/* * Copyright (C) 2012 Rob Clark * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. * * Authors: * Rob Clark */ #include "pipe/p_state.h" #include "util/debug.h" #include "util/format/u_format.h" #include "util/hash_table.h" #include "util/u_dump.h" #include "util/u_inlines.h" #include "util/u_memory.h" #include "util/u_string.h" #include "u_tracepoints.h" #include "util/u_trace_gallium.h" #include "freedreno_context.h" #include "freedreno_fence.h" #include "freedreno_gmem.h" #include "freedreno_query_hw.h" #include "freedreno_resource.h" #include "freedreno_tracepoints.h" #include "freedreno_util.h" /* * GMEM is the small (ie. 256KiB for a200, 512KiB for a220, etc) tile buffer * inside the GPU. All rendering happens to GMEM. Larger render targets * are split into tiles that are small enough for the color (and depth and/or * stencil, if enabled) buffers to fit within GMEM. Before rendering a tile, * if there was not a clear invalidating the previous tile contents, we need * to restore the previous tiles contents (system mem -> GMEM), and after all * the draw calls, before moving to the next tile, we need to save the tile * contents (GMEM -> system mem). * * The code in this file handles dealing with GMEM and tiling. * * The structure of the ringbuffer ends up being: * * +--<---<-- IB ---<---+---<---+---<---<---<--+ * | | | | * v ^ ^ ^ * ------------------------------------------------------ * | clear/draw cmds | Tile0 | Tile1 | .... | TileN | * ------------------------------------------------------ * ^ * | * address submitted in issueibcmds * * Where the per-tile section handles scissor setup, mem2gmem restore (if * needed), IB to draw cmds earlier in the ringbuffer, and then gmem2mem * resolve. */ #ifndef BIN_DEBUG #define BIN_DEBUG 0 #endif /* * GMEM Cache: * * Caches GMEM state based on a given framebuffer state. The key is * meant to be the minimal set of data that results in a unique gmem * configuration, avoiding multiple keys arriving at the same gmem * state. For example, the render target format is not part of the * key, only the size per pixel. And the max_scissor bounds is not * part of they key, only the minx/miny (after clamping to tile * alignment) and width/height. This ensures that slightly different * max_scissor which would result in the same gmem state, do not * become different keys that map to the same state. */ struct gmem_key { uint16_t minx, miny; uint16_t width, height; uint8_t gmem_page_align; /* alignment in multiples of 0x1000 to reduce key size */ uint8_t nr_cbufs; uint8_t cbuf_cpp[MAX_RENDER_TARGETS]; uint8_t zsbuf_cpp[2]; }; static uint32_t gmem_key_hash(const void *_key) { const struct gmem_key *key = _key; return _mesa_hash_data(key, sizeof(*key)); } static bool gmem_key_equals(const void *_a, const void *_b) { const struct gmem_key *a = _a; const struct gmem_key *b = _b; return memcmp(a, b, sizeof(*a)) == 0; } static void dump_gmem_key(const struct gmem_key *key) { printf("{ .minx=%u, .miny=%u, .width=%u, .height=%u", key->minx, key->miny, key->width, key->height); printf(", .gmem_page_align=%u, .nr_cbufs=%u", key->gmem_page_align, key->nr_cbufs); printf(", .cbuf_cpp = {"); for (unsigned i = 0; i < ARRAY_SIZE(key->cbuf_cpp); i++) printf("%u,", key->cbuf_cpp[i]); printf("}, .zsbuf_cpp = {"); for (unsigned i = 0; i < ARRAY_SIZE(key->zsbuf_cpp); i++) printf("%u,", key->zsbuf_cpp[i]); printf("}},\n"); } static void dump_gmem_state(const struct fd_gmem_stateobj *gmem) { unsigned total = 0; printf("GMEM LAYOUT: bin=%ux%u, nbins=%ux%u\n", gmem->bin_w, gmem->bin_h, gmem->nbins_x, gmem->nbins_y); for (int i = 0; i < ARRAY_SIZE(gmem->cbuf_base); i++) { if (!gmem->cbuf_cpp[i]) continue; unsigned size = gmem->cbuf_cpp[i] * gmem->bin_w * gmem->bin_h; printf(" cbuf[%d]: base=0x%06x, size=0x%x, cpp=%u\n", i, gmem->cbuf_base[i], size, gmem->cbuf_cpp[i]); total = gmem->cbuf_base[i] + size; } for (int i = 0; i < ARRAY_SIZE(gmem->zsbuf_base); i++) { if (!gmem->zsbuf_cpp[i]) continue; unsigned size = gmem->zsbuf_cpp[i] * gmem->bin_w * gmem->bin_h; printf(" zsbuf[%d]: base=0x%06x, size=0x%x, cpp=%u\n", i, gmem->zsbuf_base[i], size, gmem->zsbuf_cpp[i]); total = gmem->zsbuf_base[i] + size; } printf("total: 0x%06x (of 0x%06x)\n", total, gmem->screen->gmemsize_bytes); } static unsigned div_align(unsigned num, unsigned denom, unsigned al) { return util_align_npot(DIV_ROUND_UP(num, denom), al); } static bool layout_gmem(struct gmem_key *key, uint32_t nbins_x, uint32_t nbins_y, struct fd_gmem_stateobj *gmem) { struct fd_screen *screen = gmem->screen; uint32_t gmem_align = key->gmem_page_align * 0x1000; uint32_t total = 0, i; if ((nbins_x == 0) || (nbins_y == 0)) return false; uint32_t bin_w, bin_h; bin_w = div_align(key->width, nbins_x, screen->info->tile_align_w); bin_h = div_align(key->height, nbins_y, screen->info->tile_align_h); if (bin_w > screen->info->tile_max_w) return false; if (bin_h > screen->info->tile_max_h) return false; gmem->bin_w = bin_w; gmem->bin_h = bin_h; /* due to aligning bin_w/h, we could end up with one too * many bins in either dimension, so recalculate: */ gmem->nbins_x = DIV_ROUND_UP(key->width, bin_w); gmem->nbins_y = DIV_ROUND_UP(key->height, bin_h); for (i = 0; i < MAX_RENDER_TARGETS; i++) { if (key->cbuf_cpp[i]) { gmem->cbuf_base[i] = util_align_npot(total, gmem_align); total = gmem->cbuf_base[i] + key->cbuf_cpp[i] * bin_w * bin_h; } } if (key->zsbuf_cpp[0]) { gmem->zsbuf_base[0] = util_align_npot(total, gmem_align); total = gmem->zsbuf_base[0] + key->zsbuf_cpp[0] * bin_w * bin_h; } if (key->zsbuf_cpp[1]) { gmem->zsbuf_base[1] = util_align_npot(total, gmem_align); total = gmem->zsbuf_base[1] + key->zsbuf_cpp[1] * bin_w * bin_h; } return total <= screen->gmemsize_bytes; } static void calc_nbins(struct gmem_key *key, struct fd_gmem_stateobj *gmem) { struct fd_screen *screen = gmem->screen; uint32_t nbins_x = 1, nbins_y = 1; uint32_t max_width = screen->info->tile_max_w; uint32_t max_height = screen->info->tile_max_h; if (FD_DBG(MSGS)) { debug_printf("binning input: cbuf cpp:"); for (unsigned i = 0; i < key->nr_cbufs; i++) debug_printf(" %d", key->cbuf_cpp[i]); debug_printf(", zsbuf cpp: %d; %dx%d\n", key->zsbuf_cpp[0], key->width, key->height); } /* first, find a bin size that satisfies the maximum width/ * height restrictions: */ while (div_align(key->width, nbins_x, screen->info->tile_align_w) > max_width) { nbins_x++; } while (div_align(key->height, nbins_y, screen->info->tile_align_h) > max_height) { nbins_y++; } /* then find a bin width/height that satisfies the memory * constraints: */ while (!layout_gmem(key, nbins_x, nbins_y, gmem)) { if (nbins_y > nbins_x) { nbins_x++; } else { nbins_y++; } } /* Lets see if we can tweak the layout a bit and come up with * something better: */ if ((((nbins_x - 1) * (nbins_y + 1)) < (nbins_x * nbins_y)) && layout_gmem(key, nbins_x - 1, nbins_y + 1, gmem)) { nbins_x--; nbins_y++; } else if ((((nbins_x + 1) * (nbins_y - 1)) < (nbins_x * nbins_y)) && layout_gmem(key, nbins_x + 1, nbins_y - 1, gmem)) { nbins_x++; nbins_y--; } layout_gmem(key, nbins_x, nbins_y, gmem); } static struct fd_gmem_stateobj * gmem_stateobj_init(struct fd_screen *screen, struct gmem_key *key) { struct fd_gmem_stateobj *gmem = rzalloc(screen->gmem_cache.ht, struct fd_gmem_stateobj); pipe_reference_init(&gmem->reference, 1); gmem->screen = screen; gmem->key = key; list_inithead(&gmem->node); const unsigned npipes = screen->info->num_vsc_pipes; uint32_t i, j, t, xoff, yoff; uint32_t tpp_x, tpp_y; int tile_n[npipes]; calc_nbins(key, gmem); DBG("using %d bins of size %dx%d", gmem->nbins_x * gmem->nbins_y, gmem->bin_w, gmem->bin_h); memcpy(gmem->cbuf_cpp, key->cbuf_cpp, sizeof(key->cbuf_cpp)); memcpy(gmem->zsbuf_cpp, key->zsbuf_cpp, sizeof(key->zsbuf_cpp)); gmem->minx = key->minx; gmem->miny = key->miny; gmem->width = key->width; gmem->height = key->height; if (BIN_DEBUG) { dump_gmem_state(gmem); dump_gmem_key(key); } /* * Assign tiles and pipes: * * At some point it might be worth playing with different * strategies and seeing if that makes much impact on * performance. */ #define div_round_up(v, a) (((v) + (a)-1) / (a)) /* figure out number of tiles per pipe: */ if (is_a20x(screen)) { /* for a20x we want to minimize the number of "pipes" * binning data has 3 bits for x/y (8x8) but the edges are used to * cull off-screen vertices with hw binning, so we have 6x6 pipes */ tpp_x = 6; tpp_y = 6; } else { tpp_x = tpp_y = 1; while (div_round_up(gmem->nbins_y, tpp_y) > npipes) tpp_y += 2; while ((div_round_up(gmem->nbins_y, tpp_y) * div_round_up(gmem->nbins_x, tpp_x)) > npipes) tpp_x += 1; } #ifdef DEBUG tpp_x = env_var_as_unsigned("TPP_X", tpp_x); tpp_y = env_var_as_unsigned("TPP_Y", tpp_x); #endif gmem->maxpw = tpp_x; gmem->maxph = tpp_y; /* configure pipes: */ xoff = yoff = 0; for (i = 0; i < npipes; i++) { struct fd_vsc_pipe *pipe = &gmem->vsc_pipe[i]; if (xoff >= gmem->nbins_x) { xoff = 0; yoff += tpp_y; } if (yoff >= gmem->nbins_y) { break; } pipe->x = xoff; pipe->y = yoff; pipe->w = MIN2(tpp_x, gmem->nbins_x - xoff); pipe->h = MIN2(tpp_y, gmem->nbins_y - yoff); xoff += tpp_x; } /* number of pipes to use for a20x */ gmem->num_vsc_pipes = MAX2(1, i); for (; i < npipes; i++) { struct fd_vsc_pipe *pipe = &gmem->vsc_pipe[i]; pipe->x = pipe->y = pipe->w = pipe->h = 0; } if (BIN_DEBUG) { printf("%dx%d ... tpp=%dx%d\n", gmem->nbins_x, gmem->nbins_y, tpp_x, tpp_y); for (i = 0; i < ARRAY_SIZE(gmem->vsc_pipe); i++) { struct fd_vsc_pipe *pipe = &gmem->vsc_pipe[i]; printf("pipe[%d]: %ux%u @ %u,%u\n", i, pipe->w, pipe->h, pipe->x, pipe->y); } } /* configure tiles: */ t = 0; yoff = key->miny; memset(tile_n, 0, sizeof(tile_n)); for (i = 0; i < gmem->nbins_y; i++) { int bw, bh; xoff = key->minx; /* clip bin height: */ bh = MIN2(gmem->bin_h, key->miny + key->height - yoff); assert(bh > 0); for (j = 0; j < gmem->nbins_x; j++) { struct fd_tile *tile = &gmem->tile[t]; uint32_t p; assert(t < ARRAY_SIZE(gmem->tile)); /* pipe number: */ p = ((i / tpp_y) * div_round_up(gmem->nbins_x, tpp_x)) + (j / tpp_x); assert(p < gmem->num_vsc_pipes); /* clip bin width: */ bw = MIN2(gmem->bin_w, key->minx + key->width - xoff); assert(bw > 0); tile->n = !is_a20x(screen) ? tile_n[p]++ : ((i % tpp_y + 1) << 3 | (j % tpp_x + 1)); tile->p = p; tile->bin_w = bw; tile->bin_h = bh; tile->xoff = xoff; tile->yoff = yoff; if (BIN_DEBUG) { printf("tile[%d]: p=%u, bin=%ux%u+%u+%u\n", t, p, bw, bh, xoff, yoff); } t++; xoff += bw; } yoff += bh; } /* Swap the order of alternating rows to form an 'S' pattern, to improve * cache access patterns (ie. adjacent bins are likely to access adjacent * portions of textures) */ if (!FD_DBG(NOSBIN)) { for (i = 0; i < gmem->nbins_y; i+=2) { unsigned col0 = gmem->nbins_x * i; for (j = 0; j < gmem->nbins_x/2; j++) { swap(gmem->tile[col0 + j], gmem->tile[col0 + gmem->nbins_x - j - 1]); } } } if (BIN_DEBUG) { t = 0; for (i = 0; i < gmem->nbins_y; i++) { for (j = 0; j < gmem->nbins_x; j++) { struct fd_tile *tile = &gmem->tile[t++]; printf("|p:%u n:%u|", tile->p, tile->n); } printf("\n"); } } return gmem; } void __fd_gmem_destroy(struct fd_gmem_stateobj *gmem) { struct fd_gmem_cache *cache = &gmem->screen->gmem_cache; fd_screen_assert_locked(gmem->screen); _mesa_hash_table_remove_key(cache->ht, gmem->key); list_del(&gmem->node); ralloc_free(gmem->key); ralloc_free(gmem); } static struct gmem_key * gmem_key_init(struct fd_batch *batch, bool assume_zs, bool no_scis_opt) { struct fd_screen *screen = batch->ctx->screen; struct pipe_framebuffer_state *pfb = &batch->framebuffer; bool has_zs = pfb->zsbuf && !!(batch->gmem_reason & (FD_GMEM_DEPTH_ENABLED | FD_GMEM_STENCIL_ENABLED | FD_GMEM_CLEARS_DEPTH_STENCIL)); struct gmem_key *key = rzalloc(screen->gmem_cache.ht, struct gmem_key); if (has_zs || assume_zs) { struct fd_resource *rsc = fd_resource(pfb->zsbuf->texture); key->zsbuf_cpp[0] = rsc->layout.cpp; if (rsc->stencil) key->zsbuf_cpp[1] = rsc->stencil->layout.cpp; } else { /* we might have a zsbuf, but it isn't used */ batch->restore &= ~(FD_BUFFER_DEPTH | FD_BUFFER_STENCIL); batch->resolve &= ~(FD_BUFFER_DEPTH | FD_BUFFER_STENCIL); } key->nr_cbufs = pfb->nr_cbufs; for (unsigned i = 0; i < pfb->nr_cbufs; i++) { if (pfb->cbufs[i]) key->cbuf_cpp[i] = util_format_get_blocksize(pfb->cbufs[i]->format); else key->cbuf_cpp[i] = 4; /* if MSAA, color buffers are super-sampled in GMEM: */ key->cbuf_cpp[i] *= pfb->samples; } /* NOTE: on a6xx, the max-scissor-rect is handled in fd6_gmem, and * we just rely on CP_COND_EXEC to skip bins with no geometry. */ if (no_scis_opt || is_a6xx(screen)) { key->minx = 0; key->miny = 0; key->width = pfb->width; key->height = pfb->height; } else { struct pipe_scissor_state *scissor = &batch->max_scissor; if (FD_DBG(NOSCIS)) { scissor->minx = 0; scissor->miny = 0; scissor->maxx = pfb->width; scissor->maxy = pfb->height; } /* round down to multiple of alignment: */ key->minx = scissor->minx & ~(screen->info->gmem_align_w - 1); key->miny = scissor->miny & ~(screen->info->gmem_align_h - 1); key->width = scissor->maxx - key->minx; key->height = scissor->maxy - key->miny; } if (is_a20x(screen) && batch->cleared) { /* under normal circumstances the requirement would be 4K * but the fast clear path requires an alignment of 32K */ key->gmem_page_align = 8; } else if (is_a6xx(screen)) { key->gmem_page_align = (screen->info->tile_align_w == 96) ? 3 : 1; } else { // TODO re-check this across gens.. maybe it should only // be a single page in some cases: key->gmem_page_align = 4; } return key; } static struct fd_gmem_stateobj * lookup_gmem_state(struct fd_batch *batch, bool assume_zs, bool no_scis_opt) { struct fd_screen *screen = batch->ctx->screen; struct fd_gmem_cache *cache = &screen->gmem_cache; struct fd_gmem_stateobj *gmem = NULL; /* Lock before allocating gmem_key, since that a screen-wide * ralloc pool and ralloc itself is not thread-safe. */ fd_screen_lock(screen); struct gmem_key *key = gmem_key_init(batch, assume_zs, no_scis_opt); uint32_t hash = gmem_key_hash(key); struct hash_entry *entry = _mesa_hash_table_search_pre_hashed(cache->ht, hash, key); if (entry) { ralloc_free(key); goto found; } /* limit the # of cached gmem states, discarding the least * recently used state if needed: */ if (cache->ht->entries >= 20) { struct fd_gmem_stateobj *last = list_last_entry(&cache->lru, struct fd_gmem_stateobj, node); fd_gmem_reference(&last, NULL); } entry = _mesa_hash_table_insert_pre_hashed(cache->ht, hash, key, gmem_stateobj_init(screen, key)); found: fd_gmem_reference(&gmem, entry->data); /* Move to the head of the LRU: */ list_delinit(&gmem->node); list_add(&gmem->node, &cache->lru); fd_screen_unlock(screen); return gmem; } /* * GMEM render pass */ static void render_tiles(struct fd_batch *batch, struct fd_gmem_stateobj *gmem) assert_dt { struct fd_context *ctx = batch->ctx; int i; simple_mtx_lock(&ctx->gmem_lock); ctx->emit_tile_init(batch); if (batch->restore) ctx->stats.batch_restore++; for (i = 0; i < (gmem->nbins_x * gmem->nbins_y); i++) { struct fd_tile *tile = &gmem->tile[i]; trace_start_tile(&batch->trace, batch->gmem, tile->bin_h, tile->yoff, tile->bin_w, tile->xoff); ctx->emit_tile_prep(batch, tile); if (batch->restore) { ctx->emit_tile_mem2gmem(batch, tile); } ctx->emit_tile_renderprep(batch, tile); if (ctx->query_prepare_tile) ctx->query_prepare_tile(batch, i, batch->gmem); /* emit IB to drawcmds: */ trace_start_draw_ib(&batch->trace, batch->gmem); if (ctx->emit_tile) { ctx->emit_tile(batch, tile); } else { ctx->screen->emit_ib(batch->gmem, batch->draw); } trace_end_draw_ib(&batch->trace, batch->gmem); fd_reset_wfi(batch); /* emit gmem2mem to transfer tile back to system memory: */ ctx->emit_tile_gmem2mem(batch, tile); } if (ctx->emit_tile_fini) ctx->emit_tile_fini(batch); simple_mtx_unlock(&ctx->gmem_lock); } static void render_sysmem(struct fd_batch *batch) assert_dt { struct fd_context *ctx = batch->ctx; ctx->emit_sysmem_prep(batch); if (ctx->query_prepare_tile) ctx->query_prepare_tile(batch, 0, batch->gmem); if (!batch->nondraw) { trace_start_draw_ib(&batch->trace, batch->gmem); } /* emit IB to drawcmds: */ ctx->screen->emit_ib(batch->gmem, batch->draw); if (!batch->nondraw) { trace_end_draw_ib(&batch->trace, batch->gmem); } fd_reset_wfi(batch); if (ctx->emit_sysmem_fini) ctx->emit_sysmem_fini(batch); } static void flush_ring(struct fd_batch *batch) { if (FD_DBG(NOHW)) return; fd_submit_flush(batch->submit, batch->in_fence_fd, batch->fence ? &batch->fence->submit_fence : NULL); if (batch->fence) fd_fence_set_batch(batch->fence, NULL); } void fd_gmem_render_tiles(struct fd_batch *batch) { struct fd_context *ctx = batch->ctx; struct pipe_framebuffer_state *pfb = &batch->framebuffer; bool sysmem = false; ctx->submit_count++; if (!batch->nondraw) { #if HAVE_PERFETTO /* For non-draw batches, we don't really have a good place to * match up the api event submit-id to the on-gpu rendering, * so skip this for non-draw batches. */ fd_perfetto_submit(ctx); #endif trace_flush_batch(&batch->trace, batch->gmem, batch, batch->cleared, batch->gmem_reason, batch->num_draws); trace_framebuffer_state(&batch->trace, batch->gmem, pfb); } if (ctx->emit_sysmem_prep && !batch->nondraw) { if (fd_autotune_use_bypass(&ctx->autotune, batch) && !FD_DBG(GMEM)) { sysmem = true; } /* For ARB_framebuffer_no_attachments: */ if ((pfb->nr_cbufs == 0) && !pfb->zsbuf) { sysmem = true; } } if (FD_DBG(SYSMEM)) sysmem = true; /* Layered rendering always needs bypass. */ for (unsigned i = 0; i < pfb->nr_cbufs; i++) { struct pipe_surface *psurf = pfb->cbufs[i]; if (!psurf) continue; if (psurf->u.tex.first_layer < psurf->u.tex.last_layer) sysmem = true; } if (pfb->zsbuf && pfb->zsbuf->u.tex.first_layer < pfb->zsbuf->u.tex.last_layer) sysmem = true; /* Tessellation doesn't seem to support tiled rendering so fall back to * bypass. */ if (batch->tessellation) { assert(ctx->emit_sysmem_prep); sysmem = true; } fd_reset_wfi(batch); ctx->stats.batch_total++; if (batch->nondraw) { DBG("%p: rendering non-draw", batch); if (!fd_ringbuffer_empty(batch->draw)) render_sysmem(batch); ctx->stats.batch_nondraw++; } else if (sysmem) { trace_render_sysmem(&batch->trace, batch->gmem); trace_start_render_pass(&batch->trace, batch->gmem, ctx->submit_count, pipe_surface_format(pfb->cbufs[0]), pipe_surface_format(pfb->zsbuf), pfb->width, pfb->height, pfb->nr_cbufs, pfb->samples, 0, 0, 0); if (ctx->query_prepare) ctx->query_prepare(batch, 1); render_sysmem(batch); trace_end_render_pass(&batch->trace, batch->gmem); ctx->stats.batch_sysmem++; } else { struct fd_gmem_stateobj *gmem = lookup_gmem_state(batch, false, false); batch->gmem_state = gmem; trace_render_gmem(&batch->trace, batch->gmem, gmem->nbins_x, gmem->nbins_y, gmem->bin_w, gmem->bin_h); trace_start_render_pass(&batch->trace, batch->gmem, ctx->submit_count, pipe_surface_format(pfb->cbufs[0]), pipe_surface_format(pfb->zsbuf), pfb->width, pfb->height, pfb->nr_cbufs, pfb->samples, gmem->nbins_x * gmem->nbins_y, gmem->bin_w, gmem->bin_h); if (ctx->query_prepare) ctx->query_prepare(batch, gmem->nbins_x * gmem->nbins_y); render_tiles(batch, gmem); trace_end_render_pass(&batch->trace, batch->gmem); batch->gmem_state = NULL; fd_screen_lock(ctx->screen); fd_gmem_reference(&gmem, NULL); fd_screen_unlock(ctx->screen); ctx->stats.batch_gmem++; } flush_ring(batch); u_trace_flush(&batch->trace, NULL, false); } /* Determine a worst-case estimate (ie. assuming we don't eliminate an * unused depth/stencil) number of bins per vsc pipe. */ unsigned fd_gmem_estimate_bins_per_pipe(struct fd_batch *batch) { struct pipe_framebuffer_state *pfb = &batch->framebuffer; struct fd_screen *screen = batch->ctx->screen; struct fd_gmem_stateobj *gmem = lookup_gmem_state(batch, !!pfb->zsbuf, true); unsigned nbins = gmem->maxpw * gmem->maxph; fd_screen_lock(screen); fd_gmem_reference(&gmem, NULL); fd_screen_unlock(screen); return nbins; } /* When deciding whether a tile needs mem2gmem, we need to take into * account the scissor rect(s) that were cleared. To simplify we only * consider the last scissor rect for each buffer, since the common * case would be a single clear. */ bool fd_gmem_needs_restore(struct fd_batch *batch, const struct fd_tile *tile, uint32_t buffers) { if (!(batch->restore & buffers)) return false; return true; } void fd_gmem_screen_init(struct pipe_screen *pscreen) { struct fd_gmem_cache *cache = &fd_screen(pscreen)->gmem_cache; cache->ht = _mesa_hash_table_create(NULL, gmem_key_hash, gmem_key_equals); list_inithead(&cache->lru); } void fd_gmem_screen_fini(struct pipe_screen *pscreen) { struct fd_gmem_cache *cache = &fd_screen(pscreen)->gmem_cache; _mesa_hash_table_destroy(cache->ht, NULL); }