/* * Copyright © 2021 Intel Corporation * * Permission is hereby granted, free of charge, to any person obtaining a * copy of this software and associated documentation files (the "Software"), * to deal in the Software without restriction, including without limitation * the rights to use, copy, modify, merge, publish, distribute, sublicense, * and/or sell copies of the Software, and to permit persons to whom the * Software is furnished to do so, subject to the following conditions: * * The above copyright notice and this permission notice (including the next * paragraph) shall be included in all copies or substantial portions of the * Software. * * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS * IN THE SOFTWARE. */ #include "vk_sync.h" #include #include #include "util/debug.h" #include "util/macros.h" #include "util/os_time.h" #include "vk_alloc.h" #include "vk_device.h" #include "vk_log.h" static void vk_sync_type_validate(const struct vk_sync_type *type) { assert(type->init); assert(type->finish); assert(type->features & (VK_SYNC_FEATURE_BINARY | VK_SYNC_FEATURE_TIMELINE)); if (type->features & VK_SYNC_FEATURE_TIMELINE) { assert(type->features & VK_SYNC_FEATURE_GPU_WAIT); assert(type->features & VK_SYNC_FEATURE_CPU_WAIT); assert(type->features & VK_SYNC_FEATURE_CPU_SIGNAL); assert(type->features & (VK_SYNC_FEATURE_WAIT_BEFORE_SIGNAL | VK_SYNC_FEATURE_WAIT_PENDING)); assert(type->signal); assert(type->get_value); } if (!(type->features & VK_SYNC_FEATURE_BINARY)) { assert(!(type->features & (VK_SYNC_FEATURE_GPU_MULTI_WAIT | VK_SYNC_FEATURE_CPU_RESET))); assert(!type->import_sync_file); assert(!type->export_sync_file); } if (type->features & VK_SYNC_FEATURE_CPU_WAIT) { assert(type->wait || type->wait_many); } else { assert(!(type->features & (VK_SYNC_FEATURE_WAIT_ANY | VK_SYNC_FEATURE_WAIT_PENDING))); } if (type->features & VK_SYNC_FEATURE_GPU_MULTI_WAIT) assert(type->features & VK_SYNC_FEATURE_GPU_WAIT); if (type->features & VK_SYNC_FEATURE_CPU_RESET) assert(type->reset); if (type->features & VK_SYNC_FEATURE_CPU_SIGNAL) assert(type->signal); } VkResult vk_sync_init(struct vk_device *device, struct vk_sync *sync, const struct vk_sync_type *type, enum vk_sync_flags flags, uint64_t initial_value) { vk_sync_type_validate(type); if (flags & VK_SYNC_IS_TIMELINE) assert(type->features & VK_SYNC_FEATURE_TIMELINE); else assert(type->features & VK_SYNC_FEATURE_BINARY); assert(type->size >= sizeof(*sync)); memset(sync, 0, type->size); sync->type = type; sync->flags = flags; return type->init(device, sync, initial_value); } void vk_sync_finish(struct vk_device *device, struct vk_sync *sync) { sync->type->finish(device, sync); } VkResult vk_sync_create(struct vk_device *device, const struct vk_sync_type *type, enum vk_sync_flags flags, uint64_t initial_value, struct vk_sync **sync_out) { struct vk_sync *sync; sync = vk_alloc(&device->alloc, type->size, 8, VK_SYSTEM_ALLOCATION_SCOPE_DEVICE); if (sync == NULL) return vk_error(device, VK_ERROR_OUT_OF_HOST_MEMORY); VkResult result = vk_sync_init(device, sync, type, flags, initial_value); if (result != VK_SUCCESS) { vk_free(&device->alloc, sync); return result; } *sync_out = sync; return VK_SUCCESS; } void vk_sync_destroy(struct vk_device *device, struct vk_sync *sync) { vk_sync_finish(device, sync); vk_free(&device->alloc, sync); } VkResult vk_sync_signal(struct vk_device *device, struct vk_sync *sync, uint64_t value) { assert(sync->type->features & VK_SYNC_FEATURE_CPU_SIGNAL); if (sync->flags & VK_SYNC_IS_TIMELINE) assert(value > 0); else assert(value == 0); return sync->type->signal(device, sync, value); } VkResult vk_sync_get_value(struct vk_device *device, struct vk_sync *sync, uint64_t *value) { assert(sync->flags & VK_SYNC_IS_TIMELINE); return sync->type->get_value(device, sync, value); } VkResult vk_sync_reset(struct vk_device *device, struct vk_sync *sync) { assert(sync->type->features & VK_SYNC_FEATURE_CPU_RESET); assert(!(sync->flags & VK_SYNC_IS_TIMELINE)); return sync->type->reset(device, sync); } VkResult vk_sync_move(struct vk_device *device, struct vk_sync *dst, struct vk_sync *src) { assert(!(dst->flags & VK_SYNC_IS_TIMELINE)); assert(!(src->flags & VK_SYNC_IS_TIMELINE)); assert(dst->type == src->type); return src->type->move(device, dst, src); } static void assert_valid_wait(struct vk_sync *sync, uint64_t wait_value, enum vk_sync_wait_flags wait_flags) { assert(sync->type->features & VK_SYNC_FEATURE_CPU_WAIT); if (!(sync->flags & VK_SYNC_IS_TIMELINE)) assert(wait_value == 0); if (wait_flags & VK_SYNC_WAIT_PENDING) assert(sync->type->features & VK_SYNC_FEATURE_WAIT_PENDING); } static uint64_t get_max_abs_timeout_ns(void) { static int max_timeout_ms = -1; if (max_timeout_ms < 0) max_timeout_ms = env_var_as_unsigned("MESA_VK_MAX_TIMEOUT", 0); if (max_timeout_ms == 0) return UINT64_MAX; else return os_time_get_absolute_timeout(max_timeout_ms * 1000000ull); } static VkResult __vk_sync_wait(struct vk_device *device, struct vk_sync *sync, uint64_t wait_value, enum vk_sync_wait_flags wait_flags, uint64_t abs_timeout_ns) { assert_valid_wait(sync, wait_value, wait_flags); /* This doesn't make sense for a single wait */ assert(!(wait_flags & VK_SYNC_WAIT_ANY)); if (sync->type->wait) { return sync->type->wait(device, sync, wait_value, wait_flags, abs_timeout_ns); } else { struct vk_sync_wait wait = { .sync = sync, .stage_mask = ~(VkPipelineStageFlags2)0, .wait_value = wait_value, }; return sync->type->wait_many(device, 1, &wait, wait_flags, abs_timeout_ns); } } VkResult vk_sync_wait(struct vk_device *device, struct vk_sync *sync, uint64_t wait_value, enum vk_sync_wait_flags wait_flags, uint64_t abs_timeout_ns) { uint64_t max_abs_timeout_ns = get_max_abs_timeout_ns(); if (abs_timeout_ns > max_abs_timeout_ns) { VkResult result = __vk_sync_wait(device, sync, wait_value, wait_flags, max_abs_timeout_ns); if (unlikely(result == VK_TIMEOUT)) return vk_device_set_lost(device, "Maximum timeout exceeded!"); return result; } else { return __vk_sync_wait(device, sync, wait_value, wait_flags, abs_timeout_ns); } } static bool can_wait_many(uint32_t wait_count, const struct vk_sync_wait *waits, enum vk_sync_wait_flags wait_flags) { if (waits[0].sync->type->wait_many == NULL) return false; if ((wait_flags & VK_SYNC_WAIT_ANY) && !(waits[0].sync->type->features & VK_SYNC_FEATURE_WAIT_ANY)) return false; for (uint32_t i = 0; i < wait_count; i++) { assert_valid_wait(waits[i].sync, waits[i].wait_value, wait_flags); if (waits[i].sync->type != waits[0].sync->type) return false; } return true; } static VkResult __vk_sync_wait_many(struct vk_device *device, uint32_t wait_count, const struct vk_sync_wait *waits, enum vk_sync_wait_flags wait_flags, uint64_t abs_timeout_ns) { if (wait_count == 0) return VK_SUCCESS; if (wait_count == 1) { return __vk_sync_wait(device, waits[0].sync, waits[0].wait_value, wait_flags & ~VK_SYNC_WAIT_ANY, abs_timeout_ns); } if (can_wait_many(wait_count, waits, wait_flags)) { return waits[0].sync->type->wait_many(device, wait_count, waits, wait_flags, abs_timeout_ns); } else if (wait_flags & VK_SYNC_WAIT_ANY) { /* If we have multiple syncs and they don't support wait_any or they're * not all the same type, there's nothing better we can do than spin. */ do { for (uint32_t i = 0; i < wait_count; i++) { VkResult result = __vk_sync_wait(device, waits[i].sync, waits[i].wait_value, wait_flags & ~VK_SYNC_WAIT_ANY, 0 /* abs_timeout_ns */); if (result != VK_TIMEOUT) return result; } } while (os_time_get_nano() < abs_timeout_ns); return VK_TIMEOUT; } else { for (uint32_t i = 0; i < wait_count; i++) { VkResult result = __vk_sync_wait(device, waits[i].sync, waits[i].wait_value, wait_flags, abs_timeout_ns); if (result != VK_SUCCESS) return result; } return VK_SUCCESS; } } VkResult vk_sync_wait_many(struct vk_device *device, uint32_t wait_count, const struct vk_sync_wait *waits, enum vk_sync_wait_flags wait_flags, uint64_t abs_timeout_ns) { uint64_t max_abs_timeout_ns = get_max_abs_timeout_ns(); if (abs_timeout_ns > max_abs_timeout_ns) { VkResult result = __vk_sync_wait_many(device, wait_count, waits, wait_flags, max_abs_timeout_ns); if (unlikely(result == VK_TIMEOUT)) return vk_device_set_lost(device, "Maximum timeout exceeded!"); return result; } else { return __vk_sync_wait_many(device, wait_count, waits, wait_flags, abs_timeout_ns); } } VkResult vk_sync_import_opaque_fd(struct vk_device *device, struct vk_sync *sync, int fd) { VkResult result = sync->type->import_opaque_fd(device, sync, fd); if (unlikely(result != VK_SUCCESS)) return result; sync->flags |= VK_SYNC_IS_SHAREABLE | VK_SYNC_IS_SHARED; return VK_SUCCESS; } VkResult vk_sync_export_opaque_fd(struct vk_device *device, struct vk_sync *sync, int *fd) { assert(sync->flags & VK_SYNC_IS_SHAREABLE); VkResult result = sync->type->export_opaque_fd(device, sync, fd); if (unlikely(result != VK_SUCCESS)) return result; sync->flags |= VK_SYNC_IS_SHARED; return VK_SUCCESS; } VkResult vk_sync_import_sync_file(struct vk_device *device, struct vk_sync *sync, int sync_file) { assert(!(sync->flags & VK_SYNC_IS_TIMELINE)); /* Silently handle negative file descriptors in case the driver doesn't * want to bother. */ if (sync_file < 0 && sync->type->signal) return sync->type->signal(device, sync, 0); return sync->type->import_sync_file(device, sync, sync_file); } VkResult vk_sync_export_sync_file(struct vk_device *device, struct vk_sync *sync, int *sync_file) { assert(!(sync->flags & VK_SYNC_IS_TIMELINE)); return sync->type->export_sync_file(device, sync, sync_file); }