/* * Copyright © 2016 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include #include #include #include #include #include #include #include #include #include #include #include "intel_decoder.h" #include "isl/isl.h" #include "genxml/genX_xml.h" #define XML_BUFFER_SIZE 4096 #define MAX_VALUE_ITEMS 128 struct location { const char *filename; int line_number; }; struct parser_context { XML_Parser parser; int foo; struct location loc; struct intel_group *group; struct intel_enum *enoom; int n_values, n_allocated_values; struct intel_value **values; struct intel_field *last_field; struct intel_spec *spec; }; const char * intel_group_get_name(struct intel_group *group) { return group->name; } uint32_t intel_group_get_opcode(struct intel_group *group) { return group->opcode; } struct intel_group * intel_spec_find_struct(struct intel_spec *spec, const char *name) { struct hash_entry *entry = _mesa_hash_table_search(spec->structs, name); return entry ? entry->data : NULL; } struct intel_group * intel_spec_find_register(struct intel_spec *spec, uint32_t offset) { struct hash_entry *entry = _mesa_hash_table_search(spec->registers_by_offset, (void *) (uintptr_t) offset); return entry ? entry->data : NULL; } struct intel_group * intel_spec_find_register_by_name(struct intel_spec *spec, const char *name) { struct hash_entry *entry = _mesa_hash_table_search(spec->registers_by_name, name); return entry ? entry->data : NULL; } struct intel_enum * intel_spec_find_enum(struct intel_spec *spec, const char *name) { struct hash_entry *entry = _mesa_hash_table_search(spec->enums, name); return entry ? entry->data : NULL; } uint32_t intel_spec_get_gen(struct intel_spec *spec) { return spec->gen; } static void __attribute__((noreturn)) fail(struct location *loc, const char *msg, ...) { va_list ap; va_start(ap, msg); fprintf(stderr, "%s:%d: error: ", loc->filename, loc->line_number); vfprintf(stderr, msg, ap); fprintf(stderr, "\n"); va_end(ap); exit(EXIT_FAILURE); } static void get_array_offset_count(const char **atts, uint32_t *offset, uint32_t *count, uint32_t *size, bool *variable) { for (int i = 0; atts[i]; i += 2) { char *p; if (strcmp(atts[i], "count") == 0) { *count = strtoul(atts[i + 1], &p, 0); if (*count == 0) *variable = true; } else if (strcmp(atts[i], "start") == 0) { *offset = strtoul(atts[i + 1], &p, 0); } else if (strcmp(atts[i], "size") == 0) { *size = strtoul(atts[i + 1], &p, 0); } } return; } static struct intel_group * create_group(struct parser_context *ctx, const char *name, const char **atts, struct intel_group *parent, bool fixed_length) { struct intel_group *group; group = rzalloc(ctx->spec, struct intel_group); if (name) group->name = ralloc_strdup(group, name); group->spec = ctx->spec; group->variable = false; group->fixed_length = fixed_length; group->dword_length_field = NULL; group->dw_length = 0; group->engine_mask = I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_RENDER) | I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_VIDEO) | I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_COPY); group->bias = 1; for (int i = 0; atts[i]; i += 2) { char *p; if (strcmp(atts[i], "length") == 0) { group->dw_length = strtoul(atts[i + 1], &p, 0); } else if (strcmp(atts[i], "bias") == 0) { group->bias = strtoul(atts[i + 1], &p, 0); } else if (strcmp(atts[i], "engine") == 0) { void *mem_ctx = ralloc_context(NULL); char *tmp = ralloc_strdup(mem_ctx, atts[i + 1]); char *save_ptr; char *tok = strtok_r(tmp, "|", &save_ptr); group->engine_mask = 0; while (tok != NULL) { if (strcmp(tok, "render") == 0) { group->engine_mask |= I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_RENDER); } else if (strcmp(tok, "video") == 0) { group->engine_mask |= I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_VIDEO); } else if (strcmp(tok, "blitter") == 0) { group->engine_mask |= I915_ENGINE_CLASS_TO_MASK(I915_ENGINE_CLASS_COPY); } else { fprintf(stderr, "unknown engine class defined for instruction \"%s\": %s\n", name, atts[i + 1]); } tok = strtok_r(NULL, "|", &save_ptr); } ralloc_free(mem_ctx); } } if (parent) { group->parent = parent; get_array_offset_count(atts, &group->array_offset, &group->array_count, &group->array_item_size, &group->variable); } return group; } static struct intel_enum * create_enum(struct parser_context *ctx, const char *name, const char **atts) { struct intel_enum *e; e = rzalloc(ctx->spec, struct intel_enum); if (name) e->name = ralloc_strdup(e, name); return e; } static void get_register_offset(const char **atts, uint32_t *offset) { for (int i = 0; atts[i]; i += 2) { char *p; if (strcmp(atts[i], "num") == 0) *offset = strtoul(atts[i + 1], &p, 0); } return; } static void get_start_end_pos(int *start, int *end) { /* start value has to be mod with 32 as we need the relative * start position in the first DWord. For the end position, add * the length of the field to the start position to get the * relative position in the 64 bit address. */ if (*end - *start > 32) { int len = *end - *start; *start = *start % 32; *end = *start + len; } else { *start = *start % 32; *end = *end % 32; } return; } static inline uint64_t mask(int start, int end) { uint64_t v; v = ~0ULL >> (63 - end + start); return v << start; } static inline uint64_t field_value(uint64_t value, int start, int end) { get_start_end_pos(&start, &end); return (value & mask(start, end)) >> (start); } static struct intel_type string_to_type(struct parser_context *ctx, const char *s) { int i, f; struct intel_group *g; struct intel_enum *e; if (strcmp(s, "int") == 0) return (struct intel_type) { .kind = INTEL_TYPE_INT }; else if (strcmp(s, "uint") == 0) return (struct intel_type) { .kind = INTEL_TYPE_UINT }; else if (strcmp(s, "bool") == 0) return (struct intel_type) { .kind = INTEL_TYPE_BOOL }; else if (strcmp(s, "float") == 0) return (struct intel_type) { .kind = INTEL_TYPE_FLOAT }; else if (strcmp(s, "address") == 0) return (struct intel_type) { .kind = INTEL_TYPE_ADDRESS }; else if (strcmp(s, "offset") == 0) return (struct intel_type) { .kind = INTEL_TYPE_OFFSET }; else if (sscanf(s, "u%d.%d", &i, &f) == 2) return (struct intel_type) { .kind = INTEL_TYPE_UFIXED, .i = i, .f = f }; else if (sscanf(s, "s%d.%d", &i, &f) == 2) return (struct intel_type) { .kind = INTEL_TYPE_SFIXED, .i = i, .f = f }; else if (g = intel_spec_find_struct(ctx->spec, s), g != NULL) return (struct intel_type) { .kind = INTEL_TYPE_STRUCT, .intel_struct = g }; else if (e = intel_spec_find_enum(ctx->spec, s), e != NULL) return (struct intel_type) { .kind = INTEL_TYPE_ENUM, .intel_enum = e }; else if (strcmp(s, "mbo") == 0) return (struct intel_type) { .kind = INTEL_TYPE_MBO }; else if (strcmp(s, "mbz") == 0) return (struct intel_type) { .kind = INTEL_TYPE_MBZ }; else fail(&ctx->loc, "invalid type: %s", s); } static struct intel_field * create_field(struct parser_context *ctx, const char **atts) { struct intel_field *field; field = rzalloc(ctx->group, struct intel_field); field->parent = ctx->group; for (int i = 0; atts[i]; i += 2) { char *p; if (strcmp(atts[i], "name") == 0) { field->name = ralloc_strdup(field, atts[i + 1]); if (strcmp(field->name, "DWord Length") == 0) { field->parent->dword_length_field = field; } } else if (strcmp(atts[i], "start") == 0) { field->start = strtoul(atts[i + 1], &p, 0); } else if (strcmp(atts[i], "end") == 0) { field->end = strtoul(atts[i + 1], &p, 0); } else if (strcmp(atts[i], "type") == 0) { field->type = string_to_type(ctx, atts[i + 1]); } else if (strcmp(atts[i], "default") == 0 && field->start >= 16 && field->end <= 31) { field->has_default = true; field->default_value = strtoul(atts[i + 1], &p, 0); } } return field; } static struct intel_field * create_array_field(struct parser_context *ctx, struct intel_group *array) { struct intel_field *field; field = rzalloc(ctx->group, struct intel_field); field->parent = ctx->group; field->array = array; field->start = field->array->array_offset; return field; } static struct intel_value * create_value(struct parser_context *ctx, const char **atts) { struct intel_value *value = rzalloc(ctx->values, struct intel_value); for (int i = 0; atts[i]; i += 2) { if (strcmp(atts[i], "name") == 0) value->name = ralloc_strdup(value, atts[i + 1]); else if (strcmp(atts[i], "value") == 0) value->value = strtoul(atts[i + 1], NULL, 0); } return value; } static struct intel_field * create_and_append_field(struct parser_context *ctx, const char **atts, struct intel_group *array) { struct intel_field *field = array ? create_array_field(ctx, array) : create_field(ctx, atts); struct intel_field *prev = NULL, *list = ctx->group->fields; while (list && field->start > list->start) { prev = list; list = list->next; } field->next = list; if (prev == NULL) ctx->group->fields = field; else prev->next = field; return field; } static void start_element(void *data, const char *element_name, const char **atts) { struct parser_context *ctx = data; const char *name = NULL; const char *gen = NULL; ctx->loc.line_number = XML_GetCurrentLineNumber(ctx->parser); for (int i = 0; atts[i]; i += 2) { if (strcmp(atts[i], "name") == 0) name = atts[i + 1]; else if (strcmp(atts[i], "gen") == 0) gen = atts[i + 1]; } if (strcmp(element_name, "genxml") == 0) { if (name == NULL) fail(&ctx->loc, "no platform name given"); if (gen == NULL) fail(&ctx->loc, "no gen given"); int major, minor; int n = sscanf(gen, "%d.%d", &major, &minor); if (n == 0) fail(&ctx->loc, "invalid gen given: %s", gen); if (n == 1) minor = 0; ctx->spec->gen = intel_make_gen(major, minor); } else if (strcmp(element_name, "instruction") == 0) { ctx->group = create_group(ctx, name, atts, NULL, false); } else if (strcmp(element_name, "struct") == 0) { ctx->group = create_group(ctx, name, atts, NULL, true); } else if (strcmp(element_name, "register") == 0) { ctx->group = create_group(ctx, name, atts, NULL, true); get_register_offset(atts, &ctx->group->register_offset); } else if (strcmp(element_name, "group") == 0) { struct intel_group *group = create_group(ctx, "", atts, ctx->group, false); ctx->last_field = create_and_append_field(ctx, NULL, group); ctx->group = group; } else if (strcmp(element_name, "field") == 0) { ctx->last_field = create_and_append_field(ctx, atts, NULL); } else if (strcmp(element_name, "enum") == 0) { ctx->enoom = create_enum(ctx, name, atts); } else if (strcmp(element_name, "value") == 0) { if (ctx->n_values >= ctx->n_allocated_values) { ctx->n_allocated_values = MAX2(2, ctx->n_allocated_values * 2); ctx->values = reralloc_array_size(ctx->spec, ctx->values, sizeof(struct intel_value *), ctx->n_allocated_values); } assert(ctx->n_values < ctx->n_allocated_values); ctx->values[ctx->n_values++] = create_value(ctx, atts); } } static void end_element(void *data, const char *name) { struct parser_context *ctx = data; struct intel_spec *spec = ctx->spec; if (strcmp(name, "instruction") == 0 || strcmp(name, "struct") == 0 || strcmp(name, "register") == 0) { struct intel_group *group = ctx->group; struct intel_field *list = group->fields; ctx->group = ctx->group->parent; while (list && list->end <= 31) { if (list->start >= 16 && list->has_default) { group->opcode_mask |= mask(list->start % 32, list->end % 32); group->opcode |= list->default_value << list->start; } list = list->next; } if (strcmp(name, "instruction") == 0) _mesa_hash_table_insert(spec->commands, group->name, group); else if (strcmp(name, "struct") == 0) _mesa_hash_table_insert(spec->structs, group->name, group); else if (strcmp(name, "register") == 0) { _mesa_hash_table_insert(spec->registers_by_name, group->name, group); _mesa_hash_table_insert(spec->registers_by_offset, (void *) (uintptr_t) group->register_offset, group); } } else if (strcmp(name, "group") == 0) { ctx->group = ctx->group->parent; } else if (strcmp(name, "field") == 0) { struct intel_field *field = ctx->last_field; ctx->last_field = NULL; field->inline_enum.values = ctx->values; field->inline_enum.nvalues = ctx->n_values; ctx->values = ralloc_array(ctx->spec, struct intel_value*, ctx->n_allocated_values = 2); ctx->n_values = 0; } else if (strcmp(name, "enum") == 0) { struct intel_enum *e = ctx->enoom; e->values = ctx->values; e->nvalues = ctx->n_values; ctx->values = ralloc_array(ctx->spec, struct intel_value*, ctx->n_allocated_values = 2); ctx->n_values = 0; ctx->enoom = NULL; _mesa_hash_table_insert(spec->enums, e->name, e); } } static void character_data(void *data, const XML_Char *s, int len) { } static uint32_t zlib_inflate(const void *compressed_data, uint32_t compressed_len, void **out_ptr) { struct z_stream_s zstream; void *out; memset(&zstream, 0, sizeof(zstream)); zstream.next_in = (unsigned char *)compressed_data; zstream.avail_in = compressed_len; if (inflateInit(&zstream) != Z_OK) return 0; out = malloc(4096); zstream.next_out = out; zstream.avail_out = 4096; do { switch (inflate(&zstream, Z_SYNC_FLUSH)) { case Z_STREAM_END: goto end; case Z_OK: break; default: inflateEnd(&zstream); return 0; } if (zstream.avail_out) break; out = realloc(out, 2*zstream.total_out); if (out == NULL) { inflateEnd(&zstream); return 0; } zstream.next_out = (unsigned char *)out + zstream.total_out; zstream.avail_out = zstream.total_out; } while (1); end: inflateEnd(&zstream); *out_ptr = out; return zstream.total_out; } static uint32_t _hash_uint32(const void *key) { return (uint32_t) (uintptr_t) key; } static struct intel_spec * intel_spec_init(void) { struct intel_spec *spec; spec = rzalloc(NULL, struct intel_spec); if (spec == NULL) return NULL; spec->commands = _mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal); spec->structs = _mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal); spec->registers_by_name = _mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal); spec->registers_by_offset = _mesa_hash_table_create(spec, _hash_uint32, _mesa_key_pointer_equal); spec->enums = _mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal); spec->access_cache = _mesa_hash_table_create(spec, _mesa_hash_string, _mesa_key_string_equal); return spec; } struct intel_spec * intel_spec_load(const struct intel_device_info *devinfo) { struct parser_context ctx; void *buf; uint8_t *text_data = NULL; uint32_t text_offset = 0, text_length = 0; ASSERTED uint32_t total_length; uint32_t ver_10 = devinfo->verx10; for (int i = 0; i < ARRAY_SIZE(genxml_files_table); i++) { if (genxml_files_table[i].ver_10 == ver_10) { text_offset = genxml_files_table[i].offset; text_length = genxml_files_table[i].length; break; } } if (text_length == 0) { fprintf(stderr, "unable to find gen (%u) data\n", ver_10); return NULL; } memset(&ctx, 0, sizeof ctx); ctx.parser = XML_ParserCreate(NULL); XML_SetUserData(ctx.parser, &ctx); if (ctx.parser == NULL) { fprintf(stderr, "failed to create parser\n"); return NULL; } XML_SetElementHandler(ctx.parser, start_element, end_element); XML_SetCharacterDataHandler(ctx.parser, character_data); ctx.spec = intel_spec_init(); if (ctx.spec == NULL) { fprintf(stderr, "Failed to create intel_spec\n"); return NULL; } total_length = zlib_inflate(compress_genxmls, sizeof(compress_genxmls), (void **) &text_data); assert(text_offset + text_length <= total_length); buf = XML_GetBuffer(ctx.parser, text_length); memcpy(buf, &text_data[text_offset], text_length); if (XML_ParseBuffer(ctx.parser, text_length, true) == 0) { fprintf(stderr, "Error parsing XML at line %ld col %ld byte %ld/%u: %s\n", XML_GetCurrentLineNumber(ctx.parser), XML_GetCurrentColumnNumber(ctx.parser), XML_GetCurrentByteIndex(ctx.parser), text_length, XML_ErrorString(XML_GetErrorCode(ctx.parser))); XML_ParserFree(ctx.parser); free(text_data); return NULL; } XML_ParserFree(ctx.parser); free(text_data); return ctx.spec; } struct intel_spec * intel_spec_load_filename(const char *filename) { struct parser_context ctx; FILE *input; void *buf; size_t len; input = fopen(filename, "r"); if (input == NULL) { fprintf(stderr, "failed to open xml description\n"); return NULL; } memset(&ctx, 0, sizeof ctx); ctx.parser = XML_ParserCreate(NULL); XML_SetUserData(ctx.parser, &ctx); if (ctx.parser == NULL) { fprintf(stderr, "failed to create parser\n"); fclose(input); return NULL; } XML_SetElementHandler(ctx.parser, start_element, end_element); XML_SetCharacterDataHandler(ctx.parser, character_data); ctx.loc.filename = filename; ctx.spec = intel_spec_init(); if (ctx.spec == NULL) { fprintf(stderr, "Failed to create intel_spec\n"); goto end; } do { buf = XML_GetBuffer(ctx.parser, XML_BUFFER_SIZE); len = fread(buf, 1, XML_BUFFER_SIZE, input); if (ferror(input)) { fprintf(stderr, "fread: %m\n"); intel_spec_destroy(ctx.spec); ctx.spec = NULL; goto end; } else if (len == 0 && feof(input)) goto end; if (XML_ParseBuffer(ctx.parser, len, len == 0) == 0) { fprintf(stderr, "Error parsing XML at line %ld col %ld: %s\n", XML_GetCurrentLineNumber(ctx.parser), XML_GetCurrentColumnNumber(ctx.parser), XML_ErrorString(XML_GetErrorCode(ctx.parser))); intel_spec_destroy(ctx.spec); ctx.spec = NULL; goto end; } } while (len > 0); end: XML_ParserFree(ctx.parser); fclose(input); /* free ctx.spec if genxml is empty */ if (ctx.spec && _mesa_hash_table_num_entries(ctx.spec->commands) == 0 && _mesa_hash_table_num_entries(ctx.spec->structs) == 0) { fprintf(stderr, "Error parsing XML: empty spec.\n"); intel_spec_destroy(ctx.spec); return NULL; } return ctx.spec; } struct intel_spec * intel_spec_load_from_path(const struct intel_device_info *devinfo, const char *path) { size_t filename_len = strlen(path) + 20; char *filename = malloc(filename_len); ASSERTED size_t len = snprintf(filename, filename_len, "%s/gen%i.xml", path, devinfo->ver); assert(len < filename_len); struct intel_spec *spec = intel_spec_load_filename(filename); free(filename); return spec; } void intel_spec_destroy(struct intel_spec *spec) { ralloc_free(spec); } struct intel_group * intel_spec_find_instruction(struct intel_spec *spec, enum drm_i915_gem_engine_class engine, const uint32_t *p) { hash_table_foreach(spec->commands, entry) { struct intel_group *command = entry->data; uint32_t opcode = *p & command->opcode_mask; if ((command->engine_mask & I915_ENGINE_CLASS_TO_MASK(engine)) && opcode == command->opcode) return command; } return NULL; } struct intel_field * intel_group_find_field(struct intel_group *group, const char *name) { char path[256]; snprintf(path, sizeof(path), "%s/%s", group->name, name); struct intel_spec *spec = group->spec; struct hash_entry *entry = _mesa_hash_table_search(spec->access_cache, path); if (entry) return entry->data; struct intel_field *field = group->fields; while (field) { if (strcmp(field->name, name) == 0) { _mesa_hash_table_insert(spec->access_cache, ralloc_strdup(spec, path), field); return field; } field = field->next; } return NULL; } int intel_group_get_length(struct intel_group *group, const uint32_t *p) { if (group) { if (group->fixed_length) return group->dw_length; else { struct intel_field *field = group->dword_length_field; if (field) { return field_value(p[0], field->start, field->end) + group->bias; } } } uint32_t h = p[0]; uint32_t type = field_value(h, 29, 31); switch (type) { case 0: /* MI */ { uint32_t opcode = field_value(h, 23, 28); if (opcode < 16) return 1; else return field_value(h, 0, 7) + 2; break; } case 2: /* BLT */ { return field_value(h, 0, 7) + 2; } case 3: /* Render */ { uint32_t subtype = field_value(h, 27, 28); uint32_t opcode = field_value(h, 24, 26); uint16_t whole_opcode = field_value(h, 16, 31); switch (subtype) { case 0: if (whole_opcode == 0x6104 /* PIPELINE_SELECT_965 */) return 1; else if (opcode < 2) return field_value(h, 0, 7) + 2; else return -1; case 1: if (opcode < 2) return 1; else return -1; case 2: { if (opcode == 0) return field_value(h, 0, 7) + 2; else if (opcode < 3) return field_value(h, 0, 15) + 2; else return -1; } case 3: if (whole_opcode == 0x780b) return 1; else if (opcode < 4) return field_value(h, 0, 7) + 2; else return -1; } } } return -1; } static const char * intel_get_enum_name(struct intel_enum *e, uint64_t value) { for (int i = 0; i < e->nvalues; i++) { if (e->values[i]->value == value) { return e->values[i]->name; } } return NULL; } static bool iter_more_fields(const struct intel_field_iterator *iter) { return iter->field != NULL && iter->field->next != NULL; } static uint32_t iter_array_offset_bits(const struct intel_field_iterator *iter) { if (iter->level == 0) return 0; uint32_t offset = 0; const struct intel_group *group = iter->groups[1]; for (int level = 1; level <= iter->level; level++, group = iter->groups[level]) { uint32_t array_idx = iter->array_iter[level]; offset += group->array_offset + array_idx * group->array_item_size; } return offset; } /* Checks whether we have more items in the array to iterate, or more arrays to * iterate through. */ /* descend into a non-array field */ static void iter_push_array(struct intel_field_iterator *iter) { assert(iter->level >= 0); iter->group = iter->field->array; iter->level++; assert(iter->level < DECODE_MAX_ARRAY_DEPTH); iter->groups[iter->level] = iter->group; iter->array_iter[iter->level] = 0; assert(iter->group->fields != NULL); /* an empty makes no sense */ iter->field = iter->group->fields; iter->fields[iter->level] = iter->field; } static void iter_pop_array(struct intel_field_iterator *iter) { assert(iter->level > 0); iter->level--; iter->field = iter->fields[iter->level]; iter->group = iter->groups[iter->level]; } static void iter_start_field(struct intel_field_iterator *iter, struct intel_field *field) { iter->field = field; iter->fields[iter->level] = field; while (iter->field->array) iter_push_array(iter); int array_member_offset = iter_array_offset_bits(iter); iter->start_bit = array_member_offset + iter->field->start; iter->end_bit = array_member_offset + iter->field->end; iter->struct_desc = NULL; } static void iter_advance_array(struct intel_field_iterator *iter) { assert(iter->level > 0); int lvl = iter->level; if (iter->group->variable) iter->array_iter[lvl]++; else { if ((iter->array_iter[lvl] + 1) < iter->group->array_count) { iter->array_iter[lvl]++; } } iter_start_field(iter, iter->group->fields); } static bool iter_more_array_elems(const struct intel_field_iterator *iter) { int lvl = iter->level; assert(lvl >= 0); if (iter->group->variable) { int length = intel_group_get_length(iter->group, iter->p); assert(length >= 0 && "error the length is unknown!"); return iter_array_offset_bits(iter) + iter->group->array_item_size < (length * 32); } else { return (iter->array_iter[lvl] + 1) < iter->group->array_count; } } static bool iter_advance_field(struct intel_field_iterator *iter) { /* Keep looping while we either have more fields to look at, or we are * inside a and can go up a level. */ while (iter_more_fields(iter) || iter->level > 0) { if (iter_more_fields(iter)) { iter_start_field(iter, iter->field->next); return true; } assert(iter->level >= 0); if (iter_more_array_elems(iter)) { iter_advance_array(iter); return true; } /* At this point, we reached the end of the and were on the last * iteration. So it's time to go back to the parent and then advance the * field. */ iter_pop_array(iter); } return false; } static bool iter_decode_field_raw(struct intel_field_iterator *iter, uint64_t *qw) { *qw = 0; int field_start = iter->p_bit + iter->start_bit; int field_end = iter->p_bit + iter->end_bit; const uint32_t *p = iter->p + (iter->start_bit / 32); if (iter->p_end && p >= iter->p_end) return false; if ((field_end - field_start) > 32) { if (!iter->p_end || (p + 1) < iter->p_end) *qw = ((uint64_t) p[1]) << 32; *qw |= p[0]; } else *qw = p[0]; *qw = field_value(*qw, field_start, field_end); /* Address & offset types have to be aligned to dwords, their start bit is * a reminder of the alignment requirement. */ if (iter->field->type.kind == INTEL_TYPE_ADDRESS || iter->field->type.kind == INTEL_TYPE_OFFSET) *qw <<= field_start % 32; return true; } static bool iter_decode_field(struct intel_field_iterator *iter) { union { uint64_t qw; float f; } v; if (iter->field->name) snprintf(iter->name, sizeof(iter->name), "%s", iter->field->name); else memset(iter->name, 0, sizeof(iter->name)); memset(&v, 0, sizeof(v)); if (!iter_decode_field_raw(iter, &iter->raw_value)) return false; const char *enum_name = NULL; v.qw = iter->raw_value; switch (iter->field->type.kind) { case INTEL_TYPE_UNKNOWN: case INTEL_TYPE_INT: { snprintf(iter->value, sizeof(iter->value), "%"PRId64, v.qw); enum_name = intel_get_enum_name(&iter->field->inline_enum, v.qw); break; } case INTEL_TYPE_MBZ: case INTEL_TYPE_UINT: { snprintf(iter->value, sizeof(iter->value), "%"PRIu64, v.qw); enum_name = intel_get_enum_name(&iter->field->inline_enum, v.qw); break; } case INTEL_TYPE_BOOL: { const char *true_string = iter->print_colors ? "\e[0;35mtrue\e[0m" : "true"; snprintf(iter->value, sizeof(iter->value), "%s", v.qw ? true_string : "false"); break; } case INTEL_TYPE_FLOAT: snprintf(iter->value, sizeof(iter->value), "%f", v.f); break; case INTEL_TYPE_ADDRESS: case INTEL_TYPE_OFFSET: snprintf(iter->value, sizeof(iter->value), "0x%08"PRIx64, v.qw); break; case INTEL_TYPE_STRUCT: snprintf(iter->value, sizeof(iter->value), "", iter->field->type.intel_struct->name); iter->struct_desc = intel_spec_find_struct(iter->group->spec, iter->field->type.intel_struct->name); break; case INTEL_TYPE_UFIXED: snprintf(iter->value, sizeof(iter->value), "%f", (float) v.qw / (1 << iter->field->type.f)); break; case INTEL_TYPE_SFIXED: { /* Sign extend before converting */ int bits = iter->field->type.i + iter->field->type.f + 1; int64_t v_sign_extend = util_mask_sign_extend(v.qw, bits); snprintf(iter->value, sizeof(iter->value), "%f", (float) v_sign_extend / (1 << iter->field->type.f)); break; } case INTEL_TYPE_MBO: break; case INTEL_TYPE_ENUM: { snprintf(iter->value, sizeof(iter->value), "%"PRId64, v.qw); enum_name = intel_get_enum_name(iter->field->type.intel_enum, v.qw); break; } } if (strlen(iter->group->name) == 0) { int length = strlen(iter->name); assert(iter->level >= 0); int level = 1; char *buf = iter->name + length; while (level <= iter->level) { int printed = snprintf(buf, sizeof(iter->name) - length, "[%i]", iter->array_iter[level]); level++; length += printed; buf += printed; } } if (enum_name) { int length = strlen(iter->value); snprintf(iter->value + length, sizeof(iter->value) - length, " (%s)", enum_name); } else if (strcmp(iter->name, "Surface Format") == 0 || strcmp(iter->name, "Source Element Format") == 0) { if (isl_format_is_valid((enum isl_format)v.qw)) { const char *fmt_name = isl_format_get_name((enum isl_format)v.qw); int length = strlen(iter->value); snprintf(iter->value + length, sizeof(iter->value) - length, " (%s)", fmt_name); } } return true; } void intel_field_iterator_init(struct intel_field_iterator *iter, struct intel_group *group, const uint32_t *p, int p_bit, bool print_colors) { memset(iter, 0, sizeof(*iter)); iter->groups[iter->level] = group; iter->group = group; iter->p = p; iter->p_bit = p_bit; int length = intel_group_get_length(iter->group, iter->p); assert(length >= 0 && "error the length is unknown!"); iter->p_end = length >= 0 ? &p[length] : NULL; iter->print_colors = print_colors; } bool intel_field_iterator_next(struct intel_field_iterator *iter) { /* Initial condition */ if (!iter->field) { if (iter->group->fields) iter_start_field(iter, iter->group->fields); bool result = iter_decode_field(iter); if (!result && iter->p_end) { /* We're dealing with a non empty struct of length=0 (BLEND_STATE on * Gen 7.5) */ assert(iter->group->dw_length == 0); } return result; } if (!iter_advance_field(iter)) return false; if (!iter_decode_field(iter)) return false; return true; } static void print_dword_header(FILE *outfile, struct intel_field_iterator *iter, uint64_t offset, uint32_t dword) { fprintf(outfile, "0x%08"PRIx64": 0x%08x : Dword %d\n", offset + 4 * dword, iter->p[dword], dword); } bool intel_field_is_header(struct intel_field *field) { uint32_t bits; /* Instructions are identified by the first DWord. */ if (field->start >= 32 || field->end >= 32) return false; bits = (1ULL << (field->end - field->start + 1)) - 1; bits <<= field->start; return (field->parent->opcode_mask & bits) != 0; } void intel_print_group(FILE *outfile, struct intel_group *group, uint64_t offset, const uint32_t *p, int p_bit, bool color) { struct intel_field_iterator iter; int last_dword = -1; intel_field_iterator_init(&iter, group, p, p_bit, color); while (intel_field_iterator_next(&iter)) { int iter_dword = iter.end_bit / 32; if (last_dword != iter_dword) { for (int i = last_dword + 1; i <= iter_dword; i++) print_dword_header(outfile, &iter, offset, i); last_dword = iter_dword; } if (!intel_field_is_header(iter.field)) { fprintf(outfile, " %s: %s\n", iter.name, iter.value); if (iter.struct_desc) { int struct_dword = iter.start_bit / 32; uint64_t struct_offset = offset + 4 * struct_dword; intel_print_group(outfile, iter.struct_desc, struct_offset, &p[struct_dword], iter.start_bit % 32, color); } } } }