// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. // Declares a Simulator for ARM instructions if we are not generating a native // ARM binary. This Simulator allows us to run and debug ARM code generation on // regular desktop machines. // V8 calls into generated code by using the GeneratedCode class, // which will start execution in the Simulator or forwards to the real entry // on a ARM HW platform. #ifndef V8_EXECUTION_ARM_SIMULATOR_ARM_H_ #define V8_EXECUTION_ARM_SIMULATOR_ARM_H_ // globals.h defines USE_SIMULATOR. #include "src/common/globals.h" #if defined(USE_SIMULATOR) // Running with a simulator. #include "src/base/hashmap.h" #include "src/base/lazy-instance.h" #include "src/base/platform/mutex.h" #include "src/codegen/arm/constants-arm.h" #include "src/execution/simulator-base.h" #include "src/utils/allocation.h" #include "src/utils/boxed-float.h" namespace v8 { namespace internal { class CachePage { public: static const int LINE_VALID = 0; static const int LINE_INVALID = 1; static const int kPageShift = 12; static const int kPageSize = 1 << kPageShift; static const int kPageMask = kPageSize - 1; static const int kLineShift = 2; // The cache line is only 4 bytes right now. static const int kLineLength = 1 << kLineShift; static const int kLineMask = kLineLength - 1; CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); } char* ValidityByte(int offset) { return &validity_map_[offset >> kLineShift]; } char* CachedData(int offset) { return &data_[offset]; } private: char data_[kPageSize]; // The cached data. static const int kValidityMapSize = kPageSize >> kLineShift; char validity_map_[kValidityMapSize]; // One byte per line. }; class Simulator : public SimulatorBase { public: friend class ArmDebugger; enum Register { no_reg = -1, r0 = 0, r1, r2, r3, r4, r5, r6, r7, r8, r9, r10, r11, r12, r13, r14, r15, num_registers, fp = 11, sp = 13, lr = 14, pc = 15, s0 = 0, s1, s2, s3, s4, s5, s6, s7, s8, s9, s10, s11, s12, s13, s14, s15, s16, s17, s18, s19, s20, s21, s22, s23, s24, s25, s26, s27, s28, s29, s30, s31, num_s_registers = 32, d0 = 0, d1, d2, d3, d4, d5, d6, d7, d8, d9, d10, d11, d12, d13, d14, d15, d16, d17, d18, d19, d20, d21, d22, d23, d24, d25, d26, d27, d28, d29, d30, d31, num_d_registers = 32, q0 = 0, q1, q2, q3, q4, q5, q6, q7, q8, q9, q10, q11, q12, q13, q14, q15, num_q_registers = 16 }; explicit Simulator(Isolate* isolate); ~Simulator(); // The currently executing Simulator instance. Potentially there can be one // for each native thread. V8_EXPORT_PRIVATE static Simulator* current(v8::internal::Isolate* isolate); // Accessors for register state. Reading the pc value adheres to the ARM // architecture specification and is off by a 8 from the currently executing // instruction. void set_register(int reg, int32_t value); V8_EXPORT_PRIVATE int32_t get_register(int reg) const; double get_double_from_register_pair(int reg); void set_register_pair_from_double(int reg, double* value); void set_dw_register(int dreg, const int* dbl); // Support for VFP. void get_d_register(int dreg, uint64_t* value); void set_d_register(int dreg, const uint64_t* value); void get_d_register(int dreg, uint32_t* value); void set_d_register(int dreg, const uint32_t* value); // Support for NEON. template void get_neon_register(int reg, T (&value)[SIZE / sizeof(T)]); template void set_neon_register(int reg, const T (&value)[SIZE / sizeof(T)]); void set_s_register(int reg, unsigned int value); unsigned int get_s_register(int reg) const; void set_d_register_from_double(int dreg, const Float64 dbl) { SetVFPRegister(dreg, dbl); } void set_d_register_from_double(int dreg, const double dbl) { SetVFPRegister(dreg, dbl); } Float64 get_double_from_d_register(int dreg) { return GetFromVFPRegister(dreg); } void set_s_register_from_float(int sreg, const Float32 flt) { SetVFPRegister(sreg, flt); } void set_s_register_from_float(int sreg, const float flt) { SetVFPRegister(sreg, flt); } Float32 get_float_from_s_register(int sreg) { return GetFromVFPRegister(sreg); } void set_s_register_from_sinteger(int sreg, const int sint) { SetVFPRegister(sreg, sint); } int get_sinteger_from_s_register(int sreg) { return GetFromVFPRegister(sreg); } // Special case of set_register and get_register to access the raw PC value. void set_pc(int32_t value); V8_EXPORT_PRIVATE int32_t get_pc() const; Address get_sp() const { return static_cast
(get_register(sp)); } // Accessor to the internal simulator stack area. uintptr_t StackLimit(uintptr_t c_limit) const; // Executes ARM instructions until the PC reaches end_sim_pc. void Execute(); template Return Call(Address entry, Args... args) { return VariadicCall(this, &Simulator::CallImpl, entry, args...); } // Alternative: call a 2-argument double function. template Return CallFP(Address entry, double d0, double d1) { return ConvertReturn(CallFPImpl(entry, d0, d1)); } // Push an address onto the JS stack. uintptr_t PushAddress(uintptr_t address); // Pop an address from the JS stack. uintptr_t PopAddress(); // Debugger input. void set_last_debugger_input(ArrayUniquePtr input) { last_debugger_input_ = std::move(input); } const char* last_debugger_input() { return last_debugger_input_.get(); } // Redirection support. static void SetRedirectInstruction(Instruction* instruction); // ICache checking. static bool ICacheMatch(void* one, void* two); static void FlushICache(base::CustomMatcherHashMap* i_cache, void* start, size_t size); // Returns true if pc register contains one of the 'special_values' defined // below (bad_lr, end_sim_pc). bool has_bad_pc() const; // EABI variant for double arguments in use. bool use_eabi_hardfloat() { #if USE_EABI_HARDFLOAT return true; #else return false; #endif } private: enum special_values { // Known bad pc value to ensure that the simulator does not execute // without being properly setup. bad_lr = -1, // A pc value used to signal the simulator to stop execution. Generally // the lr is set to this value on transition from native C code to // simulated execution, so that the simulator can "return" to the native // C code. end_sim_pc = -2 }; V8_EXPORT_PRIVATE intptr_t CallImpl(Address entry, int argument_count, const intptr_t* arguments); intptr_t CallFPImpl(Address entry, double d0, double d1); // Unsupported instructions use Format to print an error and stop execution. void Format(Instruction* instr, const char* format); // Checks if the current instruction should be executed based on its // condition bits. inline bool ConditionallyExecute(Instruction* instr); // Helper functions to set the conditional flags in the architecture state. void SetNZFlags(int32_t val); void SetCFlag(bool val); void SetVFlag(bool val); bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0); bool BorrowFrom(int32_t left, int32_t right, int32_t carry = 1); bool OverflowFrom(int32_t alu_out, int32_t left, int32_t right, bool addition); inline int GetCarry() { return c_flag_ ? 1 : 0; } // Support for VFP. void Compute_FPSCR_Flags(float val1, float val2); void Compute_FPSCR_Flags(double val1, double val2); void Copy_FPSCR_to_APSR(); inline float canonicalizeNaN(float value); inline double canonicalizeNaN(double value); inline Float32 canonicalizeNaN(Float32 value); inline Float64 canonicalizeNaN(Float64 value); // Helper functions to decode common "addressing" modes int32_t GetShiftRm(Instruction* instr, bool* carry_out); int32_t GetImm(Instruction* instr, bool* carry_out); int32_t ProcessPU(Instruction* instr, int num_regs, int operand_size, intptr_t* start_address, intptr_t* end_address); void HandleRList(Instruction* instr, bool load); void HandleVList(Instruction* inst); void SoftwareInterrupt(Instruction* instr); void DebugAtNextPC(); // Helper to write back values to register. void AdvancedSIMDElementOrStructureLoadStoreWriteback(int Rn, int Rm, int ebytes); // Stop helper functions. inline bool isWatchedStop(uint32_t bkpt_code); inline bool isEnabledStop(uint32_t bkpt_code); inline void EnableStop(uint32_t bkpt_code); inline void DisableStop(uint32_t bkpt_code); inline void IncreaseStopCounter(uint32_t bkpt_code); void PrintStopInfo(uint32_t code); // Read and write memory. // The *Ex functions are exclusive access. The writes return the strex status: // 0 if the write succeeds, and 1 if the write fails. inline uint8_t ReadBU(int32_t addr); inline int8_t ReadB(int32_t addr); uint8_t ReadExBU(int32_t addr); inline void WriteB(int32_t addr, uint8_t value); inline void WriteB(int32_t addr, int8_t value); int WriteExB(int32_t addr, uint8_t value); inline uint16_t ReadHU(int32_t addr); inline int16_t ReadH(int32_t addr); uint16_t ReadExHU(int32_t addr); // Note: Overloaded on the sign of the value. inline void WriteH(int32_t addr, uint16_t value); inline void WriteH(int32_t addr, int16_t value); int WriteExH(int32_t addr, uint16_t value); inline int ReadW(int32_t addr); int ReadExW(int32_t addr); inline void WriteW(int32_t addr, int value); int WriteExW(int32_t addr, int value); int32_t* ReadDW(int32_t addr); void WriteDW(int32_t addr, int32_t value1, int32_t value2); int32_t* ReadExDW(int32_t addr); int WriteExDW(int32_t addr, int32_t value1, int32_t value2); // Executing is handled based on the instruction type. // Both type 0 and type 1 rolled into one. void DecodeType01(Instruction* instr); void DecodeType2(Instruction* instr); void DecodeType3(Instruction* instr); void DecodeType4(Instruction* instr); void DecodeType5(Instruction* instr); void DecodeType6(Instruction* instr); void DecodeType7(Instruction* instr); // CP15 coprocessor instructions. void DecodeTypeCP15(Instruction* instr); // Support for VFP. void DecodeTypeVFP(Instruction* instr); void DecodeType6CoprocessorIns(Instruction* instr); void DecodeSpecialCondition(Instruction* instr); void DecodeFloatingPointDataProcessing(Instruction* instr); void DecodeUnconditional(Instruction* instr); void DecodeAdvancedSIMDDataProcessing(Instruction* instr); void DecodeMemoryHintsAndBarriers(Instruction* instr); void DecodeAdvancedSIMDElementOrStructureLoadStore(Instruction* instr); void DecodeAdvancedSIMDLoadStoreMultipleStructures(Instruction* instr); void DecodeAdvancedSIMDLoadSingleStructureToAllLanes(Instruction* instr); void DecodeAdvancedSIMDLoadStoreSingleStructureToOneLane(Instruction* instr); void DecodeAdvancedSIMDTwoOrThreeRegisters(Instruction* instr); void DecodeVMOVBetweenCoreAndSinglePrecisionRegisters(Instruction* instr); void DecodeVCMP(Instruction* instr); void DecodeVCVTBetweenDoubleAndSingle(Instruction* instr); int32_t ConvertDoubleToInt(double val, bool unsigned_integer, VFPRoundingMode mode); void DecodeVCVTBetweenFloatingPointAndInteger(Instruction* instr); // Executes one instruction. void InstructionDecode(Instruction* instr); // ICache. static void CheckICache(base::CustomMatcherHashMap* i_cache, Instruction* instr); static void FlushOnePage(base::CustomMatcherHashMap* i_cache, intptr_t start, int size); static CachePage* GetCachePage(base::CustomMatcherHashMap* i_cache, void* page); // Handle arguments and return value for runtime FP functions. void GetFpArgs(double* x, double* y, int32_t* z); void SetFpResult(const double& result); void TrashCallerSaveRegisters(); template ReturnType GetFromVFPRegister(int reg_index); template void SetVFPRegister(int reg_index, const InputType& value); void SetSpecialRegister(SRegisterFieldMask reg_and_mask, uint32_t value); uint32_t GetFromSpecialRegister(SRegister reg); void CallInternal(Address entry); // Architecture state. // Saturating instructions require a Q flag to indicate saturation. // There is currently no way to read the CPSR directly, and thus read the Q // flag, so this is left unimplemented. int32_t registers_[16]; bool n_flag_; bool z_flag_; bool c_flag_; bool v_flag_; // VFP architecture state. unsigned int vfp_registers_[num_d_registers * 2]; bool n_flag_FPSCR_; bool z_flag_FPSCR_; bool c_flag_FPSCR_; bool v_flag_FPSCR_; // VFP rounding mode. See ARM DDI 0406B Page A2-29. VFPRoundingMode FPSCR_rounding_mode_; bool FPSCR_default_NaN_mode_; // VFP FP exception flags architecture state. bool inv_op_vfp_flag_; bool div_zero_vfp_flag_; bool overflow_vfp_flag_; bool underflow_vfp_flag_; bool inexact_vfp_flag_; // Simulator support. char* stack_; bool pc_modified_; int icount_; // Debugger input. ArrayUniquePtr last_debugger_input_; // Registered breakpoints. Instruction* break_pc_; Instr break_instr_; v8::internal::Isolate* isolate_; // A stop is watched if its code is less than kNumOfWatchedStops. // Only watched stops support enabling/disabling and the counter feature. static const uint32_t kNumOfWatchedStops = 256; // Breakpoint is disabled if bit 31 is set. static const uint32_t kStopDisabledBit = 1 << 31; // A stop is enabled, meaning the simulator will stop when meeting the // instruction, if bit 31 of watched_stops_[code].count is unset. // The value watched_stops_[code].count & ~(1 << 31) indicates how many times // the breakpoint was hit or gone through. struct StopCountAndDesc { uint32_t count; char* desc; }; StopCountAndDesc watched_stops_[kNumOfWatchedStops]; // Synchronization primitives. See ARM DDI 0406C.b, A2.9. enum class MonitorAccess { Open, Exclusive, }; enum class TransactionSize { None = 0, Byte = 1, HalfWord = 2, Word = 4, DoubleWord = 8, }; // The least-significant bits of the address are ignored. The number of bits // is implementation-defined, between 3 and 11. See ARM DDI 0406C.b, A3.4.3. static const int32_t kExclusiveTaggedAddrMask = ~((1 << 11) - 1); class LocalMonitor { public: LocalMonitor(); // These functions manage the state machine for the local monitor, but do // not actually perform loads and stores. NotifyStoreExcl only returns // true if the exclusive store is allowed; the global monitor will still // have to be checked to see whether the memory should be updated. void NotifyLoad(int32_t addr); void NotifyLoadExcl(int32_t addr, TransactionSize size); void NotifyStore(int32_t addr); bool NotifyStoreExcl(int32_t addr, TransactionSize size); private: void Clear(); MonitorAccess access_state_; int32_t tagged_addr_; TransactionSize size_; }; class GlobalMonitor { public: class Processor { public: Processor(); private: friend class GlobalMonitor; // These functions manage the state machine for the global monitor, but do // not actually perform loads and stores. void Clear_Locked(); void NotifyLoadExcl_Locked(int32_t addr); void NotifyStore_Locked(int32_t addr, bool is_requesting_processor); bool NotifyStoreExcl_Locked(int32_t addr, bool is_requesting_processor); MonitorAccess access_state_; int32_t tagged_addr_; Processor* next_; Processor* prev_; // A strex can fail due to background cache evictions. Rather than // simulating this, we'll just occasionally introduce cases where an // exclusive store fails. This will happen once after every // kMaxFailureCounter exclusive stores. static const int kMaxFailureCounter = 5; int failure_counter_; }; // Exposed so it can be accessed by Simulator::{Read,Write}Ex*. base::Mutex mutex; void NotifyLoadExcl_Locked(int32_t addr, Processor* processor); void NotifyStore_Locked(int32_t addr, Processor* processor); bool NotifyStoreExcl_Locked(int32_t addr, Processor* processor); // Called when the simulator is destroyed. void RemoveProcessor(Processor* processor); static GlobalMonitor* Get(); private: // Private constructor. Call {GlobalMonitor::Get()} to get the singleton. GlobalMonitor() = default; friend class base::LeakyObject; bool IsProcessorInLinkedList_Locked(Processor* processor) const; void PrependProcessor_Locked(Processor* processor); Processor* head_ = nullptr; }; LocalMonitor local_monitor_; GlobalMonitor::Processor global_monitor_processor_; }; } // namespace internal } // namespace v8 #endif // defined(USE_SIMULATOR) #endif // V8_EXECUTION_ARM_SIMULATOR_ARM_H_