/* * Copyright © 2016 Red Hat. * Copyright © 2016 Bas Nieuwenhuizen * SPDX-License-Identifier: MIT * * based in part on anv driver which is: * Copyright © 2015 Intel Corporation */ #include "tu_pass.h" #include "vk_util.h" #include "tu_cmd_buffer.h" #include "tu_device.h" #include "tu_image.h" /* Return true if we have to fallback to sysmem rendering because the * dependency can't be satisfied with tiled rendering. */ static bool dep_invalid_for_gmem(const VkSubpassDependency2 *dep, VkPipelineStageFlags2 src_stage_mask, VkPipelineStageFlags2 dst_stage_mask) { /* External dependencies don't matter here. */ if (dep->srcSubpass == VK_SUBPASS_EXTERNAL || dep->dstSubpass == VK_SUBPASS_EXTERNAL) return false; /* We can conceptually break down the process of rewriting a sysmem * renderpass into a gmem one into two parts: * * 1. Split each draw and multisample resolve into N copies, one for each * bin. (If hardware binning, add one more copy where the FS is disabled * for the binning pass). This is always allowed because the vertex stage * is allowed to run an arbitrary number of times and there are no extra * ordering constraints within a draw. * 2. Take the last copy of the second-to-last draw and slide it down to * before the last copy of the last draw. Repeat for each earlier draw * until the draw pass for the last bin is complete, then repeat for each * earlier bin until we finish with the first bin. * * During this rearranging process, we can't slide draws past each other in * a way that breaks the subpass dependencies. For each draw, we must slide * it past (copies of) the rest of the draws in the renderpass. We can * slide a draw past another if there isn't a dependency between them, or * if the dependenc(ies) are dependencies between framebuffer-space stages * only with the BY_REGION bit set. Note that this includes * self-dependencies, since these may result in pipeline barriers that also * break the rearranging process. */ /* This is straight from the Vulkan 1.2 spec, section 6.1.4 "Framebuffer * Region Dependencies": */ const VkPipelineStageFlags2 framebuffer_space_stages = VK_PIPELINE_STAGE_2_FRAGMENT_SHADER_BIT | VK_PIPELINE_STAGE_2_EARLY_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_2_LATE_FRAGMENT_TESTS_BIT | VK_PIPELINE_STAGE_2_COLOR_ATTACHMENT_OUTPUT_BIT; return (src_stage_mask & ~(framebuffer_space_stages | VK_PIPELINE_STAGE_2_TOP_OF_PIPE_BIT)) || (dst_stage_mask & ~(framebuffer_space_stages | VK_PIPELINE_STAGE_2_BOTTOM_OF_PIPE_BIT)) || !(dep->dependencyFlags & VK_DEPENDENCY_BY_REGION_BIT); } static void tu_render_pass_add_subpass_dep(struct tu_render_pass *pass, const VkSubpassDependency2 *dep) { uint32_t src = dep->srcSubpass; uint32_t dst = dep->dstSubpass; /* Ignore subpass self-dependencies as they allow the app to call * vkCmdPipelineBarrier() inside the render pass and the driver should only * do the barrier when called, not when starting the render pass. * * We cannot decide whether to allow gmem rendering before a barrier * is actually emitted, so we delay the decision until then. */ if (src == dst) return; /* From the Vulkan 1.2.195 spec: * * "If an instance of VkMemoryBarrier2 is included in the pNext chain, srcStageMask, * dstStageMask, srcAccessMask, and dstAccessMask parameters are ignored. The synchronization * and access scopes instead are defined by the parameters of VkMemoryBarrier2." */ const VkMemoryBarrier2 *barrier = vk_find_struct_const(dep->pNext, MEMORY_BARRIER_2); VkPipelineStageFlags2 src_stage_mask = barrier ? barrier->srcStageMask : dep->srcStageMask; VkAccessFlags2 src_access_mask = barrier ? barrier->srcAccessMask : dep->srcAccessMask; VkPipelineStageFlags2 dst_stage_mask = barrier ? barrier->dstStageMask : dep->dstStageMask; VkAccessFlags2 dst_access_mask = barrier ? barrier->dstAccessMask : dep->dstAccessMask; if (dep_invalid_for_gmem(dep, src_stage_mask, dst_stage_mask)) { perf_debug((struct tu_device *)pass->base.device, "Disabling gmem rendering due to invalid subpass dependency"); for (int i = 0; i < ARRAY_SIZE(pass->gmem_pixels); i++) pass->gmem_pixels[i] = 0; } struct tu_subpass_barrier *dst_barrier; if (dst == VK_SUBPASS_EXTERNAL) { dst_barrier = &pass->end_barrier; } else { dst_barrier = &pass->subpasses[dst].start_barrier; } dst_barrier->src_stage_mask |= src_stage_mask; dst_barrier->dst_stage_mask |= dst_stage_mask; dst_barrier->src_access_mask |= src_access_mask; dst_barrier->dst_access_mask |= dst_access_mask; } /* We currently only care about undefined layouts, because we have to * flush/invalidate CCU for those. PREINITIALIZED is the same thing as * UNDEFINED for anything not linear tiled, but we don't know yet whether the * images used are tiled, so just assume they are. */ static bool layout_undefined(VkImageLayout layout) { return layout == VK_IMAGE_LAYOUT_UNDEFINED || layout == VK_IMAGE_LAYOUT_PREINITIALIZED; } /* This implements the following bit of spec text: * * If there is no subpass dependency from VK_SUBPASS_EXTERNAL to the * first subpass that uses an attachment, then an implicit subpass * dependency exists from VK_SUBPASS_EXTERNAL to the first subpass it is * used in. The implicit subpass dependency only exists if there * exists an automatic layout transition away from initialLayout. * The subpass dependency operates as if defined with the * following parameters: * * VkSubpassDependency implicitDependency = { * .srcSubpass = VK_SUBPASS_EXTERNAL; * .dstSubpass = firstSubpass; // First subpass attachment is used in * .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT; * .dstStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT; * .srcAccessMask = 0; * .dstAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | * VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | * VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | * VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; * .dependencyFlags = 0; * }; * * Similarly, if there is no subpass dependency from the last subpass * that uses an attachment to VK_SUBPASS_EXTERNAL, then an implicit * subpass dependency exists from the last subpass it is used in to * VK_SUBPASS_EXTERNAL. The implicit subpass dependency only exists * if there exists an automatic layout transition into finalLayout. * The subpass dependency operates as if defined with the following * parameters: * * VkSubpassDependency implicitDependency = { * .srcSubpass = lastSubpass; // Last subpass attachment is used in * .dstSubpass = VK_SUBPASS_EXTERNAL; * .srcStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT; * .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT; * .srcAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | * VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | * VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | * VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | * VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT; * .dstAccessMask = 0; * .dependencyFlags = 0; * }; * * Note: currently this is the only use we have for layout transitions, * besides needing to invalidate CCU at the beginning, so we also flag * transitions from UNDEFINED here. */ static void tu_render_pass_add_implicit_deps(struct tu_render_pass *pass, const VkRenderPassCreateInfo2 *info) { const VkAttachmentDescription2* att = info->pAttachments; bool has_external_src[info->subpassCount]; bool has_external_dst[info->subpassCount]; bool att_used[pass->attachment_count]; memset(has_external_src, 0, sizeof(has_external_src)); memset(has_external_dst, 0, sizeof(has_external_dst)); for (uint32_t i = 0; i < info->dependencyCount; i++) { uint32_t src = info->pDependencies[i].srcSubpass; uint32_t dst = info->pDependencies[i].dstSubpass; if (src == dst) continue; if (src == VK_SUBPASS_EXTERNAL) has_external_src[dst] = true; if (dst == VK_SUBPASS_EXTERNAL) has_external_dst[src] = true; } memset(att_used, 0, sizeof(att_used)); for (unsigned i = 0; i < info->subpassCount; i++) { const VkSubpassDescription2 *subpass = &info->pSubpasses[i]; bool src_implicit_dep = false; for (unsigned j = 0; j < subpass->inputAttachmentCount; j++) { uint32_t a = subpass->pInputAttachments[j].attachment; if (a == VK_ATTACHMENT_UNUSED) continue; uint32_t stencil_layout = vk_format_has_stencil(att[a].format) ? vk_att_ref_stencil_layout(&subpass->pInputAttachments[j], att) : VK_IMAGE_LAYOUT_UNDEFINED; uint32_t stencil_initial_layout = vk_att_desc_stencil_layout(&att[a], false); if ((att[a].initialLayout != subpass->pInputAttachments[j].layout || stencil_initial_layout != stencil_layout) && !att_used[a] && !has_external_src[i]) src_implicit_dep = true; att_used[a] = true; } for (unsigned j = 0; j < subpass->colorAttachmentCount; j++) { uint32_t a = subpass->pColorAttachments[j].attachment; if (a == VK_ATTACHMENT_UNUSED) continue; if (att[a].initialLayout != subpass->pColorAttachments[j].layout && !att_used[a] && !has_external_src[i]) src_implicit_dep = true; att_used[a] = true; } if (subpass->pDepthStencilAttachment && subpass->pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED) { uint32_t a = subpass->pDepthStencilAttachment->attachment; uint32_t stencil_layout = vk_att_ref_stencil_layout(subpass->pDepthStencilAttachment, att); uint32_t stencil_initial_layout = vk_att_desc_stencil_layout(&att[a], false); if ((att[a].initialLayout != subpass->pDepthStencilAttachment->layout || stencil_initial_layout != stencil_layout) && !att_used[a] && !has_external_src[i]) { src_implicit_dep = true; } att_used[a] = true; } if (subpass->pResolveAttachments) { for (unsigned j = 0; j < subpass->colorAttachmentCount; j++) { uint32_t a = subpass->pResolveAttachments[j].attachment; if (a == VK_ATTACHMENT_UNUSED) continue; if (att[a].initialLayout != subpass->pResolveAttachments[j].layout && !att_used[a] && !has_external_src[i]) src_implicit_dep = true; att_used[a] = true; } } const VkSubpassDescriptionDepthStencilResolve *ds_resolve = vk_find_struct_const(subpass->pNext, SUBPASS_DESCRIPTION_DEPTH_STENCIL_RESOLVE); if (ds_resolve && ds_resolve->pDepthStencilResolveAttachment && ds_resolve->pDepthStencilResolveAttachment->attachment != VK_ATTACHMENT_UNUSED) { uint32_t a = ds_resolve->pDepthStencilResolveAttachment->attachment; uint32_t stencil_layout = vk_att_ref_stencil_layout(ds_resolve->pDepthStencilResolveAttachment, att); uint32_t stencil_initial_layout = vk_att_desc_stencil_layout(&att[a], false); if ((att[a].initialLayout != subpass->pDepthStencilAttachment->layout || stencil_initial_layout != stencil_layout) && !att_used[a] && !has_external_src[i]) src_implicit_dep = true; att_used[a] = true; } if (src_implicit_dep) { tu_render_pass_add_subpass_dep(pass, &(VkSubpassDependency2) { .srcSubpass = VK_SUBPASS_EXTERNAL, .dstSubpass = i, .srcStageMask = VK_PIPELINE_STAGE_TOP_OF_PIPE_BIT, .dstStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, .srcAccessMask = 0, .dstAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, .dependencyFlags = 0, }); } } memset(att_used, 0, sizeof(att_used)); for (int i = info->subpassCount - 1; i >= 0; i--) { const VkSubpassDescription2 *subpass = &info->pSubpasses[i]; bool dst_implicit_dep = false; for (unsigned j = 0; j < subpass->inputAttachmentCount; j++) { uint32_t a = subpass->pInputAttachments[j].attachment; if (a == VK_ATTACHMENT_UNUSED) continue; uint32_t stencil_layout = vk_format_has_stencil(att[a].format) ? vk_att_ref_stencil_layout(&subpass->pInputAttachments[j], att) : VK_IMAGE_LAYOUT_UNDEFINED; uint32_t stencil_final_layout = vk_att_desc_stencil_layout(&att[a], true); if ((att[a].finalLayout != subpass->pInputAttachments[j].layout || stencil_final_layout != stencil_layout) && !att_used[a] && !has_external_dst[i]) dst_implicit_dep = true; att_used[a] = true; } for (unsigned j = 0; j < subpass->colorAttachmentCount; j++) { uint32_t a = subpass->pColorAttachments[j].attachment; if (a == VK_ATTACHMENT_UNUSED) continue; if (att[a].finalLayout != subpass->pColorAttachments[j].layout && !att_used[a] && !has_external_dst[i]) dst_implicit_dep = true; att_used[a] = true; } if (subpass->pDepthStencilAttachment && subpass->pDepthStencilAttachment->attachment != VK_ATTACHMENT_UNUSED) { uint32_t a = subpass->pDepthStencilAttachment->attachment; uint32_t stencil_layout = vk_att_ref_stencil_layout(subpass->pDepthStencilAttachment, att); uint32_t stencil_final_layout = vk_att_desc_stencil_layout(&att[a], true); if ((att[a].finalLayout != subpass->pDepthStencilAttachment->layout || stencil_final_layout != stencil_layout) && !att_used[a] && !has_external_dst[i]) { dst_implicit_dep = true; } att_used[a] = true; } if (subpass->pResolveAttachments) { for (unsigned j = 0; j < subpass->colorAttachmentCount; j++) { uint32_t a = subpass->pResolveAttachments[j].attachment; if (a == VK_ATTACHMENT_UNUSED) continue; if (att[a].finalLayout != subpass->pResolveAttachments[j].layout && !att_used[a] && !has_external_dst[i]) dst_implicit_dep = true; att_used[a] = true; } } const VkSubpassDescriptionDepthStencilResolve *ds_resolve = vk_find_struct_const(subpass->pNext, SUBPASS_DESCRIPTION_DEPTH_STENCIL_RESOLVE); if (ds_resolve && ds_resolve->pDepthStencilResolveAttachment && ds_resolve->pDepthStencilResolveAttachment->attachment != VK_ATTACHMENT_UNUSED) { uint32_t a = ds_resolve->pDepthStencilResolveAttachment->attachment; uint32_t stencil_layout = vk_att_ref_stencil_layout(ds_resolve->pDepthStencilResolveAttachment, att); uint32_t stencil_final_layout = vk_att_desc_stencil_layout(&att[a], true); if ((att[a].finalLayout != subpass->pDepthStencilAttachment->layout || stencil_final_layout != stencil_layout) && !att_used[a] && !has_external_src[i]) dst_implicit_dep = true; att_used[a] = true; } if (dst_implicit_dep) { tu_render_pass_add_subpass_dep(pass, &(VkSubpassDependency2) { .srcSubpass = i, .dstSubpass = VK_SUBPASS_EXTERNAL, .srcStageMask = VK_PIPELINE_STAGE_ALL_COMMANDS_BIT, .dstStageMask = VK_PIPELINE_STAGE_BOTTOM_OF_PIPE_BIT, .srcAccessMask = VK_ACCESS_INPUT_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_READ_BIT | VK_ACCESS_COLOR_ATTACHMENT_WRITE_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_READ_BIT | VK_ACCESS_DEPTH_STENCIL_ATTACHMENT_WRITE_BIT, .dstAccessMask = 0, .dependencyFlags = 0, }); } } /* Handle UNDEFINED transitions, similar to the handling in tu_barrier(). * Assume that if an attachment has an initial layout of UNDEFINED, it gets * transitioned eventually. */ for (unsigned i = 0; i < info->attachmentCount; i++) { if (layout_undefined(att[i].initialLayout)) { if (vk_format_is_depth_or_stencil(att[i].format)) { pass->subpasses[0].start_barrier.incoherent_ccu_depth = true; } else { pass->subpasses[0].start_barrier.incoherent_ccu_color = true; } } } } /* If an input attachment is used without an intervening write to the same * attachment, then we can just use the original image, even in GMEM mode. * This is an optimization, but it's also important because it allows us to * avoid having to invalidate UCHE at the beginning of each tile due to it * becoming invalid. The only reads of GMEM via UCHE should be after an * earlier subpass modified it, which only works if there's already an * appropriate dependency that will add the CACHE_INVALIDATE anyway. We * don't consider this in the dependency code, so this is also required for * correctness. */ static void tu_render_pass_patch_input_gmem(struct tu_render_pass *pass) { bool written[pass->attachment_count]; memset(written, 0, sizeof(written)); for (unsigned i = 0; i < pass->subpass_count; i++) { struct tu_subpass *subpass = &pass->subpasses[i]; for (unsigned j = 0; j < subpass->input_count; j++) { uint32_t a = subpass->input_attachments[j].attachment; if (a == VK_ATTACHMENT_UNUSED) continue; subpass->input_attachments[j].patch_input_gmem = written[a]; } for (unsigned j = 0; j < subpass->color_count; j++) { uint32_t a = subpass->color_attachments[j].attachment; if (a == VK_ATTACHMENT_UNUSED) continue; written[a] = true; for (unsigned k = 0; k < subpass->input_count; k++) { if (subpass->input_attachments[k].attachment == a && !subpass->input_attachments[k].patch_input_gmem) { /* For render feedback loops, we have no idea whether the use * as a color attachment or input attachment will come first, * so we have to always use GMEM in case the color attachment * comes first and defensively invalidate UCHE in case the * input attachment comes first. */ subpass->feedback_invalidate = true; subpass->input_attachments[k].patch_input_gmem = true; } } } for (unsigned j = 0; j < subpass->resolve_count; j++) { uint32_t a = subpass->resolve_attachments[j].attachment; if (a == VK_ATTACHMENT_UNUSED) continue; written[a] = true; } if (subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) { written[subpass->depth_stencil_attachment.attachment] = true; for (unsigned k = 0; k < subpass->input_count; k++) { if (subpass->input_attachments[k].attachment == subpass->depth_stencil_attachment.attachment && !subpass->input_attachments[k].patch_input_gmem) { subpass->feedback_invalidate = true; subpass->input_attachments[k].patch_input_gmem = true; } } } } } static void tu_render_pass_check_feedback_loop(struct tu_render_pass *pass) { for (unsigned i = 0; i < pass->subpass_count; i++) { struct tu_subpass *subpass = &pass->subpasses[i]; for (unsigned j = 0; j < subpass->color_count; j++) { uint32_t a = subpass->color_attachments[j].attachment; if (a == VK_ATTACHMENT_UNUSED) continue; for (unsigned k = 0; k < subpass->input_count; k++) { if (subpass->input_attachments[k].attachment == a) { subpass->feedback_loop_color = true; break; } } } if (subpass->depth_stencil_attachment.attachment != VK_ATTACHMENT_UNUSED) { for (unsigned k = 0; k < subpass->input_count; k++) { if (subpass->input_attachments[k].attachment == subpass->depth_stencil_attachment.attachment) { subpass->feedback_loop_ds = true; break; } } } } } static void update_samples(struct tu_subpass *subpass, VkSampleCountFlagBits samples) { assert(subpass->samples == 0 || subpass->samples == samples); subpass->samples = samples; } static void tu_render_pass_cond_config(struct tu_render_pass *pass) { for (uint32_t i = 0; i < pass->attachment_count; i++) { struct tu_render_pass_attachment *att = &pass->attachments[i]; att->cond_load_allowed = (att->load || att->load_stencil) && !att->clear_mask && !att->will_be_resolved; att->cond_store_allowed = (att->store || att->store_stencil) && !att->clear_mask; } } static void tu_render_pass_gmem_config(struct tu_render_pass *pass, const struct tu_physical_device *phys_dev) { for (enum tu_gmem_layout layout = 0; layout < TU_GMEM_LAYOUT_COUNT; layout++) { /* From the VK_KHR_multiview spec: * * Multiview is all-or-nothing for a render pass - that is, either all * subpasses must have a non-zero view mask (though some subpasses may * have only one view) or all must be zero. * * This means we only have to check one of the view masks. */ if (pass->subpasses[0].multiview_mask) { /* It seems multiview must use sysmem rendering. */ pass->gmem_pixels[layout] = 0; continue; } /* log2(gmem_align/(tile_align_w*tile_align_h)) */ uint32_t block_align_shift = 3; uint32_t tile_align_w = phys_dev->info->tile_align_w; uint32_t gmem_align = (1 << block_align_shift) * tile_align_w * phys_dev->info->tile_align_h; /* calculate total bytes per pixel */ uint32_t cpp_total = 0; for (uint32_t i = 0; i < pass->attachment_count; i++) { struct tu_render_pass_attachment *att = &pass->attachments[i]; bool cpp1 = (att->cpp == 1); if (att->gmem) { cpp_total += att->cpp; /* take into account the separate stencil: */ if (att->format == VK_FORMAT_D32_SFLOAT_S8_UINT) { cpp1 = (att->samples == 1); cpp_total += att->samples; } /* texture pitch must be aligned to 64, use a tile_align_w that is * a multiple of 64 for cpp==1 attachment to work as input * attachment */ if (cpp1 && tile_align_w % 64 != 0) { tile_align_w *= 2; block_align_shift -= 1; } } } pass->tile_align_w = tile_align_w; /* no gmem attachments */ if (cpp_total == 0) { /* any value non-zero value so tiling config works with no * attachments */ pass->gmem_pixels[layout] = 1024 * 1024; continue; } /* TODO: this algorithm isn't optimal * for example, two attachments with cpp = {1, 4} * result: nblocks = {12, 52}, pixels = 196608 * optimal: nblocks = {13, 51}, pixels = 208896 */ uint32_t gmem_size = layout == TU_GMEM_LAYOUT_FULL ? phys_dev->gmem_size : phys_dev->ccu_offset_gmem; uint32_t gmem_blocks = gmem_size / gmem_align; uint32_t offset = 0, pixels = ~0u, i; for (i = 0; i < pass->attachment_count; i++) { struct tu_render_pass_attachment *att = &pass->attachments[i]; if (!att->gmem) continue; att->gmem_offset[layout] = offset; uint32_t align = MAX2(1, att->cpp >> block_align_shift); uint32_t nblocks = MAX2((gmem_blocks * att->cpp / cpp_total) & ~(align - 1), align); if (nblocks > gmem_blocks) break; gmem_blocks -= nblocks; cpp_total -= att->cpp; offset += nblocks * gmem_align; pixels = MIN2(pixels, nblocks * gmem_align / att->cpp); /* repeat the same for separate stencil */ if (att->format == VK_FORMAT_D32_SFLOAT_S8_UINT) { att->gmem_offset_stencil[layout] = offset; /* note: for s8_uint, block align is always 1 */ uint32_t nblocks = gmem_blocks * att->samples / cpp_total; if (nblocks > gmem_blocks) break; gmem_blocks -= nblocks; cpp_total -= att->samples; offset += nblocks * gmem_align; pixels = MIN2(pixels, nblocks * gmem_align / att->samples); } } /* if the loop didn't complete then the gmem config is impossible */ if (i == pass->attachment_count) pass->gmem_pixels[layout] = pixels; } } static void tu_render_pass_bandwidth_config(struct tu_render_pass *pass) { for (uint32_t i = 0; i < pass->attachment_count; i++) { const struct tu_render_pass_attachment *att = &pass->attachments[i]; /* approximate tu_load_gmem_attachment */ if (att->load) pass->gmem_bandwidth_per_pixel += att->cpp; /* approximate tu_store_gmem_attachment */ if (att->store) pass->gmem_bandwidth_per_pixel += att->cpp; /* approximate tu_clear_sysmem_attachment */ if (att->clear_mask) pass->sysmem_bandwidth_per_pixel += att->cpp; /* approximate tu6_emit_sysmem_resolves */ if (att->will_be_resolved) { pass->sysmem_bandwidth_per_pixel += att->cpp + att->cpp / att->samples; } } } static void attachment_set_ops(struct tu_device *device, struct tu_render_pass_attachment *att, VkAttachmentLoadOp load_op, VkAttachmentLoadOp stencil_load_op, VkAttachmentStoreOp store_op, VkAttachmentStoreOp stencil_store_op) { if (device->instance->debug_flags & TU_DEBUG_DONT_CARE_AS_LOAD) { if (load_op == VK_ATTACHMENT_LOAD_OP_DONT_CARE) load_op = VK_ATTACHMENT_LOAD_OP_LOAD; if (stencil_load_op == VK_ATTACHMENT_LOAD_OP_DONT_CARE) stencil_load_op = VK_ATTACHMENT_LOAD_OP_LOAD; } /* load/store ops */ att->clear_mask = (load_op == VK_ATTACHMENT_LOAD_OP_CLEAR) ? VK_IMAGE_ASPECT_COLOR_BIT : 0; att->load = (load_op == VK_ATTACHMENT_LOAD_OP_LOAD); att->store = (store_op == VK_ATTACHMENT_STORE_OP_STORE); bool stencil_clear = (stencil_load_op == VK_ATTACHMENT_LOAD_OP_CLEAR); bool stencil_load = (stencil_load_op == VK_ATTACHMENT_LOAD_OP_LOAD); bool stencil_store = (stencil_store_op == VK_ATTACHMENT_STORE_OP_STORE); switch (att->format) { case VK_FORMAT_D24_UNORM_S8_UINT: /* || stencil load/store */ if (att->clear_mask) att->clear_mask = VK_IMAGE_ASPECT_DEPTH_BIT; if (stencil_clear) att->clear_mask |= VK_IMAGE_ASPECT_STENCIL_BIT; if (stencil_load) att->load = true; if (stencil_store) att->store = true; break; case VK_FORMAT_S8_UINT: /* replace load/store with stencil load/store */ att->clear_mask = stencil_clear ? VK_IMAGE_ASPECT_COLOR_BIT : 0; att->load = stencil_load; att->store = stencil_store; break; case VK_FORMAT_D32_SFLOAT_S8_UINT: /* separate stencil */ if (att->clear_mask) att->clear_mask = VK_IMAGE_ASPECT_DEPTH_BIT; if (stencil_clear) att->clear_mask |= VK_IMAGE_ASPECT_STENCIL_BIT; if (stencil_load) att->load_stencil = true; if (stencil_store) att->store_stencil = true; break; default: break; } } static bool is_depth_stencil_resolve_enabled(const VkSubpassDescriptionDepthStencilResolve *depth_stencil_resolve) { if (depth_stencil_resolve && depth_stencil_resolve->pDepthStencilResolveAttachment && depth_stencil_resolve->pDepthStencilResolveAttachment->attachment != VK_ATTACHMENT_UNUSED) { return true; } return false; } static void tu_subpass_use_attachment(struct tu_render_pass *pass, int i, uint32_t a, const VkRenderPassCreateInfo2 *pCreateInfo) { struct tu_subpass *subpass = &pass->subpasses[i]; pass->attachments[a].gmem = true; update_samples(subpass, pCreateInfo->pAttachments[a].samples); pass->attachments[a].clear_views |= subpass->multiview_mask; } VKAPI_ATTR VkResult VKAPI_CALL tu_CreateRenderPass2(VkDevice _device, const VkRenderPassCreateInfo2 *pCreateInfo, const VkAllocationCallbacks *pAllocator, VkRenderPass *pRenderPass) { TU_FROM_HANDLE(tu_device, device, _device); if (unlikely(device->instance->debug_flags & TU_DEBUG_DYNAMIC)) return vk_common_CreateRenderPass2(_device, pCreateInfo, pAllocator, pRenderPass); struct tu_render_pass *pass; size_t size; size_t attachments_offset; assert(pCreateInfo->sType == VK_STRUCTURE_TYPE_RENDER_PASS_CREATE_INFO_2); size = sizeof(*pass); size += pCreateInfo->subpassCount * sizeof(pass->subpasses[0]); attachments_offset = size; size += pCreateInfo->attachmentCount * sizeof(pass->attachments[0]); pass = vk_object_zalloc(&device->vk, pAllocator, size, VK_OBJECT_TYPE_RENDER_PASS); if (pass == NULL) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); pass->attachment_count = pCreateInfo->attachmentCount; pass->subpass_count = pCreateInfo->subpassCount; pass->attachments = (void *) pass + attachments_offset; for (uint32_t i = 0; i < pCreateInfo->attachmentCount; i++) { struct tu_render_pass_attachment *att = &pass->attachments[i]; att->format = pCreateInfo->pAttachments[i].format; att->samples = pCreateInfo->pAttachments[i].samples; /* for d32s8, cpp is for the depth image, and * att->samples will be used as the cpp for the stencil image */ if (att->format == VK_FORMAT_D32_SFLOAT_S8_UINT) att->cpp = 4 * att->samples; else att->cpp = vk_format_get_blocksize(att->format) * att->samples; /* Initially not allocated into gmem, tu_subpass_use_attachment() will move it there. */ att->gmem = false; VkAttachmentLoadOp loadOp = pCreateInfo->pAttachments[i].loadOp; VkAttachmentLoadOp stencilLoadOp = pCreateInfo->pAttachments[i].stencilLoadOp; attachment_set_ops(device, att, loadOp, stencilLoadOp, pCreateInfo->pAttachments[i].storeOp, pCreateInfo->pAttachments[i].stencilStoreOp); } uint32_t subpass_attachment_count = 0; struct tu_subpass_attachment *p; for (uint32_t i = 0; i < pCreateInfo->subpassCount; i++) { const VkSubpassDescription2 *desc = &pCreateInfo->pSubpasses[i]; const VkSubpassDescriptionDepthStencilResolve *ds_resolve = vk_find_struct_const(desc->pNext, SUBPASS_DESCRIPTION_DEPTH_STENCIL_RESOLVE); subpass_attachment_count += desc->inputAttachmentCount + desc->colorAttachmentCount + (desc->pResolveAttachments ? desc->colorAttachmentCount : 0) + (is_depth_stencil_resolve_enabled(ds_resolve) ? 1 : 0); } if (subpass_attachment_count) { pass->subpass_attachments = vk_alloc2( &device->vk.alloc, pAllocator, subpass_attachment_count * sizeof(struct tu_subpass_attachment), 8, VK_SYSTEM_ALLOCATION_SCOPE_OBJECT); if (pass->subpass_attachments == NULL) { vk_object_free(&device->vk, pAllocator, pass); return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); } } else pass->subpass_attachments = NULL; p = pass->subpass_attachments; for (uint32_t i = 0; i < pCreateInfo->subpassCount; i++) { const VkSubpassDescription2 *desc = &pCreateInfo->pSubpasses[i]; const VkSubpassDescriptionDepthStencilResolve *ds_resolve = vk_find_struct_const(desc->pNext, SUBPASS_DESCRIPTION_DEPTH_STENCIL_RESOLVE); struct tu_subpass *subpass = &pass->subpasses[i]; subpass->input_count = desc->inputAttachmentCount; subpass->color_count = desc->colorAttachmentCount; subpass->resolve_count = 0; subpass->resolve_depth_stencil = is_depth_stencil_resolve_enabled(ds_resolve); subpass->samples = 0; subpass->srgb_cntl = 0; const VkSubpassDescriptionFlagBits raster_order_access_bits = VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_COLOR_ACCESS_BIT_ARM | VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_DEPTH_ACCESS_BIT_ARM | VK_SUBPASS_DESCRIPTION_RASTERIZATION_ORDER_ATTACHMENT_STENCIL_ACCESS_BIT_ARM; subpass->raster_order_attachment_access = desc->flags & raster_order_access_bits; subpass->multiview_mask = desc->viewMask; if (desc->inputAttachmentCount > 0) { subpass->input_attachments = p; p += desc->inputAttachmentCount; for (uint32_t j = 0; j < desc->inputAttachmentCount; j++) { uint32_t a = desc->pInputAttachments[j].attachment; subpass->input_attachments[j].attachment = a; /* Note: attachments only used as input attachments will be read * directly instead of through gmem, so we don't mark input * attachments as needing gmem. */ } } if (desc->colorAttachmentCount > 0) { subpass->color_attachments = p; p += desc->colorAttachmentCount; for (uint32_t j = 0; j < desc->colorAttachmentCount; j++) { uint32_t a = desc->pColorAttachments[j].attachment; subpass->color_attachments[j].attachment = a; if (a != VK_ATTACHMENT_UNUSED) { tu_subpass_use_attachment(pass, i, a, pCreateInfo); if (vk_format_is_srgb(pass->attachments[a].format)) subpass->srgb_cntl |= 1 << j; } } } subpass->resolve_attachments = (desc->pResolveAttachments || subpass->resolve_depth_stencil) ? p : NULL; if (desc->pResolveAttachments) { p += desc->colorAttachmentCount; subpass->resolve_count += desc->colorAttachmentCount; for (uint32_t j = 0; j < desc->colorAttachmentCount; j++) { subpass->resolve_attachments[j].attachment = desc->pResolveAttachments[j].attachment; uint32_t src_a = desc->pColorAttachments[j].attachment; if (src_a != VK_ATTACHMENT_UNUSED) { pass->attachments[src_a].will_be_resolved = desc->pResolveAttachments[j].attachment != VK_ATTACHMENT_UNUSED; } } } if (subpass->resolve_depth_stencil) { p++; subpass->resolve_count++; uint32_t a = ds_resolve->pDepthStencilResolveAttachment->attachment; subpass->resolve_attachments[subpass->resolve_count - 1].attachment = a; uint32_t src_a = desc->pDepthStencilAttachment->attachment; if (src_a != VK_ATTACHMENT_UNUSED) { pass->attachments[src_a].will_be_resolved = a != VK_ATTACHMENT_UNUSED; } } uint32_t a = desc->pDepthStencilAttachment ? desc->pDepthStencilAttachment->attachment : VK_ATTACHMENT_UNUSED; subpass->depth_stencil_attachment.attachment = a; if (a != VK_ATTACHMENT_UNUSED) tu_subpass_use_attachment(pass, i, a, pCreateInfo); } tu_render_pass_patch_input_gmem(pass); tu_render_pass_check_feedback_loop(pass); /* disable unused attachments */ for (uint32_t i = 0; i < pass->attachment_count; i++) { struct tu_render_pass_attachment *att = &pass->attachments[i]; if (!att->gmem) { att->clear_mask = 0; att->load = false; } } tu_render_pass_cond_config(pass); tu_render_pass_gmem_config(pass, device->physical_device); tu_render_pass_bandwidth_config(pass); for (unsigned i = 0; i < pCreateInfo->dependencyCount; ++i) { tu_render_pass_add_subpass_dep(pass, &pCreateInfo->pDependencies[i]); } tu_render_pass_add_implicit_deps(pass, pCreateInfo); *pRenderPass = tu_render_pass_to_handle(pass); return VK_SUCCESS; } VKAPI_ATTR void VKAPI_CALL tu_DestroyRenderPass(VkDevice _device, VkRenderPass _pass, const VkAllocationCallbacks *pAllocator) { TU_FROM_HANDLE(tu_device, device, _device); if (unlikely(device->instance->debug_flags & TU_DEBUG_DYNAMIC)) { vk_common_DestroyRenderPass(_device, _pass, pAllocator); return; } TU_FROM_HANDLE(tu_render_pass, pass, _pass); if (!_pass) return; vk_free2(&device->vk.alloc, pAllocator, pass->subpass_attachments); vk_object_free(&device->vk, pAllocator, pass); } static void tu_setup_dynamic_attachment(struct tu_render_pass_attachment *att, struct tu_image_view *view) { att->format = view->vk.format; att->samples = view->image->layout->nr_samples; /* for d32s8, cpp is for the depth image, and * att->samples will be used as the cpp for the stencil image */ if (att->format == VK_FORMAT_D32_SFLOAT_S8_UINT) att->cpp = 4 * att->samples; else att->cpp = vk_format_get_blocksize(att->format) * att->samples; } void tu_setup_dynamic_render_pass(struct tu_cmd_buffer *cmd_buffer, const VkRenderingInfo *info) { struct tu_device *device = cmd_buffer->device; struct tu_render_pass *pass = &cmd_buffer->dynamic_pass; struct tu_subpass *subpass = &cmd_buffer->dynamic_subpass; pass->subpass_count = 1; pass->attachments = cmd_buffer->dynamic_rp_attachments; subpass->color_count = subpass->resolve_count = info->colorAttachmentCount; subpass->resolve_depth_stencil = false; subpass->color_attachments = cmd_buffer->dynamic_color_attachments; subpass->resolve_attachments = cmd_buffer->dynamic_resolve_attachments; subpass->feedback_invalidate = false; subpass->feedback_loop_ds = subpass->feedback_loop_color = false; subpass->input_count = 0; subpass->samples = 0; subpass->srgb_cntl = 0; subpass->raster_order_attachment_access = false; subpass->multiview_mask = info->viewMask; uint32_t a = 0; for (uint32_t i = 0; i < info->colorAttachmentCount; i++) { struct tu_render_pass_attachment *att = &pass->attachments[a]; const VkRenderingAttachmentInfo *att_info = &info->pColorAttachments[i]; if (att_info->imageView == VK_NULL_HANDLE) { subpass->color_attachments[i].attachment = VK_ATTACHMENT_UNUSED; subpass->resolve_attachments[i].attachment = VK_ATTACHMENT_UNUSED; continue; } TU_FROM_HANDLE(tu_image_view, view, att_info->imageView); tu_setup_dynamic_attachment(att, view); att->gmem = true; att->clear_views = info->viewMask; attachment_set_ops(device, att, att_info->loadOp, 0, att_info->storeOp, 0); subpass->color_attachments[i].attachment = a++; subpass->samples = view->image->layout->nr_samples; if (vk_format_is_srgb(view->vk.format)) subpass->srgb_cntl |= 1 << i; if (att_info->resolveMode != VK_RESOLVE_MODE_NONE) { struct tu_render_pass_attachment *resolve_att = &pass->attachments[a]; TU_FROM_HANDLE(tu_image_view, resolve_view, att_info->resolveImageView); tu_setup_dynamic_attachment(resolve_att, resolve_view); resolve_att->gmem = false; attachment_set_ops(device, resolve_att, VK_ATTACHMENT_LOAD_OP_DONT_CARE, 0, VK_ATTACHMENT_STORE_OP_STORE, 0); subpass->resolve_attachments[i].attachment = a++; att->will_be_resolved = true; } else { subpass->resolve_attachments[i].attachment = VK_ATTACHMENT_UNUSED; att->will_be_resolved = false; } } if (info->pDepthAttachment || info->pStencilAttachment) { const struct VkRenderingAttachmentInfo *common_info = (info->pDepthAttachment && info->pDepthAttachment->imageView != VK_NULL_HANDLE) ? info->pDepthAttachment : info->pStencilAttachment; if (common_info && common_info->imageView != VK_NULL_HANDLE) { TU_FROM_HANDLE(tu_image_view, view, common_info->imageView); struct tu_render_pass_attachment *att = &pass->attachments[a]; tu_setup_dynamic_attachment(att, view); att->gmem = true; att->clear_views = info->viewMask; subpass->depth_stencil_attachment.attachment = a++; attachment_set_ops(device, att, info->pDepthAttachment ? info->pDepthAttachment->loadOp : 0, info->pStencilAttachment ? info->pStencilAttachment->loadOp : 0, info->pDepthAttachment ? info->pDepthAttachment->storeOp : 0, info->pStencilAttachment ? info->pStencilAttachment->storeOp : 0); subpass->samples = view->image->layout->nr_samples; if (common_info->resolveMode != VK_RESOLVE_MODE_NONE) { unsigned i = subpass->resolve_count++; struct tu_render_pass_attachment *resolve_att = &pass->attachments[a]; TU_FROM_HANDLE(tu_image_view, resolve_view, common_info->resolveImageView); tu_setup_dynamic_attachment(resolve_att, resolve_view); resolve_att->gmem = false; attachment_set_ops(device, resolve_att, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_LOAD_OP_DONT_CARE, VK_ATTACHMENT_STORE_OP_STORE, VK_ATTACHMENT_STORE_OP_STORE); subpass->resolve_attachments[i].attachment = a++; att->will_be_resolved = true; subpass->resolve_depth_stencil = true; } else { att->will_be_resolved = false; } } else { subpass->depth_stencil_attachment.attachment = VK_ATTACHMENT_UNUSED; } } else { subpass->depth_stencil_attachment.attachment = VK_ATTACHMENT_UNUSED; } pass->attachment_count = a; tu_render_pass_cond_config(pass); tu_render_pass_gmem_config(pass, device->physical_device); tu_render_pass_bandwidth_config(pass); } void tu_setup_dynamic_inheritance(struct tu_cmd_buffer *cmd_buffer, const VkCommandBufferInheritanceRenderingInfo *info) { struct tu_render_pass *pass = &cmd_buffer->dynamic_pass; struct tu_subpass *subpass = &cmd_buffer->dynamic_subpass; pass->subpass_count = 1; pass->attachments = cmd_buffer->dynamic_rp_attachments; subpass->color_count = info->colorAttachmentCount; subpass->resolve_count = 0; subpass->resolve_depth_stencil = false; subpass->color_attachments = cmd_buffer->dynamic_color_attachments; subpass->resolve_attachments = NULL; subpass->feedback_invalidate = false; subpass->feedback_loop_ds = subpass->feedback_loop_color = false; subpass->input_count = 0; subpass->samples = 0; subpass->srgb_cntl = 0; subpass->raster_order_attachment_access = false; subpass->multiview_mask = info->viewMask; subpass->samples = info->rasterizationSamples; unsigned a = 0; for (unsigned i = 0; i < info->colorAttachmentCount; i++) { struct tu_render_pass_attachment *att = &pass->attachments[a]; VkFormat format = info->pColorAttachmentFormats[i]; if (format == VK_FORMAT_UNDEFINED) { subpass->color_attachments[i].attachment = VK_ATTACHMENT_UNUSED; continue; } att->format = format; att->samples = info->rasterizationSamples; subpass->samples = info->rasterizationSamples; subpass->color_attachments[i].attachment = a++; /* conservatively assume that the attachment may be conditionally * loaded/stored. */ att->cond_load_allowed = att->cond_store_allowed = true; } if (info->depthAttachmentFormat != VK_FORMAT_UNDEFINED || info->stencilAttachmentFormat != VK_FORMAT_UNDEFINED) { struct tu_render_pass_attachment *att = &pass->attachments[a]; att->format = info->depthAttachmentFormat != VK_FORMAT_UNDEFINED ? info->depthAttachmentFormat : info->stencilAttachmentFormat; att->samples = info->rasterizationSamples; subpass->depth_stencil_attachment.attachment = a++; att->cond_load_allowed = att->cond_store_allowed = true; } else { subpass->depth_stencil_attachment.attachment = VK_ATTACHMENT_UNUSED; } } VKAPI_ATTR void VKAPI_CALL tu_GetRenderAreaGranularity(VkDevice _device, VkRenderPass renderPass, VkExtent2D *pGranularity) { TU_FROM_HANDLE(tu_device, device, _device); pGranularity->width = device->physical_device->info->gmem_align_w; pGranularity->height = device->physical_device->info->gmem_align_h; } uint32_t tu_subpass_get_attachment_to_resolve(const struct tu_subpass *subpass, uint32_t index) { if (subpass->resolve_depth_stencil && index == (subpass->resolve_count - 1)) return subpass->depth_stencil_attachment.attachment; return subpass->color_attachments[index].attachment; }