// Copyright (c) 1994-2006 Sun Microsystems Inc. // All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions // are met: // // - Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // // - Redistribution in binary form must reproduce the above copyright // notice, this list of conditions and the following disclaimer in the // documentation and/or other materials provided with the // distribution. // // - Neither the name of Sun Microsystems or the names of contributors may // be used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS // FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE // COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, // INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES // (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) // HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, // STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED // OF THE POSSIBILITY OF SUCH DAMAGE. // The original source code covered by the above license above has been // modified significantly by Google Inc. // Copyright 2012 the V8 project authors. All rights reserved. #include "src/codegen/arm/assembler-arm.h" #if V8_TARGET_ARCH_ARM #include "src/base/bits.h" #include "src/base/cpu.h" #include "src/base/overflowing-math.h" #include "src/codegen/arm/assembler-arm-inl.h" #include "src/codegen/assembler-inl.h" #include "src/codegen/machine-type.h" #include "src/codegen/macro-assembler.h" #include "src/codegen/string-constants.h" #include "src/deoptimizer/deoptimizer.h" #include "src/objects/objects-inl.h" namespace v8 { namespace internal { static const unsigned kArmv6 = 0u; static const unsigned kArmv7 = kArmv6 | (1u << ARMv7); static const unsigned kArmv7WithSudiv = kArmv7 | (1u << ARMv7_SUDIV); static const unsigned kArmv8 = kArmv7WithSudiv | (1u << ARMv8); static unsigned CpuFeaturesFromCommandLine() { unsigned result; if (strcmp(FLAG_arm_arch, "armv8") == 0) { result = kArmv8; } else if (strcmp(FLAG_arm_arch, "armv7+sudiv") == 0) { result = kArmv7WithSudiv; } else if (strcmp(FLAG_arm_arch, "armv7") == 0) { result = kArmv7; } else if (strcmp(FLAG_arm_arch, "armv6") == 0) { result = kArmv6; } else { fprintf(stderr, "Error: unrecognised value for --arm-arch ('%s').\n", FLAG_arm_arch); fprintf(stderr, "Supported values are: armv8\n" " armv7+sudiv\n" " armv7\n" " armv6\n"); FATAL("arm-arch"); } // If any of the old (deprecated) flags are specified, print a warning, but // otherwise try to respect them for now. // TODO(jbramley): When all the old bots have been updated, remove this. if (FLAG_enable_armv7.has_value || FLAG_enable_vfp3.has_value || FLAG_enable_32dregs.has_value || FLAG_enable_neon.has_value || FLAG_enable_sudiv.has_value || FLAG_enable_armv8.has_value) { // As an approximation of the old behaviour, set the default values from the // arm_arch setting, then apply the flags over the top. bool enable_armv7 = (result & (1u << ARMv7)) != 0; bool enable_vfp3 = (result & (1u << ARMv7)) != 0; bool enable_32dregs = (result & (1u << ARMv7)) != 0; bool enable_neon = (result & (1u << ARMv7)) != 0; bool enable_sudiv = (result & (1u << ARMv7_SUDIV)) != 0; bool enable_armv8 = (result & (1u << ARMv8)) != 0; if (FLAG_enable_armv7.has_value) { fprintf(stderr, "Warning: --enable_armv7 is deprecated. " "Use --arm_arch instead.\n"); enable_armv7 = FLAG_enable_armv7.value; } if (FLAG_enable_vfp3.has_value) { fprintf(stderr, "Warning: --enable_vfp3 is deprecated. " "Use --arm_arch instead.\n"); enable_vfp3 = FLAG_enable_vfp3.value; } if (FLAG_enable_32dregs.has_value) { fprintf(stderr, "Warning: --enable_32dregs is deprecated. " "Use --arm_arch instead.\n"); enable_32dregs = FLAG_enable_32dregs.value; } if (FLAG_enable_neon.has_value) { fprintf(stderr, "Warning: --enable_neon is deprecated. " "Use --arm_arch instead.\n"); enable_neon = FLAG_enable_neon.value; } if (FLAG_enable_sudiv.has_value) { fprintf(stderr, "Warning: --enable_sudiv is deprecated. " "Use --arm_arch instead.\n"); enable_sudiv = FLAG_enable_sudiv.value; } if (FLAG_enable_armv8.has_value) { fprintf(stderr, "Warning: --enable_armv8 is deprecated. " "Use --arm_arch instead.\n"); enable_armv8 = FLAG_enable_armv8.value; } // Emulate the old implications. if (enable_armv8) { enable_vfp3 = true; enable_neon = true; enable_32dregs = true; enable_sudiv = true; } // Select the best available configuration. if (enable_armv7 && enable_vfp3 && enable_32dregs && enable_neon) { if (enable_sudiv) { if (enable_armv8) { result = kArmv8; } else { result = kArmv7WithSudiv; } } else { result = kArmv7; } } else { result = kArmv6; } } return result; } // Get the CPU features enabled by the build. // For cross compilation the preprocessor symbols such as // CAN_USE_ARMV7_INSTRUCTIONS and CAN_USE_VFP3_INSTRUCTIONS can be used to // enable ARMv7 and VFPv3 instructions when building the snapshot. However, // these flags should be consistent with a supported ARM configuration: // "armv6": ARMv6 + VFPv2 // "armv7": ARMv7 + VFPv3-D32 + NEON // "armv7+sudiv": ARMv7 + VFPv4-D32 + NEON + SUDIV // "armv8": ARMv8 (+ all of the above) static constexpr unsigned CpuFeaturesFromCompiler() { // TODO(jbramley): Once the build flags are simplified, these tests should // also be simplified. // Check *architectural* implications. #if defined(CAN_USE_ARMV8_INSTRUCTIONS) && !defined(CAN_USE_ARMV7_INSTRUCTIONS) #error "CAN_USE_ARMV8_INSTRUCTIONS should imply CAN_USE_ARMV7_INSTRUCTIONS" #endif #if defined(CAN_USE_ARMV8_INSTRUCTIONS) && !defined(CAN_USE_SUDIV) #error "CAN_USE_ARMV8_INSTRUCTIONS should imply CAN_USE_SUDIV" #endif #if defined(CAN_USE_ARMV7_INSTRUCTIONS) != defined(CAN_USE_VFP3_INSTRUCTIONS) // V8 requires VFP, and all ARMv7 devices with VFP have VFPv3. Similarly, // VFPv3 isn't available before ARMv7. #error "CAN_USE_ARMV7_INSTRUCTIONS should match CAN_USE_VFP3_INSTRUCTIONS" #endif #if defined(CAN_USE_NEON) && !defined(CAN_USE_ARMV7_INSTRUCTIONS) #error "CAN_USE_NEON should imply CAN_USE_ARMV7_INSTRUCTIONS" #endif // Find compiler-implied features. #if defined(CAN_USE_ARMV8_INSTRUCTIONS) && \ defined(CAN_USE_ARMV7_INSTRUCTIONS) && defined(CAN_USE_SUDIV) && \ defined(CAN_USE_NEON) && defined(CAN_USE_VFP3_INSTRUCTIONS) return kArmv8; #elif defined(CAN_USE_ARMV7_INSTRUCTIONS) && defined(CAN_USE_SUDIV) && \ defined(CAN_USE_NEON) && defined(CAN_USE_VFP3_INSTRUCTIONS) return kArmv7WithSudiv; #elif defined(CAN_USE_ARMV7_INSTRUCTIONS) && defined(CAN_USE_NEON) && \ defined(CAN_USE_VFP3_INSTRUCTIONS) return kArmv7; #else return kArmv6; #endif } bool CpuFeatures::SupportsWasmSimd128() { return IsSupported(NEON); } void CpuFeatures::ProbeImpl(bool cross_compile) { dcache_line_size_ = 64; unsigned command_line = CpuFeaturesFromCommandLine(); // Only use statically determined features for cross compile (snapshot). if (cross_compile) { supported_ |= command_line & CpuFeaturesFromCompiler(); return; } #ifndef __arm__ // For the simulator build, use whatever the flags specify. supported_ |= command_line; #else // __arm__ // Probe for additional features at runtime. base::CPU cpu; // Runtime detection is slightly fuzzy, and some inferences are necessary. unsigned runtime = kArmv6; // NEON and VFPv3 imply at least ARMv7-A. if (cpu.has_neon() && cpu.has_vfp3_d32()) { DCHECK(cpu.has_vfp3()); runtime |= kArmv7; if (cpu.has_idiva()) { runtime |= kArmv7WithSudiv; if (cpu.architecture() >= 8) { runtime |= kArmv8; } } } // Use the best of the features found by CPU detection and those inferred from // the build system. In both cases, restrict available features using the // command-line. Note that the command-line flags are very permissive (kArmv8) // by default. supported_ |= command_line & CpuFeaturesFromCompiler(); supported_ |= command_line & runtime; // Additional tuning options. // ARM Cortex-A9 and Cortex-A5 have 32 byte cachelines. if (cpu.implementer() == base::CPU::kArm && (cpu.part() == base::CPU::kArmCortexA5 || cpu.part() == base::CPU::kArmCortexA9)) { dcache_line_size_ = 32; } #endif DCHECK_IMPLIES(IsSupported(ARMv7_SUDIV), IsSupported(ARMv7)); DCHECK_IMPLIES(IsSupported(ARMv8), IsSupported(ARMv7_SUDIV)); // Set a static value on whether Simd is supported. // This variable is only used for certain archs to query SupportWasmSimd128() // at runtime in builtins using an extern ref. Other callers should use // CpuFeatures::SupportWasmSimd128(). CpuFeatures::supports_wasm_simd_128_ = CpuFeatures::SupportsWasmSimd128(); } void CpuFeatures::PrintTarget() { const char* arm_arch = nullptr; const char* arm_target_type = ""; const char* arm_no_probe = ""; const char* arm_fpu = ""; const char* arm_thumb = ""; const char* arm_float_abi = nullptr; #if !defined __arm__ arm_target_type = " simulator"; #endif #if defined ARM_TEST_NO_FEATURE_PROBE arm_no_probe = " noprobe"; #endif #if defined CAN_USE_ARMV8_INSTRUCTIONS arm_arch = "arm v8"; #elif defined CAN_USE_ARMV7_INSTRUCTIONS arm_arch = "arm v7"; #else arm_arch = "arm v6"; #endif #if defined CAN_USE_NEON arm_fpu = " neon"; #elif defined CAN_USE_VFP3_INSTRUCTIONS #if defined CAN_USE_VFP32DREGS arm_fpu = " vfp3"; #else arm_fpu = " vfp3-d16"; #endif #else arm_fpu = " vfp2"; #endif #ifdef __arm__ arm_float_abi = base::OS::ArmUsingHardFloat() ? "hard" : "softfp"; #elif USE_EABI_HARDFLOAT arm_float_abi = "hard"; #else arm_float_abi = "softfp"; #endif #if defined __arm__ && (defined __thumb__) || (defined __thumb2__) arm_thumb = " thumb"; #endif printf("target%s%s %s%s%s %s\n", arm_target_type, arm_no_probe, arm_arch, arm_fpu, arm_thumb, arm_float_abi); } void CpuFeatures::PrintFeatures() { printf("ARMv8=%d ARMv7=%d VFPv3=%d VFP32DREGS=%d NEON=%d SUDIV=%d", CpuFeatures::IsSupported(ARMv8), CpuFeatures::IsSupported(ARMv7), CpuFeatures::IsSupported(VFPv3), CpuFeatures::IsSupported(VFP32DREGS), CpuFeatures::IsSupported(NEON), CpuFeatures::IsSupported(SUDIV)); #ifdef __arm__ bool eabi_hardfloat = base::OS::ArmUsingHardFloat(); #elif USE_EABI_HARDFLOAT bool eabi_hardfloat = true; #else bool eabi_hardfloat = false; #endif printf(" USE_EABI_HARDFLOAT=%d\n", eabi_hardfloat); } // ----------------------------------------------------------------------------- // Implementation of RelocInfo // static const int RelocInfo::kApplyMask = RelocInfo::ModeMask(RelocInfo::RELATIVE_CODE_TARGET); bool RelocInfo::IsCodedSpecially() { // The deserializer needs to know whether a pointer is specially coded.  Being // specially coded on ARM means that it is a movw/movt instruction. We don't // generate those for relocatable pointers. return false; } bool RelocInfo::IsInConstantPool() { return Assembler::is_constant_pool_load(pc_); } uint32_t RelocInfo::wasm_call_tag() const { DCHECK(rmode_ == WASM_CALL || rmode_ == WASM_STUB_CALL); return static_cast( Assembler::target_address_at(pc_, constant_pool_)); } // ----------------------------------------------------------------------------- // Implementation of Operand and MemOperand // See assembler-arm-inl.h for inlined constructors Operand::Operand(Handle handle) { rm_ = no_reg; value_.immediate = static_cast(handle.address()); rmode_ = RelocInfo::FULL_EMBEDDED_OBJECT; } Operand::Operand(Register rm, ShiftOp shift_op, int shift_imm) { DCHECK(is_uint5(shift_imm)); rm_ = rm; rs_ = no_reg; shift_op_ = shift_op; shift_imm_ = shift_imm & 31; if ((shift_op == ROR) && (shift_imm == 0)) { // ROR #0 is functionally equivalent to LSL #0 and this allow us to encode // RRX as ROR #0 (See below). shift_op = LSL; } else if (shift_op == RRX) { // encoded as ROR with shift_imm == 0 DCHECK_EQ(shift_imm, 0); shift_op_ = ROR; shift_imm_ = 0; } } Operand::Operand(Register rm, ShiftOp shift_op, Register rs) { DCHECK(shift_op != RRX); rm_ = rm; rs_ = no_reg; shift_op_ = shift_op; rs_ = rs; } Operand Operand::EmbeddedNumber(double value) { int32_t smi; if (DoubleToSmiInteger(value, &smi)) return Operand(Smi::FromInt(smi)); Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT); result.is_heap_object_request_ = true; result.value_.heap_object_request = HeapObjectRequest(value); return result; } Operand Operand::EmbeddedStringConstant(const StringConstantBase* str) { Operand result(0, RelocInfo::FULL_EMBEDDED_OBJECT); result.is_heap_object_request_ = true; result.value_.heap_object_request = HeapObjectRequest(str); return result; } MemOperand::MemOperand(Register rn, int32_t offset, AddrMode am) : rn_(rn), rm_(no_reg), offset_(offset), am_(am) { // Accesses below the stack pointer are not safe, and are prohibited by the // ABI. We can check obvious violations here. if (rn == sp) { if (am == Offset) DCHECK_LE(0, offset); if (am == NegOffset) DCHECK_GE(0, offset); } } MemOperand::MemOperand(Register rn, Register rm, AddrMode am) : rn_(rn), rm_(rm), shift_op_(LSL), shift_imm_(0), am_(am) {} MemOperand::MemOperand(Register rn, Register rm, ShiftOp shift_op, int shift_imm, AddrMode am) : rn_(rn), rm_(rm), shift_op_(shift_op), shift_imm_(shift_imm & 31), am_(am) { DCHECK(is_uint5(shift_imm)); } NeonMemOperand::NeonMemOperand(Register rn, AddrMode am, int align) : rn_(rn), rm_(am == Offset ? pc : sp) { DCHECK((am == Offset) || (am == PostIndex)); SetAlignment(align); } NeonMemOperand::NeonMemOperand(Register rn, Register rm, int align) : rn_(rn), rm_(rm) { SetAlignment(align); } void NeonMemOperand::SetAlignment(int align) { switch (align) { case 0: align_ = 0; break; case 64: align_ = 1; break; case 128: align_ = 2; break; case 256: align_ = 3; break; default: UNREACHABLE(); } } void Assembler::AllocateAndInstallRequestedHeapObjects(Isolate* isolate) { DCHECK_IMPLIES(isolate == nullptr, heap_object_requests_.empty()); for (auto& request : heap_object_requests_) { Handle object; switch (request.kind()) { case HeapObjectRequest::kHeapNumber: object = isolate->factory()->NewHeapNumber( request.heap_number()); break; case HeapObjectRequest::kStringConstant: { const StringConstantBase* str = request.string(); CHECK_NOT_NULL(str); object = str->AllocateStringConstant(isolate); break; } } Address pc = reinterpret_cast
(buffer_start_) + request.offset(); Memory
(constant_pool_entry_address(pc, 0 /* unused */)) = object.address(); } } // ----------------------------------------------------------------------------- // Specific instructions, constants, and masks. // str(r, MemOperand(sp, 4, NegPreIndex), al) instruction (aka push(r)) // register r is not encoded. const Instr kPushRegPattern = al | B26 | 4 | NegPreIndex | sp.code() * B16; // ldr(r, MemOperand(sp, 4, PostIndex), al) instruction (aka pop(r)) // register r is not encoded. const Instr kPopRegPattern = al | B26 | L | 4 | PostIndex | sp.code() * B16; // ldr rd, [pc, #offset] const Instr kLdrPCImmedMask = 15 * B24 | 7 * B20 | 15 * B16; const Instr kLdrPCImmedPattern = 5 * B24 | L | pc.code() * B16; // Pc-relative call or jump to a signed imm24 offset. // bl pc + #offset // b pc + #offset const Instr kBOrBlPCImmedMask = 0xE * B24; const Instr kBOrBlPCImmedPattern = 0xA * B24; // vldr dd, [pc, #offset] const Instr kVldrDPCMask = 15 * B24 | 3 * B20 | 15 * B16 | 15 * B8; const Instr kVldrDPCPattern = 13 * B24 | L | pc.code() * B16 | 11 * B8; // blxcc rm const Instr kBlxRegMask = 15 * B24 | 15 * B20 | 15 * B16 | 15 * B12 | 15 * B8 | 15 * B4; const Instr kBlxRegPattern = B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX; const Instr kBlxIp = al | kBlxRegPattern | ip.code(); const Instr kMovMvnMask = 0x6D * B21 | 0xF * B16; const Instr kMovMvnPattern = 0xD * B21; const Instr kMovMvnFlip = B22; const Instr kMovLeaveCCMask = 0xDFF * B16; const Instr kMovLeaveCCPattern = 0x1A0 * B16; const Instr kMovwPattern = 0x30 * B20; const Instr kMovtPattern = 0x34 * B20; const Instr kMovwLeaveCCFlip = 0x5 * B21; const Instr kMovImmedMask = 0x7F * B21; const Instr kMovImmedPattern = 0x1D * B21; const Instr kOrrImmedMask = 0x7F * B21; const Instr kOrrImmedPattern = 0x1C * B21; const Instr kCmpCmnMask = 0xDD * B20 | 0xF * B12; const Instr kCmpCmnPattern = 0x15 * B20; const Instr kCmpCmnFlip = B21; const Instr kAddSubFlip = 0x6 * B21; const Instr kAndBicFlip = 0xE * B21; // A mask for the Rd register for push, pop, ldr, str instructions. const Instr kLdrRegFpOffsetPattern = al | B26 | L | Offset | fp.code() * B16; const Instr kStrRegFpOffsetPattern = al | B26 | Offset | fp.code() * B16; const Instr kLdrRegFpNegOffsetPattern = al | B26 | L | NegOffset | fp.code() * B16; const Instr kStrRegFpNegOffsetPattern = al | B26 | NegOffset | fp.code() * B16; const Instr kLdrStrInstrTypeMask = 0xFFFF0000; Assembler::Assembler(const AssemblerOptions& options, std::unique_ptr buffer) : AssemblerBase(options, std::move(buffer)), pending_32_bit_constants_(), scratch_register_list_({ip}) { reloc_info_writer.Reposition(buffer_start_ + buffer_->size(), pc_); constant_pool_deadline_ = kMaxInt; const_pool_blocked_nesting_ = 0; no_const_pool_before_ = 0; first_const_pool_32_use_ = -1; last_bound_pos_ = 0; if (CpuFeatures::IsSupported(VFP32DREGS)) { // Register objects tend to be abstracted and survive between scopes, so // it's awkward to use CpuFeatures::VFP32DREGS with CpuFeatureScope. To make // its use consistent with other features, we always enable it if we can. EnableCpuFeature(VFP32DREGS); // Make sure we pick two D registers which alias a Q register. This way, we // can use a Q as a scratch if NEON is supported. scratch_vfp_register_list_ = d14.ToVfpRegList() | d15.ToVfpRegList(); } else { // When VFP32DREGS is not supported, d15 become allocatable. Therefore we // cannot use it as a scratch. scratch_vfp_register_list_ = d14.ToVfpRegList(); } } Assembler::~Assembler() { DCHECK_EQ(const_pool_blocked_nesting_, 0); DCHECK_EQ(first_const_pool_32_use_, -1); } void Assembler::GetCode(Isolate* isolate, CodeDesc* desc, SafepointTableBuilder* safepoint_table_builder, int handler_table_offset) { // As a crutch to avoid having to add manual Align calls wherever we use a // raw workflow to create Code objects (mostly in tests), add another Align // call here. It does no harm - the end of the Code object is aligned to the // (larger) kCodeAlignment anyways. // TODO(jgruber): Consider moving responsibility for proper alignment to // metadata table builders (safepoint, handler, constant pool, code // comments). DataAlign(Code::kMetadataAlignment); // Emit constant pool if necessary. CheckConstPool(true, false); DCHECK(pending_32_bit_constants_.empty()); int code_comments_size = WriteCodeComments(); AllocateAndInstallRequestedHeapObjects(isolate); // Set up code descriptor. // TODO(jgruber): Reconsider how these offsets and sizes are maintained up to // this point to make CodeDesc initialization less fiddly. static constexpr int kConstantPoolSize = 0; const int instruction_size = pc_offset(); const int code_comments_offset = instruction_size - code_comments_size; const int constant_pool_offset = code_comments_offset - kConstantPoolSize; const int handler_table_offset2 = (handler_table_offset == kNoHandlerTable) ? constant_pool_offset : handler_table_offset; const int safepoint_table_offset = (safepoint_table_builder == kNoSafepointTable) ? handler_table_offset2 : safepoint_table_builder->safepoint_table_offset(); const int reloc_info_offset = static_cast(reloc_info_writer.pos() - buffer_->start()); CodeDesc::Initialize(desc, this, safepoint_table_offset, handler_table_offset2, constant_pool_offset, code_comments_offset, reloc_info_offset); } void Assembler::Align(int m) { DCHECK(m >= 4 && base::bits::IsPowerOfTwo(m)); DCHECK_EQ(pc_offset() & (kInstrSize - 1), 0); while ((pc_offset() & (m - 1)) != 0) { nop(); } } void Assembler::CodeTargetAlign() { // Preferred alignment of jump targets on some ARM chips. Align(8); } Condition Assembler::GetCondition(Instr instr) { return Instruction::ConditionField(instr); } bool Assembler::IsLdrRegisterImmediate(Instr instr) { return (instr & (B27 | B26 | B25 | B22 | B20)) == (B26 | B20); } bool Assembler::IsVldrDRegisterImmediate(Instr instr) { return (instr & (15 * B24 | 3 * B20 | 15 * B8)) == (13 * B24 | B20 | 11 * B8); } int Assembler::GetLdrRegisterImmediateOffset(Instr instr) { DCHECK(IsLdrRegisterImmediate(instr)); bool positive = (instr & B23) == B23; int offset = instr & kOff12Mask; // Zero extended offset. return positive ? offset : -offset; } int Assembler::GetVldrDRegisterImmediateOffset(Instr instr) { DCHECK(IsVldrDRegisterImmediate(instr)); bool positive = (instr & B23) == B23; int offset = instr & kOff8Mask; // Zero extended offset. offset <<= 2; return positive ? offset : -offset; } Instr Assembler::SetLdrRegisterImmediateOffset(Instr instr, int offset) { DCHECK(IsLdrRegisterImmediate(instr)); bool positive = offset >= 0; if (!positive) offset = -offset; DCHECK(is_uint12(offset)); // Set bit indicating whether the offset should be added. instr = (instr & ~B23) | (positive ? B23 : 0); // Set the actual offset. return (instr & ~kOff12Mask) | offset; } Instr Assembler::SetVldrDRegisterImmediateOffset(Instr instr, int offset) { DCHECK(IsVldrDRegisterImmediate(instr)); DCHECK((offset & ~3) == offset); // Must be 64-bit aligned. bool positive = offset >= 0; if (!positive) offset = -offset; DCHECK(is_uint10(offset)); // Set bit indicating whether the offset should be added. instr = (instr & ~B23) | (positive ? B23 : 0); // Set the actual offset. Its bottom 2 bits are zero. return (instr & ~kOff8Mask) | (offset >> 2); } bool Assembler::IsStrRegisterImmediate(Instr instr) { return (instr & (B27 | B26 | B25 | B22 | B20)) == B26; } Instr Assembler::SetStrRegisterImmediateOffset(Instr instr, int offset) { DCHECK(IsStrRegisterImmediate(instr)); bool positive = offset >= 0; if (!positive) offset = -offset; DCHECK(is_uint12(offset)); // Set bit indicating whether the offset should be added. instr = (instr & ~B23) | (positive ? B23 : 0); // Set the actual offset. return (instr & ~kOff12Mask) | offset; } bool Assembler::IsAddRegisterImmediate(Instr instr) { return (instr & (B27 | B26 | B25 | B24 | B23 | B22 | B21)) == (B25 | B23); } Instr Assembler::SetAddRegisterImmediateOffset(Instr instr, int offset) { DCHECK(IsAddRegisterImmediate(instr)); DCHECK_GE(offset, 0); DCHECK(is_uint12(offset)); // Set the offset. return (instr & ~kOff12Mask) | offset; } Register Assembler::GetRd(Instr instr) { return Register::from_code(Instruction::RdValue(instr)); } Register Assembler::GetRn(Instr instr) { return Register::from_code(Instruction::RnValue(instr)); } Register Assembler::GetRm(Instr instr) { return Register::from_code(Instruction::RmValue(instr)); } bool Assembler::IsPush(Instr instr) { return ((instr & ~kRdMask) == kPushRegPattern); } bool Assembler::IsPop(Instr instr) { return ((instr & ~kRdMask) == kPopRegPattern); } bool Assembler::IsStrRegFpOffset(Instr instr) { return ((instr & kLdrStrInstrTypeMask) == kStrRegFpOffsetPattern); } bool Assembler::IsLdrRegFpOffset(Instr instr) { return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpOffsetPattern); } bool Assembler::IsStrRegFpNegOffset(Instr instr) { return ((instr & kLdrStrInstrTypeMask) == kStrRegFpNegOffsetPattern); } bool Assembler::IsLdrRegFpNegOffset(Instr instr) { return ((instr & kLdrStrInstrTypeMask) == kLdrRegFpNegOffsetPattern); } bool Assembler::IsLdrPcImmediateOffset(Instr instr) { // Check the instruction is indeed a // ldr , [pc +/- offset_12]. return (instr & kLdrPCImmedMask) == kLdrPCImmedPattern; } bool Assembler::IsBOrBlPcImmediateOffset(Instr instr) { return (instr & kBOrBlPCImmedMask) == kBOrBlPCImmedPattern; } bool Assembler::IsVldrDPcImmediateOffset(Instr instr) { // Check the instruction is indeed a // vldr
, [pc +/- offset_10]. return (instr & kVldrDPCMask) == kVldrDPCPattern; } bool Assembler::IsBlxReg(Instr instr) { // Check the instruction is indeed a // blxcc return (instr & kBlxRegMask) == kBlxRegPattern; } bool Assembler::IsBlxIp(Instr instr) { // Check the instruction is indeed a // blx ip return instr == kBlxIp; } bool Assembler::IsTstImmediate(Instr instr) { return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) == (I | TST | S); } bool Assembler::IsCmpRegister(Instr instr) { return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask | B4)) == (CMP | S); } bool Assembler::IsCmpImmediate(Instr instr) { return (instr & (B27 | B26 | I | kOpCodeMask | S | kRdMask)) == (I | CMP | S); } Register Assembler::GetCmpImmediateRegister(Instr instr) { DCHECK(IsCmpImmediate(instr)); return GetRn(instr); } int Assembler::GetCmpImmediateRawImmediate(Instr instr) { DCHECK(IsCmpImmediate(instr)); return instr & kOff12Mask; } // Labels refer to positions in the (to be) generated code. // There are bound, linked, and unused labels. // // Bound labels refer to known positions in the already // generated code. pos() is the position the label refers to. // // Linked labels refer to unknown positions in the code // to be generated; pos() is the position of the last // instruction using the label. // // The linked labels form a link chain by making the branch offset // in the instruction steam to point to the previous branch // instruction using the same label. // // The link chain is terminated by a branch offset pointing to the // same position. int Assembler::target_at(int pos) { Instr instr = instr_at(pos); if (is_uint24(instr)) { // Emitted link to a label, not part of a branch. return instr; } DCHECK_EQ(5 * B25, instr & 7 * B25); // b, bl, or blx imm24 int imm26 = ((instr & kImm24Mask) << 8) >> 6; if ((Instruction::ConditionField(instr) == kSpecialCondition) && ((instr & B24) != 0)) { // blx uses bit 24 to encode bit 2 of imm26 imm26 += 2; } return pos + Instruction::kPcLoadDelta + imm26; } void Assembler::target_at_put(int pos, int target_pos) { Instr instr = instr_at(pos); if (is_uint24(instr)) { DCHECK(target_pos == pos || target_pos >= 0); // Emitted link to a label, not part of a branch. // Load the position of the label relative to the generated code object // pointer in a register. // The existing code must be a single 24-bit label chain link, followed by // nops encoding the destination register. See mov_label_offset. // Extract the destination register from the first nop instructions. Register dst = Register::from_code(Instruction::RmValue(instr_at(pos + kInstrSize))); // In addition to the 24-bit label chain link, we expect to find one nop for // ARMv7 and above, or two nops for ARMv6. See mov_label_offset. DCHECK(IsNop(instr_at(pos + kInstrSize), dst.code())); if (!CpuFeatures::IsSupported(ARMv7)) { DCHECK(IsNop(instr_at(pos + 2 * kInstrSize), dst.code())); } // Here are the instructions we need to emit: // For ARMv7: target24 => target16_1:target16_0 // movw dst, #target16_0 // movt dst, #target16_1 // For ARMv6: target24 => target8_2:target8_1:target8_0 // mov dst, #target8_0 // orr dst, dst, #target8_1 << 8 // orr dst, dst, #target8_2 << 16 uint32_t target24 = target_pos + (Code::kHeaderSize - kHeapObjectTag); CHECK(is_uint24(target24)); if (is_uint8(target24)) { // If the target fits in a byte then only patch with a mov // instruction. PatchingAssembler patcher( options(), reinterpret_cast(buffer_start_ + pos), 1); patcher.mov(dst, Operand(target24)); } else { uint16_t target16_0 = target24 & kImm16Mask; uint16_t target16_1 = target24 >> 16; if (CpuFeatures::IsSupported(ARMv7)) { // Patch with movw/movt. if (target16_1 == 0) { PatchingAssembler patcher( options(), reinterpret_cast(buffer_start_ + pos), 1); CpuFeatureScope scope(&patcher, ARMv7); patcher.movw(dst, target16_0); } else { PatchingAssembler patcher( options(), reinterpret_cast(buffer_start_ + pos), 2); CpuFeatureScope scope(&patcher, ARMv7); patcher.movw(dst, target16_0); patcher.movt(dst, target16_1); } } else { // Patch with a sequence of mov/orr/orr instructions. uint8_t target8_0 = target16_0 & kImm8Mask; uint8_t target8_1 = target16_0 >> 8; uint8_t target8_2 = target16_1 & kImm8Mask; if (target8_2 == 0) { PatchingAssembler patcher( options(), reinterpret_cast(buffer_start_ + pos), 2); patcher.mov(dst, Operand(target8_0)); patcher.orr(dst, dst, Operand(target8_1 << 8)); } else { PatchingAssembler patcher( options(), reinterpret_cast(buffer_start_ + pos), 3); patcher.mov(dst, Operand(target8_0)); patcher.orr(dst, dst, Operand(target8_1 << 8)); patcher.orr(dst, dst, Operand(target8_2 << 16)); } } } return; } int imm26 = target_pos - (pos + Instruction::kPcLoadDelta); DCHECK_EQ(5 * B25, instr & 7 * B25); // b, bl, or blx imm24 if (Instruction::ConditionField(instr) == kSpecialCondition) { // blx uses bit 24 to encode bit 2 of imm26 DCHECK_EQ(0, imm26 & 1); instr = (instr & ~(B24 | kImm24Mask)) | ((imm26 & 2) >> 1) * B24; } else { DCHECK_EQ(0, imm26 & 3); instr &= ~kImm24Mask; } int imm24 = imm26 >> 2; CHECK(is_int24(imm24)); instr_at_put(pos, instr | (imm24 & kImm24Mask)); } void Assembler::print(const Label* L) { if (L->is_unused()) { PrintF("unused label\n"); } else if (L->is_bound()) { PrintF("bound label to %d\n", L->pos()); } else if (L->is_linked()) { Label l; l.link_to(L->pos()); PrintF("unbound label"); while (l.is_linked()) { PrintF("@ %d ", l.pos()); Instr instr = instr_at(l.pos()); if ((instr & ~kImm24Mask) == 0) { PrintF("value\n"); } else { DCHECK_EQ(instr & 7 * B25, 5 * B25); // b, bl, or blx Condition cond = Instruction::ConditionField(instr); const char* b; const char* c; if (cond == kSpecialCondition) { b = "blx"; c = ""; } else { if ((instr & B24) != 0) b = "bl"; else b = "b"; switch (cond) { case eq: c = "eq"; break; case ne: c = "ne"; break; case hs: c = "hs"; break; case lo: c = "lo"; break; case mi: c = "mi"; break; case pl: c = "pl"; break; case vs: c = "vs"; break; case vc: c = "vc"; break; case hi: c = "hi"; break; case ls: c = "ls"; break; case ge: c = "ge"; break; case lt: c = "lt"; break; case gt: c = "gt"; break; case le: c = "le"; break; case al: c = ""; break; default: c = ""; UNREACHABLE(); } } PrintF("%s%s\n", b, c); } next(&l); } } else { PrintF("label in inconsistent state (pos = %d)\n", L->pos_); } } void Assembler::bind_to(Label* L, int pos) { DCHECK(0 <= pos && pos <= pc_offset()); // must have a valid binding position while (L->is_linked()) { int fixup_pos = L->pos(); next(L); // call next before overwriting link with target at fixup_pos target_at_put(fixup_pos, pos); } L->bind_to(pos); // Keep track of the last bound label so we don't eliminate any instructions // before a bound label. if (pos > last_bound_pos_) last_bound_pos_ = pos; } void Assembler::bind(Label* L) { DCHECK(!L->is_bound()); // label can only be bound once bind_to(L, pc_offset()); } void Assembler::next(Label* L) { DCHECK(L->is_linked()); int link = target_at(L->pos()); if (link == L->pos()) { // Branch target points to the same instruction. This is the end of the link // chain. L->Unuse(); } else { DCHECK_GE(link, 0); L->link_to(link); } } namespace { // Low-level code emission routines depending on the addressing mode. // If this returns true then you have to use the rotate_imm and immed_8 // that it returns, because it may have already changed the instruction // to match them! bool FitsShifter(uint32_t imm32, uint32_t* rotate_imm, uint32_t* immed_8, Instr* instr) { // imm32 must be unsigned. { // 32-bit immediates can be encoded as: // (8-bit value, 2*N bit left rotation) // e.g. 0xab00 can be encoded as 0xab shifted left by 8 == 2*4, i.e. // (0xab, 4) // // Check three categories which cover all possible shifter fits: // 1. 0x000000FF: The value is already 8-bit (no shifting necessary), // 2. 0x000FF000: The 8-bit value is somewhere in the middle of the 32-bit // value, and // 3. 0xF000000F: The 8-bit value is split over the beginning and end of // the 32-bit value. // For 0x000000FF. if (imm32 <= 0xFF) { *rotate_imm = 0; *immed_8 = imm32; return true; } // For 0x000FF000, count trailing zeros and shift down to 0x000000FF. Note // that we have to round the trailing zeros down to the nearest multiple of // two, since we can only encode shifts of 2*N. Note also that we know that // imm32 isn't zero, since we already checked if it's less than 0xFF. int half_trailing_zeros = base::bits::CountTrailingZerosNonZero(imm32) / 2; uint32_t imm8 = imm32 >> (half_trailing_zeros * 2); if (imm8 <= 0xFF) { DCHECK_GT(half_trailing_zeros, 0); // Rotating right by trailing_zeros is equivalent to rotating left by // 32 - trailing_zeros. We return rotate_right / 2, so calculate // (32 - trailing_zeros)/2 == 16 - trailing_zeros/2. *rotate_imm = (16 - half_trailing_zeros); *immed_8 = imm8; return true; } // For 0xF000000F, rotate by 16 to get 0x000FF000 and continue as if it // were that case. uint32_t imm32_rot16 = base::bits::RotateLeft32(imm32, 16); half_trailing_zeros = base::bits::CountTrailingZerosNonZero(imm32_rot16) / 2; imm8 = imm32_rot16 >> (half_trailing_zeros * 2); if (imm8 <= 0xFF) { // We've rotated left by 2*8, so we can't have more than that many // trailing zeroes. DCHECK_LT(half_trailing_zeros, 8); // We've already rotated by 2*8, before calculating trailing_zeros/2, // so we need (32 - (16 + trailing_zeros))/2 == 8 - trailing_zeros/2. *rotate_imm = 8 - half_trailing_zeros; *immed_8 = imm8; return true; } } // If the opcode is one with a complementary version and the complementary // immediate fits, change the opcode. if (instr != nullptr) { if ((*instr & kMovMvnMask) == kMovMvnPattern) { if (FitsShifter(~imm32, rotate_imm, immed_8, nullptr)) { *instr ^= kMovMvnFlip; return true; } else if ((*instr & kMovLeaveCCMask) == kMovLeaveCCPattern) { if (CpuFeatures::IsSupported(ARMv7)) { if (imm32 < 0x10000) { *instr ^= kMovwLeaveCCFlip; *instr |= Assembler::EncodeMovwImmediate(imm32); *rotate_imm = *immed_8 = 0; // Not used for movw. return true; } } } } else if ((*instr & kCmpCmnMask) == kCmpCmnPattern) { if (FitsShifter(-static_cast(imm32), rotate_imm, immed_8, nullptr)) { *instr ^= kCmpCmnFlip; return true; } } else { Instr alu_insn = (*instr & kALUMask); if (alu_insn == ADD || alu_insn == SUB) { if (FitsShifter(-static_cast(imm32), rotate_imm, immed_8, nullptr)) { *instr ^= kAddSubFlip; return true; } } else if (alu_insn == AND || alu_insn == BIC) { if (FitsShifter(~imm32, rotate_imm, immed_8, nullptr)) { *instr ^= kAndBicFlip; return true; } } } } return false; } // We have to use the temporary register for things that can be relocated even // if they can be encoded in the ARM's 12 bits of immediate-offset instruction // space. There is no guarantee that the relocated location can be similarly // encoded. bool MustOutputRelocInfo(RelocInfo::Mode rmode, const Assembler* assembler) { if (RelocInfo::IsOnlyForSerializer(rmode)) { if (assembler->predictable_code_size()) return true; return assembler->options().record_reloc_info_for_serialization; } else if (RelocInfo::IsNoInfo(rmode)) { return false; } return true; } bool UseMovImmediateLoad(const Operand& x, const Assembler* assembler) { DCHECK_NOT_NULL(assembler); if (x.MustOutputRelocInfo(assembler)) { // Prefer constant pool if data is likely to be patched. return false; } else { // Otherwise, use immediate load if movw / movt is available. return CpuFeatures::IsSupported(ARMv7); } } } // namespace bool Operand::MustOutputRelocInfo(const Assembler* assembler) const { return v8::internal::MustOutputRelocInfo(rmode_, assembler); } int Operand::InstructionsRequired(const Assembler* assembler, Instr instr) const { DCHECK_NOT_NULL(assembler); if (rm_.is_valid()) return 1; uint32_t dummy1, dummy2; if (MustOutputRelocInfo(assembler) || !FitsShifter(immediate(), &dummy1, &dummy2, &instr)) { // The immediate operand cannot be encoded as a shifter operand, or use of // constant pool is required. First account for the instructions required // for the constant pool or immediate load int instructions; if (UseMovImmediateLoad(*this, assembler)) { DCHECK(CpuFeatures::IsSupported(ARMv7)); // A movw / movt immediate load. instructions = 2; } else { // A small constant pool load. instructions = 1; } if ((instr & ~kCondMask) != 13 * B21) { // mov, S not set // For a mov or mvn instruction which doesn't set the condition // code, the constant pool or immediate load is enough, otherwise we need // to account for the actual instruction being requested. instructions += 1; } return instructions; } else { // No use of constant pool and the immediate operand can be encoded as a // shifter operand. return 1; } } void Assembler::Move32BitImmediate(Register rd, const Operand& x, Condition cond) { if (UseMovImmediateLoad(x, this)) { CpuFeatureScope scope(this, ARMv7); // UseMovImmediateLoad should return false when we need to output // relocation info, since we prefer the constant pool for values that // can be patched. DCHECK(!x.MustOutputRelocInfo(this)); UseScratchRegisterScope temps(this); // Re-use the destination register as a scratch if possible. Register target = rd != pc && rd != sp ? rd : temps.Acquire(); uint32_t imm32 = static_cast(x.immediate()); movw(target, imm32 & 0xFFFF, cond); movt(target, imm32 >> 16, cond); if (target.code() != rd.code()) { mov(rd, target, LeaveCC, cond); } } else { int32_t immediate; if (x.IsHeapObjectRequest()) { RequestHeapObject(x.heap_object_request()); immediate = 0; } else { immediate = x.immediate(); } ConstantPoolAddEntry(pc_offset(), x.rmode_, immediate); ldr_pcrel(rd, 0, cond); } } void Assembler::AddrMode1(Instr instr, Register rd, Register rn, const Operand& x) { CheckBuffer(); uint32_t opcode = instr & kOpCodeMask; bool set_flags = (instr & S) != 0; DCHECK((opcode == ADC) || (opcode == ADD) || (opcode == AND) || (opcode == BIC) || (opcode == EOR) || (opcode == ORR) || (opcode == RSB) || (opcode == RSC) || (opcode == SBC) || (opcode == SUB) || (opcode == CMN) || (opcode == CMP) || (opcode == TEQ) || (opcode == TST) || (opcode == MOV) || (opcode == MVN)); // For comparison instructions, rd is not defined. DCHECK(rd.is_valid() || (opcode == CMN) || (opcode == CMP) || (opcode == TEQ) || (opcode == TST)); // For move instructions, rn is not defined. DCHECK(rn.is_valid() || (opcode == MOV) || (opcode == MVN)); DCHECK(rd.is_valid() || rn.is_valid()); DCHECK_EQ(instr & ~(kCondMask | kOpCodeMask | S), 0); if (!AddrMode1TryEncodeOperand(&instr, x)) { DCHECK(x.IsImmediate()); // Upon failure to encode, the opcode should not have changed. DCHECK(opcode == (instr & kOpCodeMask)); UseScratchRegisterScope temps(this); Condition cond = Instruction::ConditionField(instr); if ((opcode == MOV) && !set_flags) { // Generate a sequence of mov instructions or a load from the constant // pool only for a MOV instruction which does not set the flags. DCHECK(!rn.is_valid()); Move32BitImmediate(rd, x, cond); } else if ((opcode == ADD) && !set_flags && (rd == rn) && !temps.CanAcquire()) { // Split the operation into a sequence of additions if we cannot use a // scratch register. In this case, we cannot re-use rn and the assembler // does not have any scratch registers to spare. uint32_t imm = x.immediate(); do { // The immediate encoding format is composed of 8 bits of data and 4 // bits encoding a rotation. Each of the 16 possible rotations accounts // for a rotation by an even number. // 4 bits -> 16 rotations possible // -> 16 rotations of 2 bits each fits in a 32-bit value. // This means that finding the even number of trailing zeroes of the // immediate allows us to more efficiently split it: int trailing_zeroes = base::bits::CountTrailingZeros(imm) & ~1u; uint32_t mask = (0xFF << trailing_zeroes); add(rd, rd, Operand(imm & mask), LeaveCC, cond); imm = imm & ~mask; } while (!ImmediateFitsAddrMode1Instruction(imm)); add(rd, rd, Operand(imm), LeaveCC, cond); } else { // The immediate operand cannot be encoded as a shifter operand, so load // it first to a scratch register and change the original instruction to // use it. // Re-use the destination register if possible. Register scratch = (rd.is_valid() && rd != rn && rd != pc && rd != sp) ? rd : temps.Acquire(); mov(scratch, x, LeaveCC, cond); AddrMode1(instr, rd, rn, Operand(scratch)); } return; } if (!rd.is_valid()) { // Emit a comparison instruction. emit(instr | rn.code() * B16); } else if (!rn.is_valid()) { // Emit a move instruction. If the operand is a register-shifted register, // then prevent the destination from being PC as this is unpredictable. DCHECK(!x.IsRegisterShiftedRegister() || rd != pc); emit(instr | rd.code() * B12); } else { emit(instr | rn.code() * B16 | rd.code() * B12); } if (rn == pc || x.rm_ == pc) { // Block constant pool emission for one instruction after reading pc. BlockConstPoolFor(1); } } bool Assembler::AddrMode1TryEncodeOperand(Instr* instr, const Operand& x) { if (x.IsImmediate()) { // Immediate. uint32_t rotate_imm; uint32_t immed_8; if (x.MustOutputRelocInfo(this) || !FitsShifter(x.immediate(), &rotate_imm, &immed_8, instr)) { // Let the caller handle generating multiple instructions. return false; } *instr |= I | rotate_imm * B8 | immed_8; } else if (x.IsImmediateShiftedRegister()) { *instr |= x.shift_imm_ * B7 | x.shift_op_ | x.rm_.code(); } else { DCHECK(x.IsRegisterShiftedRegister()); // It is unpredictable to use the PC in this case. DCHECK(x.rm_ != pc && x.rs_ != pc); *instr |= x.rs_.code() * B8 | x.shift_op_ | B4 | x.rm_.code(); } return true; } void Assembler::AddrMode2(Instr instr, Register rd, const MemOperand& x) { DCHECK((instr & ~(kCondMask | B | L)) == B26); // This method does not handle pc-relative addresses. ldr_pcrel() should be // used instead. DCHECK(x.rn_ != pc); int am = x.am_; if (!x.rm_.is_valid()) { // Immediate offset. int offset_12 = x.offset_; if (offset_12 < 0) { offset_12 = -offset_12; am ^= U; } if (!is_uint12(offset_12)) { // Immediate offset cannot be encoded, load it first to a scratch // register. UseScratchRegisterScope temps(this); // Allow re-using rd for load instructions if possible. bool is_load = (instr & L) == L; Register scratch = (is_load && rd != x.rn_ && rd != pc && rd != sp) ? rd : temps.Acquire(); mov(scratch, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr)); AddrMode2(instr, rd, MemOperand(x.rn_, scratch, x.am_)); return; } DCHECK_GE(offset_12, 0); // no masking needed instr |= offset_12; } else { // Register offset (shift_imm_ and shift_op_ are 0) or scaled // register offset the constructors make sure than both shift_imm_ // and shift_op_ are initialized. DCHECK(x.rm_ != pc); instr |= B25 | x.shift_imm_ * B7 | x.shift_op_ | x.rm_.code(); } DCHECK((am & (P | W)) == P || x.rn_ != pc); // no pc base with writeback emit(instr | am | x.rn_.code() * B16 | rd.code() * B12); } void Assembler::AddrMode3(Instr instr, Register rd, const MemOperand& x) { DCHECK((instr & ~(kCondMask | L | S6 | H)) == (B4 | B7)); DCHECK(x.rn_.is_valid()); // This method does not handle pc-relative addresses. ldr_pcrel() should be // used instead. DCHECK(x.rn_ != pc); int am = x.am_; bool is_load = (instr & L) == L; if (!x.rm_.is_valid()) { // Immediate offset. int offset_8 = x.offset_; if (offset_8 < 0) { offset_8 = -offset_8; am ^= U; } if (!is_uint8(offset_8)) { // Immediate offset cannot be encoded, load it first to a scratch // register. UseScratchRegisterScope temps(this); // Allow re-using rd for load instructions if possible. Register scratch = (is_load && rd != x.rn_ && rd != pc && rd != sp) ? rd : temps.Acquire(); mov(scratch, Operand(x.offset_), LeaveCC, Instruction::ConditionField(instr)); AddrMode3(instr, rd, MemOperand(x.rn_, scratch, x.am_)); return; } DCHECK_GE(offset_8, 0); // no masking needed instr |= B | (offset_8 >> 4) * B8 | (offset_8 & 0xF); } else if (x.shift_imm_ != 0) { // Scaled register offsets are not supported, compute the offset separately // to a scratch register. UseScratchRegisterScope temps(this); // Allow re-using rd for load instructions if possible. Register scratch = (is_load && rd != x.rn_ && rd != pc && rd != sp) ? rd : temps.Acquire(); mov(scratch, Operand(x.rm_, x.shift_op_, x.shift_imm_), LeaveCC, Instruction::ConditionField(instr)); AddrMode3(instr, rd, MemOperand(x.rn_, scratch, x.am_)); return; } else { // Register offset. DCHECK((am & (P | W)) == P || x.rm_ != pc); // no pc index with writeback instr |= x.rm_.code(); } DCHECK((am & (P | W)) == P || x.rn_ != pc); // no pc base with writeback emit(instr | am | x.rn_.code() * B16 | rd.code() * B12); } void Assembler::AddrMode4(Instr instr, Register rn, RegList rl) { DCHECK((instr & ~(kCondMask | P | U | W | L)) == B27); DCHECK(!rl.is_empty()); DCHECK(rn != pc); emit(instr | rn.code() * B16 | rl.bits()); } void Assembler::AddrMode5(Instr instr, CRegister crd, const MemOperand& x) { // Unindexed addressing is not encoded by this function. DCHECK_EQ((B27 | B26), (instr & ~(kCondMask | kCoprocessorMask | P | U | N | W | L))); DCHECK(x.rn_.is_valid() && !x.rm_.is_valid()); int am = x.am_; int offset_8 = x.offset_; DCHECK_EQ(offset_8 & 3, 0); // offset must be an aligned word offset offset_8 >>= 2; if (offset_8 < 0) { offset_8 = -offset_8; am ^= U; } DCHECK(is_uint8(offset_8)); // unsigned word offset must fit in a byte DCHECK((am & (P | W)) == P || x.rn_ != pc); // no pc base with writeback // Post-indexed addressing requires W == 1; different than in AddrMode2/3. if ((am & P) == 0) am |= W; DCHECK_GE(offset_8, 0); // no masking needed emit(instr | am | x.rn_.code() * B16 | crd.code() * B12 | offset_8); } int Assembler::branch_offset(Label* L) { int target_pos; if (L->is_bound()) { target_pos = L->pos(); } else { if (L->is_linked()) { // Point to previous instruction that uses the link. target_pos = L->pos(); } else { // First entry of the link chain points to itself. target_pos = pc_offset(); } L->link_to(pc_offset()); } return target_pos - (pc_offset() + Instruction::kPcLoadDelta); } // Branch instructions. void Assembler::b(int branch_offset, Condition cond, RelocInfo::Mode rmode) { if (!RelocInfo::IsNoInfo(rmode)) RecordRelocInfo(rmode); DCHECK_EQ(branch_offset & 3, 0); int imm24 = branch_offset >> 2; const bool b_imm_check = is_int24(imm24); CHECK(b_imm_check); // Block the emission of the constant pool before the next instruction. // Otherwise the passed-in branch offset would be off. BlockConstPoolFor(1); emit(cond | B27 | B25 | (imm24 & kImm24Mask)); if (cond == al) { // Dead code is a good location to emit the constant pool. CheckConstPool(false, false); } } void Assembler::bl(int branch_offset, Condition cond, RelocInfo::Mode rmode) { if (!RelocInfo::IsNoInfo(rmode)) RecordRelocInfo(rmode); DCHECK_EQ(branch_offset & 3, 0); int imm24 = branch_offset >> 2; const bool bl_imm_check = is_int24(imm24); CHECK(bl_imm_check); // Block the emission of the constant pool before the next instruction. // Otherwise the passed-in branch offset would be off. BlockConstPoolFor(1); emit(cond | B27 | B25 | B24 | (imm24 & kImm24Mask)); } void Assembler::blx(int branch_offset) { DCHECK_EQ(branch_offset & 1, 0); int h = ((branch_offset & 2) >> 1) * B24; int imm24 = branch_offset >> 2; const bool blx_imm_check = is_int24(imm24); CHECK(blx_imm_check); // Block the emission of the constant pool before the next instruction. // Otherwise the passed-in branch offset would be off. BlockConstPoolFor(1); emit(kSpecialCondition | B27 | B25 | h | (imm24 & kImm24Mask)); } void Assembler::blx(Register target, Condition cond) { DCHECK(target != pc); emit(cond | B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BLX | target.code()); } void Assembler::bx(Register target, Condition cond) { DCHECK(target != pc); // use of pc is actually allowed, but discouraged emit(cond | B24 | B21 | 15 * B16 | 15 * B12 | 15 * B8 | BX | target.code()); } void Assembler::b(Label* L, Condition cond) { CheckBuffer(); b(branch_offset(L), cond); } void Assembler::bl(Label* L, Condition cond) { CheckBuffer(); bl(branch_offset(L), cond); } void Assembler::blx(Label* L) { CheckBuffer(); blx(branch_offset(L)); } // Data-processing instructions. void Assembler::and_(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { AddrMode1(cond | AND | s, dst, src1, src2); } void Assembler::and_(Register dst, Register src1, Register src2, SBit s, Condition cond) { and_(dst, src1, Operand(src2), s, cond); } void Assembler::eor(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { AddrMode1(cond | EOR | s, dst, src1, src2); } void Assembler::eor(Register dst, Register src1, Register src2, SBit s, Condition cond) { AddrMode1(cond | EOR | s, dst, src1, Operand(src2)); } void Assembler::sub(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { AddrMode1(cond | SUB | s, dst, src1, src2); } void Assembler::sub(Register dst, Register src1, Register src2, SBit s, Condition cond) { sub(dst, src1, Operand(src2), s, cond); } void Assembler::rsb(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { AddrMode1(cond | RSB | s, dst, src1, src2); } void Assembler::add(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { AddrMode1(cond | ADD | s, dst, src1, src2); } void Assembler::add(Register dst, Register src1, Register src2, SBit s, Condition cond) { add(dst, src1, Operand(src2), s, cond); } void Assembler::adc(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { AddrMode1(cond | ADC | s, dst, src1, src2); } void Assembler::sbc(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { AddrMode1(cond | SBC | s, dst, src1, src2); } void Assembler::rsc(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { AddrMode1(cond | RSC | s, dst, src1, src2); } void Assembler::tst(Register src1, const Operand& src2, Condition cond) { AddrMode1(cond | TST | S, no_reg, src1, src2); } void Assembler::tst(Register src1, Register src2, Condition cond) { tst(src1, Operand(src2), cond); } void Assembler::teq(Register src1, const Operand& src2, Condition cond) { AddrMode1(cond | TEQ | S, no_reg, src1, src2); } void Assembler::cmp(Register src1, const Operand& src2, Condition cond) { AddrMode1(cond | CMP | S, no_reg, src1, src2); } void Assembler::cmp(Register src1, Register src2, Condition cond) { cmp(src1, Operand(src2), cond); } void Assembler::cmp_raw_immediate(Register src, int raw_immediate, Condition cond) { DCHECK(is_uint12(raw_immediate)); emit(cond | I | CMP | S | src.code() << 16 | raw_immediate); } void Assembler::cmn(Register src1, const Operand& src2, Condition cond) { AddrMode1(cond | CMN | S, no_reg, src1, src2); } void Assembler::orr(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { AddrMode1(cond | ORR | s, dst, src1, src2); } void Assembler::orr(Register dst, Register src1, Register src2, SBit s, Condition cond) { orr(dst, src1, Operand(src2), s, cond); } void Assembler::mov(Register dst, const Operand& src, SBit s, Condition cond) { // Don't allow nop instructions in the form mov rn, rn to be generated using // the mov instruction. They must be generated using nop(int/NopMarkerTypes). DCHECK(!(src.IsRegister() && src.rm() == dst && s == LeaveCC && cond == al)); AddrMode1(cond | MOV | s, dst, no_reg, src); } void Assembler::mov(Register dst, Register src, SBit s, Condition cond) { mov(dst, Operand(src), s, cond); } void Assembler::mov_label_offset(Register dst, Label* label) { if (label->is_bound()) { mov(dst, Operand(label->pos() + (Code::kHeaderSize - kHeapObjectTag))); } else { // Emit the link to the label in the code stream followed by extra nop // instructions. // If the label is not linked, then start a new link chain by linking it to // itself, emitting pc_offset(). int link = label->is_linked() ? label->pos() : pc_offset(); label->link_to(pc_offset()); // When the label is bound, these instructions will be patched with a // sequence of movw/movt or mov/orr/orr instructions. They will load the // destination register with the position of the label from the beginning // of the code. // // The link will be extracted from the first instruction and the destination // register from the second. // For ARMv7: // link // mov dst, dst // For ARMv6: // link // mov dst, dst // mov dst, dst // // When the label gets bound: target_at extracts the link and target_at_put // patches the instructions. CHECK(is_uint24(link)); BlockConstPoolScope block_const_pool(this); emit(link); nop(dst.code()); if (!CpuFeatures::IsSupported(ARMv7)) { nop(dst.code()); } } } void Assembler::movw(Register reg, uint32_t immediate, Condition cond) { DCHECK(IsEnabled(ARMv7)); emit(cond | 0x30 * B20 | reg.code() * B12 | EncodeMovwImmediate(immediate)); } void Assembler::movt(Register reg, uint32_t immediate, Condition cond) { DCHECK(IsEnabled(ARMv7)); emit(cond | 0x34 * B20 | reg.code() * B12 | EncodeMovwImmediate(immediate)); } void Assembler::bic(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { AddrMode1(cond | BIC | s, dst, src1, src2); } void Assembler::mvn(Register dst, const Operand& src, SBit s, Condition cond) { AddrMode1(cond | MVN | s, dst, no_reg, src); } void Assembler::asr(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { if (src2.IsRegister()) { mov(dst, Operand(src1, ASR, src2.rm()), s, cond); } else { mov(dst, Operand(src1, ASR, src2.immediate()), s, cond); } } void Assembler::lsl(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { if (src2.IsRegister()) { mov(dst, Operand(src1, LSL, src2.rm()), s, cond); } else { mov(dst, Operand(src1, LSL, src2.immediate()), s, cond); } } void Assembler::lsr(Register dst, Register src1, const Operand& src2, SBit s, Condition cond) { if (src2.IsRegister()) { mov(dst, Operand(src1, LSR, src2.rm()), s, cond); } else { mov(dst, Operand(src1, LSR, src2.immediate()), s, cond); } } // Multiply instructions. void Assembler::mla(Register dst, Register src1, Register src2, Register srcA, SBit s, Condition cond) { DCHECK(dst != pc && src1 != pc && src2 != pc && srcA != pc); emit(cond | A | s | dst.code() * B16 | srcA.code() * B12 | src2.code() * B8 | B7 | B4 | src1.code()); } void Assembler::mls(Register dst, Register src1, Register src2, Register srcA, Condition cond) { DCHECK(dst != pc && src1 != pc && src2 != pc && srcA != pc); DCHECK(IsEnabled(ARMv7)); emit(cond | B22 | B21 | dst.code() * B16 | srcA.code() * B12 | src2.code() * B8 | B7 | B4 | src1.code()); } void Assembler::sdiv(Register dst, Register src1, Register src2, Condition cond) { DCHECK(dst != pc && src1 != pc && src2 != pc); DCHECK(IsEnabled(SUDIV)); emit(cond | B26 | B25 | B24 | B20 | dst.code() * B16 | 0xF * B12 | src2.code() * B8 | B4 | src1.code()); } void Assembler::udiv(Register dst, Register src1, Register src2, Condition cond) { DCHECK(dst != pc && src1 != pc && src2 != pc); DCHECK(IsEnabled(SUDIV)); emit(cond | B26 | B25 | B24 | B21 | B20 | dst.code() * B16 | 0xF * B12 | src2.code() * B8 | B4 | src1.code()); } void Assembler::mul(Register dst, Register src1, Register src2, SBit s, Condition cond) { DCHECK(dst != pc && src1 != pc && src2 != pc); // dst goes in bits 16-19 for this instruction! emit(cond | s | dst.code() * B16 | src2.code() * B8 | B7 | B4 | src1.code()); } void Assembler::smmla(Register dst, Register src1, Register src2, Register srcA, Condition cond) { DCHECK(dst != pc && src1 != pc && src2 != pc && srcA != pc); emit(cond | B26 | B25 | B24 | B22 | B20 | dst.code() * B16 | srcA.code() * B12 | src2.code() * B8 | B4 | src1.code()); } void Assembler::smmul(Register dst, Register src1, Register src2, Condition cond) { DCHECK(dst != pc && src1 != pc && src2 != pc); emit(cond | B26 | B25 | B24 | B22 | B20 | dst.code() * B16 | 0xF * B12 | src2.code() * B8 | B4 | src1.code()); } void Assembler::smlal(Register dstL, Register dstH, Register src1, Register src2, SBit s, Condition cond) { DCHECK(dstL != pc && dstH != pc && src1 != pc && src2 != pc); DCHECK(dstL != dstH); emit(cond | B23 | B22 | A | s | dstH.code() * B16 | dstL.code() * B12 | src2.code() * B8 | B7 | B4 | src1.code()); } void Assembler::smull(Register dstL, Register dstH, Register src1, Register src2, SBit s, Condition cond) { DCHECK(dstL != pc && dstH != pc && src1 != pc && src2 != pc); DCHECK(dstL != dstH); emit(cond | B23 | B22 | s | dstH.code() * B16 | dstL.code() * B12 | src2.code() * B8 | B7 | B4 | src1.code()); } void Assembler::umlal(Register dstL, Register dstH, Register src1, Register src2, SBit s, Condition cond) { DCHECK(dstL != pc && dstH != pc && src1 != pc && src2 != pc); DCHECK(dstL != dstH); emit(cond | B23 | A | s | dstH.code() * B16 | dstL.code() * B12 | src2.code() * B8 | B7 | B4 | src1.code()); } void Assembler::umull(Register dstL, Register dstH, Register src1, Register src2, SBit s, Condition cond) { DCHECK(dstL != pc && dstH != pc && src1 != pc && src2 != pc); DCHECK(dstL != dstH); emit(cond | B23 | s | dstH.code() * B16 | dstL.code() * B12 | src2.code() * B8 | B7 | B4 | src1.code()); } // Miscellaneous arithmetic instructions. void Assembler::clz(Register dst, Register src, Condition cond) { DCHECK(dst != pc && src != pc); emit(cond | B24 | B22 | B21 | 15 * B16 | dst.code() * B12 | 15 * B8 | CLZ | src.code()); } // Saturating instructions. // Unsigned saturate. void Assembler::usat(Register dst, int satpos, const Operand& src, Condition cond) { DCHECK(dst != pc && src.rm_ != pc); DCHECK((satpos >= 0) && (satpos <= 31)); DCHECK(src.IsImmediateShiftedRegister()); DCHECK((src.shift_op_ == ASR) || (src.shift_op_ == LSL)); int sh = 0; if (src.shift_op_ == ASR) { sh = 1; } emit(cond | 0x6 * B24 | 0xE * B20 | satpos * B16 | dst.code() * B12 | src.shift_imm_ * B7 | sh * B6 | 0x1 * B4 | src.rm_.code()); } // Bitfield manipulation instructions. // Unsigned bit field extract. // Extracts #width adjacent bits from position #lsb in a register, and // writes them to the low bits of a destination register. // ubfx dst, src, #lsb, #width void Assembler::ubfx(Register dst, Register src, int lsb, int width, Condition cond) { DCHECK(IsEnabled(ARMv7)); DCHECK(dst != pc && src != pc); DCHECK((lsb >= 0) && (lsb <= 31)); DCHECK((width >= 1) && (width <= (32 - lsb))); emit(cond | 0xF * B23 | B22 | B21 | (width - 1) * B16 | dst.code() * B12 | lsb * B7 | B6 | B4 | src.code()); } // Signed bit field extract. // Extracts #width adjacent bits from position #lsb in a register, and // writes them to the low bits of a destination register. The extracted // value is sign extended to fill the destination register. // sbfx dst, src, #lsb, #width void Assembler::sbfx(Register dst, Register src, int lsb, int width, Condition cond) { DCHECK(IsEnabled(ARMv7)); DCHECK(dst != pc && src != pc); DCHECK((lsb >= 0) && (lsb <= 31)); DCHECK((width >= 1) && (width <= (32 - lsb))); emit(cond | 0xF * B23 | B21 | (width - 1) * B16 | dst.code() * B12 | lsb * B7 | B6 | B4 | src.code()); } // Bit field clear. // Sets #width adjacent bits at position #lsb in the destination register // to zero, preserving the value of the other bits. // bfc dst, #lsb, #width void Assembler::bfc(Register dst, int lsb, int width, Condition cond) { DCHECK(IsEnabled(ARMv7)); DCHECK(dst != pc); DCHECK((lsb >= 0) && (lsb <= 31)); DCHECK((width >= 1) && (width <= (32 - lsb))); int msb = lsb + width - 1; emit(cond | 0x1F * B22 | msb * B16 | dst.code() * B12 | lsb * B7 | B4 | 0xF); } // Bit field insert. // Inserts #width adjacent bits from the low bits of the source register // into position #lsb of the destination register. // bfi dst, src, #lsb, #width void Assembler::bfi(Register dst, Register src, int lsb, int width, Condition cond) { DCHECK(IsEnabled(ARMv7)); DCHECK(dst != pc && src != pc); DCHECK((lsb >= 0) && (lsb <= 31)); DCHECK((width >= 1) && (width <= (32 - lsb))); int msb = lsb + width - 1; emit(cond | 0x1F * B22 | msb * B16 | dst.code() * B12 | lsb * B7 | B4 | src.code()); } void Assembler::pkhbt(Register dst, Register src1, const Operand& src2, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.125. // cond(31-28) | 01101000(27-20) | Rn(19-16) | // Rd(15-12) | imm5(11-7) | 0(6) | 01(5-4) | Rm(3-0) DCHECK(dst != pc); DCHECK(src1 != pc); DCHECK(src2.IsImmediateShiftedRegister()); DCHECK(src2.rm() != pc); DCHECK((src2.shift_imm_ >= 0) && (src2.shift_imm_ <= 31)); DCHECK(src2.shift_op() == LSL); emit(cond | 0x68 * B20 | src1.code() * B16 | dst.code() * B12 | src2.shift_imm_ * B7 | B4 | src2.rm().code()); } void Assembler::pkhtb(Register dst, Register src1, const Operand& src2, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.125. // cond(31-28) | 01101000(27-20) | Rn(19-16) | // Rd(15-12) | imm5(11-7) | 1(6) | 01(5-4) | Rm(3-0) DCHECK(dst != pc); DCHECK(src1 != pc); DCHECK(src2.IsImmediateShiftedRegister()); DCHECK(src2.rm() != pc); DCHECK((src2.shift_imm_ >= 1) && (src2.shift_imm_ <= 32)); DCHECK(src2.shift_op() == ASR); int asr = (src2.shift_imm_ == 32) ? 0 : src2.shift_imm_; emit(cond | 0x68 * B20 | src1.code() * B16 | dst.code() * B12 | asr * B7 | B6 | B4 | src2.rm().code()); } void Assembler::sxtb(Register dst, Register src, int rotate, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.233. // cond(31-28) | 01101010(27-20) | 1111(19-16) | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) DCHECK(dst != pc); DCHECK(src != pc); DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); emit(cond | 0x6A * B20 | 0xF * B16 | dst.code() * B12 | ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code()); } void Assembler::sxtab(Register dst, Register src1, Register src2, int rotate, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.233. // cond(31-28) | 01101010(27-20) | Rn(19-16) | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) DCHECK(dst != pc); DCHECK(src1 != pc); DCHECK(src2 != pc); DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); emit(cond | 0x6A * B20 | src1.code() * B16 | dst.code() * B12 | ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code()); } void Assembler::sxth(Register dst, Register src, int rotate, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.235. // cond(31-28) | 01101011(27-20) | 1111(19-16) | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) DCHECK(dst != pc); DCHECK(src != pc); DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); emit(cond | 0x6B * B20 | 0xF * B16 | dst.code() * B12 | ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code()); } void Assembler::sxtah(Register dst, Register src1, Register src2, int rotate, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.235. // cond(31-28) | 01101011(27-20) | Rn(19-16) | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) DCHECK(dst != pc); DCHECK(src1 != pc); DCHECK(src2 != pc); DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); emit(cond | 0x6B * B20 | src1.code() * B16 | dst.code() * B12 | ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code()); } void Assembler::uxtb(Register dst, Register src, int rotate, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.274. // cond(31-28) | 01101110(27-20) | 1111(19-16) | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) DCHECK(dst != pc); DCHECK(src != pc); DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); emit(cond | 0x6E * B20 | 0xF * B16 | dst.code() * B12 | ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code()); } void Assembler::uxtab(Register dst, Register src1, Register src2, int rotate, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.271. // cond(31-28) | 01101110(27-20) | Rn(19-16) | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) DCHECK(dst != pc); DCHECK(src1 != pc); DCHECK(src2 != pc); DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); emit(cond | 0x6E * B20 | src1.code() * B16 | dst.code() * B12 | ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code()); } void Assembler::uxtb16(Register dst, Register src, int rotate, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.275. // cond(31-28) | 01101100(27-20) | 1111(19-16) | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) DCHECK(dst != pc); DCHECK(src != pc); DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); emit(cond | 0x6C * B20 | 0xF * B16 | dst.code() * B12 | ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code()); } void Assembler::uxth(Register dst, Register src, int rotate, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.276. // cond(31-28) | 01101111(27-20) | 1111(19-16) | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) DCHECK(dst != pc); DCHECK(src != pc); DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); emit(cond | 0x6F * B20 | 0xF * B16 | dst.code() * B12 | ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src.code()); } void Assembler::uxtah(Register dst, Register src1, Register src2, int rotate, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.273. // cond(31-28) | 01101111(27-20) | Rn(19-16) | // Rd(15-12) | rotate(11-10) | 00(9-8)| 0111(7-4) | Rm(3-0) DCHECK(dst != pc); DCHECK(src1 != pc); DCHECK(src2 != pc); DCHECK(rotate == 0 || rotate == 8 || rotate == 16 || rotate == 24); emit(cond | 0x6F * B20 | src1.code() * B16 | dst.code() * B12 | ((rotate >> 1) & 0xC) * B8 | 7 * B4 | src2.code()); } void Assembler::rbit(Register dst, Register src, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.144. // cond(31-28) | 011011111111(27-16) | Rd(15-12) | 11110011(11-4) | Rm(3-0) DCHECK(IsEnabled(ARMv7)); DCHECK(dst != pc); DCHECK(src != pc); emit(cond | 0x6FF * B16 | dst.code() * B12 | 0xF3 * B4 | src.code()); } void Assembler::rev(Register dst, Register src, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.144. // cond(31-28) | 011010111111(27-16) | Rd(15-12) | 11110011(11-4) | Rm(3-0) DCHECK(dst != pc); DCHECK(src != pc); emit(cond | 0x6BF * B16 | dst.code() * B12 | 0xF3 * B4 | src.code()); } // Status register access instructions. void Assembler::mrs(Register dst, SRegister s, Condition cond) { DCHECK(dst != pc); emit(cond | B24 | s | 15 * B16 | dst.code() * B12); } void Assembler::msr(SRegisterFieldMask fields, const Operand& src, Condition cond) { DCHECK_NE(fields & 0x000F0000, 0); // At least one field must be set. DCHECK(((fields & 0xFFF0FFFF) == CPSR) || ((fields & 0xFFF0FFFF) == SPSR)); Instr instr; if (src.IsImmediate()) { // Immediate. uint32_t rotate_imm; uint32_t immed_8; if (src.MustOutputRelocInfo(this) || !FitsShifter(src.immediate(), &rotate_imm, &immed_8, nullptr)) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); // Immediate operand cannot be encoded, load it first to a scratch // register. Move32BitImmediate(scratch, src); msr(fields, Operand(scratch), cond); return; } instr = I | rotate_imm * B8 | immed_8; } else { DCHECK(src.IsRegister()); // Only rm is allowed. instr = src.rm_.code(); } emit(cond | instr | B24 | B21 | fields | 15 * B12); } // Load/Store instructions. void Assembler::ldr(Register dst, const MemOperand& src, Condition cond) { AddrMode2(cond | B26 | L, dst, src); } void Assembler::str(Register src, const MemOperand& dst, Condition cond) { AddrMode2(cond | B26, src, dst); } void Assembler::ldrb(Register dst, const MemOperand& src, Condition cond) { AddrMode2(cond | B26 | B | L, dst, src); } void Assembler::strb(Register src, const MemOperand& dst, Condition cond) { AddrMode2(cond | B26 | B, src, dst); } void Assembler::ldrh(Register dst, const MemOperand& src, Condition cond) { AddrMode3(cond | L | B7 | H | B4, dst, src); } void Assembler::strh(Register src, const MemOperand& dst, Condition cond) { AddrMode3(cond | B7 | H | B4, src, dst); } void Assembler::ldrsb(Register dst, const MemOperand& src, Condition cond) { AddrMode3(cond | L | B7 | S6 | B4, dst, src); } void Assembler::ldrsh(Register dst, const MemOperand& src, Condition cond) { AddrMode3(cond | L | B7 | S6 | H | B4, dst, src); } void Assembler::ldrd(Register dst1, Register dst2, const MemOperand& src, Condition cond) { DCHECK(src.rm() == no_reg); DCHECK(dst1 != lr); // r14. DCHECK_EQ(0, dst1.code() % 2); DCHECK_EQ(dst1.code() + 1, dst2.code()); AddrMode3(cond | B7 | B6 | B4, dst1, src); } void Assembler::strd(Register src1, Register src2, const MemOperand& dst, Condition cond) { DCHECK(dst.rm() == no_reg); DCHECK(src1 != lr); // r14. DCHECK_EQ(0, src1.code() % 2); DCHECK_EQ(src1.code() + 1, src2.code()); AddrMode3(cond | B7 | B6 | B5 | B4, src1, dst); } void Assembler::ldr_pcrel(Register dst, int imm12, Condition cond) { AddrMode am = Offset; if (imm12 < 0) { imm12 = -imm12; am = NegOffset; } DCHECK(is_uint12(imm12)); emit(cond | B26 | am | L | pc.code() * B16 | dst.code() * B12 | imm12); } // Load/Store exclusive instructions. void Assembler::ldrex(Register dst, Register src, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.75. // cond(31-28) | 00011001(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0) DCHECK(dst != pc); DCHECK(src != pc); emit(cond | B24 | B23 | B20 | src.code() * B16 | dst.code() * B12 | 0xF9F); } void Assembler::strex(Register src1, Register src2, Register dst, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.212. // cond(31-28) | 00011000(27-20) | Rn(19-16) | Rd(15-12) | 11111001(11-4) | // Rt(3-0) DCHECK(dst != pc); DCHECK(src1 != pc); DCHECK(src2 != pc); DCHECK(src1 != dst); DCHECK(src1 != src2); emit(cond | B24 | B23 | dst.code() * B16 | src1.code() * B12 | 0xF9 * B4 | src2.code()); } void Assembler::ldrexb(Register dst, Register src, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.76. // cond(31-28) | 00011101(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0) DCHECK(dst != pc); DCHECK(src != pc); emit(cond | B24 | B23 | B22 | B20 | src.code() * B16 | dst.code() * B12 | 0xF9F); } void Assembler::strexb(Register src1, Register src2, Register dst, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.213. // cond(31-28) | 00011100(27-20) | Rn(19-16) | Rd(15-12) | 11111001(11-4) | // Rt(3-0) DCHECK(dst != pc); DCHECK(src1 != pc); DCHECK(src2 != pc); DCHECK(src1 != dst); DCHECK(src1 != src2); emit(cond | B24 | B23 | B22 | dst.code() * B16 | src1.code() * B12 | 0xF9 * B4 | src2.code()); } void Assembler::ldrexh(Register dst, Register src, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.78. // cond(31-28) | 00011111(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0) DCHECK(dst != pc); DCHECK(src != pc); emit(cond | B24 | B23 | B22 | B21 | B20 | src.code() * B16 | dst.code() * B12 | 0xF9F); } void Assembler::strexh(Register src1, Register src2, Register dst, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8.8.215. // cond(31-28) | 00011110(27-20) | Rn(19-16) | Rd(15-12) | 11111001(11-4) | // Rt(3-0) DCHECK(dst != pc); DCHECK(src1 != pc); DCHECK(src2 != pc); DCHECK(src1 != dst); DCHECK(src1 != src2); emit(cond | B24 | B23 | B22 | B21 | dst.code() * B16 | src1.code() * B12 | 0xF9 * B4 | src2.code()); } void Assembler::ldrexd(Register dst1, Register dst2, Register src, Condition cond) { // cond(31-28) | 00011011(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0) DCHECK(dst1 != lr); // r14. // The pair of destination registers is restricted to being an even-numbered // register and the odd-numbered register that immediately follows it. DCHECK_EQ(0, dst1.code() % 2); DCHECK_EQ(dst1.code() + 1, dst2.code()); emit(cond | B24 | B23 | B21 | B20 | src.code() * B16 | dst1.code() * B12 | 0xF9F); } void Assembler::strexd(Register res, Register src1, Register src2, Register dst, Condition cond) { // cond(31-28) | 00011010(27-20) | Rn(19-16) | Rt(15-12) | 111110011111(11-0) DCHECK(src1 != lr); // r14. // The pair of source registers is restricted to being an even-numbered // register and the odd-numbered register that immediately follows it. DCHECK_EQ(0, src1.code() % 2); DCHECK_EQ(src1.code() + 1, src2.code()); emit(cond | B24 | B23 | B21 | dst.code() * B16 | res.code() * B12 | 0xF9 * B4 | src1.code()); } // Preload instructions. void Assembler::pld(const MemOperand& address) { // Instruction details available in ARM DDI 0406C.b, A8.8.128. // 1111(31-28) | 0111(27-24) | U(23) | R(22) | 01(21-20) | Rn(19-16) | // 1111(15-12) | imm5(11-07) | type(6-5) | 0(4)| Rm(3-0) | DCHECK(address.rm() == no_reg); DCHECK(address.am() == Offset); int U = B23; int offset = address.offset(); if (offset < 0) { offset = -offset; U = 0; } DCHECK_LT(offset, 4096); emit(kSpecialCondition | B26 | B24 | U | B22 | B20 | address.rn().code() * B16 | 0xF * B12 | offset); } // Load/Store multiple instructions. void Assembler::ldm(BlockAddrMode am, Register base, RegList dst, Condition cond) { // ABI stack constraint: ldmxx base, {..sp..} base != sp is not restartable. DCHECK(base == sp || !dst.has(sp)); AddrMode4(cond | B27 | am | L, base, dst); // Emit the constant pool after a function return implemented by ldm ..{..pc}. if (cond == al && dst.has(pc)) { // There is a slight chance that the ldm instruction was actually a call, // in which case it would be wrong to return into the constant pool; we // recognize this case by checking if the emission of the pool was blocked // at the pc of the ldm instruction by a mov lr, pc instruction; if this is // the case, we emit a jump over the pool. CheckConstPool(true, no_const_pool_before_ == pc_offset() - kInstrSize); } } void Assembler::stm(BlockAddrMode am, Register base, RegList src, Condition cond) { AddrMode4(cond | B27 | am, base, src); } // Exception-generating instructions and debugging support. // Stops with a non-negative code less than kNumOfWatchedStops support // enabling/disabling and a counter feature. See simulator-arm.h . void Assembler::stop(Condition cond, int32_t code) { #ifndef __arm__ DCHECK_GE(code, kDefaultStopCode); { BlockConstPoolScope block_const_pool(this); if (code >= 0) { svc(kStopCode + code, cond); } else { svc(kStopCode + kMaxStopCode, cond); } } #else // def __arm__ if (cond != al) { Label skip; b(&skip, NegateCondition(cond)); bkpt(0); bind(&skip); } else { bkpt(0); } #endif // def __arm__ } void Assembler::bkpt(uint32_t imm16) { DCHECK(is_uint16(imm16)); emit(al | B24 | B21 | (imm16 >> 4) * B8 | BKPT | (imm16 & 0xF)); } void Assembler::svc(uint32_t imm24, Condition cond) { CHECK(is_uint24(imm24)); emit(cond | 15 * B24 | imm24); } void Assembler::dmb(BarrierOption option) { if (CpuFeatures::IsSupported(ARMv7)) { // Details available in ARM DDI 0406C.b, A8-378. emit(kSpecialCondition | 0x57FF * B12 | 5 * B4 | option); } else { // Details available in ARM DDI 0406C.b, B3-1750. // CP15DMB: CRn=c7, opc1=0, CRm=c10, opc2=5, Rt is ignored. mcr(p15, 0, r0, cr7, cr10, 5); } } void Assembler::dsb(BarrierOption option) { if (CpuFeatures::IsSupported(ARMv7)) { // Details available in ARM DDI 0406C.b, A8-380. emit(kSpecialCondition | 0x57FF * B12 | 4 * B4 | option); } else { // Details available in ARM DDI 0406C.b, B3-1750. // CP15DSB: CRn=c7, opc1=0, CRm=c10, opc2=4, Rt is ignored. mcr(p15, 0, r0, cr7, cr10, 4); } } void Assembler::isb(BarrierOption option) { if (CpuFeatures::IsSupported(ARMv7)) { // Details available in ARM DDI 0406C.b, A8-389. emit(kSpecialCondition | 0x57FF * B12 | 6 * B4 | option); } else { // Details available in ARM DDI 0406C.b, B3-1750. // CP15ISB: CRn=c7, opc1=0, CRm=c5, opc2=4, Rt is ignored. mcr(p15, 0, r0, cr7, cr5, 4); } } void Assembler::csdb() { // Details available in Arm Cache Speculation Side-channels white paper, // version 1.1, page 4. emit(0xE320F014); } // Coprocessor instructions. void Assembler::cdp(Coprocessor coproc, int opcode_1, CRegister crd, CRegister crn, CRegister crm, int opcode_2, Condition cond) { DCHECK(is_uint4(opcode_1) && is_uint3(opcode_2)); emit(cond | B27 | B26 | B25 | (opcode_1 & 15) * B20 | crn.code() * B16 | crd.code() * B12 | coproc * B8 | (opcode_2 & 7) * B5 | crm.code()); } void Assembler::cdp2(Coprocessor coproc, int opcode_1, CRegister crd, CRegister crn, CRegister crm, int opcode_2) { cdp(coproc, opcode_1, crd, crn, crm, opcode_2, kSpecialCondition); } void Assembler::mcr(Coprocessor coproc, int opcode_1, Register rd, CRegister crn, CRegister crm, int opcode_2, Condition cond) { DCHECK(is_uint3(opcode_1) && is_uint3(opcode_2)); emit(cond | B27 | B26 | B25 | (opcode_1 & 7) * B21 | crn.code() * B16 | rd.code() * B12 | coproc * B8 | (opcode_2 & 7) * B5 | B4 | crm.code()); } void Assembler::mcr2(Coprocessor coproc, int opcode_1, Register rd, CRegister crn, CRegister crm, int opcode_2) { mcr(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition); } void Assembler::mrc(Coprocessor coproc, int opcode_1, Register rd, CRegister crn, CRegister crm, int opcode_2, Condition cond) { DCHECK(is_uint3(opcode_1) && is_uint3(opcode_2)); emit(cond | B27 | B26 | B25 | (opcode_1 & 7) * B21 | L | crn.code() * B16 | rd.code() * B12 | coproc * B8 | (opcode_2 & 7) * B5 | B4 | crm.code()); } void Assembler::mrc2(Coprocessor coproc, int opcode_1, Register rd, CRegister crn, CRegister crm, int opcode_2) { mrc(coproc, opcode_1, rd, crn, crm, opcode_2, kSpecialCondition); } void Assembler::ldc(Coprocessor coproc, CRegister crd, const MemOperand& src, LFlag l, Condition cond) { AddrMode5(cond | B27 | B26 | l | L | coproc * B8, crd, src); } void Assembler::ldc(Coprocessor coproc, CRegister crd, Register rn, int option, LFlag l, Condition cond) { // Unindexed addressing. DCHECK(is_uint8(option)); emit(cond | B27 | B26 | U | l | L | rn.code() * B16 | crd.code() * B12 | coproc * B8 | (option & 255)); } void Assembler::ldc2(Coprocessor coproc, CRegister crd, const MemOperand& src, LFlag l) { ldc(coproc, crd, src, l, kSpecialCondition); } void Assembler::ldc2(Coprocessor coproc, CRegister crd, Register rn, int option, LFlag l) { ldc(coproc, crd, rn, option, l, kSpecialCondition); } // Support for VFP. void Assembler::vldr(const DwVfpRegister dst, const Register base, int offset, const Condition cond) { // Ddst = MEM(Rbase + offset). // Instruction details available in ARM DDI 0406C.b, A8-924. // cond(31-28) | 1101(27-24)| U(23) | D(22) | 01(21-20) | Rbase(19-16) | // Vd(15-12) | 1011(11-8) | offset DCHECK(VfpRegisterIsAvailable(dst)); int u = 1; if (offset < 0) { CHECK_NE(offset, kMinInt); offset = -offset; u = 0; } int vd, d; dst.split_code(&vd, &d); DCHECK_GE(offset, 0); if ((offset % 4) == 0 && (offset / 4) < 256) { emit(cond | 0xD * B24 | u * B23 | d * B22 | B20 | base.code() * B16 | vd * B12 | 0xB * B8 | ((offset / 4) & 255)); } else { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); // Larger offsets must be handled by computing the correct address in a // scratch register. DCHECK(base != scratch); if (u == 1) { add(scratch, base, Operand(offset)); } else { sub(scratch, base, Operand(offset)); } emit(cond | 0xD * B24 | d * B22 | B20 | scratch.code() * B16 | vd * B12 | 0xB * B8); } } void Assembler::vldr(const DwVfpRegister dst, const MemOperand& operand, const Condition cond) { DCHECK(VfpRegisterIsAvailable(dst)); DCHECK(operand.am_ == Offset); if (operand.rm().is_valid()) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); add(scratch, operand.rn(), Operand(operand.rm(), operand.shift_op_, operand.shift_imm_)); vldr(dst, scratch, 0, cond); } else { vldr(dst, operand.rn(), operand.offset(), cond); } } void Assembler::vldr(const SwVfpRegister dst, const Register base, int offset, const Condition cond) { // Sdst = MEM(Rbase + offset). // Instruction details available in ARM DDI 0406A, A8-628. // cond(31-28) | 1101(27-24)| U001(23-20) | Rbase(19-16) | // Vdst(15-12) | 1010(11-8) | offset int u = 1; if (offset < 0) { offset = -offset; u = 0; } int sd, d; dst.split_code(&sd, &d); DCHECK_GE(offset, 0); if ((offset % 4) == 0 && (offset / 4) < 256) { emit(cond | u * B23 | d * B22 | 0xD1 * B20 | base.code() * B16 | sd * B12 | 0xA * B8 | ((offset / 4) & 255)); } else { // Larger offsets must be handled by computing the correct address in a // scratch register. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(base != scratch); if (u == 1) { add(scratch, base, Operand(offset)); } else { sub(scratch, base, Operand(offset)); } emit(cond | d * B22 | 0xD1 * B20 | scratch.code() * B16 | sd * B12 | 0xA * B8); } } void Assembler::vldr(const SwVfpRegister dst, const MemOperand& operand, const Condition cond) { DCHECK(operand.am_ == Offset); if (operand.rm().is_valid()) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); add(scratch, operand.rn(), Operand(operand.rm(), operand.shift_op_, operand.shift_imm_)); vldr(dst, scratch, 0, cond); } else { vldr(dst, operand.rn(), operand.offset(), cond); } } void Assembler::vstr(const DwVfpRegister src, const Register base, int offset, const Condition cond) { // MEM(Rbase + offset) = Dsrc. // Instruction details available in ARM DDI 0406C.b, A8-1082. // cond(31-28) | 1101(27-24)| U(23) | D(22) | 00(21-20) | Rbase(19-16) | // Vd(15-12) | 1011(11-8) | (offset/4) DCHECK(VfpRegisterIsAvailable(src)); int u = 1; if (offset < 0) { CHECK_NE(offset, kMinInt); offset = -offset; u = 0; } DCHECK_GE(offset, 0); int vd, d; src.split_code(&vd, &d); if ((offset % 4) == 0 && (offset / 4) < 256) { emit(cond | 0xD * B24 | u * B23 | d * B22 | base.code() * B16 | vd * B12 | 0xB * B8 | ((offset / 4) & 255)); } else { // Larger offsets must be handled by computing the correct address in the a // scratch register. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(base != scratch); if (u == 1) { add(scratch, base, Operand(offset)); } else { sub(scratch, base, Operand(offset)); } emit(cond | 0xD * B24 | d * B22 | scratch.code() * B16 | vd * B12 | 0xB * B8); } } void Assembler::vstr(const DwVfpRegister src, const MemOperand& operand, const Condition cond) { DCHECK(VfpRegisterIsAvailable(src)); DCHECK(operand.am_ == Offset); if (operand.rm().is_valid()) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); add(scratch, operand.rn(), Operand(operand.rm(), operand.shift_op_, operand.shift_imm_)); vstr(src, scratch, 0, cond); } else { vstr(src, operand.rn(), operand.offset(), cond); } } void Assembler::vstr(const SwVfpRegister src, const Register base, int offset, const Condition cond) { // MEM(Rbase + offset) = SSrc. // Instruction details available in ARM DDI 0406A, A8-786. // cond(31-28) | 1101(27-24)| U000(23-20) | Rbase(19-16) | // Vdst(15-12) | 1010(11-8) | (offset/4) int u = 1; if (offset < 0) { CHECK_NE(offset, kMinInt); offset = -offset; u = 0; } int sd, d; src.split_code(&sd, &d); DCHECK_GE(offset, 0); if ((offset % 4) == 0 && (offset / 4) < 256) { emit(cond | u * B23 | d * B22 | 0xD0 * B20 | base.code() * B16 | sd * B12 | 0xA * B8 | ((offset / 4) & 255)); } else { // Larger offsets must be handled by computing the correct address in a // scratch register. UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); DCHECK(base != scratch); if (u == 1) { add(scratch, base, Operand(offset)); } else { sub(scratch, base, Operand(offset)); } emit(cond | d * B22 | 0xD0 * B20 | scratch.code() * B16 | sd * B12 | 0xA * B8); } } void Assembler::vstr(const SwVfpRegister src, const MemOperand& operand, const Condition cond) { DCHECK(operand.am_ == Offset); if (operand.rm().is_valid()) { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); add(scratch, operand.rn(), Operand(operand.rm(), operand.shift_op_, operand.shift_imm_)); vstr(src, scratch, 0, cond); } else { vstr(src, operand.rn(), operand.offset(), cond); } } void Assembler::vldm(BlockAddrMode am, Register base, DwVfpRegister first, DwVfpRegister last, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-922. // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) | // first(15-12) | 1011(11-8) | (count * 2) DCHECK_LE(first.code(), last.code()); DCHECK(VfpRegisterIsAvailable(last)); DCHECK(am == ia || am == ia_w || am == db_w); DCHECK(base != pc); int sd, d; first.split_code(&sd, &d); int count = last.code() - first.code() + 1; DCHECK_LE(count, 16); emit(cond | B27 | B26 | am | d * B22 | B20 | base.code() * B16 | sd * B12 | 0xB * B8 | count * 2); } void Assembler::vstm(BlockAddrMode am, Register base, DwVfpRegister first, DwVfpRegister last, Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-1080. // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) | // first(15-12) | 1011(11-8) | (count * 2) DCHECK_LE(first.code(), last.code()); DCHECK(VfpRegisterIsAvailable(last)); DCHECK(am == ia || am == ia_w || am == db_w); DCHECK(base != pc); int sd, d; first.split_code(&sd, &d); int count = last.code() - first.code() + 1; DCHECK_LE(count, 16); emit(cond | B27 | B26 | am | d * B22 | base.code() * B16 | sd * B12 | 0xB * B8 | count * 2); } void Assembler::vldm(BlockAddrMode am, Register base, SwVfpRegister first, SwVfpRegister last, Condition cond) { // Instruction details available in ARM DDI 0406A, A8-626. // cond(31-28) | 110(27-25)| PUDW1(24-20) | Rbase(19-16) | // first(15-12) | 1010(11-8) | (count/2) DCHECK_LE(first.code(), last.code()); DCHECK(am == ia || am == ia_w || am == db_w); DCHECK(base != pc); int sd, d; first.split_code(&sd, &d); int count = last.code() - first.code() + 1; emit(cond | B27 | B26 | am | d * B22 | B20 | base.code() * B16 | sd * B12 | 0xA * B8 | count); } void Assembler::vstm(BlockAddrMode am, Register base, SwVfpRegister first, SwVfpRegister last, Condition cond) { // Instruction details available in ARM DDI 0406A, A8-784. // cond(31-28) | 110(27-25)| PUDW0(24-20) | Rbase(19-16) | // first(15-12) | 1011(11-8) | (count/2) DCHECK_LE(first.code(), last.code()); DCHECK(am == ia || am == ia_w || am == db_w); DCHECK(base != pc); int sd, d; first.split_code(&sd, &d); int count = last.code() - first.code() + 1; emit(cond | B27 | B26 | am | d * B22 | base.code() * B16 | sd * B12 | 0xA * B8 | count); } static void DoubleAsTwoUInt32(base::Double d, uint32_t* lo, uint32_t* hi) { uint64_t i = d.AsUint64(); *lo = i & 0xFFFFFFFF; *hi = i >> 32; } static void WriteVmovIntImmEncoding(uint8_t imm, uint32_t* encoding) { // Integer promotion from uint8_t to int makes these all okay. *encoding = ((imm & 0x80) << (24 - 7)); // a *encoding |= ((imm & 0x70) << (16 - 4)); // bcd *encoding |= (imm & 0x0f); // efgh } // This checks if imm can be encoded into an immediate for vmov. // See Table A7-15 in ARM DDI 0406C.d. // Currently only supports the first row and op=0 && cmode=1110. static bool FitsVmovIntImm(uint64_t imm, uint32_t* encoding, uint8_t* cmode) { uint32_t lo = imm & 0xFFFFFFFF; uint32_t hi = imm >> 32; if ((lo == hi && ((lo & 0xffffff00) == 0))) { WriteVmovIntImmEncoding(imm & 0xff, encoding); *cmode = 0; return true; } else if ((lo == hi) && ((lo & 0xffff) == (lo >> 16)) && ((lo & 0xff) == (lo >> 24))) { // Check that all bytes in imm are the same. WriteVmovIntImmEncoding(imm & 0xff, encoding); *cmode = 0xe; return true; } return false; } void Assembler::vmov(const DwVfpRegister dst, uint64_t imm) { uint32_t enc; uint8_t cmode; uint8_t op = 0; if (CpuFeatures::IsSupported(NEON) && FitsVmovIntImm(imm, &enc, &cmode)) { CpuFeatureScope scope(this, NEON); // Instruction details available in ARM DDI 0406C.b, A8-937. // 001i1(27-23) | D(22) | 000(21-19) | imm3(18-16) | Vd(15-12) | cmode(11-8) // | 0(7) | 0(6) | op(5) | 4(1) | imm4(3-0) int vd, d; dst.split_code(&vd, &d); emit(kSpecialCondition | 0x05 * B23 | d * B22 | vd * B12 | cmode * B8 | op * B5 | 0x1 * B4 | enc); } else { UNIMPLEMENTED(); } } void Assembler::vmov(const QwNeonRegister dst, uint64_t imm) { uint32_t enc; uint8_t cmode; uint8_t op = 0; if (CpuFeatures::IsSupported(NEON) && FitsVmovIntImm(imm, &enc, &cmode)) { CpuFeatureScope scope(this, NEON); // Instruction details available in ARM DDI 0406C.b, A8-937. // 001i1(27-23) | D(22) | 000(21-19) | imm3(18-16) | Vd(15-12) | cmode(11-8) // | 0(7) | Q(6) | op(5) | 4(1) | imm4(3-0) int vd, d; dst.split_code(&vd, &d); emit(kSpecialCondition | 0x05 * B23 | d * B22 | vd * B12 | cmode * B8 | 0x1 * B6 | op * B5 | 0x1 * B4 | enc); } else { UNIMPLEMENTED(); } } // Only works for little endian floating point formats. // We don't support VFP on the mixed endian floating point platform. static bool FitsVmovFPImmediate(base::Double d, uint32_t* encoding) { // VMOV can accept an immediate of the form: // // +/- m * 2^(-n) where 16 <= m <= 31 and 0 <= n <= 7 // // The immediate is encoded using an 8-bit quantity, comprised of two // 4-bit fields. For an 8-bit immediate of the form: // // [abcdefgh] // // where a is the MSB and h is the LSB, an immediate 64-bit double can be // created of the form: // // [aBbbbbbb,bbcdefgh,00000000,00000000, // 00000000,00000000,00000000,00000000] // // where B = ~b. // uint32_t lo, hi; DoubleAsTwoUInt32(d, &lo, &hi); // The most obvious constraint is the long block of zeroes. if ((lo != 0) || ((hi & 0xFFFF) != 0)) { return false; } // Bits 61:54 must be all clear or all set. if (((hi & 0x3FC00000) != 0) && ((hi & 0x3FC00000) != 0x3FC00000)) { return false; } // Bit 62 must be NOT bit 61. if (((hi ^ (hi << 1)) & (0x40000000)) == 0) { return false; } // Create the encoded immediate in the form: // [00000000,0000abcd,00000000,0000efgh] *encoding = (hi >> 16) & 0xF; // Low nybble. *encoding |= (hi >> 4) & 0x70000; // Low three bits of the high nybble. *encoding |= (hi >> 12) & 0x80000; // Top bit of the high nybble. return true; } void Assembler::vmov(const SwVfpRegister dst, Float32 imm) { uint32_t enc; if (CpuFeatures::IsSupported(VFPv3) && FitsVmovFPImmediate(base::Double(imm.get_scalar()), &enc)) { CpuFeatureScope scope(this, VFPv3); // The float can be encoded in the instruction. // // Sd = immediate // Instruction details available in ARM DDI 0406C.b, A8-936. // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | imm4H(19-16) | // Vd(15-12) | 101(11-9) | sz=0(8) | imm4L(3-0) int vd, d; dst.split_code(&vd, &d); emit(al | 0x1D * B23 | d * B22 | 0x3 * B20 | vd * B12 | 0x5 * B9 | enc); } else { UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); mov(scratch, Operand(imm.get_bits())); vmov(dst, scratch); } } void Assembler::vmov(const DwVfpRegister dst, base::Double imm, const Register extra_scratch) { DCHECK(VfpRegisterIsAvailable(dst)); uint32_t enc; if (CpuFeatures::IsSupported(VFPv3) && FitsVmovFPImmediate(imm, &enc)) { CpuFeatureScope scope(this, VFPv3); // The double can be encoded in the instruction. // // Dd = immediate // Instruction details available in ARM DDI 0406C.b, A8-936. // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | imm4H(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | imm4L(3-0) int vd, d; dst.split_code(&vd, &d); emit(al | 0x1D * B23 | d * B22 | 0x3 * B20 | vd * B12 | 0x5 * B9 | B8 | enc); } else { // Synthesise the double from ARM immediates. uint32_t lo, hi; DoubleAsTwoUInt32(imm, &lo, &hi); UseScratchRegisterScope temps(this); Register scratch = temps.Acquire(); if (lo == hi) { // Move the low and high parts of the double to a D register in one // instruction. mov(scratch, Operand(lo)); vmov(dst, scratch, scratch); } else if (extra_scratch == no_reg) { // We only have one spare scratch register. mov(scratch, Operand(lo)); vmov(NeonS32, dst, 0, scratch); if (((lo & 0xFFFF) == (hi & 0xFFFF)) && CpuFeatures::IsSupported(ARMv7)) { CpuFeatureScope scope(this, ARMv7); movt(scratch, hi >> 16); } else { mov(scratch, Operand(hi)); } vmov(NeonS32, dst, 1, scratch); } else { // Move the low and high parts of the double to a D register in one // instruction. mov(scratch, Operand(lo)); mov(extra_scratch, Operand(hi)); vmov(dst, scratch, extra_scratch); } } } void Assembler::vmov(const SwVfpRegister dst, const SwVfpRegister src, const Condition cond) { // Sd = Sm // Instruction details available in ARM DDI 0406B, A8-642. int sd, d, sm, m; dst.split_code(&sd, &d); src.split_code(&sm, &m); emit(cond | 0xE * B24 | d * B22 | 0xB * B20 | sd * B12 | 0xA * B8 | B6 | m * B5 | sm); } void Assembler::vmov(const DwVfpRegister dst, const DwVfpRegister src, const Condition cond) { // Dd = Dm // Instruction details available in ARM DDI 0406C.b, A8-938. // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) | // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0) DCHECK(VfpRegisterIsAvailable(dst)); DCHECK(VfpRegisterIsAvailable(src)); int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | vd * B12 | 0x5 * B9 | B8 | B6 | m * B5 | vm); } void Assembler::vmov(const DwVfpRegister dst, const Register src1, const Register src2, const Condition cond) { // Dm = . // Instruction details available in ARM DDI 0406C.b, A8-948. // cond(31-28) | 1100(27-24)| 010(23-21) | op=0(20) | Rt2(19-16) | // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm DCHECK(VfpRegisterIsAvailable(dst)); DCHECK(src1 != pc && src2 != pc); int vm, m; dst.split_code(&vm, &m); emit(cond | 0xC * B24 | B22 | src2.code() * B16 | src1.code() * B12 | 0xB * B8 | m * B5 | B4 | vm); } void Assembler::vmov(const Register dst1, const Register dst2, const DwVfpRegister src, const Condition cond) { // = Dm. // Instruction details available in ARM DDI 0406C.b, A8-948. // cond(31-28) | 1100(27-24)| 010(23-21) | op=1(20) | Rt2(19-16) | // Rt(15-12) | 1011(11-8) | 00(7-6) | M(5) | 1(4) | Vm DCHECK(VfpRegisterIsAvailable(src)); DCHECK(dst1 != pc && dst2 != pc); int vm, m; src.split_code(&vm, &m); emit(cond | 0xC * B24 | B22 | B20 | dst2.code() * B16 | dst1.code() * B12 | 0xB * B8 | m * B5 | B4 | vm); } void Assembler::vmov(const SwVfpRegister dst, const Register src, const Condition cond) { // Sn = Rt. // Instruction details available in ARM DDI 0406A, A8-642. // cond(31-28) | 1110(27-24)| 000(23-21) | op=0(20) | Vn(19-16) | // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0) DCHECK(src != pc); int sn, n; dst.split_code(&sn, &n); emit(cond | 0xE * B24 | sn * B16 | src.code() * B12 | 0xA * B8 | n * B7 | B4); } void Assembler::vmov(const Register dst, const SwVfpRegister src, const Condition cond) { // Rt = Sn. // Instruction details available in ARM DDI 0406A, A8-642. // cond(31-28) | 1110(27-24)| 000(23-21) | op=1(20) | Vn(19-16) | // Rt(15-12) | 1010(11-8) | N(7)=0 | 00(6-5) | 1(4) | 0000(3-0) DCHECK(dst != pc); int sn, n; src.split_code(&sn, &n); emit(cond | 0xE * B24 | B20 | sn * B16 | dst.code() * B12 | 0xA * B8 | n * B7 | B4); } // Type of data to read from or write to VFP register. // Used as specifier in generic vcvt instruction. enum VFPType { S32, U32, F32, F64 }; static bool IsSignedVFPType(VFPType type) { switch (type) { case S32: return true; case U32: return false; default: UNREACHABLE(); } } static bool IsIntegerVFPType(VFPType type) { switch (type) { case S32: case U32: return true; case F32: case F64: return false; default: UNREACHABLE(); } } static bool IsDoubleVFPType(VFPType type) { switch (type) { case F32: return false; case F64: return true; default: UNREACHABLE(); } } // Split five bit reg_code based on size of reg_type. // 32-bit register codes are Vm:M // 64-bit register codes are M:Vm // where Vm is four bits, and M is a single bit. static void SplitRegCode(VFPType reg_type, int reg_code, int* vm, int* m) { DCHECK((reg_code >= 0) && (reg_code <= 31)); if (IsIntegerVFPType(reg_type) || !IsDoubleVFPType(reg_type)) { SwVfpRegister::split_code(reg_code, vm, m); } else { DwVfpRegister::split_code(reg_code, vm, m); } } // Encode vcvt.src_type.dst_type instruction. static Instr EncodeVCVT(const VFPType dst_type, const int dst_code, const VFPType src_type, const int src_code, VFPConversionMode mode, const Condition cond) { DCHECK(src_type != dst_type); int D, Vd, M, Vm; SplitRegCode(src_type, src_code, &Vm, &M); SplitRegCode(dst_type, dst_code, &Vd, &D); if (IsIntegerVFPType(dst_type) || IsIntegerVFPType(src_type)) { // Conversion between IEEE floating point and 32-bit integer. // Instruction details available in ARM DDI 0406B, A8.6.295. // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 1(19) | opc2(18-16) | // Vd(15-12) | 101(11-9) | sz(8) | op(7) | 1(6) | M(5) | 0(4) | Vm(3-0) DCHECK(!IsIntegerVFPType(dst_type) || !IsIntegerVFPType(src_type)); int sz, opc2, op; if (IsIntegerVFPType(dst_type)) { opc2 = IsSignedVFPType(dst_type) ? 0x5 : 0x4; sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0; op = mode; } else { DCHECK(IsIntegerVFPType(src_type)); opc2 = 0x0; sz = IsDoubleVFPType(dst_type) ? 0x1 : 0x0; op = IsSignedVFPType(src_type) ? 0x1 : 0x0; } return (cond | 0xE * B24 | B23 | D * B22 | 0x3 * B20 | B19 | opc2 * B16 | Vd * B12 | 0x5 * B9 | sz * B8 | op * B7 | B6 | M * B5 | Vm); } else { // Conversion between IEEE double and single precision. // Instruction details available in ARM DDI 0406B, A8.6.298. // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0111(19-16) | // Vd(15-12) | 101(11-9) | sz(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0) int sz = IsDoubleVFPType(src_type) ? 0x1 : 0x0; return (cond | 0xE * B24 | B23 | D * B22 | 0x3 * B20 | 0x7 * B16 | Vd * B12 | 0x5 * B9 | sz * B8 | B7 | B6 | M * B5 | Vm); } } void Assembler::vcvt_f64_s32(const DwVfpRegister dst, const SwVfpRegister src, VFPConversionMode mode, const Condition cond) { DCHECK(VfpRegisterIsAvailable(dst)); emit(EncodeVCVT(F64, dst.code(), S32, src.code(), mode, cond)); } void Assembler::vcvt_f32_s32(const SwVfpRegister dst, const SwVfpRegister src, VFPConversionMode mode, const Condition cond) { emit(EncodeVCVT(F32, dst.code(), S32, src.code(), mode, cond)); } void Assembler::vcvt_f64_u32(const DwVfpRegister dst, const SwVfpRegister src, VFPConversionMode mode, const Condition cond) { DCHECK(VfpRegisterIsAvailable(dst)); emit(EncodeVCVT(F64, dst.code(), U32, src.code(), mode, cond)); } void Assembler::vcvt_f32_u32(const SwVfpRegister dst, const SwVfpRegister src, VFPConversionMode mode, const Condition cond) { emit(EncodeVCVT(F32, dst.code(), U32, src.code(), mode, cond)); } void Assembler::vcvt_s32_f32(const SwVfpRegister dst, const SwVfpRegister src, VFPConversionMode mode, const Condition cond) { emit(EncodeVCVT(S32, dst.code(), F32, src.code(), mode, cond)); } void Assembler::vcvt_u32_f32(const SwVfpRegister dst, const SwVfpRegister src, VFPConversionMode mode, const Condition cond) { emit(EncodeVCVT(U32, dst.code(), F32, src.code(), mode, cond)); } void Assembler::vcvt_s32_f64(const SwVfpRegister dst, const DwVfpRegister src, VFPConversionMode mode, const Condition cond) { DCHECK(VfpRegisterIsAvailable(src)); emit(EncodeVCVT(S32, dst.code(), F64, src.code(), mode, cond)); } void Assembler::vcvt_u32_f64(const SwVfpRegister dst, const DwVfpRegister src, VFPConversionMode mode, const Condition cond) { DCHECK(VfpRegisterIsAvailable(src)); emit(EncodeVCVT(U32, dst.code(), F64, src.code(), mode, cond)); } void Assembler::vcvt_f64_f32(const DwVfpRegister dst, const SwVfpRegister src, VFPConversionMode mode, const Condition cond) { DCHECK(VfpRegisterIsAvailable(dst)); emit(EncodeVCVT(F64, dst.code(), F32, src.code(), mode, cond)); } void Assembler::vcvt_f32_f64(const SwVfpRegister dst, const DwVfpRegister src, VFPConversionMode mode, const Condition cond) { DCHECK(VfpRegisterIsAvailable(src)); emit(EncodeVCVT(F32, dst.code(), F64, src.code(), mode, cond)); } void Assembler::vcvt_f64_s32(const DwVfpRegister dst, int fraction_bits, const Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-874. // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 1010(19-16) | Vd(15-12) | // 101(11-9) | sf=1(8) | sx=1(7) | 1(6) | i(5) | 0(4) | imm4(3-0) DCHECK(IsEnabled(VFPv3)); DCHECK(VfpRegisterIsAvailable(dst)); DCHECK(fraction_bits > 0 && fraction_bits <= 32); int vd, d; dst.split_code(&vd, &d); int imm5 = 32 - fraction_bits; int i = imm5 & 1; int imm4 = (imm5 >> 1) & 0xF; emit(cond | 0xE * B24 | B23 | d * B22 | 0x3 * B20 | B19 | 0x2 * B16 | vd * B12 | 0x5 * B9 | B8 | B7 | B6 | i * B5 | imm4); } void Assembler::vneg(const DwVfpRegister dst, const DwVfpRegister src, const Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-968. // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0001(19-16) | Vd(15-12) | // 101(11-9) | sz=1(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0) DCHECK(VfpRegisterIsAvailable(dst)); DCHECK(VfpRegisterIsAvailable(src)); int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | B16 | vd * B12 | 0x5 * B9 | B8 | B6 | m * B5 | vm); } void Assembler::vneg(const SwVfpRegister dst, const SwVfpRegister src, const Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-968. // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0001(19-16) | Vd(15-12) | // 101(11-9) | sz=0(8) | 0(7) | 1(6) | M(5) | 0(4) | Vm(3-0) int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | B16 | vd * B12 | 0x5 * B9 | B6 | m * B5 | vm); } void Assembler::vabs(const DwVfpRegister dst, const DwVfpRegister src, const Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-524. // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) | // 101(11-9) | sz=1(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0) DCHECK(VfpRegisterIsAvailable(dst)); DCHECK(VfpRegisterIsAvailable(src)); int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | vd * B12 | 0x5 * B9 | B8 | B7 | B6 | m * B5 | vm); } void Assembler::vabs(const SwVfpRegister dst, const SwVfpRegister src, const Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-524. // cond(31-28) | 11101(27-23) | D(22) | 11(21-20) | 0000(19-16) | Vd(15-12) | // 101(11-9) | sz=0(8) | 1(7) | 1(6) | M(5) | 0(4) | Vm(3-0) int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | vd * B12 | 0x5 * B9 | B7 | B6 | m * B5 | vm); } void Assembler::vadd(const DwVfpRegister dst, const DwVfpRegister src1, const DwVfpRegister src2, const Condition cond) { // Dd = vadd(Dn, Dm) double precision floating point addition. // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. // Instruction details available in ARM DDI 0406C.b, A8-830. // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0) DCHECK(VfpRegisterIsAvailable(dst)); DCHECK(VfpRegisterIsAvailable(src1)); DCHECK(VfpRegisterIsAvailable(src2)); int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1C * B23 | d * B22 | 0x3 * B20 | vn * B16 | vd * B12 | 0x5 * B9 | B8 | n * B7 | m * B5 | vm); } void Assembler::vadd(const SwVfpRegister dst, const SwVfpRegister src1, const SwVfpRegister src2, const Condition cond) { // Sd = vadd(Sn, Sm) single precision floating point addition. // Sd = D:Vd; Sm=M:Vm; Sn=N:Vm. // Instruction details available in ARM DDI 0406C.b, A8-830. // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0) int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1C * B23 | d * B22 | 0x3 * B20 | vn * B16 | vd * B12 | 0x5 * B9 | n * B7 | m * B5 | vm); } void Assembler::vsub(const DwVfpRegister dst, const DwVfpRegister src1, const DwVfpRegister src2, const Condition cond) { // Dd = vsub(Dn, Dm) double precision floating point subtraction. // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. // Instruction details available in ARM DDI 0406C.b, A8-1086. // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0) DCHECK(VfpRegisterIsAvailable(dst)); DCHECK(VfpRegisterIsAvailable(src1)); DCHECK(VfpRegisterIsAvailable(src2)); int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1C * B23 | d * B22 | 0x3 * B20 | vn * B16 | vd * B12 | 0x5 * B9 | B8 | n * B7 | B6 | m * B5 | vm); } void Assembler::vsub(const SwVfpRegister dst, const SwVfpRegister src1, const SwVfpRegister src2, const Condition cond) { // Sd = vsub(Sn, Sm) single precision floating point subtraction. // Sd = D:Vd; Sm=M:Vm; Sn=N:Vm. // Instruction details available in ARM DDI 0406C.b, A8-1086. // cond(31-28) | 11100(27-23)| D(22) | 11(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0) int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1C * B23 | d * B22 | 0x3 * B20 | vn * B16 | vd * B12 | 0x5 * B9 | n * B7 | B6 | m * B5 | vm); } void Assembler::vmul(const DwVfpRegister dst, const DwVfpRegister src1, const DwVfpRegister src2, const Condition cond) { // Dd = vmul(Dn, Dm) double precision floating point multiplication. // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. // Instruction details available in ARM DDI 0406C.b, A8-960. // cond(31-28) | 11100(27-23)| D(22) | 10(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0) DCHECK(VfpRegisterIsAvailable(dst)); DCHECK(VfpRegisterIsAvailable(src1)); DCHECK(VfpRegisterIsAvailable(src2)); int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1C * B23 | d * B22 | 0x2 * B20 | vn * B16 | vd * B12 | 0x5 * B9 | B8 | n * B7 | m * B5 | vm); } void Assembler::vmul(const SwVfpRegister dst, const SwVfpRegister src1, const SwVfpRegister src2, const Condition cond) { // Sd = vmul(Sn, Sm) single precision floating point multiplication. // Sd = D:Vd; Sm=M:Vm; Sn=N:Vm. // Instruction details available in ARM DDI 0406C.b, A8-960. // cond(31-28) | 11100(27-23)| D(22) | 10(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0) int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1C * B23 | d * B22 | 0x2 * B20 | vn * B16 | vd * B12 | 0x5 * B9 | n * B7 | m * B5 | vm); } void Assembler::vmla(const DwVfpRegister dst, const DwVfpRegister src1, const DwVfpRegister src2, const Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-932. // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=0(6) | M(5) | 0(4) | Vm(3-0) DCHECK(VfpRegisterIsAvailable(dst)); DCHECK(VfpRegisterIsAvailable(src1)); DCHECK(VfpRegisterIsAvailable(src2)); int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1C * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | B8 | n * B7 | m * B5 | vm); } void Assembler::vmla(const SwVfpRegister dst, const SwVfpRegister src1, const SwVfpRegister src2, const Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-932. // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | op=0(6) | M(5) | 0(4) | Vm(3-0) int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1C * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | n * B7 | m * B5 | vm); } void Assembler::vmls(const DwVfpRegister dst, const DwVfpRegister src1, const DwVfpRegister src2, const Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-932. // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | op=1(6) | M(5) | 0(4) | Vm(3-0) DCHECK(VfpRegisterIsAvailable(dst)); DCHECK(VfpRegisterIsAvailable(src1)); DCHECK(VfpRegisterIsAvailable(src2)); int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1C * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | B8 | n * B7 | B6 | m * B5 | vm); } void Assembler::vmls(const SwVfpRegister dst, const SwVfpRegister src1, const SwVfpRegister src2, const Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-932. // cond(31-28) | 11100(27-23) | D(22) | 00(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | op=1(6) | M(5) | 0(4) | Vm(3-0) int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1C * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | n * B7 | B6 | m * B5 | vm); } void Assembler::vdiv(const DwVfpRegister dst, const DwVfpRegister src1, const DwVfpRegister src2, const Condition cond) { // Dd = vdiv(Dn, Dm) double precision floating point division. // Dd = D:Vd; Dm=M:Vm; Dn=N:Vm. // Instruction details available in ARM DDI 0406C.b, A8-882. // cond(31-28) | 11101(27-23)| D(22) | 00(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0) DCHECK(VfpRegisterIsAvailable(dst)); DCHECK(VfpRegisterIsAvailable(src1)); DCHECK(VfpRegisterIsAvailable(src2)); int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1D * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | B8 | n * B7 | m * B5 | vm); } void Assembler::vdiv(const SwVfpRegister dst, const SwVfpRegister src1, const SwVfpRegister src2, const Condition cond) { // Sd = vdiv(Sn, Sm) single precision floating point division. // Sd = D:Vd; Sm=M:Vm; Sn=N:Vm. // Instruction details available in ARM DDI 0406C.b, A8-882. // cond(31-28) | 11101(27-23)| D(22) | 00(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0) int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1D * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | n * B7 | m * B5 | vm); } void Assembler::vcmp(const DwVfpRegister src1, const DwVfpRegister src2, const Condition cond) { // vcmp(Dd, Dm) double precision floating point comparison. // Instruction details available in ARM DDI 0406C.b, A8-864. // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0100(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | M(5) | 0(4) | Vm(3-0) DCHECK(VfpRegisterIsAvailable(src1)); DCHECK(VfpRegisterIsAvailable(src2)); int vd, d; src1.split_code(&vd, &d); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x4 * B16 | vd * B12 | 0x5 * B9 | B8 | B6 | m * B5 | vm); } void Assembler::vcmp(const SwVfpRegister src1, const SwVfpRegister src2, const Condition cond) { // vcmp(Sd, Sm) single precision floating point comparison. // Instruction details available in ARM DDI 0406C.b, A8-864. // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0100(19-16) | // Vd(15-12) | 101(11-9) | sz=0(8) | E=0(7) | 1(6) | M(5) | 0(4) | Vm(3-0) int vd, d; src1.split_code(&vd, &d); int vm, m; src2.split_code(&vm, &m); emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x4 * B16 | vd * B12 | 0x5 * B9 | B6 | m * B5 | vm); } void Assembler::vcmp(const DwVfpRegister src1, const double src2, const Condition cond) { // vcmp(Dd, #0.0) double precision floating point comparison. // Instruction details available in ARM DDI 0406C.b, A8-864. // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0101(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | E=0(7) | 1(6) | 0(5) | 0(4) | 0000(3-0) DCHECK(VfpRegisterIsAvailable(src1)); DCHECK_EQ(src2, 0.0); int vd, d; src1.split_code(&vd, &d); emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x5 * B16 | vd * B12 | 0x5 * B9 | B8 | B6); } void Assembler::vcmp(const SwVfpRegister src1, const float src2, const Condition cond) { // vcmp(Sd, #0.0) single precision floating point comparison. // Instruction details available in ARM DDI 0406C.b, A8-864. // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0101(19-16) | // Vd(15-12) | 101(11-9) | sz=0(8) | E=0(7) | 1(6) | 0(5) | 0(4) | 0000(3-0) DCHECK_EQ(src2, 0.0); int vd, d; src1.split_code(&vd, &d); emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x5 * B16 | vd * B12 | 0x5 * B9 | B6); } void Assembler::vmaxnm(const DwVfpRegister dst, const DwVfpRegister src1, const DwVfpRegister src2) { // kSpecialCondition(31-28) | 11101(27-23) | D(22) | 00(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0) DCHECK(IsEnabled(ARMv8)); int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(kSpecialCondition | 0x1D * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | B8 | n * B7 | m * B5 | vm); } void Assembler::vmaxnm(const SwVfpRegister dst, const SwVfpRegister src1, const SwVfpRegister src2) { // kSpecialCondition(31-28) | 11101(27-23) | D(22) | 00(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 0(6) | M(5) | 0(4) | Vm(3-0) DCHECK(IsEnabled(ARMv8)); int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(kSpecialCondition | 0x1D * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | n * B7 | m * B5 | vm); } void Assembler::vminnm(const DwVfpRegister dst, const DwVfpRegister src1, const DwVfpRegister src2) { // kSpecialCondition(31-28) | 11101(27-23) | D(22) | 00(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0) DCHECK(IsEnabled(ARMv8)); int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(kSpecialCondition | 0x1D * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | B8 | n * B7 | B6 | m * B5 | vm); } void Assembler::vminnm(const SwVfpRegister dst, const SwVfpRegister src1, const SwVfpRegister src2) { // kSpecialCondition(31-28) | 11101(27-23) | D(22) | 00(21-20) | Vn(19-16) | // Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | 1(6) | M(5) | 0(4) | Vm(3-0) DCHECK(IsEnabled(ARMv8)); int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(kSpecialCondition | 0x1D * B23 | d * B22 | vn * B16 | vd * B12 | 0x5 * B9 | n * B7 | B6 | m * B5 | vm); } void Assembler::vsel(Condition cond, const DwVfpRegister dst, const DwVfpRegister src1, const DwVfpRegister src2) { // cond=kSpecialCondition(31-28) | 11100(27-23) | D(22) | // vsel_cond=XX(21-20) | Vn(19-16) | Vd(15-12) | 101(11-9) | sz=1(8) | N(7) | // 0(6) | M(5) | 0(4) | Vm(3-0) DCHECK(IsEnabled(ARMv8)); int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); int sz = 1; // VSEL has a special (restricted) condition encoding. // eq(0b0000)... -> 0b00 // ge(0b1010)... -> 0b10 // gt(0b1100)... -> 0b11 // vs(0b0110)... -> 0b01 // No other conditions are supported. int vsel_cond = (cond >> 30) & 0x3; if ((cond != eq) && (cond != ge) && (cond != gt) && (cond != vs)) { // We can implement some other conditions by swapping the inputs. DCHECK((cond == ne) | (cond == lt) | (cond == le) | (cond == vc)); std::swap(vn, vm); std::swap(n, m); } emit(kSpecialCondition | 0x1C * B23 | d * B22 | vsel_cond * B20 | vn * B16 | vd * B12 | 0x5 * B9 | sz * B8 | n * B7 | m * B5 | vm); } void Assembler::vsel(Condition cond, const SwVfpRegister dst, const SwVfpRegister src1, const SwVfpRegister src2) { // cond=kSpecialCondition(31-28) | 11100(27-23) | D(22) | // vsel_cond=XX(21-20) | Vn(19-16) | Vd(15-12) | 101(11-9) | sz=0(8) | N(7) | // 0(6) | M(5) | 0(4) | Vm(3-0) DCHECK(IsEnabled(ARMv8)); int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); int sz = 0; // VSEL has a special (restricted) condition encoding. // eq(0b0000)... -> 0b00 // ge(0b1010)... -> 0b10 // gt(0b1100)... -> 0b11 // vs(0b0110)... -> 0b01 // No other conditions are supported. int vsel_cond = (cond >> 30) & 0x3; if ((cond != eq) && (cond != ge) && (cond != gt) && (cond != vs)) { // We can implement some other conditions by swapping the inputs. DCHECK((cond == ne) | (cond == lt) | (cond == le) | (cond == vc)); std::swap(vn, vm); std::swap(n, m); } emit(kSpecialCondition | 0x1C * B23 | d * B22 | vsel_cond * B20 | vn * B16 | vd * B12 | 0x5 * B9 | sz * B8 | n * B7 | m * B5 | vm); } void Assembler::vsqrt(const DwVfpRegister dst, const DwVfpRegister src, const Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-1058. // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0001(19-16) | // Vd(15-12) | 101(11-9) | sz=1(8) | 11(7-6) | M(5) | 0(4) | Vm(3-0) DCHECK(VfpRegisterIsAvailable(dst)); DCHECK(VfpRegisterIsAvailable(src)); int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | B16 | vd * B12 | 0x5 * B9 | B8 | 0x3 * B6 | m * B5 | vm); } void Assembler::vsqrt(const SwVfpRegister dst, const SwVfpRegister src, const Condition cond) { // Instruction details available in ARM DDI 0406C.b, A8-1058. // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 0001(19-16) | // Vd(15-12) | 101(11-9) | sz=0(8) | 11(7-6) | M(5) | 0(4) | Vm(3-0) int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | B16 | vd * B12 | 0x5 * B9 | 0x3 * B6 | m * B5 | vm); } void Assembler::vmsr(Register dst, Condition cond) { // Instruction details available in ARM DDI 0406A, A8-652. // cond(31-28) | 1110 (27-24) | 1110(23-20)| 0001 (19-16) | // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0) emit(cond | 0xE * B24 | 0xE * B20 | B16 | dst.code() * B12 | 0xA * B8 | B4); } void Assembler::vmrs(Register dst, Condition cond) { // Instruction details available in ARM DDI 0406A, A8-652. // cond(31-28) | 1110 (27-24) | 1111(23-20)| 0001 (19-16) | // Rt(15-12) | 1010 (11-8) | 0(7) | 00 (6-5) | 1(4) | 0000(3-0) emit(cond | 0xE * B24 | 0xF * B20 | B16 | dst.code() * B12 | 0xA * B8 | B4); } void Assembler::vrinta(const SwVfpRegister dst, const SwVfpRegister src) { // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) | // 10(19-18) | RM=00(17-16) | Vd(15-12) | 101(11-9) | sz=0(8) | 01(7-6) | // M(5) | 0(4) | Vm(3-0) DCHECK(IsEnabled(ARMv8)); int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | vd * B12 | 0x5 * B9 | B6 | m * B5 | vm); } void Assembler::vrinta(const DwVfpRegister dst, const DwVfpRegister src) { // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) | // 10(19-18) | RM=00(17-16) | Vd(15-12) | 101(11-9) | sz=1(8) | 01(7-6) | // M(5) | 0(4) | Vm(3-0) DCHECK(IsEnabled(ARMv8)); int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | vd * B12 | 0x5 * B9 | B8 | B6 | m * B5 | vm); } void Assembler::vrintn(const SwVfpRegister dst, const SwVfpRegister src) { // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) | // 10(19-18) | RM=01(17-16) | Vd(15-12) | 101(11-9) | sz=0(8) | 01(7-6) | // M(5) | 0(4) | Vm(3-0) DCHECK(IsEnabled(ARMv8)); int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x1 * B16 | vd * B12 | 0x5 * B9 | B6 | m * B5 | vm); } void Assembler::vrintn(const DwVfpRegister dst, const DwVfpRegister src) { // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) | // 10(19-18) | RM=01(17-16) | Vd(15-12) | 101(11-9) | sz=1(8) | 01(7-6) | // M(5) | 0(4) | Vm(3-0) DCHECK(IsEnabled(ARMv8)); int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x1 * B16 | vd * B12 | 0x5 * B9 | B8 | B6 | m * B5 | vm); } void Assembler::vrintp(const SwVfpRegister dst, const SwVfpRegister src) { // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) | // 10(19-18) | RM=10(17-16) | Vd(15-12) | 101(11-9) | sz=0(8) | 01(7-6) | // M(5) | 0(4) | Vm(3-0) DCHECK(IsEnabled(ARMv8)); int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x2 * B16 | vd * B12 | 0x5 * B9 | B6 | m * B5 | vm); } void Assembler::vrintp(const DwVfpRegister dst, const DwVfpRegister src) { // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) | // 10(19-18) | RM=10(17-16) | Vd(15-12) | 101(11-9) | sz=1(8) | 01(7-6) | // M(5) | 0(4) | Vm(3-0) DCHECK(IsEnabled(ARMv8)); int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x2 * B16 | vd * B12 | 0x5 * B9 | B8 | B6 | m * B5 | vm); } void Assembler::vrintm(const SwVfpRegister dst, const SwVfpRegister src) { // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) | // 10(19-18) | RM=11(17-16) | Vd(15-12) | 101(11-9) | sz=0(8) | 01(7-6) | // M(5) | 0(4) | Vm(3-0) DCHECK(IsEnabled(ARMv8)); int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x3 * B16 | vd * B12 | 0x5 * B9 | B6 | m * B5 | vm); } void Assembler::vrintm(const DwVfpRegister dst, const DwVfpRegister src) { // cond=kSpecialCondition(31-28) | 11101(27-23)| D(22) | 11(21-20) | // 10(19-18) | RM=11(17-16) | Vd(15-12) | 101(11-9) | sz=1(8) | 01(7-6) | // M(5) | 0(4) | Vm(3-0) DCHECK(IsEnabled(ARMv8)); int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(kSpecialCondition | 0x1D * B23 | d * B22 | 0x3 * B20 | B19 | 0x3 * B16 | vd * B12 | 0x5 * B9 | B8 | B6 | m * B5 | vm); } void Assembler::vrintz(const SwVfpRegister dst, const SwVfpRegister src, const Condition cond) { // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 011(19-17) | 0(16) | // Vd(15-12) | 101(11-9) | sz=0(8) | op=1(7) | 1(6) | M(5) | 0(4) | Vm(3-0) DCHECK(IsEnabled(ARMv8)); int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x3 * B17 | vd * B12 | 0x5 * B9 | B7 | B6 | m * B5 | vm); } void Assembler::vrintz(const DwVfpRegister dst, const DwVfpRegister src, const Condition cond) { // cond(31-28) | 11101(27-23)| D(22) | 11(21-20) | 011(19-17) | 0(16) | // Vd(15-12) | 101(11-9) | sz=1(8) | op=1(7) | 1(6) | M(5) | 0(4) | Vm(3-0) DCHECK(IsEnabled(ARMv8)); int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); emit(cond | 0x1D * B23 | d * B22 | 0x3 * B20 | 0x3 * B17 | vd * B12 | 0x5 * B9 | B8 | B7 | B6 | m * B5 | vm); } // Support for NEON. void Assembler::vld1(NeonSize size, const NeonListOperand& dst, const NeonMemOperand& src) { // Instruction details available in ARM DDI 0406C.b, A8.8.320. // 1111(31-28) | 01000(27-23) | D(22) | 10(21-20) | Rn(19-16) | // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0) DCHECK(IsEnabled(NEON)); int vd, d; dst.base().split_code(&vd, &d); emit(0xFU * B28 | 4 * B24 | d * B22 | 2 * B20 | src.rn().code() * B16 | vd * B12 | dst.type() * B8 | size * B6 | src.align() * B4 | src.rm().code()); } // vld1s(ingle element to one lane). void Assembler::vld1s(NeonSize size, const NeonListOperand& dst, uint8_t index, const NeonMemOperand& src) { // Instruction details available in ARM DDI 0406C.b, A8.8.322. // 1111(31-28) | 01001(27-23) | D(22) | 10(21-20) | Rn(19-16) | // Vd(15-12) | size(11-10) | index_align(7-4) | Rm(3-0) // See vld1 (single element to all lanes) if size == 0x3, implemented as // vld1r(eplicate). DCHECK_NE(size, 0x3); // Check for valid lane indices. DCHECK_GT(1 << (3 - size), index); // Specifying alignment not supported, use standard alignment. uint8_t index_align = index << (size + 1); DCHECK(IsEnabled(NEON)); int vd, d; dst.base().split_code(&vd, &d); emit(0xFU * B28 | 4 * B24 | 1 * B23 | d * B22 | 2 * B20 | src.rn().code() * B16 | vd * B12 | size * B10 | index_align * B4 | src.rm().code()); } // vld1r(eplicate) void Assembler::vld1r(NeonSize size, const NeonListOperand& dst, const NeonMemOperand& src) { DCHECK(IsEnabled(NEON)); int vd, d; dst.base().split_code(&vd, &d); emit(0xFU * B28 | 4 * B24 | 1 * B23 | d * B22 | 2 * B20 | src.rn().code() * B16 | vd * B12 | 0xC * B8 | size * B6 | dst.length() * B5 | src.rm().code()); } void Assembler::vst1(NeonSize size, const NeonListOperand& src, const NeonMemOperand& dst) { // Instruction details available in ARM DDI 0406C.b, A8.8.404. // 1111(31-28) | 01000(27-23) | D(22) | 00(21-20) | Rn(19-16) | // Vd(15-12) | type(11-8) | size(7-6) | align(5-4) | Rm(3-0) DCHECK(IsEnabled(NEON)); int vd, d; src.base().split_code(&vd, &d); emit(0xFU * B28 | 4 * B24 | d * B22 | dst.rn().code() * B16 | vd * B12 | src.type() * B8 | size * B6 | dst.align() * B4 | dst.rm().code()); } void Assembler::vst1s(NeonSize size, const NeonListOperand& src, uint8_t index, const NeonMemOperand& dst) { // Instruction details available in ARM DDI 0487F.b F6.1.236. // 1111(31-28) | 01001(27-23) | D(22) | 00(21-20) | Rn(19-16) | // Vd(15-12) | size(11-10) | 00(9-8) | index_align(7-4) | Rm(3-0) DCHECK(IsEnabled(NEON)); DCHECK_NE(size, 0x3); DCHECK_GT(1 << (3 - size), index); // Specifying alignment not supported, use standard alignment. uint8_t index_align = index << (size + 1); int vd, d; src.base().split_code(&vd, &d); emit(0xFU * B28 | 9 * B23 | d * B22 | dst.rn().code() * B16 | vd * B12 | size * B10 | index_align * B4 | dst.rm().code()); } void Assembler::vmovl(NeonDataType dt, QwNeonRegister dst, DwVfpRegister src) { // Instruction details available in ARM DDI 0406C.b, A8.8.346. // 1111(31-28) | 001(27-25) | U(24) | 1(23) | D(22) | imm3(21-19) | // 000(18-16) | Vd(15-12) | 101000(11-6) | M(5) | 1(4) | Vm(3-0) DCHECK(IsEnabled(NEON)); int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); int U = NeonU(dt); int imm3 = 1 << NeonSz(dt); emit(0xFU * B28 | B25 | U * B24 | B23 | d * B22 | imm3 * B19 | vd * B12 | 0xA * B8 | m * B5 | B4 | vm); } void Assembler::vqmovn(NeonDataType dst_dt, NeonDataType src_dt, DwVfpRegister dst, QwNeonRegister src) { // Instruction details available in ARM DDI 0406C.b, A8.8.1004. // vqmovn. Dd, Qm. ARM vector narrowing move with saturation. // vqmovun. Dd, Qm. Same as above, but produces unsigned results. DCHECK(IsEnabled(NEON)); DCHECK_IMPLIES(NeonU(src_dt), NeonU(dst_dt)); int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); int size = NeonSz(dst_dt); DCHECK_NE(3, size); int op = NeonU(src_dt) ? 0b11 : NeonU(dst_dt) ? 0b01 : 0b10; emit(0x1E7U * B23 | d * B22 | 0x3 * B20 | size * B18 | 0x2 * B16 | vd * B12 | 0x2 * B8 | op * B6 | m * B5 | vm); } static int EncodeScalar(NeonDataType dt, int index) { int opc1_opc2 = 0; DCHECK_LE(0, index); switch (dt) { case NeonS8: case NeonU8: DCHECK_GT(8, index); opc1_opc2 = 0x8 | index; break; case NeonS16: case NeonU16: DCHECK_GT(4, index); opc1_opc2 = 0x1 | (index << 1); break; case NeonS32: case NeonU32: DCHECK_GT(2, index); opc1_opc2 = index << 2; break; default: UNREACHABLE(); } return (opc1_opc2 >> 2) * B21 | (opc1_opc2 & 0x3) * B5; } void Assembler::vmov(NeonDataType dt, DwVfpRegister dst, int index, Register src) { // Instruction details available in ARM DDI 0406C.b, A8.8.940. // vmov ARM core register to scalar. DCHECK(dt == NeonS32 || dt == NeonU32 || IsEnabled(NEON)); int vd, d; dst.split_code(&vd, &d); int opc1_opc2 = EncodeScalar(dt, index); emit(0xEEu * B24 | vd * B16 | src.code() * B12 | 0xB * B8 | d * B7 | B4 | opc1_opc2); } void Assembler::vmov(NeonDataType dt, Register dst, DwVfpRegister src, int index) { // Instruction details available in ARM DDI 0406C.b, A8.8.942. // vmov Arm scalar to core register. DCHECK(dt == NeonS32 || dt == NeonU32 || IsEnabled(NEON)); int vn, n; src.split_code(&vn, &n); int opc1_opc2 = EncodeScalar(dt, index); // NeonS32 and NeonU32 both encoded as u = 0. int u = NeonDataTypeToSize(dt) == Neon32 ? 0 : NeonU(dt); emit(0xEEu * B24 | u * B23 | B20 | vn * B16 | dst.code() * B12 | 0xB * B8 | n * B7 | B4 | opc1_opc2); } void Assembler::vmov(QwNeonRegister dst, QwNeonRegister src) { // Instruction details available in ARM DDI 0406C.b, A8-938. // vmov is encoded as vorr. vorr(dst, src, src); } void Assembler::vdup(NeonSize size, QwNeonRegister dst, Register src) { DCHECK(IsEnabled(NEON)); // Instruction details available in ARM DDI 0406C.b, A8-886. int B = 0, E = 0; switch (size) { case Neon8: B = 1; break; case Neon16: E = 1; break; case Neon32: break; default: UNREACHABLE(); } int vd, d; dst.split_code(&vd, &d); emit(al | 0x1D * B23 | B * B22 | B21 | vd * B16 | src.code() * B12 | 0xB * B8 | d * B7 | E * B5 | B4); } enum NeonRegType { NEON_D, NEON_Q }; void NeonSplitCode(NeonRegType type, int code, int* vm, int* m, int* encoding) { if (type == NEON_D) { DwVfpRegister::split_code(code, vm, m); } else { DCHECK_EQ(type, NEON_Q); QwNeonRegister::split_code(code, vm, m); *encoding |= B6; } } static Instr EncodeNeonDupOp(NeonSize size, NeonRegType reg_type, int dst_code, DwVfpRegister src, int index) { DCHECK_NE(Neon64, size); int sz = static_cast(size); DCHECK_LE(0, index); DCHECK_GT(kSimd128Size / (1 << sz), index); int imm4 = (1 << sz) | ((index << (sz + 1)) & 0xF); int qbit = 0; int vd, d; NeonSplitCode(reg_type, dst_code, &vd, &d, &qbit); int vm, m; src.split_code(&vm, &m); return 0x1E7U * B23 | d * B22 | 0x3 * B20 | imm4 * B16 | vd * B12 | 0x18 * B7 | qbit | m * B5 | vm; } void Assembler::vdup(NeonSize size, DwVfpRegister dst, DwVfpRegister src, int index) { DCHECK(IsEnabled(NEON)); // Instruction details available in ARM DDI 0406C.b, A8-884. emit(EncodeNeonDupOp(size, NEON_D, dst.code(), src, index)); } void Assembler::vdup(NeonSize size, QwNeonRegister dst, DwVfpRegister src, int index) { // Instruction details available in ARM DDI 0406C.b, A8-884. DCHECK(IsEnabled(NEON)); emit(EncodeNeonDupOp(size, NEON_Q, dst.code(), src, index)); } // Encode NEON vcvt.src_type.dst_type instruction. static Instr EncodeNeonVCVT(VFPType dst_type, QwNeonRegister dst, VFPType src_type, QwNeonRegister src) { DCHECK(src_type != dst_type); DCHECK(src_type == F32 || dst_type == F32); // Instruction details available in ARM DDI 0406C.b, A8.8.868. int vd, d; dst.split_code(&vd, &d); int vm, m; src.split_code(&vm, &m); int op = 0; if (src_type == F32) { DCHECK(dst_type == S32 || dst_type == U32); op = dst_type == U32 ? 3 : 2; } else { DCHECK(src_type == S32 || src_type == U32); op = src_type == U32 ? 1 : 0; } return 0x1E7U * B23 | d * B22 | 0x3B * B16 | vd * B12 | 0x3 * B9 | op * B7 | B6 | m * B5 | vm; } void Assembler::vcvt_f32_s32(QwNeonRegister dst, QwNeonRegister src) { DCHECK(IsEnabled(NEON)); DCHECK(VfpRegisterIsAvailable(dst)); DCHECK(VfpRegisterIsAvailable(src)); emit(EncodeNeonVCVT(F32, dst, S32, src)); } void Assembler::vcvt_f32_u32(QwNeonRegister dst, QwNeonRegister src) { DCHECK(IsEnabled(NEON)); DCHECK(VfpRegisterIsAvailable(dst)); DCHECK(VfpRegisterIsAvailable(src)); emit(EncodeNeonVCVT(F32, dst, U32, src)); } void Assembler::vcvt_s32_f32(QwNeonRegister dst, QwNeonRegister src) { DCHECK(IsEnabled(NEON)); DCHECK(VfpRegisterIsAvailable(dst)); DCHECK(VfpRegisterIsAvailable(src)); emit(EncodeNeonVCVT(S32, dst, F32, src)); } void Assembler::vcvt_u32_f32(QwNeonRegister dst, QwNeonRegister src) { DCHECK(IsEnabled(NEON)); DCHECK(VfpRegisterIsAvailable(dst)); DCHECK(VfpRegisterIsAvailable(src)); emit(EncodeNeonVCVT(U32, dst, F32, src)); } enum UnaryOp { VMVN, VSWP, VABS, VABSF, VNEG, VNEGF, VRINTM, VRINTN, VRINTP, VRINTZ, VZIP, VUZP, VREV16, VREV32, VREV64, VTRN, VRECPE, VRSQRTE, VPADAL_S, VPADAL_U, VPADDL_S, VPADDL_U, VCEQ0, VCLT0, VCNT }; // Encoding helper for "Advanced SIMD two registers misc" decode group. See ARM // DDI 0487F.b, F4-4228. static Instr EncodeNeonUnaryOp(UnaryOp op, NeonRegType reg_type, NeonSize size, int dst_code, int src_code) { int op_encoding = 0; switch (op) { case VMVN: DCHECK_EQ(Neon8, size); // size == 0 for vmvn op_encoding = B10 | 0x3 * B7; break; case VSWP: DCHECK_EQ(Neon8, size); // size == 0 for vswp op_encoding = B17; break; case VABS: op_encoding = B16 | 0x6 * B7; break; case VABSF: DCHECK_EQ(Neon32, size); op_encoding = B16 | B10 | 0x6 * B7; break; case VNEG: op_encoding = B16 | 0x7 * B7; break; case VNEGF: DCHECK_EQ(Neon32, size); op_encoding = B16 | B10 | 0x7 * B7; break; case VRINTM: op_encoding = B17 | 0xD * B7; break; case VRINTN: op_encoding = B17 | 0x8 * B7; break; case VRINTP: op_encoding = B17 | 0xF * B7; break; case VRINTZ: op_encoding = B17 | 0xB * B7; break; case VZIP: op_encoding = 0x2 * B16 | 0x3 * B7; break; case VUZP: op_encoding = 0x2 * B16 | 0x2 * B7; break; case VREV16: op_encoding = 0x2 * B7; break; case VREV32: op_encoding = 0x1 * B7; break; case VREV64: // op_encoding is 0; break; case VTRN: op_encoding = 0x2 * B16 | B7; break; case VRECPE: // Only support floating point. op_encoding = 0x3 * B16 | 0xA * B7; break; case VRSQRTE: // Only support floating point. op_encoding = 0x3 * B16 | 0xB * B7; break; case VPADAL_S: op_encoding = 0xC * B7; break; case VPADAL_U: op_encoding = 0xD * B7; break; case VPADDL_S: op_encoding = 0x4 * B7; break; case VPADDL_U: op_encoding = 0x5 * B7; break; case VCEQ0: // Only support integers. op_encoding = 0x1 * B16 | 0x2 * B7; break; case VCLT0: // Only support signed integers. op_encoding = 0x1 * B16 | 0x4 * B7; break; case VCNT: op_encoding = 0xA * B7; break; } int vd, d; NeonSplitCode(reg_type, dst_code, &vd, &d, &op_encoding); int vm, m; NeonSplitCode(reg_type, src_code, &vm, &m, &op_encoding); return 0x1E7U * B23 | d * B22 | 0x3 * B20 | size * B18 | vd * B12 | m * B5 | vm | op_encoding; } void Assembler::vmvn(QwNeonRegister dst, QwNeonRegister src) { // Qd = vmvn(Qn, Qm) SIMD bitwise negate. // Instruction details available in ARM DDI 0406C.b, A8-966. DCHECK(IsEnabled(NEON)); emit(EncodeNeonUnaryOp(VMVN, NEON_Q, Neon8, dst.code(), src.code())); } void Assembler::vswp(DwVfpRegister dst, DwVfpRegister src) { DCHECK(IsEnabled(NEON)); // Dd = vswp(Dn, Dm) SIMD d-register swap. // Instruction details available in ARM DDI 0406C.b, A8.8.418. DCHECK(IsEnabled(NEON)); emit(EncodeNeonUnaryOp(VSWP, NEON_D, Neon8, dst.code(), src.code())); } void Assembler::vswp(QwNeonRegister dst, QwNeonRegister src) { // Qd = vswp(Qn, Qm) SIMD q-register swap. // Instruction details available in ARM DDI 0406C.b, A8.8.418. DCHECK(IsEnabled(NEON)); emit(EncodeNeonUnaryOp(VSWP, NEON_Q, Neon8, dst.code(), src.code())); } void Assembler::vabs(QwNeonRegister dst, QwNeonRegister src) { // Qd = vabs.f(Qn, Qm) SIMD floating point absolute value. // Instruction details available in ARM DDI 0406C.b, A8.8.824. DCHECK(IsEnabled(NEON)); emit(EncodeNeonUnaryOp(VABSF, NEON_Q, Neon32, dst.code(), src.code())); } void Assembler::vabs(NeonSize size, QwNeonRegister dst, QwNeonRegister src) { // Qd = vabs.s(Qn, Qm) SIMD integer absolute value. // Instruction details available in ARM DDI 0406C.b, A8.8.824. DCHECK(IsEnabled(NEON)); emit(EncodeNeonUnaryOp(VABS, NEON_Q, size, dst.code(), src.code())); } void Assembler::vneg(QwNeonRegister dst, QwNeonRegister src) { // Qd = vabs.f(Qn, Qm) SIMD floating point negate. // Instruction details available in ARM DDI 0406C.b, A8.8.968. DCHECK(IsEnabled(NEON)); emit(EncodeNeonUnaryOp(VNEGF, NEON_Q, Neon32, dst.code(), src.code())); } void Assembler::vneg(NeonSize size, QwNeonRegister dst, QwNeonRegister src) { // Qd = vabs.s(Qn, Qm) SIMD integer negate. // Instruction details available in ARM DDI 0406C.b, A8.8.968. DCHECK(IsEnabled(NEON)); emit(EncodeNeonUnaryOp(VNEG, NEON_Q, size, dst.code(), src.code())); } enum BinaryBitwiseOp { VAND, VBIC, VBIF, VBIT, VBSL, VEOR, VORR, VORN }; static Instr EncodeNeonBinaryBitwiseOp(BinaryBitwiseOp op, NeonRegType reg_type, int dst_code, int src_code1, int src_code2) { int op_encoding = 0; switch (op) { case VBIC: op_encoding = 0x1 * B20; break; case VBIF: op_encoding = B24 | 0x3 * B20; break; case VBIT: op_encoding = B24 | 0x2 * B20; break; case VBSL: op_encoding = B24 | 0x1 * B20; break; case VEOR: op_encoding = B24; break; case VORR: op_encoding = 0x2 * B20; break; case VORN: op_encoding = 0x3 * B20; break; case VAND: // op_encoding is 0. break; default: UNREACHABLE(); } int vd, d; NeonSplitCode(reg_type, dst_code, &vd, &d, &op_encoding); int vn, n; NeonSplitCode(reg_type, src_code1, &vn, &n, &op_encoding); int vm, m; NeonSplitCode(reg_type, src_code2, &vm, &m, &op_encoding); return 0x1E4U * B23 | op_encoding | d * B22 | vn * B16 | vd * B12 | B8 | n * B7 | m * B5 | B4 | vm; } void Assembler::vand(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { // Qd = vand(Qn, Qm) SIMD AND. // Instruction details available in ARM DDI 0406C.b, A8.8.836. DCHECK(IsEnabled(NEON)); emit(EncodeNeonBinaryBitwiseOp(VAND, NEON_Q, dst.code(), src1.code(), src2.code())); } void Assembler::vbic(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { // Qd = vbic(Qn, Qm) SIMD AND. // Instruction details available in ARM DDI 0406C.b, A8-840. DCHECK(IsEnabled(NEON)); emit(EncodeNeonBinaryBitwiseOp(VBIC, NEON_Q, dst.code(), src1.code(), src2.code())); } void Assembler::vbsl(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { // Qd = vbsl(Qn, Qm) SIMD bitwise select. // Instruction details available in ARM DDI 0406C.b, A8-844. DCHECK(IsEnabled(NEON)); emit(EncodeNeonBinaryBitwiseOp(VBSL, NEON_Q, dst.code(), src1.code(), src2.code())); } void Assembler::veor(DwVfpRegister dst, DwVfpRegister src1, DwVfpRegister src2) { // Dd = veor(Dn, Dm) SIMD exclusive OR. // Instruction details available in ARM DDI 0406C.b, A8.8.888. DCHECK(IsEnabled(NEON)); emit(EncodeNeonBinaryBitwiseOp(VEOR, NEON_D, dst.code(), src1.code(), src2.code())); } void Assembler::veor(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { // Qd = veor(Qn, Qm) SIMD exclusive OR. // Instruction details available in ARM DDI 0406C.b, A8.8.888. DCHECK(IsEnabled(NEON)); emit(EncodeNeonBinaryBitwiseOp(VEOR, NEON_Q, dst.code(), src1.code(), src2.code())); } void Assembler::vorr(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { // Qd = vorr(Qn, Qm) SIMD OR. // Instruction details available in ARM DDI 0406C.b, A8.8.976. DCHECK(IsEnabled(NEON)); emit(EncodeNeonBinaryBitwiseOp(VORR, NEON_Q, dst.code(), src1.code(), src2.code())); } void Assembler::vorn(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { // Qd = vorn(Qn, Qm) SIMD OR NOT. // Instruction details available in ARM DDI 0406C.d, A8.8.359. DCHECK(IsEnabled(NEON)); emit(EncodeNeonBinaryBitwiseOp(VORN, NEON_Q, dst.code(), src1.code(), src2.code())); } enum FPBinOp { VADDF, VSUBF, VMULF, VMINF, VMAXF, VRECPS, VRSQRTS, VCEQF, VCGEF, VCGTF }; static Instr EncodeNeonBinOp(FPBinOp op, QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { int op_encoding = 0; switch (op) { case VADDF: op_encoding = 0xD * B8; break; case VSUBF: op_encoding = B21 | 0xD * B8; break; case VMULF: op_encoding = B24 | 0xD * B8 | B4; break; case VMINF: op_encoding = B21 | 0xF * B8; break; case VMAXF: op_encoding = 0xF * B8; break; case VRECPS: op_encoding = 0xF * B8 | B4; break; case VRSQRTS: op_encoding = B21 | 0xF * B8 | B4; break; case VCEQF: op_encoding = 0xE * B8; break; case VCGEF: op_encoding = B24 | 0xE * B8; break; case VCGTF: op_encoding = B24 | B21 | 0xE * B8; break; default: UNREACHABLE(); } int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); return 0x1E4U * B23 | d * B22 | vn * B16 | vd * B12 | n * B7 | B6 | m * B5 | vm | op_encoding; } enum IntegerBinOp { VADD, VQADD, VSUB, VQSUB, VMUL, VMIN, VMAX, VTST, VCEQ, VCGE, VCGT, VRHADD, VQRDMULH }; static Instr EncodeNeonBinOp(IntegerBinOp op, NeonDataType dt, QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { int op_encoding = 0; switch (op) { case VADD: op_encoding = 0x8 * B8; break; case VQADD: op_encoding = B4; break; case VSUB: op_encoding = B24 | 0x8 * B8; break; case VQSUB: op_encoding = 0x2 * B8 | B4; break; case VMUL: op_encoding = 0x9 * B8 | B4; break; case VMIN: op_encoding = 0x6 * B8 | B4; break; case VMAX: op_encoding = 0x6 * B8; break; case VTST: op_encoding = 0x8 * B8 | B4; break; case VCEQ: op_encoding = B24 | 0x8 * B8 | B4; break; case VCGE: op_encoding = 0x3 * B8 | B4; break; case VCGT: op_encoding = 0x3 * B8; break; case VRHADD: op_encoding = B8; break; case VQRDMULH: op_encoding = B24 | 0xB * B8; break; default: UNREACHABLE(); } int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); int size = NeonSz(dt); int u = NeonU(dt); return 0x1E4U * B23 | u * B24 | d * B22 | size * B20 | vn * B16 | vd * B12 | n * B7 | B6 | m * B5 | vm | op_encoding; } static Instr EncodeNeonBinOp(IntegerBinOp op, NeonSize size, QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { // Map NeonSize values to the signed values in NeonDataType, so the U bit // will be 0. return EncodeNeonBinOp(op, static_cast(size), dst, src1, src2); } void Assembler::vadd(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vadd(Qn, Qm) SIMD floating point addition. // Instruction details available in ARM DDI 0406C.b, A8-830. emit(EncodeNeonBinOp(VADDF, dst, src1, src2)); } void Assembler::vadd(NeonSize size, QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vadd(Qn, Qm) SIMD integer addition. // Instruction details available in ARM DDI 0406C.b, A8-828. emit(EncodeNeonBinOp(VADD, size, dst, src1, src2)); } void Assembler::vqadd(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vqadd(Qn, Qm) SIMD integer saturating addition. // Instruction details available in ARM DDI 0406C.b, A8-996. emit(EncodeNeonBinOp(VQADD, dt, dst, src1, src2)); } void Assembler::vsub(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vsub(Qn, Qm) SIMD floating point subtraction. // Instruction details available in ARM DDI 0406C.b, A8-1086. emit(EncodeNeonBinOp(VSUBF, dst, src1, src2)); } void Assembler::vsub(NeonSize size, QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vsub(Qn, Qm) SIMD integer subtraction. // Instruction details available in ARM DDI 0406C.b, A8-1084. emit(EncodeNeonBinOp(VSUB, size, dst, src1, src2)); } void Assembler::vqsub(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vqsub(Qn, Qm) SIMD integer saturating subtraction. // Instruction details available in ARM DDI 0406C.b, A8-1020. emit(EncodeNeonBinOp(VQSUB, dt, dst, src1, src2)); } void Assembler::vmlal(NeonDataType dt, QwNeonRegister dst, DwVfpRegister src1, DwVfpRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vmlal(Dn, Dm) Vector Multiply Accumulate Long (integer) // Instruction details available in ARM DDI 0406C.b, A8-931. int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); int size = NeonSz(dt); int u = NeonU(dt); if (!u) UNIMPLEMENTED(); DCHECK_NE(size, 3); // SEE "Related encodings" emit(0xFU * B28 | B25 | u * B24 | B23 | d * B22 | size * B20 | vn * B16 | vd * B12 | 0x8 * B8 | n * B7 | m * B5 | vm); } void Assembler::vmul(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vadd(Qn, Qm) SIMD floating point multiply. // Instruction details available in ARM DDI 0406C.b, A8-958. emit(EncodeNeonBinOp(VMULF, dst, src1, src2)); } void Assembler::vmul(NeonSize size, QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vadd(Qn, Qm) SIMD integer multiply. // Instruction details available in ARM DDI 0406C.b, A8-960. emit(EncodeNeonBinOp(VMUL, size, dst, src1, src2)); } void Assembler::vmull(NeonDataType dt, QwNeonRegister dst, DwVfpRegister src1, DwVfpRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vmull(Dn, Dm) Vector Multiply Long (integer). // Instruction details available in ARM DDI 0406C.b, A8-960. int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); int size = NeonSz(dt); int u = NeonU(dt); emit(0xFU * B28 | B25 | u * B24 | B23 | d * B22 | size * B20 | vn * B16 | vd * B12 | 0xC * B8 | n * B7 | m * B5 | vm); } void Assembler::vmin(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vmin(Qn, Qm) SIMD floating point MIN. // Instruction details available in ARM DDI 0406C.b, A8-928. emit(EncodeNeonBinOp(VMINF, dst, src1, src2)); } void Assembler::vmin(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vmin(Qn, Qm) SIMD integer MIN. // Instruction details available in ARM DDI 0406C.b, A8-926. emit(EncodeNeonBinOp(VMIN, dt, dst, src1, src2)); } void Assembler::vmax(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vmax(Qn, Qm) SIMD floating point MAX. // Instruction details available in ARM DDI 0406C.b, A8-928. emit(EncodeNeonBinOp(VMAXF, dst, src1, src2)); } void Assembler::vmax(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vmax(Qn, Qm) SIMD integer MAX. // Instruction details available in ARM DDI 0406C.b, A8-926. emit(EncodeNeonBinOp(VMAX, dt, dst, src1, src2)); } enum NeonShiftOp { VSHL, VSHR, VSLI, VSRI, VSRA }; static Instr EncodeNeonShiftRegisterOp(NeonShiftOp op, NeonDataType dt, NeonRegType reg_type, int dst_code, int src_code, int shift_code) { DCHECK_EQ(op, VSHL); int op_encoding = 0; int vd, d; NeonSplitCode(reg_type, dst_code, &vd, &d, &op_encoding); int vm, m; NeonSplitCode(reg_type, src_code, &vm, &m, &op_encoding); int vn, n; NeonSplitCode(reg_type, shift_code, &vn, &n, &op_encoding); int size = NeonSz(dt); int u = NeonU(dt); return 0x1E4U * B23 | u * B24 | d * B22 | size * B20 | vn * B16 | vd * B12 | 0x4 * B8 | n * B7 | m * B5 | vm | op_encoding; } static Instr EncodeNeonShiftOp(NeonShiftOp op, NeonSize size, bool is_unsigned, NeonRegType reg_type, int dst_code, int src_code, int shift) { int size_in_bits = kBitsPerByte << static_cast(size); int op_encoding = 0, imm6 = 0, L = 0; switch (op) { case VSHL: { DCHECK(shift >= 0 && size_in_bits > shift); imm6 = size_in_bits + shift; op_encoding = 0x5 * B8; break; } case VSHR: { DCHECK(shift > 0 && size_in_bits >= shift); imm6 = 2 * size_in_bits - shift; if (is_unsigned) op_encoding |= B24; break; } case VSLI: { DCHECK(shift >= 0 && size_in_bits > shift); imm6 = size_in_bits + shift; op_encoding = B24 | 0x5 * B8; break; } case VSRI: { DCHECK(shift > 0 && size_in_bits >= shift); imm6 = 2 * size_in_bits - shift; op_encoding = B24 | 0x4 * B8; break; } case VSRA: { DCHECK(shift > 0 && size_in_bits >= shift); imm6 = 2 * size_in_bits - shift; op_encoding = B8; if (is_unsigned) op_encoding |= B24; break; } default: UNREACHABLE(); } L = imm6 >> 6; imm6 &= 0x3F; int vd, d; NeonSplitCode(reg_type, dst_code, &vd, &d, &op_encoding); int vm, m; NeonSplitCode(reg_type, src_code, &vm, &m, &op_encoding); return 0x1E5U * B23 | d * B22 | imm6 * B16 | vd * B12 | L * B7 | m * B5 | B4 | vm | op_encoding; } void Assembler::vshl(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src, int shift) { DCHECK(IsEnabled(NEON)); // Qd = vshl(Qm, bits) SIMD shift left immediate. // Instruction details available in ARM DDI 0406C.b, A8-1046. emit(EncodeNeonShiftOp(VSHL, NeonDataTypeToSize(dt), false, NEON_Q, dst.code(), src.code(), shift)); } void Assembler::vshl(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src, QwNeonRegister shift) { DCHECK(IsEnabled(NEON)); // Qd = vshl(Qm, Qn) SIMD shift left Register. // Instruction details available in ARM DDI 0487A.a, F8-3340.. emit(EncodeNeonShiftRegisterOp(VSHL, dt, NEON_Q, dst.code(), src.code(), shift.code())); } void Assembler::vshr(NeonDataType dt, DwVfpRegister dst, DwVfpRegister src, int shift) { DCHECK(IsEnabled(NEON)); // Dd = vshr(Dm, bits) SIMD shift right immediate. // Instruction details available in ARM DDI 0406C.b, A8-1052. emit(EncodeNeonShiftOp(VSHR, NeonDataTypeToSize(dt), NeonU(dt), NEON_D, dst.code(), src.code(), shift)); } void Assembler::vshr(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src, int shift) { DCHECK(IsEnabled(NEON)); // Qd = vshr(Qm, bits) SIMD shift right immediate. // Instruction details available in ARM DDI 0406C.b, A8-1052. emit(EncodeNeonShiftOp(VSHR, NeonDataTypeToSize(dt), NeonU(dt), NEON_Q, dst.code(), src.code(), shift)); } void Assembler::vsli(NeonSize size, DwVfpRegister dst, DwVfpRegister src, int shift) { DCHECK(IsEnabled(NEON)); // Dd = vsli(Dm, bits) SIMD shift left and insert. // Instruction details available in ARM DDI 0406C.b, A8-1056. emit(EncodeNeonShiftOp(VSLI, size, false, NEON_D, dst.code(), src.code(), shift)); } void Assembler::vsri(NeonSize size, DwVfpRegister dst, DwVfpRegister src, int shift) { DCHECK(IsEnabled(NEON)); // Dd = vsri(Dm, bits) SIMD shift right and insert. // Instruction details available in ARM DDI 0406C.b, A8-1062. emit(EncodeNeonShiftOp(VSRI, size, false, NEON_D, dst.code(), src.code(), shift)); } void Assembler::vsra(NeonDataType dt, DwVfpRegister dst, DwVfpRegister src, int imm) { DCHECK(IsEnabled(NEON)); // Dd = vsra(Dm, imm) SIMD shift right and accumulate. // Instruction details available in ARM DDI 0487F.b, F6-5569. emit(EncodeNeonShiftOp(VSRA, NeonDataTypeToSize(dt), NeonU(dt), NEON_D, dst.code(), src.code(), imm)); } void Assembler::vrecpe(QwNeonRegister dst, QwNeonRegister src) { DCHECK(IsEnabled(NEON)); // Qd = vrecpe(Qm) SIMD reciprocal estimate. // Instruction details available in ARM DDI 0406C.b, A8-1024. emit(EncodeNeonUnaryOp(VRECPE, NEON_Q, Neon32, dst.code(), src.code())); } void Assembler::vrsqrte(QwNeonRegister dst, QwNeonRegister src) { DCHECK(IsEnabled(NEON)); // Qd = vrsqrte(Qm) SIMD reciprocal square root estimate. // Instruction details available in ARM DDI 0406C.b, A8-1038. emit(EncodeNeonUnaryOp(VRSQRTE, NEON_Q, Neon32, dst.code(), src.code())); } void Assembler::vrecps(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vrecps(Qn, Qm) SIMD reciprocal refinement step. // Instruction details available in ARM DDI 0406C.b, A8-1026. emit(EncodeNeonBinOp(VRECPS, dst, src1, src2)); } void Assembler::vrsqrts(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vrsqrts(Qn, Qm) SIMD reciprocal square root refinement step. // Instruction details available in ARM DDI 0406C.b, A8-1040. emit(EncodeNeonBinOp(VRSQRTS, dst, src1, src2)); } enum NeonPairwiseOp { VPADD, VPMIN, VPMAX }; static Instr EncodeNeonPairwiseOp(NeonPairwiseOp op, NeonDataType dt, DwVfpRegister dst, DwVfpRegister src1, DwVfpRegister src2) { int op_encoding = 0; switch (op) { case VPADD: op_encoding = 0xB * B8 | B4; break; case VPMIN: op_encoding = 0xA * B8 | B4; break; case VPMAX: op_encoding = 0xA * B8; break; default: UNREACHABLE(); } int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); int size = NeonSz(dt); int u = NeonU(dt); return 0x1E4U * B23 | u * B24 | d * B22 | size * B20 | vn * B16 | vd * B12 | n * B7 | m * B5 | vm | op_encoding; } void Assembler::vpadd(DwVfpRegister dst, DwVfpRegister src1, DwVfpRegister src2) { DCHECK(IsEnabled(NEON)); // Dd = vpadd(Dn, Dm) SIMD floating point pairwise ADD. // Instruction details available in ARM DDI 0406C.b, A8-982. int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); emit(0x1E6U * B23 | d * B22 | vn * B16 | vd * B12 | 0xD * B8 | n * B7 | m * B5 | vm); } void Assembler::vpadd(NeonSize size, DwVfpRegister dst, DwVfpRegister src1, DwVfpRegister src2) { DCHECK(IsEnabled(NEON)); // Dd = vpadd(Dn, Dm) SIMD integer pairwise ADD. // Instruction details available in ARM DDI 0406C.b, A8-980. emit(EncodeNeonPairwiseOp(VPADD, NeonSizeToDataType(size), dst, src1, src2)); } void Assembler::vpmin(NeonDataType dt, DwVfpRegister dst, DwVfpRegister src1, DwVfpRegister src2) { DCHECK(IsEnabled(NEON)); // Dd = vpmin(Dn, Dm) SIMD integer pairwise MIN. // Instruction details available in ARM DDI 0406C.b, A8-986. emit(EncodeNeonPairwiseOp(VPMIN, dt, dst, src1, src2)); } void Assembler::vpmax(NeonDataType dt, DwVfpRegister dst, DwVfpRegister src1, DwVfpRegister src2) { DCHECK(IsEnabled(NEON)); // Dd = vpmax(Dn, Dm) SIMD integer pairwise MAX. // Instruction details available in ARM DDI 0406C.b, A8-986. emit(EncodeNeonPairwiseOp(VPMAX, dt, dst, src1, src2)); } void Assembler::vrintm(NeonDataType dt, const QwNeonRegister dst, const QwNeonRegister src) { // SIMD vector round floating-point to integer towards -Infinity. // See ARM DDI 0487F.b, F6-5493. DCHECK(IsEnabled(ARMv8)); emit(EncodeNeonUnaryOp(VRINTM, NEON_Q, NeonSize(dt), dst.code(), src.code())); } void Assembler::vrintn(NeonDataType dt, const QwNeonRegister dst, const QwNeonRegister src) { // SIMD vector round floating-point to integer to Nearest. // See ARM DDI 0487F.b, F6-5497. DCHECK(IsEnabled(ARMv8)); emit(EncodeNeonUnaryOp(VRINTN, NEON_Q, NeonSize(dt), dst.code(), src.code())); } void Assembler::vrintp(NeonDataType dt, const QwNeonRegister dst, const QwNeonRegister src) { // SIMD vector round floating-point to integer towards +Infinity. // See ARM DDI 0487F.b, F6-5501. DCHECK(IsEnabled(ARMv8)); emit(EncodeNeonUnaryOp(VRINTP, NEON_Q, NeonSize(dt), dst.code(), src.code())); } void Assembler::vrintz(NeonDataType dt, const QwNeonRegister dst, const QwNeonRegister src) { // SIMD vector round floating-point to integer towards Zero. // See ARM DDI 0487F.b, F6-5511. DCHECK(IsEnabled(ARMv8)); emit(EncodeNeonUnaryOp(VRINTZ, NEON_Q, NeonSize(dt), dst.code(), src.code())); } void Assembler::vtst(NeonSize size, QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vtst(Qn, Qm) SIMD test integer operands. // Instruction details available in ARM DDI 0406C.b, A8-1098. emit(EncodeNeonBinOp(VTST, size, dst, src1, src2)); } void Assembler::vceq(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vceq(Qn, Qm) SIMD floating point compare equal. // Instruction details available in ARM DDI 0406C.b, A8-844. emit(EncodeNeonBinOp(VCEQF, dst, src1, src2)); } void Assembler::vceq(NeonSize size, QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vceq(Qn, Qm) SIMD integer compare equal. // Instruction details available in ARM DDI 0406C.b, A8-844. emit(EncodeNeonBinOp(VCEQ, size, dst, src1, src2)); } void Assembler::vceq(NeonSize size, QwNeonRegister dst, QwNeonRegister src1, int value) { DCHECK(IsEnabled(NEON)); DCHECK_EQ(0, value); // Qd = vceq(Qn, Qm, #0) Vector Compare Equal to Zero. // Instruction details available in ARM DDI 0406C.d, A8-847. emit(EncodeNeonUnaryOp(VCEQ0, NEON_Q, size, dst.code(), src1.code())); } void Assembler::vcge(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vcge(Qn, Qm) SIMD floating point compare greater or equal. // Instruction details available in ARM DDI 0406C.b, A8-848. emit(EncodeNeonBinOp(VCGEF, dst, src1, src2)); } void Assembler::vcge(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vcge(Qn, Qm) SIMD integer compare greater or equal. // Instruction details available in ARM DDI 0406C.b, A8-848. emit(EncodeNeonBinOp(VCGE, dt, dst, src1, src2)); } void Assembler::vcgt(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vcgt(Qn, Qm) SIMD floating point compare greater than. // Instruction details available in ARM DDI 0406C.b, A8-852. emit(EncodeNeonBinOp(VCGTF, dst, src1, src2)); } void Assembler::vcgt(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vcgt(Qn, Qm) SIMD integer compare greater than. // Instruction details available in ARM DDI 0406C.b, A8-852. emit(EncodeNeonBinOp(VCGT, dt, dst, src1, src2)); } void Assembler::vclt(NeonSize size, QwNeonRegister dst, QwNeonRegister src, int value) { DCHECK(IsEnabled(NEON)); DCHECK_EQ(0, value); // vclt.(Qn, Qm, #0) SIMD Vector Compare Less Than Zero. // Instruction details available in ARM DDI 0487F.b, F6-5072. emit(EncodeNeonUnaryOp(VCLT0, NEON_Q, size, dst.code(), src.code())); } void Assembler::vrhadd(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // Qd = vrhadd(Qn, Qm) SIMD integer rounding halving add. // Instruction details available in ARM DDI 0406C.b, A8-1030. emit(EncodeNeonBinOp(VRHADD, dt, dst, src1, src2)); } void Assembler::vext(QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2, int bytes) { DCHECK(IsEnabled(NEON)); // Qd = vext(Qn, Qm) SIMD byte extract. // Instruction details available in ARM DDI 0406C.b, A8-890. int vd, d; dst.split_code(&vd, &d); int vn, n; src1.split_code(&vn, &n); int vm, m; src2.split_code(&vm, &m); DCHECK_GT(16, bytes); emit(0x1E5U * B23 | d * B22 | 0x3 * B20 | vn * B16 | vd * B12 | bytes * B8 | n * B7 | B6 | m * B5 | vm); } void Assembler::vzip(NeonSize size, DwVfpRegister src1, DwVfpRegister src2) { if (size == Neon32) { // vzip.32 Dd, Dm is a pseudo-op for vtrn.32 Dd, Dm. vtrn(size, src1, src2); } else { DCHECK(IsEnabled(NEON)); // vzip.(Dn, Dm) SIMD zip (interleave). // Instruction details available in ARM DDI 0406C.b, A8-1102. emit(EncodeNeonUnaryOp(VZIP, NEON_D, size, src1.code(), src2.code())); } } void Assembler::vzip(NeonSize size, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // vzip.(Qn, Qm) SIMD zip (interleave). // Instruction details available in ARM DDI 0406C.b, A8-1102. emit(EncodeNeonUnaryOp(VZIP, NEON_Q, size, src1.code(), src2.code())); } void Assembler::vuzp(NeonSize size, DwVfpRegister src1, DwVfpRegister src2) { if (size == Neon32) { // vuzp.32 Dd, Dm is a pseudo-op for vtrn.32 Dd, Dm. vtrn(size, src1, src2); } else { DCHECK(IsEnabled(NEON)); // vuzp.(Dn, Dm) SIMD un-zip (de-interleave). // Instruction details available in ARM DDI 0406C.b, A8-1100. emit(EncodeNeonUnaryOp(VUZP, NEON_D, size, src1.code(), src2.code())); } } void Assembler::vuzp(NeonSize size, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // vuzp.(Qn, Qm) SIMD un-zip (de-interleave). // Instruction details available in ARM DDI 0406C.b, A8-1100. emit(EncodeNeonUnaryOp(VUZP, NEON_Q, size, src1.code(), src2.code())); } void Assembler::vrev16(NeonSize size, QwNeonRegister dst, QwNeonRegister src) { DCHECK(IsEnabled(NEON)); // Qd = vrev16.(Qm) SIMD element reverse. // Instruction details available in ARM DDI 0406C.b, A8-1028. emit(EncodeNeonUnaryOp(VREV16, NEON_Q, size, dst.code(), src.code())); } void Assembler::vrev32(NeonSize size, QwNeonRegister dst, QwNeonRegister src) { DCHECK(IsEnabled(NEON)); // Qd = vrev32.(Qm) SIMD element reverse. // Instruction details available in ARM DDI 0406C.b, A8-1028. emit(EncodeNeonUnaryOp(VREV32, NEON_Q, size, dst.code(), src.code())); } void Assembler::vrev64(NeonSize size, QwNeonRegister dst, QwNeonRegister src) { DCHECK(IsEnabled(NEON)); // Qd = vrev64.(Qm) SIMD element reverse. // Instruction details available in ARM DDI 0406C.b, A8-1028. emit(EncodeNeonUnaryOp(VREV64, NEON_Q, size, dst.code(), src.code())); } void Assembler::vtrn(NeonSize size, DwVfpRegister src1, DwVfpRegister src2) { DCHECK(IsEnabled(NEON)); // vtrn.(Dn, Dm) SIMD element transpose. // Instruction details available in ARM DDI 0406C.b, A8-1096. emit(EncodeNeonUnaryOp(VTRN, NEON_D, size, src1.code(), src2.code())); } void Assembler::vtrn(NeonSize size, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); // vtrn.(Qn, Qm) SIMD element transpose. // Instruction details available in ARM DDI 0406C.b, A8-1096. emit(EncodeNeonUnaryOp(VTRN, NEON_Q, size, src1.code(), src2.code())); } void Assembler::vpadal(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src) { DCHECK(IsEnabled(NEON)); // vpadal.
(Qd, Qm) SIMD Vector Pairwise Add and Accumulate Long emit(EncodeNeonUnaryOp(NeonU(dt) ? VPADAL_U : VPADAL_S, NEON_Q, NeonDataTypeToSize(dt), dst.code(), src.code())); } void Assembler::vpaddl(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src) { DCHECK(IsEnabled(NEON)); // vpaddl.
(Qd, Qm) SIMD Vector Pairwise Add Long. emit(EncodeNeonUnaryOp(NeonU(dt) ? VPADDL_U : VPADDL_S, NEON_Q, NeonDataTypeToSize(dt), dst.code(), src.code())); } void Assembler::vqrdmulh(NeonDataType dt, QwNeonRegister dst, QwNeonRegister src1, QwNeonRegister src2) { DCHECK(IsEnabled(NEON)); DCHECK(dt == NeonS16 || dt == NeonS32); emit(EncodeNeonBinOp(VQRDMULH, dt, dst, src1, src2)); } void Assembler::vcnt(QwNeonRegister dst, QwNeonRegister src) { // Qd = vcnt(Qm) SIMD Vector Count Set Bits. // Instruction details available at ARM DDI 0487F.b, F6-5094. DCHECK(IsEnabled(NEON)); emit(EncodeNeonUnaryOp(VCNT, NEON_Q, Neon8, dst.code(), src.code())); } // Encode NEON vtbl / vtbx instruction. static Instr EncodeNeonVTB(DwVfpRegister dst, const NeonListOperand& list, DwVfpRegister index, bool vtbx) { // Dd = vtbl(table, Dm) SIMD vector permute, zero at out of range indices. // Instruction details available in ARM DDI 0406C.b, A8-1094. // Dd = vtbx(table, Dm) SIMD vector permute, skip out of range indices. // Instruction details available in ARM DDI 0406C.b, A8-1094. int vd, d; dst.split_code(&vd, &d); int vn, n; list.base().split_code(&vn, &n); int vm, m; index.split_code(&vm, &m); int op = vtbx ? 1 : 0; // vtbl = 0, vtbx = 1. return 0x1E7U * B23 | d * B22 | 0x3 * B20 | vn * B16 | vd * B12 | 0x2 * B10 | list.length() * B8 | n * B7 | op * B6 | m * B5 | vm; } void Assembler::vtbl(DwVfpRegister dst, const NeonListOperand& list, DwVfpRegister index) { DCHECK(IsEnabled(NEON)); emit(EncodeNeonVTB(dst, list, index, false)); } void Assembler::vtbx(DwVfpRegister dst, const NeonListOperand& list, DwVfpRegister index) { DCHECK(IsEnabled(NEON)); emit(EncodeNeonVTB(dst, list, index, true)); } // Pseudo instructions. void Assembler::nop(int type) { // ARMv6{K/T2} and v7 have an actual NOP instruction but it serializes // some of the CPU's pipeline and has to issue. Older ARM chips simply used // MOV Rx, Rx as NOP and it performs better even in newer CPUs. // We therefore use MOV Rx, Rx, even on newer CPUs, and use Rx to encode // a type. DCHECK(0 <= type && type <= 14); // mov pc, pc isn't a nop. emit(al | 13 * B21 | type * B12 | type); } void Assembler::pop() { add(sp, sp, Operand(kPointerSize)); } bool Assembler::IsMovT(Instr instr) { instr &= ~(((kNumberOfConditions - 1) << 28) | // Mask off conditions ((kNumRegisters - 1) * B12) | // mask out register EncodeMovwImmediate(0xFFFF)); // mask out immediate value return instr == kMovtPattern; } bool Assembler::IsMovW(Instr instr) { instr &= ~(((kNumberOfConditions - 1) << 28) | // Mask off conditions ((kNumRegisters - 1) * B12) | // mask out destination EncodeMovwImmediate(0xFFFF)); // mask out immediate value return instr == kMovwPattern; } Instr Assembler::GetMovTPattern() { return kMovtPattern; } Instr Assembler::GetMovWPattern() { return kMovwPattern; } Instr Assembler::EncodeMovwImmediate(uint32_t immediate) { DCHECK_LT(immediate, 0x10000); return ((immediate & 0xF000) << 4) | (immediate & 0xFFF); } Instr Assembler::PatchMovwImmediate(Instr instruction, uint32_t immediate) { instruction &= ~EncodeMovwImmediate(0xFFFF); return instruction | EncodeMovwImmediate(immediate); } int Assembler::DecodeShiftImm(Instr instr) { int rotate = Instruction::RotateValue(instr) * 2; int immed8 = Instruction::Immed8Value(instr); return base::bits::RotateRight32(immed8, rotate); } Instr Assembler::PatchShiftImm(Instr instr, int immed) { uint32_t rotate_imm = 0; uint32_t immed_8 = 0; bool immed_fits = FitsShifter(immed, &rotate_imm, &immed_8, nullptr); DCHECK(immed_fits); USE(immed_fits); return (instr & ~kOff12Mask) | (rotate_imm << 8) | immed_8; } bool Assembler::IsNop(Instr instr, int type) { DCHECK(0 <= type && type <= 14); // mov pc, pc isn't a nop. // Check for mov rx, rx where x = type. return instr == (al | 13 * B21 | type * B12 | type); } bool Assembler::IsMovImmed(Instr instr) { return (instr & kMovImmedMask) == kMovImmedPattern; } bool Assembler::IsOrrImmed(Instr instr) { return (instr & kOrrImmedMask) == kOrrImmedPattern; } // static bool Assembler::ImmediateFitsAddrMode1Instruction(int32_t imm32) { uint32_t dummy1; uint32_t dummy2; return FitsShifter(imm32, &dummy1, &dummy2, nullptr); } bool Assembler::ImmediateFitsAddrMode2Instruction(int32_t imm32) { return is_uint12(abs(imm32)); } // Debugging. void Assembler::RecordConstPool(int size) { // We only need this for debugger support, to correctly compute offsets in the // code. RecordRelocInfo(RelocInfo::CONST_POOL, static_cast(size)); } void Assembler::GrowBuffer() { DCHECK_EQ(buffer_start_, buffer_->start()); // Compute new buffer size. int old_size = buffer_->size(); int new_size = std::min(2 * old_size, old_size + 1 * MB); // Some internal data structures overflow for very large buffers, // they must ensure that kMaximalBufferSize is not too large. if (new_size > kMaximalBufferSize) { V8::FatalProcessOutOfMemory(nullptr, "Assembler::GrowBuffer"); } // Set up new buffer. std::unique_ptr new_buffer = buffer_->Grow(new_size); DCHECK_EQ(new_size, new_buffer->size()); byte* new_start = new_buffer->start(); // Copy the data. int pc_delta = new_start - buffer_start_; int rc_delta = (new_start + new_size) - (buffer_start_ + old_size); size_t reloc_size = (buffer_start_ + old_size) - reloc_info_writer.pos(); MemMove(new_start, buffer_start_, pc_offset()); byte* new_reloc_start = reinterpret_cast( reinterpret_cast
(reloc_info_writer.pos()) + rc_delta); MemMove(new_reloc_start, reloc_info_writer.pos(), reloc_size); // Switch buffers. buffer_ = std::move(new_buffer); buffer_start_ = new_start; pc_ = reinterpret_cast(reinterpret_cast
(pc_) + pc_delta); byte* new_last_pc = reinterpret_cast( reinterpret_cast
(reloc_info_writer.last_pc()) + pc_delta); reloc_info_writer.Reposition(new_reloc_start, new_last_pc); // None of our relocation types are pc relative pointing outside the code // buffer nor pc absolute pointing inside the code buffer, so there is no need // to relocate any emitted relocation entries. } void Assembler::db(uint8_t data) { // db is used to write raw data. The constant pool should be emitted or // blocked before using db. DCHECK(is_const_pool_blocked() || pending_32_bit_constants_.empty()); CheckBuffer(); *reinterpret_cast(pc_) = data; pc_ += sizeof(uint8_t); } void Assembler::dd(uint32_t data, RelocInfo::Mode rmode) { // dd is used to write raw data. The constant pool should be emitted or // blocked before using dd. DCHECK(is_const_pool_blocked() || pending_32_bit_constants_.empty()); CheckBuffer(); if (!RelocInfo::IsNoInfo(rmode)) { DCHECK(RelocInfo::IsDataEmbeddedObject(rmode) || RelocInfo::IsLiteralConstant(rmode)); RecordRelocInfo(rmode); } base::WriteUnalignedValue(reinterpret_cast
(pc_), data); pc_ += sizeof(uint32_t); } void Assembler::dq(uint64_t value, RelocInfo::Mode rmode) { // dq is used to write raw data. The constant pool should be emitted or // blocked before using dq. DCHECK(is_const_pool_blocked() || pending_32_bit_constants_.empty()); CheckBuffer(); if (!RelocInfo::IsNoInfo(rmode)) { DCHECK(RelocInfo::IsDataEmbeddedObject(rmode) || RelocInfo::IsLiteralConstant(rmode)); RecordRelocInfo(rmode); } base::WriteUnalignedValue(reinterpret_cast
(pc_), value); pc_ += sizeof(uint64_t); } void Assembler::RecordRelocInfo(RelocInfo::Mode rmode, intptr_t data) { if (!ShouldRecordRelocInfo(rmode)) return; DCHECK_GE(buffer_space(), kMaxRelocSize); // too late to grow buffer here RelocInfo rinfo(reinterpret_cast
(pc_), rmode, data, Code()); reloc_info_writer.Write(&rinfo); } void Assembler::ConstantPoolAddEntry(int position, RelocInfo::Mode rmode, intptr_t value) { DCHECK(rmode != RelocInfo::CONST_POOL); // We can share CODE_TARGETs and embedded objects, but we must make sure we // only emit one reloc info for them (thus delta patching will apply the delta // only once). At the moment, we do not deduplicate heap object request which // are indicated by value == 0. bool sharing_ok = RelocInfo::IsShareableRelocMode(rmode) || (rmode == RelocInfo::CODE_TARGET && value != 0) || (RelocInfo::IsEmbeddedObjectMode(rmode) && value != 0); DCHECK_LT(pending_32_bit_constants_.size(), kMaxNumPending32Constants); if (first_const_pool_32_use_ < 0) { DCHECK(pending_32_bit_constants_.empty()); DCHECK_EQ(constant_pool_deadline_, kMaxInt); first_const_pool_32_use_ = position; constant_pool_deadline_ = position + kCheckPoolDeadline; } else { DCHECK(!pending_32_bit_constants_.empty()); } ConstantPoolEntry entry(position, value, sharing_ok, rmode); bool shared = false; if (sharing_ok) { // Merge the constant, if possible. for (size_t i = 0; i < pending_32_bit_constants_.size(); i++) { ConstantPoolEntry& current_entry = pending_32_bit_constants_[i]; if (!current_entry.sharing_ok()) continue; if (entry.value() == current_entry.value() && entry.rmode() == current_entry.rmode()) { entry.set_merged_index(i); shared = true; break; } } } pending_32_bit_constants_.emplace_back(entry); // Make sure the constant pool is not emitted in place of the next // instruction for which we just recorded relocation info. BlockConstPoolFor(1); // Emit relocation info. if (MustOutputRelocInfo(rmode, this) && !shared) { RecordRelocInfo(rmode); } } void Assembler::BlockConstPoolFor(int instructions) { int pc_limit = pc_offset() + instructions * kInstrSize; if (no_const_pool_before_ < pc_limit) { no_const_pool_before_ = pc_limit; } // If we're due a const pool check before the block finishes, move it to just // after the block. if (constant_pool_deadline_ < no_const_pool_before_) { // Make sure that the new deadline isn't too late (including a jump and the // constant pool marker). DCHECK_LE(no_const_pool_before_, first_const_pool_32_use_ + kMaxDistToIntPool); constant_pool_deadline_ = no_const_pool_before_; } } void Assembler::CheckConstPool(bool force_emit, bool require_jump) { // Some short sequence of instruction mustn't be broken up by constant pool // emission, such sequences are protected by calls to BlockConstPoolFor and // BlockConstPoolScope. if (is_const_pool_blocked()) { // Something is wrong if emission is forced and blocked at the same time. DCHECK(!force_emit); return; } // There is nothing to do if there are no pending constant pool entries. if (pending_32_bit_constants_.empty()) { // We should only fall into this case if we're either trying to forcing // emission or opportunistically checking after a jump. DCHECK(force_emit || !require_jump); return; } // We emit a constant pool when: // * requested to do so by parameter force_emit (e.g. after each function). // * the distance from the first instruction accessing the constant pool to // the first constant pool entry will exceed its limit the next time the // pool is checked. // * the instruction doesn't require a jump after itself to jump over the // constant pool, and we're getting close to running out of range. if (!force_emit) { DCHECK_NE(first_const_pool_32_use_, -1); int dist32 = pc_offset() - first_const_pool_32_use_; if (require_jump) { // We should only be on this path if we've exceeded our deadline. DCHECK_GE(dist32, kCheckPoolDeadline); } else if (dist32 < kCheckPoolDeadline / 2) { return; } } int size_after_marker = pending_32_bit_constants_.size() * kPointerSize; // Deduplicate constants. for (size_t i = 0; i < pending_32_bit_constants_.size(); i++) { ConstantPoolEntry& entry = pending_32_bit_constants_[i]; if (entry.is_merged()) size_after_marker -= kPointerSize; } // Check that the code buffer is large enough before emitting the constant // pool (include the jump over the pool and the constant pool marker and // the gap to the relocation information). int jump_instr = require_jump ? kInstrSize : 0; int size_up_to_marker = jump_instr + kInstrSize; int size = size_up_to_marker + size_after_marker; int needed_space = size + kGap; while (buffer_space() <= needed_space) GrowBuffer(); { ASM_CODE_COMMENT_STRING(this, "Constant Pool"); // Block recursive calls to CheckConstPool. BlockConstPoolScope block_const_pool(this); RecordConstPool(size); Label size_check; bind(&size_check); // Emit jump over constant pool if necessary. Label after_pool; if (require_jump) { b(&after_pool); } // Put down constant pool marker "Undefined instruction". // The data size helps disassembly know what to print. emit(kConstantPoolMarker | EncodeConstantPoolLength(size_after_marker / kPointerSize)); // The first entry in the constant pool should also be the first CHECK_EQ(first_const_pool_32_use_, pending_32_bit_constants_[0].position()); CHECK(!pending_32_bit_constants_[0].is_merged()); // Make sure we're not emitting the constant too late. CHECK_LE(pc_offset(), first_const_pool_32_use_ + kMaxDistToPcRelativeConstant); // Check that the code buffer is large enough before emitting the constant // pool (this includes the gap to the relocation information). int needed_space = pending_32_bit_constants_.size() * kPointerSize + kGap; while (buffer_space() <= needed_space) { GrowBuffer(); } // Emit 32-bit constant pool entries. for (size_t i = 0; i < pending_32_bit_constants_.size(); i++) { ConstantPoolEntry& entry = pending_32_bit_constants_[i]; Instr instr = instr_at(entry.position()); // 64-bit loads shouldn't get here. DCHECK(!IsVldrDPcImmediateOffset(instr)); DCHECK(!IsMovW(instr)); DCHECK(IsLdrPcImmediateOffset(instr) && GetLdrRegisterImmediateOffset(instr) == 0); int delta = pc_offset() - entry.position() - Instruction::kPcLoadDelta; DCHECK(is_uint12(delta)); // 0 is the smallest delta: // ldr rd, [pc, #0] // constant pool marker // data if (entry.is_merged()) { DCHECK(entry.sharing_ok()); ConstantPoolEntry& merged = pending_32_bit_constants_[entry.merged_index()]; DCHECK(entry.value() == merged.value()); DCHECK_LT(merged.position(), entry.position()); Instr merged_instr = instr_at(merged.position()); DCHECK(IsLdrPcImmediateOffset(merged_instr)); delta = GetLdrRegisterImmediateOffset(merged_instr); delta += merged.position() - entry.position(); } instr_at_put(entry.position(), SetLdrRegisterImmediateOffset(instr, delta)); if (!entry.is_merged()) { emit(entry.value()); } } pending_32_bit_constants_.clear(); first_const_pool_32_use_ = -1; DCHECK_EQ(size, SizeOfCodeGeneratedSince(&size_check)); if (after_pool.is_linked()) { bind(&after_pool); } } // Since a constant pool was just emitted, we don't need another check until // the next constant pool entry is added. constant_pool_deadline_ = kMaxInt; } PatchingAssembler::PatchingAssembler(const AssemblerOptions& options, byte* address, int instructions) : Assembler(options, ExternalAssemblerBuffer( address, instructions * kInstrSize + kGap)) { DCHECK_EQ(reloc_info_writer.pos(), buffer_start_ + buffer_->size()); } PatchingAssembler::~PatchingAssembler() { // Check that we don't have any pending constant pools. DCHECK(pending_32_bit_constants_.empty()); // Check that the code was patched as expected. DCHECK_EQ(pc_, buffer_start_ + buffer_->size() - kGap); DCHECK_EQ(reloc_info_writer.pos(), buffer_start_ + buffer_->size()); } void PatchingAssembler::Emit(Address addr) { emit(static_cast(addr)); } void PatchingAssembler::PadWithNops() { DCHECK_LE(pc_, buffer_start_ + buffer_->size() - kGap); while (pc_ < buffer_start_ + buffer_->size() - kGap) { nop(); } } UseScratchRegisterScope::UseScratchRegisterScope(Assembler* assembler) : assembler_(assembler), old_available_(*assembler->GetScratchRegisterList()), old_available_vfp_(*assembler->GetScratchVfpRegisterList()) {} UseScratchRegisterScope::~UseScratchRegisterScope() { *assembler_->GetScratchRegisterList() = old_available_; *assembler_->GetScratchVfpRegisterList() = old_available_vfp_; } Register UseScratchRegisterScope::Acquire() { RegList* available = assembler_->GetScratchRegisterList(); DCHECK_NOT_NULL(available); return available->PopFirst(); } LoadStoreLaneParams::LoadStoreLaneParams(MachineRepresentation rep, uint8_t laneidx) { if (rep == MachineRepresentation::kWord8) { *this = LoadStoreLaneParams(laneidx, Neon8, 8); } else if (rep == MachineRepresentation::kWord16) { *this = LoadStoreLaneParams(laneidx, Neon16, 4); } else if (rep == MachineRepresentation::kWord32) { *this = LoadStoreLaneParams(laneidx, Neon32, 2); } else if (rep == MachineRepresentation::kWord64) { *this = LoadStoreLaneParams(laneidx, Neon64, 1); } else { UNREACHABLE(); } } } // namespace internal } // namespace v8 #endif // V8_TARGET_ARCH_ARM