/* * Copyright (C) 2020 Collabora, Ltd. * Copyright (C) 2018-2019 Alyssa Rosenzweig * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE * SOFTWARE. */ #include "compiler.h" #include "util/u_memory.h" #include "util/list.h" #include "util/set.h" /* Liveness analysis is a backwards-may dataflow analysis pass. Within a block, * we compute live_out from live_in. The intrablock pass is linear-time. It * returns whether progress was made. */ void bi_liveness_ins_update(uint8_t *live, bi_instr *ins, unsigned max) { /* live_in[s] = GEN[s] + (live_out[s] - KILL[s]) */ bi_foreach_dest(ins, d) { unsigned node = bi_get_node(ins->dest[d]); if (node < max) live[node] &= ~bi_writemask(ins, d); } bi_foreach_src(ins, src) { unsigned count = bi_count_read_registers(ins, src); unsigned rmask = BITFIELD_MASK(count); uint8_t mask = (rmask << ins->src[src].offset); unsigned node = bi_get_node(ins->src[src]); if (node < max) live[node] |= mask; } } static bool liveness_block_update(bi_block *blk, unsigned temp_count) { bool progress = false; /* live_out[s] = sum { p in succ[s] } ( live_in[p] ) */ bi_foreach_successor(blk, succ) { for (unsigned i = 0; i < temp_count; ++i) blk->live_out[i] |= succ->live_in[i]; } uint8_t *live = ralloc_array(blk, uint8_t, temp_count); memcpy(live, blk->live_out, temp_count); bi_foreach_instr_in_block_rev(blk, ins) bi_liveness_ins_update(live, ins, temp_count); /* To figure out progress, diff live_in */ for (unsigned i = 0; (i < temp_count) && !progress; ++i) progress |= (blk->live_in[i] != live[i]); ralloc_free(blk->live_in); blk->live_in = live; return progress; } /* Globally, liveness analysis uses a fixed-point algorithm based on a * worklist. We initialize a work list with the exit block. We iterate the work * list to compute live_in from live_out for each block on the work list, * adding the predecessors of the block to the work list if we made progress. */ void bi_compute_liveness(bi_context *ctx) { unsigned temp_count = bi_max_temp(ctx); u_worklist worklist; bi_worklist_init(ctx, &worklist); bi_foreach_block(ctx, block) { if (block->live_in) ralloc_free(block->live_in); if (block->live_out) ralloc_free(block->live_out); block->live_in = rzalloc_array(block, uint8_t, temp_count); block->live_out = rzalloc_array(block, uint8_t, temp_count); bi_worklist_push_tail(&worklist, block); } while (!u_worklist_is_empty(&worklist)) { /* Pop off in reverse order since liveness is backwards */ bi_block *blk = bi_worklist_pop_tail(&worklist); /* Update liveness information. If we made progress, we need to * reprocess the predecessors */ if (liveness_block_update(blk, temp_count)) { bi_foreach_predecessor(blk, pred) bi_worklist_push_head(&worklist, *pred); } } u_worklist_fini(&worklist); }