ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT]; va = radv_shader_get_va(ps); radeon_set_sh_reg_seq(cs, R_00B020_SPI_SHADER_PGM_LO_PS, 4); radeon_emit(cs, va >> 8); radeon_emit(cs, S_00B024_MEM_BASE(va >> 40)); radeon_emit(cs, ps->config.rsrc1); radeon_emit(cs, ps->config.rsrc2); radeon_set_context_reg(ctx_cs, R_02880C_DB_SHADER_CONTROL, radv_compute_db_shader_control(pdevice, pipeline, ps)); radeon_set_context_reg_seq(ctx_cs, R_0286CC_SPI_PS_INPUT_ENA, 2); radeon_emit(ctx_cs, ps->config.spi_ps_input_ena); radeon_emit(ctx_cs, ps->config.spi_ps_input_addr); /* Workaround when there are no PS inputs but LDS is used. */ param_gen = pdevice->rad_info.gfx_level >= GFX11 && !ps->info.ps.num_interp && ps->config.lds_size; radeon_set_context_reg( ctx_cs, R_0286D8_SPI_PS_IN_CONTROL, S_0286D8_NUM_INTERP(ps->info.ps.num_interp) | S_0286D8_NUM_PRIM_INTERP(ps->info.ps.num_prim_interp) | S_0286D8_PS_W32_EN(ps->info.wave_size == 32) | S_0286D8_PARAM_GEN(param_gen)); radeon_set_context_reg(ctx_cs, R_0286E0_SPI_BARYC_CNTL, pipeline->spi_baryc_cntl); radeon_set_context_reg( ctx_cs, R_028710_SPI_SHADER_Z_FORMAT, ac_get_spi_shader_z_format(ps->info.ps.writes_z, ps->info.ps.writes_stencil, ps->info.ps.writes_sample_mask, false)); } static void radv_pipeline_emit_vgt_vertex_reuse(struct radeon_cmdbuf *ctx_cs, const struct radv_graphics_pipeline *pipeline) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; if (pdevice->rad_info.family < CHIP_POLARIS10 || pdevice->rad_info.gfx_level >= GFX10) return; unsigned vtx_reuse_depth = 30; if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL) && radv_get_shader(&pipeline->base, MESA_SHADER_TESS_EVAL)->info.tes.spacing == TESS_SPACING_FRACTIONAL_ODD) { vtx_reuse_depth = 14; } radeon_set_context_reg(ctx_cs, R_028C58_VGT_VERTEX_REUSE_BLOCK_CNTL, S_028C58_VTX_REUSE_DEPTH(vtx_reuse_depth)); } static void radv_pipeline_emit_vgt_shader_config(struct radeon_cmdbuf *ctx_cs, const struct radv_graphics_pipeline *pipeline) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; uint32_t stages = 0; if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) { stages |= S_028B54_LS_EN(V_028B54_LS_STAGE_ON) | S_028B54_HS_EN(1) | S_028B54_DYNAMIC_HS(1); if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS) | S_028B54_GS_EN(1); else if (radv_pipeline_has_ngg(pipeline)) stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_DS); else stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_DS); } else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) { stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL) | S_028B54_GS_EN(1); } else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) { assert(!radv_pipeline_has_ngg_passthrough(pipeline)); stages |= S_028B54_GS_EN(1) | S_028B54_GS_FAST_LAUNCH(1); if (pipeline->base.shaders[MESA_SHADER_MESH]->info.ms.needs_ms_scratch_ring) stages |= S_028B54_NGG_WAVE_ID_EN(1); } else if (radv_pipeline_has_ngg(pipeline)) { stages |= S_028B54_ES_EN(V_028B54_ES_STAGE_REAL); } if (radv_pipeline_has_ngg(pipeline)) { stages |= S_028B54_PRIMGEN_EN(1); if (pipeline->streamout_shader) stages |= S_028B54_NGG_WAVE_ID_EN(1); if (radv_pipeline_has_ngg_passthrough(pipeline)) { stages |= S_028B54_PRIMGEN_PASSTHRU_EN(1); if (pdevice->rad_info.family >= CHIP_NAVI23) stages |= S_028B54_PRIMGEN_PASSTHRU_NO_MSG(1); } } else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) { stages |= S_028B54_VS_EN(V_028B54_VS_STAGE_COPY_SHADER); } if (pdevice->rad_info.gfx_level >= GFX9) stages |= S_028B54_MAX_PRIMGRP_IN_WAVE(2); if (pdevice->rad_info.gfx_level >= GFX10) { uint8_t hs_size = 64, gs_size = 64, vs_size = 64; if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) hs_size = pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.wave_size; if (pipeline->base.shaders[MESA_SHADER_GEOMETRY]) { vs_size = gs_size = pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.wave_size; if (radv_pipeline_has_gs_copy_shader(&pipeline->base)) vs_size = pipeline->base.gs_copy_shader->info.wave_size; } else if (pipeline->base.shaders[MESA_SHADER_TESS_EVAL]) vs_size = pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->info.wave_size; else if (pipeline->base.shaders[MESA_SHADER_VERTEX]) vs_size = pipeline->base.shaders[MESA_SHADER_VERTEX]->info.wave_size; else if (pipeline->base.shaders[MESA_SHADER_MESH]) vs_size = gs_size = pipeline->base.shaders[MESA_SHADER_MESH]->info.wave_size; if (radv_pipeline_has_ngg(pipeline)) { assert(!radv_pipeline_has_gs_copy_shader(&pipeline->base)); gs_size = vs_size; } /* legacy GS only supports Wave64 */ stages |= S_028B54_HS_W32_EN(hs_size == 32 ? 1 : 0) | S_028B54_GS_W32_EN(gs_size == 32 ? 1 : 0) | S_028B54_VS_W32_EN(vs_size == 32 ? 1 : 0); } radeon_set_context_reg(ctx_cs, R_028B54_VGT_SHADER_STAGES_EN, stages); } static void radv_pipeline_emit_cliprect_rule(struct radeon_cmdbuf *ctx_cs, const struct radv_graphics_pipeline_info *info) { uint32_t cliprect_rule = 0; if (!info->dr.count) { cliprect_rule = 0xffff; } else { for (unsigned i = 0; i < (1u << MAX_DISCARD_RECTANGLES); ++i) { /* Interpret i as a bitmask, and then set the bit in * the mask if that combination of rectangles in which * the pixel is contained should pass the cliprect * test. */ unsigned relevant_subset = i & ((1u << info->dr.count) - 1); if (info->dr.mode == VK_DISCARD_RECTANGLE_MODE_INCLUSIVE_EXT && !relevant_subset) continue; if (info->dr.mode == VK_DISCARD_RECTANGLE_MODE_EXCLUSIVE_EXT && relevant_subset) continue; cliprect_rule |= 1u << i; } } radeon_set_context_reg(ctx_cs, R_02820C_PA_SC_CLIPRECT_RULE, cliprect_rule); } static void gfx10_pipeline_emit_ge_cntl(struct radeon_cmdbuf *ctx_cs, const struct radv_graphics_pipeline *pipeline) { bool break_wave_at_eoi = false; unsigned primgroup_size; unsigned vertgroup_size = 256; /* 256 = disable vertex grouping */ if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) { primgroup_size = pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.num_tess_patches; } else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) { const struct gfx9_gs_info *gs_state = &pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.gs_ring_info; unsigned vgt_gs_onchip_cntl = gs_state->vgt_gs_onchip_cntl; primgroup_size = G_028A44_GS_PRIMS_PER_SUBGRP(vgt_gs_onchip_cntl); } else { primgroup_size = 128; /* recommended without a GS and tess */ } if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) { if (pipeline->base.shaders[MESA_SHADER_TESS_CTRL]->info.uses_prim_id || radv_get_shader(&pipeline->base, MESA_SHADER_TESS_EVAL)->info.uses_prim_id) break_wave_at_eoi = true; } radeon_set_uconfig_reg(ctx_cs, R_03096C_GE_CNTL, S_03096C_PRIM_GRP_SIZE_GFX10(primgroup_size) | S_03096C_VERT_GRP_SIZE(vertgroup_size) | S_03096C_PACKET_TO_ONE_PA(0) /* line stipple */ | S_03096C_BREAK_WAVE_AT_EOI(break_wave_at_eoi)); } static void radv_pipeline_emit_vgt_gs_out(struct radeon_cmdbuf *ctx_cs, const struct radv_graphics_pipeline *pipeline, uint32_t vgt_gs_out_prim_type) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; if (pdevice->rad_info.gfx_level >= GFX11) { radeon_set_uconfig_reg(ctx_cs, R_030998_VGT_GS_OUT_PRIM_TYPE, vgt_gs_out_prim_type); } else { radeon_set_context_reg(ctx_cs, R_028A6C_VGT_GS_OUT_PRIM_TYPE, vgt_gs_out_prim_type); } } static void gfx103_pipeline_emit_vgt_draw_payload_cntl(struct radeon_cmdbuf *ctx_cs, const struct radv_graphics_pipeline *pipeline, const struct radv_graphics_pipeline_info *info) { const struct radv_vs_output_info *outinfo = get_vs_output_info(pipeline); bool enable_vrs = radv_is_vrs_enabled(pipeline, info); /* Enables the second channel of the primitive export instruction. * This channel contains: VRS rate x, y, viewport and layer. */ bool enable_prim_payload = outinfo && (outinfo->writes_viewport_index_per_primitive || outinfo->writes_layer_per_primitive || outinfo->writes_primitive_shading_rate_per_primitive); radeon_set_context_reg(ctx_cs, R_028A98_VGT_DRAW_PAYLOAD_CNTL, S_028A98_EN_VRS_RATE(enable_vrs) | S_028A98_EN_PRIM_PAYLOAD(enable_prim_payload)); } static bool gfx103_pipeline_vrs_coarse_shading(const struct radv_graphics_pipeline *pipeline) { struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT]; struct radv_device *device = pipeline->base.device; if (device->instance->debug_flags & RADV_DEBUG_NO_VRS_FLAT_SHADING) return false; if (!ps->info.ps.allow_flat_shading) return false; return true; } static void gfx103_pipeline_emit_vrs_state(struct radeon_cmdbuf *ctx_cs, const struct radv_graphics_pipeline *pipeline, const struct radv_graphics_pipeline_info *info) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; uint32_t mode = V_028064_VRS_COMB_MODE_PASSTHRU; uint8_t rate_x = 0, rate_y = 0; bool enable_vrs = radv_is_vrs_enabled(pipeline, info); if (!enable_vrs && gfx103_pipeline_vrs_coarse_shading(pipeline)) { /* When per-draw VRS is not enabled at all, try enabling VRS coarse shading 2x2 if the driver * determined that it's safe to enable. */ mode = V_028064_VRS_COMB_MODE_OVERRIDE; rate_x = rate_y = 1; } else if (!radv_is_static_vrs_enabled(pipeline, info) && pipeline->force_vrs_per_vertex && get_vs_output_info(pipeline)->writes_primitive_shading_rate) { /* Otherwise, if per-draw VRS is not enabled statically, try forcing per-vertex VRS if * requested by the user. Note that vkd3d-proton always has to declare VRS as dynamic because * in DX12 it's fully dynamic. */ radeon_set_context_reg(ctx_cs, R_028848_PA_CL_VRS_CNTL, S_028848_SAMPLE_ITER_COMBINER_MODE(V_028848_VRS_COMB_MODE_OVERRIDE) | S_028848_VERTEX_RATE_COMBINER_MODE(V_028848_VRS_COMB_MODE_OVERRIDE)); /* If the shader is using discard, turn off coarse shading because discard at 2x2 pixel * granularity degrades quality too much. MIN allows sample shading but not coarse shading. */ struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT]; mode = ps->info.ps.can_discard ? V_028064_VRS_COMB_MODE_MIN : V_028064_VRS_COMB_MODE_PASSTHRU; } if (pdevice->rad_info.gfx_level >= GFX11) { radeon_set_context_reg(ctx_cs, R_0283D0_PA_SC_VRS_OVERRIDE_CNTL, S_0283D0_VRS_OVERRIDE_RATE_COMBINER_MODE(mode) | S_0283D0_VRS_RATE((rate_x << 2) | rate_y)); } else { radeon_set_context_reg(ctx_cs, R_028064_DB_VRS_OVERRIDE_CNTL, S_028064_VRS_OVERRIDE_RATE_COMBINER_MODE(mode) | S_028064_VRS_OVERRIDE_RATE_X(rate_x) | S_028064_VRS_OVERRIDE_RATE_Y(rate_y)); } } static void radv_pipeline_emit_pm4(struct radv_graphics_pipeline *pipeline, const struct radv_blend_state *blend, const struct radv_depth_stencil_state *ds_state, uint32_t vgt_gs_out_prim_type, const struct radv_graphics_pipeline_info *info) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; struct radeon_cmdbuf *ctx_cs = &pipeline->base.ctx_cs; struct radeon_cmdbuf *cs = &pipeline->base.cs; cs->max_dw = 64; ctx_cs->max_dw = 256; cs->buf = malloc(4 * (cs->max_dw + ctx_cs->max_dw)); ctx_cs->buf = cs->buf + cs->max_dw; radv_pipeline_emit_depth_stencil_state(ctx_cs, ds_state); radv_pipeline_emit_blend_state(ctx_cs, pipeline, blend); radv_pipeline_emit_raster_state(ctx_cs, pipeline, info); radv_pipeline_emit_multisample_state(ctx_cs, pipeline); radv_pipeline_emit_vgt_gs_mode(ctx_cs, pipeline); radv_pipeline_emit_vertex_shader(ctx_cs, cs, pipeline); radv_pipeline_emit_mesh_shader(ctx_cs, cs, pipeline); if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) { radv_pipeline_emit_tess_shaders(ctx_cs, cs, pipeline); radv_pipeline_emit_tess_state(ctx_cs, pipeline, info); } radv_pipeline_emit_geometry_shader(ctx_cs, cs, pipeline); radv_pipeline_emit_fragment_shader(ctx_cs, cs, pipeline); radv_pipeline_emit_ps_inputs(ctx_cs, pipeline); radv_pipeline_emit_vgt_vertex_reuse(ctx_cs, pipeline); radv_pipeline_emit_vgt_shader_config(ctx_cs, pipeline); radv_pipeline_emit_cliprect_rule(ctx_cs, info); radv_pipeline_emit_vgt_gs_out(ctx_cs, pipeline, vgt_gs_out_prim_type); if (pdevice->rad_info.gfx_level >= GFX10 && !radv_pipeline_has_ngg(pipeline)) gfx10_pipeline_emit_ge_cntl(ctx_cs, pipeline); if (pdevice->rad_info.gfx_level >= GFX10_3) { gfx103_pipeline_emit_vgt_draw_payload_cntl(ctx_cs, pipeline, info); gfx103_pipeline_emit_vrs_state(ctx_cs, pipeline, info); } pipeline->base.ctx_cs_hash = _mesa_hash_data(ctx_cs->buf, ctx_cs->cdw * 4); assert(ctx_cs->cdw <= ctx_cs->max_dw); assert(cs->cdw <= cs->max_dw); } static void radv_pipeline_init_vertex_input_state(struct radv_graphics_pipeline *pipeline, const struct radv_graphics_pipeline_info *info) { const struct radv_physical_device *pdevice = pipeline->base.device->physical_device; const struct radv_shader_info *vs_info = &radv_get_shader(&pipeline->base, MESA_SHADER_VERTEX)->info; for (uint32_t i = 0; i < MAX_VERTEX_ATTRIBS; i++) { pipeline->attrib_ends[i] = info->vi.attrib_ends[i]; pipeline->attrib_index_offset[i] = info->vi.attrib_index_offset[i]; pipeline->attrib_bindings[i] = info->vi.attrib_bindings[i]; } for (uint32_t i = 0; i < MAX_VBS; i++) { pipeline->binding_stride[i] = info->vi.binding_stride[i]; } pipeline->use_per_attribute_vb_descs = vs_info->vs.use_per_attribute_vb_descs; pipeline->last_vertex_attrib_bit = util_last_bit(vs_info->vs.vb_desc_usage_mask); if (pipeline->base.shaders[MESA_SHADER_VERTEX]) pipeline->next_vertex_stage = MESA_SHADER_VERTEX; else if (pipeline->base.shaders[MESA_SHADER_TESS_CTRL]) pipeline->next_vertex_stage = MESA_SHADER_TESS_CTRL; else pipeline->next_vertex_stage = MESA_SHADER_GEOMETRY; if (pipeline->next_vertex_stage == MESA_SHADER_VERTEX) { const struct radv_shader *vs_shader = pipeline->base.shaders[MESA_SHADER_VERTEX]; pipeline->can_use_simple_input = vs_shader->info.is_ngg == pdevice->use_ngg && vs_shader->info.wave_size == pdevice->ge_wave_size; } else { pipeline->can_use_simple_input = false; } if (vs_info->vs.dynamic_inputs) pipeline->vb_desc_usage_mask = BITFIELD_MASK(pipeline->last_vertex_attrib_bit); else pipeline->vb_desc_usage_mask = vs_info->vs.vb_desc_usage_mask; pipeline->vb_desc_alloc_size = util_bitcount(pipeline->vb_desc_usage_mask) * 16; } static struct radv_shader * radv_pipeline_get_streamout_shader(struct radv_graphics_pipeline *pipeline) { int i; for (i = MESA_SHADER_GEOMETRY; i >= MESA_SHADER_VERTEX; i--) { struct radv_shader *shader = radv_get_shader(&pipeline->base, i); if (shader && shader->info.so.num_outputs > 0) return shader; } return NULL; } static bool radv_shader_need_indirect_descriptor_sets(struct radv_pipeline *pipeline, gl_shader_stage stage) { struct radv_userdata_info *loc = radv_lookup_user_sgpr(pipeline, stage, AC_UD_INDIRECT_DESCRIPTOR_SETS); return loc->sgpr_idx != -1; } static void radv_pipeline_init_shader_stages_state(struct radv_graphics_pipeline *pipeline) { struct radv_device *device = pipeline->base.device; for (unsigned i = 0; i < MESA_VULKAN_SHADER_STAGES; i++) { bool shader_exists = !!pipeline->base.shaders[i]; if (shader_exists || i < MESA_SHADER_COMPUTE) { /* We need this info for some stages even when the shader doesn't exist. */ pipeline->base.user_data_0[i] = radv_pipeline_stage_to_user_data_0( pipeline, i, device->physical_device->rad_info.gfx_level); if (shader_exists) pipeline->base.need_indirect_descriptor_sets |= radv_shader_need_indirect_descriptor_sets(&pipeline->base, i); } } gl_shader_stage first_stage = radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH) ? MESA_SHADER_MESH : MESA_SHADER_VERTEX; struct radv_userdata_info *loc = radv_lookup_user_sgpr(&pipeline->base, first_stage, AC_UD_VS_BASE_VERTEX_START_INSTANCE); if (loc->sgpr_idx != -1) { pipeline->vtx_base_sgpr = pipeline->base.user_data_0[first_stage]; pipeline->vtx_base_sgpr += loc->sgpr_idx * 4; pipeline->vtx_emit_num = loc->num_sgprs; pipeline->uses_drawid = radv_get_shader(&pipeline->base, first_stage)->info.vs.needs_draw_id; pipeline->uses_baseinstance = radv_get_shader(&pipeline->base, first_stage)->info.vs.needs_base_instance; assert(first_stage != MESA_SHADER_MESH || !pipeline->uses_baseinstance); } } static uint32_t radv_pipeline_init_vgt_gs_out(struct radv_graphics_pipeline *pipeline, const struct radv_graphics_pipeline_info *info) { uint32_t gs_out; if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY)) { gs_out = si_conv_gl_prim_to_gs_out(pipeline->base.shaders[MESA_SHADER_GEOMETRY]->info.gs.output_prim); } else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) { if (pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->info.tes.point_mode) { gs_out = V_028A6C_POINTLIST; } else { gs_out = si_conv_tess_prim_to_gs_out( pipeline->base.shaders[MESA_SHADER_TESS_EVAL]->info.tes._primitive_mode); } } else if (radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) { gs_out = si_conv_gl_prim_to_gs_out(pipeline->base.shaders[MESA_SHADER_MESH]->info.ms.output_prim); } else { gs_out = si_conv_prim_to_gs_out(info->ia.primitive_topology); } return gs_out; } static void radv_pipeline_init_extra(struct radv_graphics_pipeline *pipeline, const struct radv_graphics_pipeline_create_info *extra, struct radv_blend_state *blend_state, struct radv_depth_stencil_state *ds_state, const struct radv_graphics_pipeline_info *info, uint32_t *vgt_gs_out_prim_type) { if (extra->custom_blend_mode == V_028808_CB_ELIMINATE_FAST_CLEAR || extra->custom_blend_mode == V_028808_CB_FMASK_DECOMPRESS || extra->custom_blend_mode == V_028808_CB_DCC_DECOMPRESS_GFX8 || extra->custom_blend_mode == V_028808_CB_DCC_DECOMPRESS_GFX11 || extra->custom_blend_mode == V_028808_CB_RESOLVE) { /* According to the CB spec states, CB_SHADER_MASK should be set to enable writes to all four * channels of MRT0. */ blend_state->cb_shader_mask = 0xf; if (extra->custom_blend_mode == V_028808_CB_RESOLVE) pipeline->cb_color_control |= S_028808_DISABLE_DUAL_QUAD(1); pipeline->cb_color_control &= C_028808_MODE; pipeline->cb_color_control |= S_028808_MODE(extra->custom_blend_mode); } if (extra->use_rectlist) { struct radv_dynamic_state *dynamic = &pipeline->dynamic_state; dynamic->primitive_topology = V_008958_DI_PT_RECTLIST; *vgt_gs_out_prim_type = V_028A6C_TRISTRIP; if (radv_pipeline_has_ngg(pipeline)) *vgt_gs_out_prim_type = V_028A6C_RECTLIST; pipeline->rast_prim = *vgt_gs_out_prim_type; } if (radv_pipeline_has_ds_attachments(&info->ri)) { ds_state->db_render_control |= S_028000_DEPTH_CLEAR_ENABLE(extra->db_depth_clear); ds_state->db_render_control |= S_028000_STENCIL_CLEAR_ENABLE(extra->db_stencil_clear); ds_state->db_render_control |= S_028000_RESUMMARIZE_ENABLE(extra->resummarize_enable); ds_state->db_render_control |= S_028000_DEPTH_COMPRESS_DISABLE(extra->depth_compress_disable); ds_state->db_render_control |= S_028000_STENCIL_COMPRESS_DISABLE(extra->stencil_compress_disable); } } void radv_pipeline_init(struct radv_device *device, struct radv_pipeline *pipeline, enum radv_pipeline_type type) { vk_object_base_init(&device->vk, &pipeline->base, VK_OBJECT_TYPE_PIPELINE); pipeline->device = device; pipeline->type = type; } static VkResult radv_graphics_pipeline_init(struct radv_graphics_pipeline *pipeline, struct radv_device *device, struct radv_pipeline_cache *cache, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra) { RADV_FROM_HANDLE(radv_pipeline_layout, pipeline_layout, pCreateInfo->layout); VkResult result; pipeline->last_vgt_api_stage = MESA_SHADER_NONE; /* Mark all states declared dynamic at pipeline creation. */ if (pCreateInfo->pDynamicState) { uint32_t count = pCreateInfo->pDynamicState->dynamicStateCount; for (uint32_t s = 0; s < count; s++) { pipeline->dynamic_states |= radv_dynamic_state_mask(pCreateInfo->pDynamicState->pDynamicStates[s]); } } /* Mark all active stages at pipeline creation. */ for (uint32_t i = 0; i < pCreateInfo->stageCount; i++) { const VkPipelineShaderStageCreateInfo *sinfo = &pCreateInfo->pStages[i]; pipeline->active_stages |= sinfo->stage; } struct radv_graphics_pipeline_info info = radv_pipeline_init_graphics_info(pipeline, pCreateInfo); struct radv_blend_state blend = radv_pipeline_init_blend_state(pipeline, pCreateInfo, &info); const VkPipelineCreationFeedbackCreateInfo *creation_feedback = vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO); struct radv_pipeline_key key = radv_generate_graphics_pipeline_key(pipeline, pCreateInfo, &info, &blend); result = radv_create_shaders(&pipeline->base, pipeline_layout, device, cache, &key, pCreateInfo->pStages, pCreateInfo->stageCount, pCreateInfo->flags, NULL, creation_feedback, NULL, NULL, &pipeline->last_vgt_api_stage); if (result != VK_SUCCESS) return result; pipeline->spi_baryc_cntl = S_0286E0_FRONT_FACE_ALL_BITS(1); uint32_t vgt_gs_out_prim_type = radv_pipeline_init_vgt_gs_out(pipeline, &info); radv_pipeline_init_multisample_state(pipeline, &blend, &info, vgt_gs_out_prim_type); if (!radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) radv_pipeline_init_input_assembly_state(pipeline, &info); radv_pipeline_init_dynamic_state(pipeline, &info); pipeline->negative_one_to_one = info.vp.negative_one_to_one; radv_pipeline_init_raster_state(pipeline, &info); struct radv_depth_stencil_state ds_state = radv_pipeline_init_depth_stencil_state(pipeline, &info); if (device->physical_device->rad_info.gfx_level >= GFX10_3) gfx103_pipeline_init_vrs_state(pipeline, &info); /* Ensure that some export memory is always allocated, for two reasons: * * 1) Correctness: The hardware ignores the EXEC mask if no export * memory is allocated, so KILL and alpha test do not work correctly * without this. * 2) Performance: Every shader needs at least a NULL export, even when * it writes no color/depth output. The NULL export instruction * stalls without this setting. * * Don't add this to CB_SHADER_MASK. * * GFX10 supports pixel shaders without exports by setting both the * color and Z formats to SPI_SHADER_ZERO. The hw will skip export * instructions if any are present. */ struct radv_shader *ps = pipeline->base.shaders[MESA_SHADER_FRAGMENT]; if ((device->physical_device->rad_info.gfx_level <= GFX9 || ps->info.ps.can_discard) && !blend.spi_shader_col_format) { if (!ps->info.ps.writes_z && !ps->info.ps.writes_stencil && !ps->info.ps.writes_sample_mask) blend.spi_shader_col_format = V_028714_SPI_SHADER_32_R; } pipeline->col_format = blend.spi_shader_col_format; pipeline->cb_target_mask = blend.cb_target_mask; if (radv_pipeline_has_stage(pipeline, MESA_SHADER_GEOMETRY) && !radv_pipeline_has_ngg(pipeline)) { struct radv_shader *gs = pipeline->base.shaders[MESA_SHADER_GEOMETRY]; radv_pipeline_init_gs_ring_state(pipeline, &gs->info.gs_ring_info); } if (radv_pipeline_has_stage(pipeline, MESA_SHADER_TESS_CTRL)) { pipeline->tess_patch_control_points = info.ts.patch_control_points; } if (!radv_pipeline_has_stage(pipeline, MESA_SHADER_MESH)) radv_pipeline_init_vertex_input_state(pipeline, &info); radv_pipeline_init_binning_state(pipeline, &blend, &info); radv_pipeline_init_shader_stages_state(pipeline); radv_pipeline_init_scratch(device, &pipeline->base); /* Find the last vertex shader stage that eventually uses streamout. */ pipeline->streamout_shader = radv_pipeline_get_streamout_shader(pipeline); pipeline->is_ngg = radv_pipeline_has_ngg(pipeline); pipeline->has_ngg_culling = pipeline->is_ngg && pipeline->base.shaders[pipeline->last_vgt_api_stage]->info.has_ngg_culling; pipeline->force_vrs_per_vertex = pipeline->base.shaders[pipeline->last_vgt_api_stage]->info.force_vrs_per_vertex; pipeline->uses_user_sample_locations = info.ms.sample_locs_enable; pipeline->rast_prim = vgt_gs_out_prim_type; if (!(pipeline->dynamic_states & RADV_DYNAMIC_LINE_WIDTH)) { pipeline->line_width = info.rs.line_width; } pipeline->base.push_constant_size = pipeline_layout->push_constant_size; pipeline->base.dynamic_offset_count = pipeline_layout->dynamic_offset_count; if (extra) { radv_pipeline_init_extra(pipeline, extra, &blend, &ds_state, &info, &vgt_gs_out_prim_type); } radv_pipeline_emit_pm4(pipeline, &blend, &ds_state, vgt_gs_out_prim_type, &info); return result; } static VkResult radv_graphics_pipeline_create_nonlegacy(VkDevice _device, VkPipelineCache _cache, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache); struct radv_graphics_pipeline *pipeline; VkResult result; pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (pipeline == NULL) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); radv_pipeline_init(device, &pipeline->base, RADV_PIPELINE_GRAPHICS); result = radv_graphics_pipeline_init(pipeline, device, cache, pCreateInfo, extra); if (result != VK_SUCCESS) { radv_pipeline_destroy(device, &pipeline->base, pAllocator); return result; } *pPipeline = radv_pipeline_to_handle(&pipeline->base); return VK_SUCCESS; } /* This is a wrapper for radv_graphics_pipeline_create_nonlegacy that does all legacy conversions * for the VkGraphicsPipelineCreateInfo data. */ VkResult radv_graphics_pipeline_create(VkDevice _device, VkPipelineCache _cache, const VkGraphicsPipelineCreateInfo *pCreateInfo, const struct radv_graphics_pipeline_create_info *extra, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipeline) { VkGraphicsPipelineCreateInfo create_info = *pCreateInfo; VkPipelineRenderingCreateInfo rendering_create_info; VkFormat color_formats[MAX_RTS]; VkAttachmentSampleCountInfoAMD sample_info; VkSampleCountFlagBits samples[MAX_RTS]; if (pCreateInfo->renderPass != VK_NULL_HANDLE) { RADV_FROM_HANDLE(radv_render_pass, pass, pCreateInfo->renderPass); struct radv_subpass *subpass = pass->subpasses + pCreateInfo->subpass; rendering_create_info.sType = VK_STRUCTURE_TYPE_PIPELINE_RENDERING_CREATE_INFO; rendering_create_info.pNext = create_info.pNext; create_info.pNext = &rendering_create_info; rendering_create_info.viewMask = subpass->view_mask; VkFormat ds_format = subpass->depth_stencil_attachment ? pass->attachments[subpass->depth_stencil_attachment->attachment].format : VK_FORMAT_UNDEFINED; rendering_create_info.depthAttachmentFormat = vk_format_has_depth(ds_format) ? ds_format : VK_FORMAT_UNDEFINED; rendering_create_info.stencilAttachmentFormat = vk_format_has_stencil(ds_format) ? ds_format : VK_FORMAT_UNDEFINED; rendering_create_info.colorAttachmentCount = subpass->color_count; rendering_create_info.pColorAttachmentFormats = color_formats; for (unsigned i = 0; i < rendering_create_info.colorAttachmentCount; ++i) { if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) color_formats[i] = pass->attachments[subpass->color_attachments[i].attachment].format; else color_formats[i] = VK_FORMAT_UNDEFINED; } create_info.renderPass = VK_NULL_HANDLE; sample_info.sType = VK_STRUCTURE_TYPE_ATTACHMENT_SAMPLE_COUNT_INFO_AMD; sample_info.pNext = create_info.pNext; create_info.pNext = &sample_info; sample_info.colorAttachmentCount = rendering_create_info.colorAttachmentCount; sample_info.pColorAttachmentSamples = samples; for (unsigned i = 0; i < sample_info.colorAttachmentCount; ++i) { if (subpass->color_attachments[i].attachment != VK_ATTACHMENT_UNUSED) { samples[i] = pass->attachments[subpass->color_attachments[i].attachment].samples; } else samples[i] = 1; } sample_info.depthStencilAttachmentSamples = subpass->depth_sample_count; } return radv_graphics_pipeline_create_nonlegacy(_device, _cache, &create_info, extra, pAllocator, pPipeline); } VKAPI_ATTR VkResult VKAPI_CALL radv_CreateGraphicsPipelines(VkDevice _device, VkPipelineCache pipelineCache, uint32_t count, const VkGraphicsPipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) { VkResult result = VK_SUCCESS; unsigned i = 0; for (; i < count; i++) { VkResult r; r = radv_graphics_pipeline_create(_device, pipelineCache, &pCreateInfos[i], NULL, pAllocator, &pPipelines[i]); if (r != VK_SUCCESS) { result = r; pPipelines[i] = VK_NULL_HANDLE; if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT) break; } } for (; i < count; ++i) pPipelines[i] = VK_NULL_HANDLE; return result; } void radv_pipeline_emit_hw_cs(const struct radv_physical_device *pdevice, struct radeon_cmdbuf *cs, const struct radv_shader *shader) { uint64_t va = radv_shader_get_va(shader); radeon_set_sh_reg(cs, R_00B830_COMPUTE_PGM_LO, va >> 8); radeon_set_sh_reg_seq(cs, R_00B848_COMPUTE_PGM_RSRC1, 2); radeon_emit(cs, shader->config.rsrc1); radeon_emit(cs, shader->config.rsrc2); if (pdevice->rad_info.gfx_level >= GFX10) { radeon_set_sh_reg(cs, R_00B8A0_COMPUTE_PGM_RSRC3, shader->config.rsrc3); } } void radv_pipeline_emit_compute_state(const struct radv_physical_device *pdevice, struct radeon_cmdbuf *cs, const struct radv_shader *shader) { unsigned threads_per_threadgroup; unsigned threadgroups_per_cu = 1; unsigned waves_per_threadgroup; unsigned max_waves_per_sh = 0; /* Calculate best compute resource limits. */ threads_per_threadgroup = shader->info.cs.block_size[0] * shader->info.cs.block_size[1] * shader->info.cs.block_size[2]; waves_per_threadgroup = DIV_ROUND_UP(threads_per_threadgroup, shader->info.wave_size); if (pdevice->rad_info.gfx_level >= GFX10 && waves_per_threadgroup == 1) threadgroups_per_cu = 2; radeon_set_sh_reg( cs, R_00B854_COMPUTE_RESOURCE_LIMITS, ac_get_compute_resource_limits(&pdevice->rad_info, waves_per_threadgroup, max_waves_per_sh, threadgroups_per_cu)); radeon_set_sh_reg_seq(cs, R_00B81C_COMPUTE_NUM_THREAD_X, 3); radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(shader->info.cs.block_size[0])); radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(shader->info.cs.block_size[1])); radeon_emit(cs, S_00B81C_NUM_THREAD_FULL(shader->info.cs.block_size[2])); } static void radv_compute_generate_pm4(struct radv_compute_pipeline *pipeline) { struct radv_physical_device *pdevice = pipeline->base.device->physical_device; struct radv_shader *shader = pipeline->base.shaders[MESA_SHADER_COMPUTE]; struct radeon_cmdbuf *cs = &pipeline->base.cs; cs->max_dw = pdevice->rad_info.gfx_level >= GFX10 ? 19 : 16; cs->buf = malloc(cs->max_dw * 4); radv_pipeline_emit_hw_cs(pdevice, cs, shader); radv_pipeline_emit_compute_state(pdevice, cs, shader); assert(pipeline->base.cs.cdw <= pipeline->base.cs.max_dw); } static struct radv_pipeline_key radv_generate_compute_pipeline_key(struct radv_compute_pipeline *pipeline, const VkComputePipelineCreateInfo *pCreateInfo) { const VkPipelineShaderStageCreateInfo *stage = &pCreateInfo->stage; struct radv_pipeline_key key = radv_generate_pipeline_key(&pipeline->base, pCreateInfo->flags); const VkPipelineShaderStageRequiredSubgroupSizeCreateInfo *subgroup_size = vk_find_struct_const(stage->pNext, PIPELINE_SHADER_STAGE_REQUIRED_SUBGROUP_SIZE_CREATE_INFO); if (subgroup_size) { assert(subgroup_size->requiredSubgroupSize == 32 || subgroup_size->requiredSubgroupSize == 64); key.cs.compute_subgroup_size = subgroup_size->requiredSubgroupSize; } else if (stage->flags & VK_PIPELINE_SHADER_STAGE_CREATE_REQUIRE_FULL_SUBGROUPS_BIT) { key.cs.require_full_subgroups = true; } return key; } VkResult radv_compute_pipeline_create(VkDevice _device, VkPipelineCache _cache, const VkComputePipelineCreateInfo *pCreateInfo, const VkAllocationCallbacks *pAllocator, const uint8_t *custom_hash, struct radv_pipeline_shader_stack_size *rt_stack_sizes, uint32_t rt_group_count, VkPipeline *pPipeline) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_pipeline_cache, cache, _cache); RADV_FROM_HANDLE(radv_pipeline_layout, pipeline_layout, pCreateInfo->layout); struct radv_compute_pipeline *pipeline; VkResult result; pipeline = vk_zalloc2(&device->vk.alloc, pAllocator, sizeof(*pipeline), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (pipeline == NULL) { free(rt_stack_sizes); return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); } radv_pipeline_init(device, &pipeline->base, RADV_PIPELINE_COMPUTE); pipeline->rt_stack_sizes = rt_stack_sizes; pipeline->group_count = rt_group_count; const VkPipelineCreationFeedbackCreateInfo *creation_feedback = vk_find_struct_const(pCreateInfo->pNext, PIPELINE_CREATION_FEEDBACK_CREATE_INFO); struct radv_pipeline_key key = radv_generate_compute_pipeline_key(pipeline, pCreateInfo); UNUSED gl_shader_stage last_vgt_api_stage = MESA_SHADER_NONE; result = radv_create_shaders(&pipeline->base, pipeline_layout, device, cache, &key, &pCreateInfo->stage, 1, pCreateInfo->flags, custom_hash, creation_feedback, &pipeline->rt_stack_sizes, &pipeline->group_count, &last_vgt_api_stage); if (result != VK_SUCCESS) { radv_pipeline_destroy(device, &pipeline->base, pAllocator); return result; } pipeline->base.user_data_0[MESA_SHADER_COMPUTE] = R_00B900_COMPUTE_USER_DATA_0; pipeline->base.need_indirect_descriptor_sets |= radv_shader_need_indirect_descriptor_sets(&pipeline->base, MESA_SHADER_COMPUTE); radv_pipeline_init_scratch(device, &pipeline->base); pipeline->base.push_constant_size = pipeline_layout->push_constant_size; pipeline->base.dynamic_offset_count = pipeline_layout->dynamic_offset_count; if (device->physical_device->rad_info.has_cs_regalloc_hang_bug) { struct radv_shader *compute_shader = pipeline->base.shaders[MESA_SHADER_COMPUTE]; unsigned *cs_block_size = compute_shader->info.cs.block_size; pipeline->cs_regalloc_hang_bug = cs_block_size[0] * cs_block_size[1] * cs_block_size[2] > 256; } radv_compute_generate_pm4(pipeline); *pPipeline = radv_pipeline_to_handle(&pipeline->base); return VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL radv_CreateComputePipelines(VkDevice _device, VkPipelineCache pipelineCache, uint32_t count, const VkComputePipelineCreateInfo *pCreateInfos, const VkAllocationCallbacks *pAllocator, VkPipeline *pPipelines) { VkResult result = VK_SUCCESS; unsigned i = 0; for (; i < count; i++) { VkResult r; r = radv_compute_pipeline_create(_device, pipelineCache, &pCreateInfos[i], pAllocator, NULL, NULL, 0, &pPipelines[i]); if (r != VK_SUCCESS) { result = r; pPipelines[i] = VK_NULL_HANDLE; if (pCreateInfos[i].flags & VK_PIPELINE_CREATE_EARLY_RETURN_ON_FAILURE_BIT) break; } } for (; i < count; ++i) pPipelines[i] = VK_NULL_HANDLE; return result; } static uint32_t radv_get_executable_count(struct radv_pipeline *pipeline) { uint32_t ret = 0; for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { if (!pipeline->shaders[i]) continue; if (i == MESA_SHADER_GEOMETRY && !radv_pipeline_has_ngg(radv_pipeline_to_graphics(pipeline))) { ret += 2u; } else { ret += 1u; } } return ret; } static struct radv_shader * radv_get_shader_from_executable_index(struct radv_pipeline *pipeline, int index, gl_shader_stage *stage) { for (int i = 0; i < MESA_VULKAN_SHADER_STAGES; ++i) { if (!pipeline->shaders[i]) continue; if (!index) { *stage = i; return pipeline->shaders[i]; } --index; if (i == MESA_SHADER_GEOMETRY && !radv_pipeline_has_ngg(radv_pipeline_to_graphics(pipeline))) { if (!index) { *stage = i; return pipeline->gs_copy_shader; } --index; } } *stage = -1; return NULL; } /* Basically strlcpy (which does not exist on linux) specialized for * descriptions. */ static void desc_copy(char *desc, const char *src) { int len = strlen(src); assert(len < VK_MAX_DESCRIPTION_SIZE); memcpy(desc, src, len); memset(desc + len, 0, VK_MAX_DESCRIPTION_SIZE - len); } VKAPI_ATTR VkResult VKAPI_CALL radv_GetPipelineExecutablePropertiesKHR(VkDevice _device, const VkPipelineInfoKHR *pPipelineInfo, uint32_t *pExecutableCount, VkPipelineExecutablePropertiesKHR *pProperties) { RADV_FROM_HANDLE(radv_pipeline, pipeline, pPipelineInfo->pipeline); const uint32_t total_count = radv_get_executable_count(pipeline); if (!pProperties) { *pExecutableCount = total_count; return VK_SUCCESS; } const uint32_t count = MIN2(total_count, *pExecutableCount); for (unsigned i = 0, executable_idx = 0; i < MESA_VULKAN_SHADER_STAGES && executable_idx < count; ++i) { if (!pipeline->shaders[i]) continue; pProperties[executable_idx].stages = mesa_to_vk_shader_stage(i); const char *name = NULL; const char *description = NULL; switch (i) { case MESA_SHADER_VERTEX: name = "Vertex Shader"; description = "Vulkan Vertex Shader"; break; case MESA_SHADER_TESS_CTRL: if (!pipeline->shaders[MESA_SHADER_VERTEX]) { pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT; name = "Vertex + Tessellation Control Shaders"; description = "Combined Vulkan Vertex and Tessellation Control Shaders"; } else { name = "Tessellation Control Shader"; description = "Vulkan Tessellation Control Shader"; } break; case MESA_SHADER_TESS_EVAL: name = "Tessellation Evaluation Shader"; description = "Vulkan Tessellation Evaluation Shader"; break; case MESA_SHADER_GEOMETRY: if (pipeline->shaders[MESA_SHADER_TESS_CTRL] && !pipeline->shaders[MESA_SHADER_TESS_EVAL]) { pProperties[executable_idx].stages |= VK_SHADER_STAGE_TESSELLATION_EVALUATION_BIT; name = "Tessellation Evaluation + Geometry Shaders"; description = "Combined Vulkan Tessellation Evaluation and Geometry Shaders"; } else if (!pipeline->shaders[MESA_SHADER_TESS_CTRL] && !pipeline->shaders[MESA_SHADER_VERTEX]) { pProperties[executable_idx].stages |= VK_SHADER_STAGE_VERTEX_BIT; name = "Vertex + Geometry Shader"; description = "Combined Vulkan Vertex and Geometry Shaders"; } else { name = "Geometry Shader"; description = "Vulkan Geometry Shader"; } break; case MESA_SHADER_FRAGMENT: name = "Fragment Shader"; description = "Vulkan Fragment Shader"; break; case MESA_SHADER_COMPUTE: name = "Compute Shader"; description = "Vulkan Compute Shader"; break; case MESA_SHADER_MESH: name = "Mesh Shader"; description = "Vulkan Mesh Shader"; break; case MESA_SHADER_TASK: name = "Task Shader"; description = "Vulkan Task Shader"; break; } pProperties[executable_idx].subgroupSize = pipeline->shaders[i]->info.wave_size; desc_copy(pProperties[executable_idx].name, name); desc_copy(pProperties[executable_idx].description, description); ++executable_idx; if (i == MESA_SHADER_GEOMETRY && !radv_pipeline_has_ngg(radv_pipeline_to_graphics(pipeline))) { assert(pipeline->gs_copy_shader); if (executable_idx >= count) break; pProperties[executable_idx].stages = VK_SHADER_STAGE_GEOMETRY_BIT; pProperties[executable_idx].subgroupSize = 64; desc_copy(pProperties[executable_idx].name, "GS Copy Shader"); desc_copy(pProperties[executable_idx].description, "Extra shader stage that loads the GS output ringbuffer into the rasterizer"); ++executable_idx; } } VkResult result = *pExecutableCount < total_count ? VK_INCOMPLETE : VK_SUCCESS; *pExecutableCount = count; return result; } VKAPI_ATTR VkResult VKAPI_CALL radv_GetPipelineExecutableStatisticsKHR(VkDevice _device, const VkPipelineExecutableInfoKHR *pExecutableInfo, uint32_t *pStatisticCount, VkPipelineExecutableStatisticKHR *pStatistics) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline); gl_shader_stage stage; struct radv_shader *shader = radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage); const struct radv_physical_device *pdevice = device->physical_device; unsigned lds_increment = pdevice->rad_info.gfx_level >= GFX11 && stage == MESA_SHADER_FRAGMENT ? 1024 : pdevice->rad_info.lds_encode_granularity; unsigned max_waves = radv_get_max_waves(device, shader, stage); VkPipelineExecutableStatisticKHR *s = pStatistics; VkPipelineExecutableStatisticKHR *end = s + (pStatistics ? *pStatisticCount : 0); VkResult result = VK_SUCCESS; if (s < end) { desc_copy(s->name, "Driver pipeline hash"); desc_copy(s->description, "Driver pipeline hash used by RGP"); s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; s->value.u64 = pipeline->pipeline_hash; } ++s; if (s < end) { desc_copy(s->name, "SGPRs"); desc_copy(s->description, "Number of SGPR registers allocated per subgroup"); s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; s->value.u64 = shader->config.num_sgprs; } ++s; if (s < end) { desc_copy(s->name, "VGPRs"); desc_copy(s->description, "Number of VGPR registers allocated per subgroup"); s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; s->value.u64 = shader->config.num_vgprs; } ++s; if (s < end) { desc_copy(s->name, "Spilled SGPRs"); desc_copy(s->description, "Number of SGPR registers spilled per subgroup"); s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; s->value.u64 = shader->config.spilled_sgprs; } ++s; if (s < end) { desc_copy(s->name, "Spilled VGPRs"); desc_copy(s->description, "Number of VGPR registers spilled per subgroup"); s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; s->value.u64 = shader->config.spilled_vgprs; } ++s; if (s < end) { desc_copy(s->name, "Code size"); desc_copy(s->description, "Code size in bytes"); s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; s->value.u64 = shader->exec_size; } ++s; if (s < end) { desc_copy(s->name, "LDS size"); desc_copy(s->description, "LDS size in bytes per workgroup"); s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; s->value.u64 = shader->config.lds_size * lds_increment; } ++s; if (s < end) { desc_copy(s->name, "Scratch size"); desc_copy(s->description, "Private memory in bytes per subgroup"); s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; s->value.u64 = shader->config.scratch_bytes_per_wave; } ++s; if (s < end) { desc_copy(s->name, "Subgroups per SIMD"); desc_copy(s->description, "The maximum number of subgroups in flight on a SIMD unit"); s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; s->value.u64 = max_waves; } ++s; if (shader->statistics) { for (unsigned i = 0; i < aco_num_statistics; i++) { const struct aco_compiler_statistic_info *info = &aco_statistic_infos[i]; if (s < end) { desc_copy(s->name, info->name); desc_copy(s->description, info->desc); s->format = VK_PIPELINE_EXECUTABLE_STATISTIC_FORMAT_UINT64_KHR; s->value.u64 = shader->statistics[i]; } ++s; } } if (!pStatistics) *pStatisticCount = s - pStatistics; else if (s > end) { *pStatisticCount = end - pStatistics; result = VK_INCOMPLETE; } else { *pStatisticCount = s - pStatistics; } return result; } static VkResult radv_copy_representation(void *data, size_t *data_size, const char *src) { size_t total_size = strlen(src) + 1; if (!data) { *data_size = total_size; return VK_SUCCESS; } size_t size = MIN2(total_size, *data_size); memcpy(data, src, size); if (size) *((char *)data + size - 1) = 0; return size < total_size ? VK_INCOMPLETE : VK_SUCCESS; } VKAPI_ATTR VkResult VKAPI_CALL radv_GetPipelineExecutableInternalRepresentationsKHR( VkDevice _device, const VkPipelineExecutableInfoKHR *pExecutableInfo, uint32_t *pInternalRepresentationCount, VkPipelineExecutableInternalRepresentationKHR *pInternalRepresentations) { RADV_FROM_HANDLE(radv_device, device, _device); RADV_FROM_HANDLE(radv_pipeline, pipeline, pExecutableInfo->pipeline); gl_shader_stage stage; struct radv_shader *shader = radv_get_shader_from_executable_index(pipeline, pExecutableInfo->executableIndex, &stage); VkPipelineExecutableInternalRepresentationKHR *p = pInternalRepresentations; VkPipelineExecutableInternalRepresentationKHR *end = p + (pInternalRepresentations ? *pInternalRepresentationCount : 0); VkResult result = VK_SUCCESS; /* optimized NIR */ if (p < end) { p->isText = true; desc_copy(p->name, "NIR Shader(s)"); desc_copy(p->description, "The optimized NIR shader(s)"); if (radv_copy_representation(p->pData, &p->dataSize, shader->nir_string) != VK_SUCCESS) result = VK_INCOMPLETE; } ++p; /* backend IR */ if (p < end) { p->isText = true; if (radv_use_llvm_for_stage(device, stage)) { desc_copy(p->name, "LLVM IR"); desc_copy(p->description, "The LLVM IR after some optimizations"); } else { desc_copy(p->name, "ACO IR"); desc_copy(p->description, "The ACO IR after some optimizations"); } if (radv_copy_representation(p->pData, &p->dataSize, shader->ir_string) != VK_SUCCESS) result = VK_INCOMPLETE; } ++p; /* Disassembler */ if (p < end && shader->disasm_string) { p->isText = true; desc_copy(p->name, "Assembly"); desc_copy(p->description, "Final Assembly"); if (radv_copy_representation(p->pData, &p->dataSize, shader->disasm_string) != VK_SUCCESS) result = VK_INCOMPLETE; } ++p; if (!pInternalRepresentations) *pInternalRepresentationCount = p - pInternalRepresentations; else if (p > end) { result = VK_INCOMPLETE; *pInternalRepresentationCount = end - pInternalRepresentations; } else { *pInternalRepresentationCount = p - pInternalRepresentations; } return result; }