// Copyright 2021 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_BIGINT_BIGINT_H_ #define V8_BIGINT_BIGINT_H_ #include #include #include #include #include namespace v8 { namespace bigint { // To play nice with embedders' macros, we define our own DCHECK here. // It's only used in this file, and undef'ed at the end. #ifdef DEBUG #define BIGINT_H_DCHECK(cond) \ if (!(cond)) { \ std::cerr << __FILE__ << ":" << __LINE__ << ": "; \ std::cerr << "Assertion failed: " #cond "\n"; \ abort(); \ } extern bool kAdvancedAlgorithmsEnabledInLibrary; #else #define BIGINT_H_DCHECK(cond) (void(0)) #endif // The type of a digit: a register-width unsigned integer. using digit_t = uintptr_t; using signed_digit_t = intptr_t; #if UINTPTR_MAX == 0xFFFFFFFF // 32-bit platform. using twodigit_t = uint64_t; #define HAVE_TWODIGIT_T 1 static constexpr int kLog2DigitBits = 5; #elif UINTPTR_MAX == 0xFFFFFFFFFFFFFFFF // 64-bit platform. static constexpr int kLog2DigitBits = 6; #if defined(__SIZEOF_INT128__) using twodigit_t = __uint128_t; #define HAVE_TWODIGIT_T 1 #endif // defined(__SIZEOF_INT128__) #else #error Unsupported platform. #endif static constexpr int kDigitBits = 1 << kLog2DigitBits; static_assert(kDigitBits == 8 * sizeof(digit_t), "inconsistent type sizes"); // Describes an array of digits, also known as a BigInt. Unsigned. // Does not own the memory it points at, and only gives read-only access to it. // Digits are stored in little-endian order. class Digits { public: // This is the constructor intended for public consumption. Digits(digit_t* mem, int len) : digits_(mem), len_(len) { // Require 4-byte alignment (even on 64-bit platforms). // TODO(jkummerow): See if we can tighten BigInt alignment in V8 to // system pointer size, and raise this requirement to that. BIGINT_H_DCHECK((reinterpret_cast(mem) & 3) == 0); } // Provides a "slice" view into another Digits object. Digits(Digits src, int offset, int len) : digits_(src.digits_ + offset), len_(std::max(0, std::min(src.len_ - offset, len))) { BIGINT_H_DCHECK(offset >= 0); } // Alternative way to get a "slice" view into another Digits object. Digits operator+(int i) { BIGINT_H_DCHECK(i >= 0 && i <= len_); return Digits(digits_ + i, len_ - i); } // Provides access to individual digits. digit_t operator[](int i) { BIGINT_H_DCHECK(i >= 0 && i < len_); return read_4byte_aligned(i); } // Convenience accessor for the most significant digit. digit_t msd() { BIGINT_H_DCHECK(len_ > 0); return read_4byte_aligned(len_ - 1); } // Checks "pointer equality" (does not compare digits contents). bool operator==(const Digits& other) const { return digits_ == other.digits_ && len_ == other.len_; } // Decrements {len_} until there are no leading zero digits left. void Normalize() { while (len_ > 0 && msd() == 0) len_--; } // Unconditionally drops exactly one leading zero digit. void TrimOne() { BIGINT_H_DCHECK(len_ > 0 && msd() == 0); len_--; } int len() { return len_; } const digit_t* digits() const { return digits_; } protected: friend class ShiftedDigits; digit_t* digits_; int len_; private: // We require externally-provided digits arrays to be 4-byte aligned, but // not necessarily 8-byte aligned; so on 64-bit platforms we use memcpy // to allow unaligned reads. digit_t read_4byte_aligned(int i) { if (sizeof(digit_t) == 4) { return digits_[i]; } else { digit_t result; memcpy(&result, digits_ + i, sizeof(result)); return result; } } }; // Writable version of a Digits array. // Does not own the memory it points at. class RWDigits : public Digits { public: RWDigits(digit_t* mem, int len) : Digits(mem, len) {} RWDigits(RWDigits src, int offset, int len) : Digits(src, offset, len) {} RWDigits operator+(int i) { BIGINT_H_DCHECK(i >= 0 && i <= len_); return RWDigits(digits_ + i, len_ - i); } #if UINTPTR_MAX == 0xFFFFFFFF digit_t& operator[](int i) { BIGINT_H_DCHECK(i >= 0 && i < len_); return digits_[i]; } #else // 64-bit platform. We only require digits arrays to be 4-byte aligned, // so we use a wrapper class to allow regular array syntax while // performing unaligned memory accesses under the hood. class WritableDigitReference { public: // Support "X[i] = x" notation. void operator=(digit_t digit) { memcpy(ptr_, &digit, sizeof(digit)); } // Support "X[i] = Y[j]" notation. WritableDigitReference& operator=(const WritableDigitReference& src) { memcpy(ptr_, src.ptr_, sizeof(digit_t)); return *this; } // Support "x = X[i]" notation. operator digit_t() { digit_t result; memcpy(&result, ptr_, sizeof(result)); return result; } private: // This class is not for public consumption. friend class RWDigits; // Primary constructor. explicit WritableDigitReference(digit_t* ptr) : ptr_(reinterpret_cast(ptr)) {} // Required for returning WDR instances from "operator[]" below. WritableDigitReference(const WritableDigitReference& src) = default; uint32_t* ptr_; }; WritableDigitReference operator[](int i) { BIGINT_H_DCHECK(i >= 0 && i < len_); return WritableDigitReference(digits_ + i); } #endif digit_t* digits() { return digits_; } void set_len(int len) { len_ = len; } void Clear() { memset(digits_, 0, len_ * sizeof(digit_t)); } }; class Platform { public: virtual ~Platform() = default; // If you want the ability to interrupt long-running operations, implement // a Platform subclass that overrides this method. It will be queried // every now and then by long-running operations. virtual bool InterruptRequested() { return false; } }; // These are the operations that this library supports. // The signatures follow the convention: // // void Operation(RWDigits results, Digits inputs); // // You must preallocate the result; use the respective {OperationResultLength} // function to determine its minimum required length. The actual result may // be smaller, so you should call result.Normalize() on the result. // // The operations are divided into two groups: "fast" (O(n) with small // coefficient) operations are exposed directly as free functions, "slow" // operations are methods on a {Processor} object, which provides // support for interrupting execution via the {Platform}'s {InterruptRequested} // mechanism when it takes too long. These functions return a {Status} value. // Returns r such that r < 0 if A < B; r > 0 if A > B; r == 0 if A == B. // Defined here to be inlineable, which helps ia32 a lot (64-bit platforms // don't care). inline int Compare(Digits A, Digits B) { A.Normalize(); B.Normalize(); int diff = A.len() - B.len(); if (diff != 0) return diff; int i = A.len() - 1; while (i >= 0 && A[i] == B[i]) i--; if (i < 0) return 0; return A[i] > B[i] ? 1 : -1; } // Z := X + Y void Add(RWDigits Z, Digits X, Digits Y); // Addition of signed integers. Returns true if the result is negative. bool AddSigned(RWDigits Z, Digits X, bool x_negative, Digits Y, bool y_negative); // Z := X + 1 void AddOne(RWDigits Z, Digits X); // Z := X - Y. Requires X >= Y. void Subtract(RWDigits Z, Digits X, Digits Y); // Subtraction of signed integers. Returns true if the result is negative. bool SubtractSigned(RWDigits Z, Digits X, bool x_negative, Digits Y, bool y_negative); // Z := X - 1 void SubtractOne(RWDigits Z, Digits X); // The bitwise operations assume that negative BigInts are represented as // sign+magnitude. Their behavior depends on the sign of the inputs: negative // inputs perform an implicit conversion to two's complement representation. // Z := X & Y void BitwiseAnd_PosPos(RWDigits Z, Digits X, Digits Y); // Call this for a BigInt x = (magnitude=X, negative=true). void BitwiseAnd_NegNeg(RWDigits Z, Digits X, Digits Y); // Positive X, negative Y. Callers must swap arguments as needed. void BitwiseAnd_PosNeg(RWDigits Z, Digits X, Digits Y); void BitwiseOr_PosPos(RWDigits Z, Digits X, Digits Y); void BitwiseOr_NegNeg(RWDigits Z, Digits X, Digits Y); void BitwiseOr_PosNeg(RWDigits Z, Digits X, Digits Y); void BitwiseXor_PosPos(RWDigits Z, Digits X, Digits Y); void BitwiseXor_NegNeg(RWDigits Z, Digits X, Digits Y); void BitwiseXor_PosNeg(RWDigits Z, Digits X, Digits Y); void LeftShift(RWDigits Z, Digits X, digit_t shift); // RightShiftState is provided by RightShift_ResultLength and used by the actual // RightShift to avoid some recomputation. struct RightShiftState { bool must_round_down = false; }; void RightShift(RWDigits Z, Digits X, digit_t shift, const RightShiftState& state); // Z := (least significant n bits of X, interpreted as a signed n-bit integer). // Returns true if the result is negative; Z will hold the absolute value. bool AsIntN(RWDigits Z, Digits X, bool x_negative, int n); // Z := (least significant n bits of X). void AsUintN_Pos(RWDigits Z, Digits X, int n); // Same, but X is the absolute value of a negative BigInt. void AsUintN_Neg(RWDigits Z, Digits X, int n); enum class Status { kOk, kInterrupted }; class FromStringAccumulator; class Processor { public: // Takes ownership of {platform}. static Processor* New(Platform* platform); // Use this for any std::unique_ptr holding an instance of {Processor}. class Destroyer { public: void operator()(Processor* proc) { proc->Destroy(); } }; // When not using std::unique_ptr, call this to delete the instance. void Destroy(); // Z := X * Y Status Multiply(RWDigits Z, Digits X, Digits Y); // Q := A / B Status Divide(RWDigits Q, Digits A, Digits B); // R := A % B Status Modulo(RWDigits R, Digits A, Digits B); // {out_length} initially contains the allocated capacity of {out}, and // upon return will be set to the actual length of the result string. Status ToString(char* out, int* out_length, Digits X, int radix, bool sign); // Z := the contents of {accumulator}. // Assume that this leaves {accumulator} in unusable state. Status FromString(RWDigits Z, FromStringAccumulator* accumulator); protected: // Use {Destroy} or {Destroyer} instead of the destructor directly. ~Processor() = default; }; inline int AddResultLength(int x_length, int y_length) { return std::max(x_length, y_length) + 1; } inline int AddSignedResultLength(int x_length, int y_length, bool same_sign) { return same_sign ? AddResultLength(x_length, y_length) : std::max(x_length, y_length); } inline int SubtractResultLength(int x_length, int y_length) { return x_length; } inline int SubtractSignedResultLength(int x_length, int y_length, bool same_sign) { return same_sign ? std::max(x_length, y_length) : AddResultLength(x_length, y_length); } inline int MultiplyResultLength(Digits X, Digits Y) { return X.len() + Y.len(); } constexpr int kBarrettThreshold = 13310; inline int DivideResultLength(Digits A, Digits B) { #if V8_ADVANCED_BIGINT_ALGORITHMS BIGINT_H_DCHECK(kAdvancedAlgorithmsEnabledInLibrary); // The Barrett division algorithm needs one extra digit for temporary use. int kBarrettExtraScratch = B.len() >= kBarrettThreshold ? 1 : 0; #else // If this fails, set -DV8_ADVANCED_BIGINT_ALGORITHMS in any compilation unit // that #includes this header. BIGINT_H_DCHECK(!kAdvancedAlgorithmsEnabledInLibrary); constexpr int kBarrettExtraScratch = 0; #endif return A.len() - B.len() + 1 + kBarrettExtraScratch; } inline int ModuloResultLength(Digits B) { return B.len(); } int ToStringResultLength(Digits X, int radix, bool sign); // In DEBUG builds, the result of {ToString} will be initialized to this value. constexpr char kStringZapValue = '?'; inline int BitwiseAnd_PosPos_ResultLength(int x_length, int y_length) { return std::min(x_length, y_length); } inline int BitwiseAnd_NegNeg_ResultLength(int x_length, int y_length) { // Result length growth example: -2 & -3 = -4 (2-bit inputs, 3-bit result). return std::max(x_length, y_length) + 1; } inline int BitwiseAnd_PosNeg_ResultLength(int x_length) { return x_length; } inline int BitwiseOrResultLength(int x_length, int y_length) { return std::max(x_length, y_length); } inline int BitwiseXor_PosPos_ResultLength(int x_length, int y_length) { return std::max(x_length, y_length); } inline int BitwiseXor_NegNeg_ResultLength(int x_length, int y_length) { return std::max(x_length, y_length); } inline int BitwiseXor_PosNeg_ResultLength(int x_length, int y_length) { // Result length growth example: 3 ^ -1 == -4 (2-bit inputs, 3-bit result). return std::max(x_length, y_length) + 1; } inline int LeftShift_ResultLength(int x_length, digit_t x_most_significant_digit, digit_t shift) { int digit_shift = static_cast(shift / kDigitBits); int bits_shift = static_cast(shift % kDigitBits); bool grow = bits_shift != 0 && (x_most_significant_digit >> (kDigitBits - bits_shift)) != 0; return x_length + digit_shift + grow; } int RightShift_ResultLength(Digits X, bool x_sign, digit_t shift, RightShiftState* state); // Returns -1 if this "asIntN" operation would be a no-op. int AsIntNResultLength(Digits X, bool x_negative, int n); // Returns -1 if this "asUintN" operation would be a no-op. int AsUintN_Pos_ResultLength(Digits X, int n); inline int AsUintN_Neg_ResultLength(int n) { return ((n - 1) / kDigitBits) + 1; } // Support for parsing BigInts from Strings, using an Accumulator object // for intermediate state. class ProcessorImpl; #if !defined(DEBUG) && (defined(__GNUC__) || defined(__clang__)) // Clang supports this since 3.9, GCC since 4.x. #define ALWAYS_INLINE inline __attribute__((always_inline)) #elif !defined(DEBUG) && defined(_MSC_VER) #define ALWAYS_INLINE __forceinline #else #define ALWAYS_INLINE inline #endif static constexpr int kStackParts = 8; // A container object for all metadata required for parsing a BigInt from // a string. // Aggressively optimized not to waste instructions for small cases, while // also scaling transparently to huge cases. // Defined here in the header so that it can be inlined. class FromStringAccumulator { public: enum class Result { kOk, kMaxSizeExceeded }; // Step 1: Create a FromStringAccumulator instance. For best performance, // stack allocation is recommended. // {max_digits} is only used for refusing to grow beyond a given size // (see "Step 2" below). It does not cause pre-allocation, so feel free to // specify a large maximum. // TODO(jkummerow): The limit applies to the number of intermediate chunks, // whereas the final result will be slightly smaller (depending on {radix}). // So for sufficiently large N, setting max_digits=N here will not actually // allow parsing BigInts with N digits. We can fix that if/when anyone cares. explicit FromStringAccumulator(int max_digits) : max_digits_(std::max(max_digits, kStackParts)) {} // Step 2: Call this method to read all characters. // {CharIt} should be a forward iterator and // std::iterator_traits::value_type shall be a character type, such as // uint8_t or uint16_t. {end} should be one past the last character (i.e. // {start == end} would indicate an empty string). Returns the current // position when an invalid character is encountered. template ALWAYS_INLINE CharIt Parse(CharIt start, CharIt end, digit_t radix); // Step 3: Check if a result is available, and determine its required // allocation size (guaranteed to be <= max_digits passed to the constructor). Result result() { return result_; } int ResultLength() { return std::max(stack_parts_used_, static_cast(heap_parts_.size())); } // Step 4: Use BigIntProcessor::FromString() to retrieve the result into an // {RWDigits} struct allocated for the size returned by step 3. private: friend class ProcessorImpl; template ALWAYS_INLINE CharIt ParsePowerTwo(CharIt start, CharIt end, digit_t radix); ALWAYS_INLINE bool AddPart(digit_t multiplier, digit_t part, bool is_last); ALWAYS_INLINE bool AddPart(digit_t part); digit_t stack_parts_[kStackParts]; std::vector heap_parts_; digit_t max_multiplier_{0}; digit_t last_multiplier_; const int max_digits_; Result result_{Result::kOk}; int stack_parts_used_{0}; bool inline_everything_{false}; uint8_t radix_{0}; }; // The rest of this file is the inlineable implementation of // FromStringAccumulator methods. #if defined(__GNUC__) || defined(__clang__) // Clang supports this since 3.9, GCC since 5.x. #define HAVE_BUILTIN_MUL_OVERFLOW 1 #else #define HAVE_BUILTIN_MUL_OVERFLOW 0 #endif // Numerical value of the first 127 ASCII characters, using 255 as sentinel // for "invalid". static constexpr uint8_t kCharValue[] = { 255, 255, 255, 255, 255, 255, 255, 255, // 0..7 255, 255, 255, 255, 255, 255, 255, 255, // 8..15 255, 255, 255, 255, 255, 255, 255, 255, // 16..23 255, 255, 255, 255, 255, 255, 255, 255, // 24..31 255, 255, 255, 255, 255, 255, 255, 255, // 32..39 255, 255, 255, 255, 255, 255, 255, 255, // 40..47 0, 1, 2, 3, 4, 5, 6, 7, // 48..55 '0' == 48 8, 9, 255, 255, 255, 255, 255, 255, // 56..63 '9' == 57 255, 10, 11, 12, 13, 14, 15, 16, // 64..71 'A' == 65 17, 18, 19, 20, 21, 22, 23, 24, // 72..79 25, 26, 27, 28, 29, 30, 31, 32, // 80..87 33, 34, 35, 255, 255, 255, 255, 255, // 88..95 'Z' == 90 255, 10, 11, 12, 13, 14, 15, 16, // 96..103 'a' == 97 17, 18, 19, 20, 21, 22, 23, 24, // 104..111 25, 26, 27, 28, 29, 30, 31, 32, // 112..119 33, 34, 35, 255, 255, 255, 255, 255, // 120..127 'z' == 122 }; // A space- and time-efficient way to map {2,4,8,16,32} to {1,2,3,4,5}. static constexpr uint8_t kCharBits[] = {1, 2, 3, 0, 4, 0, 0, 0, 5}; template CharIt FromStringAccumulator::ParsePowerTwo(CharIt current, CharIt end, digit_t radix) { radix_ = static_cast(radix); const int char_bits = kCharBits[radix >> 2]; int bits_left; bool done = false; do { digit_t part = 0; bits_left = kDigitBits; while (true) { digit_t d; // Numeric value of the current character {c}. uint32_t c = *current; if (c > 127 || (d = bigint::kCharValue[c]) >= radix) { done = true; break; } if (bits_left < char_bits) break; bits_left -= char_bits; part = (part << char_bits) | d; ++current; if (current == end) { done = true; break; } } if (!AddPart(part)) return current; } while (!done); // We use the unused {last_multiplier_} field to // communicate how many bits are unused in the last part. last_multiplier_ = bits_left; return current; } template CharIt FromStringAccumulator::Parse(CharIt start, CharIt end, digit_t radix) { BIGINT_H_DCHECK(2 <= radix && radix <= 36); CharIt current = start; #if !HAVE_BUILTIN_MUL_OVERFLOW const digit_t kMaxMultiplier = (~digit_t{0}) / radix; #endif #if HAVE_TWODIGIT_T // The inlined path requires twodigit_t availability. // The max supported radix is 36, and Math.log2(36) == 5.169..., so we // need at most 5.17 bits per char. static constexpr int kInlineThreshold = kStackParts * kDigitBits * 100 / 517; inline_everything_ = (end - start) <= kInlineThreshold; #endif if (!inline_everything_ && (radix & (radix - 1)) == 0) { return ParsePowerTwo(start, end, radix); } bool done = false; do { digit_t multiplier = 1; digit_t part = 0; while (true) { digit_t d; // Numeric value of the current character {c}. uint32_t c = *current; if (c > 127 || (d = bigint::kCharValue[c]) >= radix) { done = true; break; } #if HAVE_BUILTIN_MUL_OVERFLOW digit_t new_multiplier; if (__builtin_mul_overflow(multiplier, radix, &new_multiplier)) break; multiplier = new_multiplier; #else if (multiplier > kMaxMultiplier) break; multiplier *= radix; #endif part = part * radix + d; ++current; if (current == end) { done = true; break; } } if (!AddPart(multiplier, part, done)) return current; } while (!done); return current; } bool FromStringAccumulator::AddPart(digit_t multiplier, digit_t part, bool is_last) { #if HAVE_TWODIGIT_T if (inline_everything_) { // Inlined version of {MultiplySingle}. digit_t carry = part; digit_t high = 0; for (int i = 0; i < stack_parts_used_; i++) { twodigit_t result = twodigit_t{stack_parts_[i]} * multiplier; digit_t new_high = result >> bigint::kDigitBits; digit_t low = static_cast(result); result = twodigit_t{low} + high + carry; carry = result >> bigint::kDigitBits; stack_parts_[i] = static_cast(result); high = new_high; } stack_parts_[stack_parts_used_++] = carry + high; return true; } #else BIGINT_H_DCHECK(!inline_everything_); #endif if (is_last) { last_multiplier_ = multiplier; } else { BIGINT_H_DCHECK(max_multiplier_ == 0 || max_multiplier_ == multiplier); max_multiplier_ = multiplier; } return AddPart(part); } bool FromStringAccumulator::AddPart(digit_t part) { if (stack_parts_used_ < kStackParts) { stack_parts_[stack_parts_used_++] = part; return true; } if (heap_parts_.size() == 0) { // Initialize heap storage. Copy the stack part to make things easier later. heap_parts_.reserve(kStackParts * 2); for (int i = 0; i < kStackParts; i++) { heap_parts_.push_back(stack_parts_[i]); } } if (static_cast(heap_parts_.size()) >= max_digits_) { result_ = Result::kMaxSizeExceeded; return false; } heap_parts_.push_back(part); return true; } } // namespace bigint } // namespace v8 #undef BIGINT_H_DCHECK #undef ALWAYS_INLINE #undef HAVE_BUILTIN_MUL_OVERFLOW #endif // V8_BIGINT_BIGINT_H_