// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #include "src/execution/frames.h" #include #include #include "src/base/bits.h" #include "src/base/platform/wrappers.h" #include "src/codegen/interface-descriptors.h" #include "src/codegen/macro-assembler.h" #include "src/codegen/register-configuration.h" #include "src/codegen/safepoint-table.h" #include "src/common/globals.h" #include "src/deoptimizer/deoptimizer.h" #include "src/execution/frames-inl.h" #include "src/execution/vm-state-inl.h" #include "src/ic/ic-stats.h" #include "src/logging/counters.h" #include "src/objects/code.h" #include "src/objects/slots.h" #include "src/objects/smi.h" #include "src/objects/visitors.h" #include "src/snapshot/embedded/embedded-data-inl.h" #include "src/strings/string-stream.h" #include "src/zone/zone-containers.h" #if V8_ENABLE_WEBASSEMBLY #include "src/debug/debug-wasm-objects.h" #include "src/wasm/wasm-code-manager.h" #include "src/wasm/wasm-engine.h" #include "src/wasm/wasm-objects-inl.h" #endif // V8_ENABLE_WEBASSEMBLY namespace v8 { namespace internal { ReturnAddressLocationResolver StackFrame::return_address_location_resolver_ = nullptr; namespace { Address AddressOf(const StackHandler* handler) { Address raw = handler->address(); #ifdef V8_USE_ADDRESS_SANITIZER // ASan puts C++-allocated StackHandler markers onto its fake stack. // We work around that by storing the real stack address in the "padding" // field. StackHandlers allocated from generated code have 0 as padding. Address padding = base::Memory
(raw + StackHandlerConstants::kPaddingOffset); if (padding != 0) return padding; #endif return raw; } } // namespace // Iterator that supports traversing the stack handlers of a // particular frame. Needs to know the top of the handler chain. class StackHandlerIterator { public: StackHandlerIterator(const StackFrame* frame, StackHandler* handler) : limit_(frame->fp()), handler_(handler) { #if V8_ENABLE_WEBASSEMBLY // Make sure the handler has already been unwound to this frame. With stack // switching this is not equivalent to the inequality below, because the // frame and the handler could be in different stacks. DCHECK_IMPLIES(!FLAG_experimental_wasm_stack_switching, frame->sp() <= AddressOf(handler)); // For CWasmEntry frames, the handler was registered by the last C++ // frame (Execution::CallWasm), so even though its address is already // beyond the limit, we know we always want to unwind one handler. if (frame->is_c_wasm_entry()) handler_ = handler_->next(); #else // Make sure the handler has already been unwound to this frame. DCHECK_LE(frame->sp(), AddressOf(handler)); #endif // V8_ENABLE_WEBASSEMBLY } StackHandler* handler() const { return handler_; } bool done() { return handler_ == nullptr || AddressOf(handler_) > limit_; } void Advance() { DCHECK(!done()); handler_ = handler_->next(); } private: const Address limit_; StackHandler* handler_; }; // ------------------------------------------------------------------------- #define INITIALIZE_SINGLETON(type, field) field##_(this), StackFrameIteratorBase::StackFrameIteratorBase(Isolate* isolate, bool can_access_heap_objects) : isolate_(isolate), STACK_FRAME_TYPE_LIST(INITIALIZE_SINGLETON) frame_(nullptr), handler_(nullptr), can_access_heap_objects_(can_access_heap_objects) {} #undef INITIALIZE_SINGLETON StackFrameIterator::StackFrameIterator(Isolate* isolate) : StackFrameIterator(isolate, isolate->thread_local_top()) {} StackFrameIterator::StackFrameIterator(Isolate* isolate, ThreadLocalTop* t) : StackFrameIteratorBase(isolate, true) { Reset(t); } #if V8_ENABLE_WEBASSEMBLY StackFrameIterator::StackFrameIterator(Isolate* isolate, wasm::StackMemory* stack) : StackFrameIteratorBase(isolate, true) { Reset(isolate->thread_local_top(), stack); } #endif void StackFrameIterator::Advance() { DCHECK(!done()); // Compute the state of the calling frame before restoring // callee-saved registers and unwinding handlers. This allows the // frame code that computes the caller state to access the top // handler and the value of any callee-saved register if needed. StackFrame::State state; StackFrame::Type type = frame_->GetCallerState(&state); // Unwind handlers corresponding to the current frame. StackHandlerIterator it(frame_, handler_); while (!it.done()) it.Advance(); handler_ = it.handler(); // Advance to the calling frame. frame_ = SingletonFor(type, &state); // When we're done iterating over the stack frames, the handler // chain must have been completely unwound. Except for wasm stack-switching: // we stop at the end of the current segment. #if V8_ENABLE_WEBASSEMBLY DCHECK_IMPLIES(done() && !FLAG_experimental_wasm_stack_switching, handler_ == nullptr); #else DCHECK_IMPLIES(done(), handler_ == nullptr); #endif } StackFrame* StackFrameIterator::Reframe() { StackFrame::Type type = frame_->ComputeType(this, &frame_->state_); frame_ = SingletonFor(type, &frame_->state_); return frame(); } void StackFrameIterator::Reset(ThreadLocalTop* top) { StackFrame::State state; StackFrame::Type type = ExitFrame::GetStateForFramePointer(Isolate::c_entry_fp(top), &state); handler_ = StackHandler::FromAddress(Isolate::handler(top)); frame_ = SingletonFor(type, &state); } #if V8_ENABLE_WEBASSEMBLY void StackFrameIterator::Reset(ThreadLocalTop* top, wasm::StackMemory* stack) { if (stack->jmpbuf()->sp == kNullAddress) { // A null SP indicates that the computation associated with this stack has // returned, leaving the stack segment empty. return; } StackFrame::State state; StackSwitchFrame::GetStateForJumpBuffer(stack->jmpbuf(), &state); handler_ = StackHandler::FromAddress(Isolate::handler(top)); frame_ = SingletonFor(StackFrame::STACK_SWITCH, &state); } #endif StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type, StackFrame::State* state) { StackFrame* result = SingletonFor(type); DCHECK((!result) == (type == StackFrame::NO_FRAME_TYPE)); if (result) result->state_ = *state; return result; } StackFrame* StackFrameIteratorBase::SingletonFor(StackFrame::Type type) { #define FRAME_TYPE_CASE(type, field) \ case StackFrame::type: \ return &field##_; switch (type) { case StackFrame::NO_FRAME_TYPE: return nullptr; STACK_FRAME_TYPE_LIST(FRAME_TYPE_CASE) default: break; } return nullptr; #undef FRAME_TYPE_CASE } // ------------------------------------------------------------------------- void TypedFrameWithJSLinkage::Iterate(RootVisitor* v) const { IterateExpressions(v); IteratePc(v, pc_address(), constant_pool_address(), LookupCode()); } // ------------------------------------------------------------------------- void JavaScriptFrameIterator::Advance() { do { iterator_.Advance(); } while (!iterator_.done() && !iterator_.frame()->is_java_script()); } // ------------------------------------------------------------------------- StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate) : iterator_(isolate) { if (!done() && !IsValidFrame(iterator_.frame())) Advance(); } StackTraceFrameIterator::StackTraceFrameIterator(Isolate* isolate, StackFrameId id) : StackTraceFrameIterator(isolate) { while (!done() && frame()->id() != id) Advance(); } void StackTraceFrameIterator::Advance() { do { iterator_.Advance(); } while (!done() && !IsValidFrame(iterator_.frame())); } int StackTraceFrameIterator::FrameFunctionCount() const { DCHECK(!done()); if (!iterator_.frame()->is_optimized()) return 1; std::vector infos; OptimizedFrame::cast(iterator_.frame())->GetFunctions(&infos); return static_cast(infos.size()); } FrameSummary StackTraceFrameIterator::GetTopValidFrame() const { DCHECK(!done()); // Like FrameSummary::GetTop, but additionally observes // StackTraceFrameIterator filtering semantics. std::vector frames; frame()->Summarize(&frames); if (is_javascript()) { for (int i = static_cast(frames.size()) - 1; i >= 0; i--) { if (!IsValidJSFunction(*frames[i].AsJavaScript().function())) continue; return frames[i]; } UNREACHABLE(); } #if V8_ENABLE_WEBASSEMBLY if (is_wasm()) return frames.back(); #endif // V8_ENABLE_WEBASSEMBLY UNREACHABLE(); } // static bool StackTraceFrameIterator::IsValidFrame(StackFrame* frame) { if (frame->is_java_script()) { return IsValidJSFunction(static_cast(frame)->function()); } #if V8_ENABLE_WEBASSEMBLY if (frame->is_wasm()) return true; #endif // V8_ENABLE_WEBASSEMBLY return false; } // static bool StackTraceFrameIterator::IsValidJSFunction(JSFunction f) { if (!f.IsJSFunction()) return false; return f.shared().IsSubjectToDebugging(); } // ------------------------------------------------------------------------- namespace { bool IsInterpreterFramePc(Isolate* isolate, Address pc, StackFrame::State* state) { Builtin builtin = OffHeapInstructionStream::TryLookupCode(isolate, pc); if (builtin != Builtin::kNoBuiltinId && (builtin == Builtin::kInterpreterEntryTrampoline || builtin == Builtin::kInterpreterEnterAtBytecode || builtin == Builtin::kInterpreterEnterAtNextBytecode || builtin == Builtin::kBaselineOrInterpreterEnterAtBytecode || builtin == Builtin::kBaselineOrInterpreterEnterAtNextBytecode)) { return true; } else if (FLAG_interpreted_frames_native_stack) { intptr_t marker = Memory( state->fp + CommonFrameConstants::kContextOrFrameTypeOffset); MSAN_MEMORY_IS_INITIALIZED( state->fp + StandardFrameConstants::kFunctionOffset, kSystemPointerSize); Object maybe_function = Object( Memory
(state->fp + StandardFrameConstants::kFunctionOffset)); // There's no need to run a full ContainsSlow if we know the frame can't be // an InterpretedFrame, so we do these fast checks first if (StackFrame::IsTypeMarker(marker) || maybe_function.IsSmi()) { return false; } else if (!isolate->heap()->InSpaceSlow(pc, CODE_SPACE)) { return false; } Code interpreter_entry_trampoline = isolate->heap()->GcSafeFindCodeForInnerPointer(pc); return interpreter_entry_trampoline.is_interpreter_trampoline_builtin(); } else { return false; } } } // namespace bool SafeStackFrameIterator::IsNoFrameBytecodeHandlerPc(Isolate* isolate, Address pc, Address fp) const { // Return false for builds with non-embedded bytecode handlers. if (Isolate::CurrentEmbeddedBlobCode() == nullptr) return false; EmbeddedData d = EmbeddedData::FromBlob(isolate); if (pc < d.InstructionStartOfBytecodeHandlers() || pc >= d.InstructionEndOfBytecodeHandlers()) { // Not a bytecode handler pc address. return false; } if (!IsValidStackAddress(fp + CommonFrameConstants::kContextOrFrameTypeOffset)) { return false; } // Check if top stack frame is a bytecode handler stub frame. MSAN_MEMORY_IS_INITIALIZED( fp + CommonFrameConstants::kContextOrFrameTypeOffset, kSystemPointerSize); intptr_t marker = Memory(fp + CommonFrameConstants::kContextOrFrameTypeOffset); if (StackFrame::IsTypeMarker(marker) && StackFrame::MarkerToType(marker) == StackFrame::STUB) { // Bytecode handler built a frame. return false; } return true; } SafeStackFrameIterator::SafeStackFrameIterator(Isolate* isolate, Address pc, Address fp, Address sp, Address lr, Address js_entry_sp) : StackFrameIteratorBase(isolate, false), low_bound_(sp), high_bound_(js_entry_sp), top_frame_type_(StackFrame::NO_FRAME_TYPE), top_context_address_(kNullAddress), external_callback_scope_(isolate->external_callback_scope()), top_link_register_(lr) { StackFrame::State state; StackFrame::Type type; ThreadLocalTop* top = isolate->thread_local_top(); bool advance_frame = true; Address fast_c_fp = isolate->isolate_data()->fast_c_call_caller_fp(); uint8_t stack_is_iterable = isolate->isolate_data()->stack_is_iterable(); if (!stack_is_iterable) { frame_ = nullptr; return; } // 'Fast C calls' are a special type of C call where we call directly from // JS to C without an exit frame inbetween. The CEntryStub is responsible // for setting Isolate::c_entry_fp, meaning that it won't be set for fast C // calls. To keep the stack iterable, we store the FP and PC of the caller // of the fast C call on the isolate. This is guaranteed to be the topmost // JS frame, because fast C calls cannot call back into JS. We start // iterating the stack from this topmost JS frame. if (fast_c_fp) { DCHECK_NE(kNullAddress, isolate->isolate_data()->fast_c_call_caller_pc()); type = StackFrame::Type::OPTIMIZED; top_frame_type_ = type; state.fp = fast_c_fp; state.sp = sp; state.pc_address = reinterpret_cast( isolate->isolate_data()->fast_c_call_caller_pc_address()); advance_frame = false; } else if (IsValidTop(top)) { type = ExitFrame::GetStateForFramePointer(Isolate::c_entry_fp(top), &state); top_frame_type_ = type; } else if (IsValidStackAddress(fp)) { DCHECK_NE(fp, kNullAddress); state.fp = fp; state.sp = sp; state.pc_address = StackFrame::ResolveReturnAddressLocation( reinterpret_cast(CommonFrame::ComputePCAddress(fp))); // If the current PC is in a bytecode handler, the top stack frame isn't // the bytecode handler's frame and the top of stack or link register is a // return address into the interpreter entry trampoline, then we are likely // in a bytecode handler with elided frame. In that case, set the PC // properly and make sure we do not drop the frame. bool is_no_frame_bytecode_handler = false; if (IsNoFrameBytecodeHandlerPc(isolate, pc, fp)) { Address* tos_location = nullptr; if (top_link_register_) { tos_location = &top_link_register_; } else if (IsValidStackAddress(sp)) { MSAN_MEMORY_IS_INITIALIZED(sp, kSystemPointerSize); tos_location = reinterpret_cast(sp); } if (IsInterpreterFramePc(isolate, *tos_location, &state)) { state.pc_address = tos_location; is_no_frame_bytecode_handler = true; advance_frame = false; } } // StackFrame::ComputeType will read both kContextOffset and kMarkerOffset, // we check only that kMarkerOffset is within the stack bounds and do // compile time check that kContextOffset slot is pushed on the stack before // kMarkerOffset. STATIC_ASSERT(StandardFrameConstants::kFunctionOffset < StandardFrameConstants::kContextOffset); Address frame_marker = fp + StandardFrameConstants::kFunctionOffset; if (IsValidStackAddress(frame_marker)) { if (is_no_frame_bytecode_handler) { type = StackFrame::INTERPRETED; } else { type = StackFrame::ComputeType(this, &state); } top_frame_type_ = type; MSAN_MEMORY_IS_INITIALIZED( fp + CommonFrameConstants::kContextOrFrameTypeOffset, kSystemPointerSize); Address type_or_context_address = Memory
(fp + CommonFrameConstants::kContextOrFrameTypeOffset); if (!StackFrame::IsTypeMarker(type_or_context_address)) top_context_address_ = type_or_context_address; } else { // Mark the frame as OPTIMIZED if we cannot determine its type. // We chose OPTIMIZED rather than INTERPRETED because it's closer to // the original value of StackFrame::JAVA_SCRIPT here, in that JAVA_SCRIPT // referred to full-codegen frames (now removed from the tree), and // OPTIMIZED refers to turbofan frames, both of which are generated // code. INTERPRETED frames refer to bytecode. // The frame anyways will be skipped. type = StackFrame::OPTIMIZED; // Top frame is incomplete so we cannot reliably determine its type. top_frame_type_ = StackFrame::NO_FRAME_TYPE; } } else { return; } frame_ = SingletonFor(type, &state); if (advance_frame && frame_) Advance(); } bool SafeStackFrameIterator::IsValidTop(ThreadLocalTop* top) const { Address c_entry_fp = Isolate::c_entry_fp(top); if (!IsValidExitFrame(c_entry_fp)) return false; // There should be at least one JS_ENTRY stack handler. Address handler = Isolate::handler(top); if (handler == kNullAddress) return false; // Check that there are no js frames on top of the native frames. return c_entry_fp < handler; } void SafeStackFrameIterator::AdvanceOneFrame() { DCHECK(!done()); StackFrame* last_frame = frame_; Address last_sp = last_frame->sp(), last_fp = last_frame->fp(); // Before advancing to the next stack frame, perform pointer validity tests. if (!IsValidFrame(last_frame) || !IsValidCaller(last_frame)) { frame_ = nullptr; return; } // Advance to the previous frame. StackFrame::State state; StackFrame::Type type = frame_->GetCallerState(&state); frame_ = SingletonFor(type, &state); if (!frame_) return; // Check that we have actually moved to the previous frame in the stack. if (frame_->sp() <= last_sp || frame_->fp() <= last_fp) { frame_ = nullptr; } } bool SafeStackFrameIterator::IsValidFrame(StackFrame* frame) const { return IsValidStackAddress(frame->sp()) && IsValidStackAddress(frame->fp()); } bool SafeStackFrameIterator::IsValidCaller(StackFrame* frame) { StackFrame::State state; if (frame->is_entry() || frame->is_construct_entry()) { // See EntryFrame::GetCallerState. It computes the caller FP address // and calls ExitFrame::GetStateForFramePointer on it. We need to be // sure that caller FP address is valid. Address caller_fp = Memory
(frame->fp() + EntryFrameConstants::kCallerFPOffset); if (!IsValidExitFrame(caller_fp)) return false; } frame->ComputeCallerState(&state); return IsValidStackAddress(state.sp) && IsValidStackAddress(state.fp) && SingletonFor(frame->GetCallerState(&state)) != nullptr; } bool SafeStackFrameIterator::IsValidExitFrame(Address fp) const { if (!IsValidStackAddress(fp)) return false; Address sp = ExitFrame::ComputeStackPointer(fp); if (!IsValidStackAddress(sp)) return false; StackFrame::State state; ExitFrame::FillState(fp, sp, &state); MSAN_MEMORY_IS_INITIALIZED(state.pc_address, sizeof(state.pc_address)); return *state.pc_address != kNullAddress; } void SafeStackFrameIterator::Advance() { while (true) { AdvanceOneFrame(); if (done()) break; ExternalCallbackScope* last_callback_scope = nullptr; while (external_callback_scope_ != nullptr && external_callback_scope_->scope_address() < frame_->fp()) { // As long as the setup of a frame is not atomic, we may happen to be // in an interval where an ExternalCallbackScope is already created, // but the frame is not yet entered. So we are actually observing // the previous frame. // Skip all the ExternalCallbackScope's that are below the current fp. last_callback_scope = external_callback_scope_; external_callback_scope_ = external_callback_scope_->previous(); } if (frame_->is_java_script()) break; #if V8_ENABLE_WEBASSEMBLY if (frame_->is_wasm() || frame_->is_wasm_to_js() || frame_->is_js_to_wasm()) { break; } #endif // V8_ENABLE_WEBASSEMBLY if (frame_->is_exit() || frame_->is_builtin_exit()) { // Some of the EXIT frames may have ExternalCallbackScope allocated on // top of them. In that case the scope corresponds to the first EXIT // frame beneath it. There may be other EXIT frames on top of the // ExternalCallbackScope, just skip them as we cannot collect any useful // information about them. if (last_callback_scope) { frame_->state_.pc_address = last_callback_scope->callback_entrypoint_address(); } break; } } } // ------------------------------------------------------------------------- namespace { Code GetContainingCode(Isolate* isolate, Address pc) { return isolate->inner_pointer_to_code_cache()->GetCacheEntry(pc)->code; } } // namespace Code StackFrame::LookupCode() const { Code result = GetContainingCode(isolate(), pc()); DCHECK_GE(pc(), result.InstructionStart(isolate(), pc())); DCHECK_LT(pc(), result.InstructionEnd(isolate(), pc())); return result; } void StackFrame::IteratePc(RootVisitor* v, Address* pc_address, Address* constant_pool_address, Code holder) const { Address old_pc = ReadPC(pc_address); DCHECK(ReadOnlyHeap::Contains(holder) || holder.GetHeap()->GcSafeCodeContains(holder, old_pc)); unsigned pc_offset = holder.GetOffsetFromInstructionStart(isolate_, old_pc); Object code = holder; v->VisitRunningCode(FullObjectSlot(&code)); if (code == holder) return; holder = Code::unchecked_cast(code); Address pc = holder.InstructionStart(isolate_, old_pc) + pc_offset; // TODO(v8:10026): avoid replacing a signed pointer. PointerAuthentication::ReplacePC(pc_address, pc, kSystemPointerSize); if (FLAG_enable_embedded_constant_pool && constant_pool_address) { *constant_pool_address = holder.constant_pool(); } } void StackFrame::SetReturnAddressLocationResolver( ReturnAddressLocationResolver resolver) { DCHECK_NULL(return_address_location_resolver_); return_address_location_resolver_ = resolver; } StackFrame::Type StackFrame::ComputeType(const StackFrameIteratorBase* iterator, State* state) { #if V8_ENABLE_WEBASSEMBLY if (state->fp == kNullAddress) { DCHECK(FLAG_experimental_wasm_stack_switching); return NO_FRAME_TYPE; } #endif MSAN_MEMORY_IS_INITIALIZED( state->fp + CommonFrameConstants::kContextOrFrameTypeOffset, kSystemPointerSize); intptr_t marker = Memory( state->fp + CommonFrameConstants::kContextOrFrameTypeOffset); Address pc = StackFrame::ReadPC(state->pc_address); if (!iterator->can_access_heap_objects_) { // TODO(titzer): "can_access_heap_objects" is kind of bogus. It really // means that we are being called from the profiler, which can interrupt // the VM with a signal at any arbitrary instruction, with essentially // anything on the stack. So basically none of these checks are 100% // reliable. MSAN_MEMORY_IS_INITIALIZED( state->fp + StandardFrameConstants::kFunctionOffset, kSystemPointerSize); Object maybe_function = Object( Memory
(state->fp + StandardFrameConstants::kFunctionOffset)); if (!StackFrame::IsTypeMarker(marker)) { if (maybe_function.IsSmi()) { return NATIVE; } else if (IsInterpreterFramePc(iterator->isolate(), pc, state)) { return INTERPRETED; } else { return OPTIMIZED; } } } else { #if V8_ENABLE_WEBASSEMBLY // If the {pc} does not point into WebAssembly code we can rely on the // returned {wasm_code} to be null and fall back to {GetContainingCode}. wasm::WasmCodeRefScope code_ref_scope; if (wasm::WasmCode* wasm_code = wasm::GetWasmCodeManager()->LookupCode(pc)) { switch (wasm_code->kind()) { case wasm::WasmCode::kWasmFunction: return WASM; case wasm::WasmCode::kWasmToCapiWrapper: return WASM_EXIT; case wasm::WasmCode::kWasmToJsWrapper: return WASM_TO_JS; default: UNREACHABLE(); } } #endif // V8_ENABLE_WEBASSEMBLY // Look up the code object to figure out the type of the stack frame. Code code_obj = GetContainingCode(iterator->isolate(), pc); if (!code_obj.is_null()) { switch (code_obj.kind()) { case CodeKind::BUILTIN: if (StackFrame::IsTypeMarker(marker)) break; if (code_obj.is_interpreter_trampoline_builtin() || // Frames for baseline entry trampolines on the stack are still // interpreted frames. code_obj.is_baseline_trampoline_builtin()) { return INTERPRETED; } if (code_obj.is_baseline_leave_frame_builtin()) { return BASELINE; } if (code_obj.is_turbofanned()) { // TODO(bmeurer): We treat frames for BUILTIN Code objects as // OptimizedFrame for now (all the builtins with JavaScript // linkage are actually generated with TurboFan currently, so // this is sound). return OPTIMIZED; } return BUILTIN; case CodeKind::TURBOFAN: case CodeKind::MAGLEV: return OPTIMIZED; case CodeKind::BASELINE: return Type::BASELINE; #if V8_ENABLE_WEBASSEMBLY case CodeKind::JS_TO_WASM_FUNCTION: return JS_TO_WASM; case CodeKind::JS_TO_JS_FUNCTION: return STUB; case CodeKind::C_WASM_ENTRY: return C_WASM_ENTRY; case CodeKind::WASM_TO_JS_FUNCTION: return WASM_TO_JS; case CodeKind::WASM_FUNCTION: case CodeKind::WASM_TO_CAPI_FUNCTION: // Never appear as on-heap {Code} objects. UNREACHABLE(); #endif // V8_ENABLE_WEBASSEMBLY default: // All other types should have an explicit marker break; } } else { return NATIVE; } } DCHECK(StackFrame::IsTypeMarker(marker)); StackFrame::Type candidate = StackFrame::MarkerToType(marker); switch (candidate) { case ENTRY: case CONSTRUCT_ENTRY: case EXIT: case BUILTIN_CONTINUATION: case JAVA_SCRIPT_BUILTIN_CONTINUATION: case JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH: case BUILTIN_EXIT: case STUB: case INTERNAL: case CONSTRUCT: #if V8_ENABLE_WEBASSEMBLY case WASM_TO_JS: case WASM: case WASM_COMPILE_LAZY: case WASM_EXIT: case WASM_DEBUG_BREAK: case JS_TO_WASM: case STACK_SWITCH: #endif // V8_ENABLE_WEBASSEMBLY return candidate; case OPTIMIZED: case INTERPRETED: default: // Unoptimized and optimized JavaScript frames, including // interpreted frames, should never have a StackFrame::Type // marker. If we find one, we're likely being called from the // profiler in a bogus stack frame. return NATIVE; } } #ifdef DEBUG bool StackFrame::can_access_heap_objects() const { return iterator_->can_access_heap_objects_; } #endif StackFrame::Type StackFrame::GetCallerState(State* state) const { ComputeCallerState(state); return ComputeType(iterator_, state); } Address CommonFrame::GetCallerStackPointer() const { return fp() + CommonFrameConstants::kCallerSPOffset; } void NativeFrame::ComputeCallerState(State* state) const { state->sp = caller_sp(); state->fp = Memory
(fp() + CommonFrameConstants::kCallerFPOffset); state->pc_address = ResolveReturnAddressLocation( reinterpret_cast(fp() + CommonFrameConstants::kCallerPCOffset)); state->callee_pc_address = nullptr; state->constant_pool_address = nullptr; } Code EntryFrame::unchecked_code() const { return FromCodeT(isolate()->builtins()->code(Builtin::kJSEntry)); } void EntryFrame::ComputeCallerState(State* state) const { GetCallerState(state); } StackFrame::Type EntryFrame::GetCallerState(State* state) const { const int offset = EntryFrameConstants::kCallerFPOffset; Address fp = Memory
(this->fp() + offset); return ExitFrame::GetStateForFramePointer(fp, state); } #if V8_ENABLE_WEBASSEMBLY StackFrame::Type CWasmEntryFrame::GetCallerState(State* state) const { const int offset = CWasmEntryFrameConstants::kCEntryFPOffset; Address fp = Memory
(this->fp() + offset); return ExitFrame::GetStateForFramePointer(fp, state); } #endif // V8_ENABLE_WEBASSEMBLY Code ConstructEntryFrame::unchecked_code() const { return FromCodeT(isolate()->builtins()->code(Builtin::kJSConstructEntry)); } void ExitFrame::ComputeCallerState(State* state) const { // Set up the caller state. state->sp = caller_sp(); state->fp = Memory
(fp() + ExitFrameConstants::kCallerFPOffset); state->pc_address = ResolveReturnAddressLocation( reinterpret_cast(fp() + ExitFrameConstants::kCallerPCOffset)); state->callee_pc_address = nullptr; if (FLAG_enable_embedded_constant_pool) { state->constant_pool_address = reinterpret_cast( fp() + ExitFrameConstants::kConstantPoolOffset); } } void ExitFrame::Iterate(RootVisitor* v) const { // The arguments are traversed as part of the expression stack of // the calling frame. IteratePc(v, pc_address(), constant_pool_address(), LookupCode()); } StackFrame::Type ExitFrame::GetStateForFramePointer(Address fp, State* state) { if (fp == 0) return NO_FRAME_TYPE; StackFrame::Type type = ComputeFrameType(fp); #if V8_ENABLE_WEBASSEMBLY Address sp = type == WASM_EXIT ? WasmExitFrame::ComputeStackPointer(fp) : ExitFrame::ComputeStackPointer(fp); #else Address sp = ExitFrame::ComputeStackPointer(fp); #endif // V8_ENABLE_WEBASSEMBLY FillState(fp, sp, state); DCHECK_NE(*state->pc_address, kNullAddress); return type; } StackFrame::Type ExitFrame::ComputeFrameType(Address fp) { // Distinguish between between regular and builtin exit frames. // Default to EXIT in all hairy cases (e.g., when called from profiler). const int offset = ExitFrameConstants::kFrameTypeOffset; Object marker(Memory
(fp + offset)); if (!marker.IsSmi()) { return EXIT; } intptr_t marker_int = bit_cast(marker); StackFrame::Type frame_type = static_cast(marker_int >> 1); switch (frame_type) { case BUILTIN_EXIT: #if V8_ENABLE_WEBASSEMBLY case WASM_EXIT: case STACK_SWITCH: #endif // V8_ENABLE_WEBASSEMBLY return frame_type; default: return EXIT; } } Address ExitFrame::ComputeStackPointer(Address fp) { MSAN_MEMORY_IS_INITIALIZED(fp + ExitFrameConstants::kSPOffset, kSystemPointerSize); return Memory
(fp + ExitFrameConstants::kSPOffset); } #if V8_ENABLE_WEBASSEMBLY Address WasmExitFrame::ComputeStackPointer(Address fp) { // For WASM_EXIT frames, {sp} is only needed for finding the PC slot, // everything else is handled via safepoint information. Address sp = fp + WasmExitFrameConstants::kWasmInstanceOffset; DCHECK_EQ(sp - 1 * kPCOnStackSize, fp + WasmExitFrameConstants::kCallingPCOffset); return sp; } #endif // V8_ENABLE_WEBASSEMBLY void ExitFrame::FillState(Address fp, Address sp, State* state) { state->sp = sp; state->fp = fp; state->pc_address = ResolveReturnAddressLocation( reinterpret_cast(sp - 1 * kPCOnStackSize)); state->callee_pc_address = nullptr; // The constant pool recorded in the exit frame is not associated // with the pc in this state (the return address into a C entry // stub). ComputeCallerState will retrieve the constant pool // together with the associated caller pc. state->constant_pool_address = nullptr; } void BuiltinExitFrame::Summarize(std::vector* frames) const { DCHECK(frames->empty()); Handle parameters = GetParameters(); DisallowGarbageCollection no_gc; Code code = LookupCode(); int code_offset = code.GetOffsetFromInstructionStart(isolate(), pc()); FrameSummary::JavaScriptFrameSummary summary( isolate(), receiver(), function(), AbstractCode::cast(code), code_offset, IsConstructor(), *parameters); frames->push_back(summary); } JSFunction BuiltinExitFrame::function() const { return JSFunction::cast(target_slot_object()); } Object BuiltinExitFrame::receiver() const { return receiver_slot_object(); } Object BuiltinExitFrame::GetParameter(int i) const { DCHECK(i >= 0 && i < ComputeParametersCount()); int offset = BuiltinExitFrameConstants::kFirstArgumentOffset + i * kSystemPointerSize; return Object(Memory
(fp() + offset)); } int BuiltinExitFrame::ComputeParametersCount() const { Object argc_slot = argc_slot_object(); DCHECK(argc_slot.IsSmi()); // Argc also counts the receiver, target, new target, and argc itself as args, // therefore the real argument count is argc - 4. int argc = Smi::ToInt(argc_slot) - 4; DCHECK_GE(argc, 0); return argc; } Handle BuiltinExitFrame::GetParameters() const { if (V8_LIKELY(!FLAG_detailed_error_stack_trace)) { return isolate()->factory()->empty_fixed_array(); } int param_count = ComputeParametersCount(); auto parameters = isolate()->factory()->NewFixedArray(param_count); for (int i = 0; i < param_count; i++) { parameters->set(i, GetParameter(i)); } return parameters; } bool BuiltinExitFrame::IsConstructor() const { return !new_target_slot_object().IsUndefined(isolate()); } namespace { void PrintIndex(StringStream* accumulator, StackFrame::PrintMode mode, int index) { accumulator->Add((mode == StackFrame::OVERVIEW) ? "%5d: " : "[%d]: ", index); } const char* StringForStackFrameType(StackFrame::Type type) { switch (type) { #define CASE(value, name) \ case StackFrame::value: \ return #name; STACK_FRAME_TYPE_LIST(CASE) #undef CASE default: UNREACHABLE(); } } } // namespace void StackFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { DisallowGarbageCollection no_gc; PrintIndex(accumulator, mode, index); accumulator->Add(StringForStackFrameType(type())); accumulator->Add(" [pc: %p]\n", reinterpret_cast(pc())); } void BuiltinExitFrame::Print(StringStream* accumulator, PrintMode mode, int index) const { DisallowGarbageCollection no_gc; Object receiver = this->receiver(); JSFunction function = this->function(); accumulator->PrintSecurityTokenIfChanged(function); PrintIndex(accumulator, mode, index); accumulator->Add("builtin exit frame: "); Code code; if (IsConstructor()) accumulator->Add("new "); accumulator->PrintFunction(function, receiver, &code); accumulator->Add("(this=%o", receiver); // Print the parameters. int parameters_count = ComputeParametersCount(); for (int i = 0; i < parameters_count; i++) { accumulator->Add(",%o", GetParameter(i)); } accumulator->Add(")\n\n"); } Address CommonFrame::GetExpressionAddress(int n) const { const int offset = StandardFrameConstants::kExpressionsOffset; return fp() + offset - n * kSystemPointerSize; } Address UnoptimizedFrame::GetExpressionAddress(int n) const { const int offset = UnoptimizedFrameConstants::kExpressionsOffset; return fp() + offset - n * kSystemPointerSize; } Object CommonFrame::context() const { return ReadOnlyRoots(isolate()).undefined_value(); } int CommonFrame::position() const { Code code = LookupCode(); int code_offset = code.GetOffsetFromInstructionStart(isolate(), pc()); return AbstractCode::cast(code).SourcePosition(code_offset); } int CommonFrame::ComputeExpressionsCount() const { Address base = GetExpressionAddress(0); Address limit = sp() - kSystemPointerSize; DCHECK(base >= limit); // stack grows downwards // Include register-allocated locals in number of expressions. return static_cast((base - limit) / kSystemPointerSize); } void CommonFrame::ComputeCallerState(State* state) const { state->fp = caller_fp(); #if V8_ENABLE_WEBASSEMBLY if (state->fp == kNullAddress) { // An empty FP signals the first frame of a stack segment. The caller is // on a different stack, or is unbound (suspended stack). DCHECK(FLAG_experimental_wasm_stack_switching); return; } #endif state->sp = caller_sp(); state->pc_address = ResolveReturnAddressLocation( reinterpret_cast(ComputePCAddress(fp()))); state->callee_fp = fp(); state->callee_pc_address = pc_address(); state->constant_pool_address = reinterpret_cast(ComputeConstantPoolAddress(fp())); } void CommonFrame::Summarize(std::vector* functions) const { // This should only be called on frames which override this method. UNREACHABLE(); } void CommonFrame::IterateCompiledFrame(RootVisitor* v) const { // Make sure that we're not doing "safe" stack frame iteration. We cannot // possibly find pointers in optimized frames in that state. DCHECK(can_access_heap_objects()); // Find the code and compute the safepoint information. Address inner_pointer = pc(); SafepointEntry safepoint_entry; uint32_t stack_slots = 0; Code code; bool has_tagged_outgoing_params = false; uint16_t first_tagged_parameter_slot = 0; uint16_t num_tagged_parameter_slots = 0; bool is_wasm = false; #if V8_ENABLE_WEBASSEMBLY bool has_wasm_feedback_slot = false; if (auto* wasm_code = wasm::GetWasmCodeManager()->LookupCode(inner_pointer)) { is_wasm = true; SafepointTable table(wasm_code); safepoint_entry = table.FindEntry(inner_pointer); stack_slots = wasm_code->stack_slots(); has_tagged_outgoing_params = wasm_code->kind() != wasm::WasmCode::kWasmFunction && wasm_code->kind() != wasm::WasmCode::kWasmToCapiWrapper; first_tagged_parameter_slot = wasm_code->first_tagged_parameter_slot(); num_tagged_parameter_slots = wasm_code->num_tagged_parameter_slots(); if (wasm_code->is_liftoff() && FLAG_wasm_speculative_inlining) { has_wasm_feedback_slot = true; } } #endif // V8_ENABLE_WEBASSEMBLY if (!is_wasm) { InnerPointerToCodeCache::InnerPointerToCodeCacheEntry* entry = isolate()->inner_pointer_to_code_cache()->GetCacheEntry(inner_pointer); if (!entry->safepoint_entry.is_initialized()) { entry->safepoint_entry = entry->code.GetSafepointEntry(isolate(), inner_pointer); DCHECK(entry->safepoint_entry.is_initialized()); } else { DCHECK_EQ(entry->safepoint_entry, entry->code.GetSafepointEntry(isolate(), inner_pointer)); } code = entry->code; safepoint_entry = entry->safepoint_entry; stack_slots = code.stack_slots(); has_tagged_outgoing_params = code.has_tagged_outgoing_params(); #if V8_ENABLE_WEBASSEMBLY // With inlined JS-to-Wasm calls, we can be in an OptimizedFrame and // directly call a Wasm function from JavaScript. In this case the // parameters we pass to the callee are not tagged. wasm::WasmCode* wasm_callee = wasm::GetWasmCodeManager()->LookupCode(callee_pc()); bool is_wasm_call = (wasm_callee != nullptr); if (is_wasm_call) has_tagged_outgoing_params = false; #endif // V8_ENABLE_WEBASSEMBLY } // Determine the fixed header and spill slot area size. int frame_header_size = StandardFrameConstants::kFixedFrameSizeFromFp; intptr_t marker = Memory(fp() + CommonFrameConstants::kContextOrFrameTypeOffset); bool typed_frame = StackFrame::IsTypeMarker(marker); if (typed_frame) { StackFrame::Type candidate = StackFrame::MarkerToType(marker); switch (candidate) { case ENTRY: case CONSTRUCT_ENTRY: case EXIT: case BUILTIN_CONTINUATION: case JAVA_SCRIPT_BUILTIN_CONTINUATION: case JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH: case BUILTIN_EXIT: case STUB: case INTERNAL: case CONSTRUCT: #if V8_ENABLE_WEBASSEMBLY case JS_TO_WASM: case STACK_SWITCH: case C_WASM_ENTRY: case WASM_DEBUG_BREAK: #endif // V8_ENABLE_WEBASSEMBLY frame_header_size = TypedFrameConstants::kFixedFrameSizeFromFp; break; #if V8_ENABLE_WEBASSEMBLY case WASM_TO_JS: case WASM: case WASM_COMPILE_LAZY: frame_header_size = WasmFrameConstants::kFixedFrameSizeFromFp; if (has_wasm_feedback_slot) frame_header_size += kSystemPointerSize; break; case WASM_EXIT: // The last value in the frame header is the calling PC, which should // not be visited. static_assert(WasmExitFrameConstants::kFixedSlotCountFromFp == WasmFrameConstants::kFixedSlotCountFromFp + 1, "WasmExitFrame has one slot more than WasmFrame"); frame_header_size = WasmFrameConstants::kFixedFrameSizeFromFp; break; #endif // V8_ENABLE_WEBASSEMBLY case OPTIMIZED: case INTERPRETED: case BASELINE: case BUILTIN: // These frame types have a context, but they are actually stored // in the place on the stack that one finds the frame type. UNREACHABLE(); case NATIVE: case NO_FRAME_TYPE: case NUMBER_OF_TYPES: case MANUAL: UNREACHABLE(); } } // slot_space holds the actual number of spill slots, without fixed frame // slots. const uint32_t slot_space = stack_slots * kSystemPointerSize - (frame_header_size + StandardFrameConstants::kFixedFrameSizeAboveFp); // base <= limit. // Fixed frame slots. FullObjectSlot frame_header_base(&Memory
(fp() - frame_header_size)); FullObjectSlot frame_header_limit( &Memory
(fp() - StandardFrameConstants::kCPSlotSize)); // Parameters passed to the callee. FullObjectSlot parameters_base(&Memory
(sp())); FullObjectSlot parameters_limit(frame_header_base.address() - slot_space); // Spill slots are in the region ]frame_header_base, parameters_limit]; // Visit the rest of the parameters if they are tagged. if (has_tagged_outgoing_params) { v->VisitRootPointers(Root::kStackRoots, nullptr, parameters_base, parameters_limit); } // Visit pointer spill slots and locals. DCHECK_GE((stack_slots + kBitsPerByte) / kBitsPerByte, safepoint_entry.tagged_slots().size()); int slot_offset = 0; PtrComprCageBase cage_base(isolate()); for (uint8_t bits : safepoint_entry.tagged_slots()) { while (bits) { const int bit = base::bits::CountTrailingZeros(bits); bits &= ~(1 << bit); FullObjectSlot spill_slot = parameters_limit + slot_offset + bit; #ifdef V8_COMPRESS_POINTERS // Spill slots may contain compressed values in which case the upper // 32-bits will contain zeros. In order to simplify handling of such // slots in GC we ensure that the slot always contains full value. // The spill slot may actually contain weak references so we load/store // values using spill_slot.location() in order to avoid dealing with // FullMaybeObjectSlots here. if (V8_EXTERNAL_CODE_SPACE_BOOL) { // When external code space is enabled the spill slot could contain both // Code and non-Code references, which have different cage bases. So // unconditional decompression of the value might corrupt Code pointers. // However, given that // 1) the Code pointers are never compressed by design (because // otherwise we wouldn't know which cage base to apply for // decompression, see respective DCHECKs in // RelocInfo::target_object()), // 2) there's no need to update the upper part of the full pointer // because if it was there then it'll stay the same, // we can avoid updating upper part of the spill slot if it already // contains full value. // TODO(v8:11880): Remove this special handling by enforcing builtins // to use CodeTs instead of Code objects. Address value = *spill_slot.location(); if (!HAS_SMI_TAG(value) && value <= 0xffffffff) { // We don't need to update smi values or full pointers. *spill_slot.location() = DecompressTaggedPointer(cage_base, static_cast(value)); if (DEBUG_BOOL) { // Ensure that the spill slot contains correct heap object. HeapObject raw = HeapObject::cast(Object(*spill_slot.location())); MapWord map_word = raw.map_word(cage_base, kRelaxedLoad); HeapObject forwarded = map_word.IsForwardingAddress() ? map_word.ToForwardingAddress() : raw; bool is_self_forwarded = forwarded.map_word(cage_base, kRelaxedLoad).ptr() == forwarded.address(); if (is_self_forwarded) { // The object might be in a self-forwarding state if it's located // in new large object space. GC will fix this at a later stage. CHECK(BasicMemoryChunk::FromHeapObject(forwarded) ->InNewLargeObjectSpace()); } else { CHECK(forwarded.map(cage_base).IsMap(cage_base)); } } } } else { Tagged_t compressed_value = static_cast(*spill_slot.location()); if (!HAS_SMI_TAG(compressed_value)) { // We don't need to update smi values. *spill_slot.location() = DecompressTaggedPointer(cage_base, compressed_value); } } #endif v->VisitRootPointer(Root::kStackRoots, nullptr, spill_slot); } slot_offset += kBitsPerByte; } // Visit tagged parameters that have been passed to the function of this // frame. Conceptionally these parameters belong to the parent frame. However, // the exact count is only known by this frame (in the presence of tail calls, // this information cannot be derived from the call site). if (num_tagged_parameter_slots > 0) { FullObjectSlot tagged_parameter_base(&Memory
(caller_sp())); tagged_parameter_base += first_tagged_parameter_slot; FullObjectSlot tagged_parameter_limit = tagged_parameter_base + num_tagged_parameter_slots; v->VisitRootPointers(Root::kStackRoots, nullptr, tagged_parameter_base, tagged_parameter_limit); } // For the off-heap code cases, we can skip this. if (!code.is_null()) { // Visit the return address in the callee and incoming arguments. IteratePc(v, pc_address(), constant_pool_address(), code); } // If this frame has JavaScript ABI, visit the context (in stub and JS // frames) and the function (in JS frames). If it has WebAssembly ABI, visit // the instance object. if (!typed_frame) { // JavaScript ABI frames also contain arguments count value which is stored // untagged, we don't need to visit it. frame_header_base += 1; } v->VisitRootPointers(Root::kStackRoots, nullptr, frame_header_base, frame_header_limit); } Code StubFrame::unchecked_code() const { return isolate()->FindCodeObject(pc()); } int StubFrame::LookupExceptionHandlerInTable() { Code code = LookupCode(); DCHECK(code.is_turbofanned()); DCHECK_EQ(code.kind(), CodeKind::BUILTIN); HandlerTable table(code); int pc_offset = code.GetOffsetFromInstructionStart(isolate(), pc()); return table.LookupReturn(pc_offset); } void OptimizedFrame::Iterate(RootVisitor* v) const { IterateCompiledFrame(v); } void JavaScriptFrame::SetParameterValue(int index, Object value) const { Memory
(GetParameterSlot(index)) = value.ptr(); } bool JavaScriptFrame::IsConstructor() const { return IsConstructFrame(caller_fp()); } bool JavaScriptFrame::HasInlinedFrames() const { std::vector functions; GetFunctions(&functions); return functions.size() > 1; } Code CommonFrameWithJSLinkage::unchecked_code() const { return FromCodeT(function().code()); } int OptimizedFrame::ComputeParametersCount() const { Code code = LookupCode(); if (code.kind() == CodeKind::BUILTIN) { return static_cast( Memory(fp() + StandardFrameConstants::kArgCOffset)) - kJSArgcReceiverSlots; } else { return JavaScriptFrame::ComputeParametersCount(); } } Address JavaScriptFrame::GetCallerStackPointer() const { return fp() + StandardFrameConstants::kCallerSPOffset; } void JavaScriptFrame::GetFunctions( std::vector* functions) const { DCHECK(functions->empty()); functions->push_back(function().shared()); } void JavaScriptFrame::GetFunctions( std::vector>* functions) const { DCHECK(functions->empty()); std::vector raw_functions; GetFunctions(&raw_functions); for (const auto& raw_function : raw_functions) { functions->push_back( Handle(raw_function, function().GetIsolate())); } } bool CommonFrameWithJSLinkage::IsConstructor() const { return IsConstructFrame(caller_fp()); } void CommonFrameWithJSLinkage::Summarize( std::vector* functions) const { DCHECK(functions->empty()); Code code = LookupCode(); int offset = code.GetOffsetFromInstructionStart(isolate(), pc()); Handle abstract_code(AbstractCode::cast(code), isolate()); Handle params = GetParameters(); FrameSummary::JavaScriptFrameSummary summary( isolate(), receiver(), function(), *abstract_code, offset, IsConstructor(), *params); functions->push_back(summary); } JSFunction JavaScriptFrame::function() const { return JSFunction::cast(function_slot_object()); } Object JavaScriptFrame::unchecked_function() const { // During deoptimization of an optimized function, we may have yet to // materialize some closures on the stack. The arguments marker object // marks this case. DCHECK(function_slot_object().IsJSFunction() || ReadOnlyRoots(isolate()).arguments_marker() == function_slot_object()); return function_slot_object(); } Object CommonFrameWithJSLinkage::receiver() const { return GetParameter(-1); } Object JavaScriptFrame::context() const { const int offset = StandardFrameConstants::kContextOffset; Object maybe_result(Memory
(fp() + offset)); DCHECK(!maybe_result.IsSmi()); return maybe_result; } Script JavaScriptFrame::script() const { return Script::cast(function().shared().script()); } int CommonFrameWithJSLinkage::LookupExceptionHandlerInTable( int* stack_depth, HandlerTable::CatchPrediction* prediction) { DCHECK(!LookupCode().has_handler_table()); DCHECK(!LookupCode().is_optimized_code() || LookupCode().kind() == CodeKind::BASELINE); return -1; } void JavaScriptFrame::PrintFunctionAndOffset(JSFunction function, AbstractCode code, int code_offset, FILE* file, bool print_line_number) { PrintF(file, "%s", CodeKindToMarker(code.kind())); function.PrintName(file); PrintF(file, "+%d", code_offset); if (print_line_number) { SharedFunctionInfo shared = function.shared(); int source_pos = code.SourcePosition(code_offset); Object maybe_script = shared.script(); if (maybe_script.IsScript()) { Script script = Script::cast(maybe_script); int line = script.GetLineNumber(source_pos) + 1; Object script_name_raw = script.name(); if (script_name_raw.IsString()) { String script_name = String::cast(script.name()); std::unique_ptr c_script_name = script_name.ToCString(DISALLOW_NULLS, ROBUST_STRING_TRAVERSAL); PrintF(file, " at %s:%d", c_script_name.get(), line); } else { PrintF(file, " at :%d", line); } } else { PrintF(file, " at :"); } } } void JavaScriptFrame::PrintTop(Isolate* isolate, FILE* file, bool print_args, bool print_line_number) { // constructor calls DisallowGarbageCollection no_gc; JavaScriptFrameIterator it(isolate); while (!it.done()) { if (it.frame()->is_java_script()) { JavaScriptFrame* frame = it.frame(); if (frame->IsConstructor()) PrintF(file, "new "); JSFunction function = frame->function(); int code_offset = 0; AbstractCode abstract_code = function.abstract_code(isolate); if (frame->is_interpreted()) { InterpretedFrame* iframe = reinterpret_cast(frame); code_offset = iframe->GetBytecodeOffset(); } else if (frame->is_baseline()) { // TODO(pthier): AbstractCode should fully support Baseline code. BaselineFrame* baseline_frame = BaselineFrame::cast(frame); code_offset = baseline_frame->GetBytecodeOffset(); abstract_code = AbstractCode::cast(baseline_frame->GetBytecodeArray()); } else { Code code = frame->unchecked_code(); code_offset = code.GetOffsetFromInstructionStart(isolate, frame->pc()); } PrintFunctionAndOffset(function, abstract_code, code_offset, file, print_line_number); if (print_args) { // function arguments // (we are intentionally only printing the actually // supplied parameters, not all parameters required) PrintF(file, "(this="); frame->receiver().ShortPrint(file); const int length = frame->ComputeParametersCount(); for (int i = 0; i < length; i++) { PrintF(file, ", "); frame->GetParameter(i).ShortPrint(file); } PrintF(file, ")"); } break; } it.Advance(); } } void JavaScriptFrame::CollectFunctionAndOffsetForICStats(JSFunction function, AbstractCode code, int code_offset) { auto ic_stats = ICStats::instance(); ICInfo& ic_info = ic_stats->Current(); SharedFunctionInfo shared = function.shared(); ic_info.function_name = ic_stats->GetOrCacheFunctionName(function); ic_info.script_offset = code_offset; int source_pos = code.SourcePosition(code_offset); Object maybe_script = shared.script(); if (maybe_script.IsScript()) { Script script = Script::cast(maybe_script); ic_info.line_num = script.GetLineNumber(source_pos) + 1; ic_info.column_num = script.GetColumnNumber(source_pos); ic_info.script_name = ic_stats->GetOrCacheScriptName(script); } } Object CommonFrameWithJSLinkage::GetParameter(int index) const { return Object(Memory
(GetParameterSlot(index))); } int CommonFrameWithJSLinkage::ComputeParametersCount() const { DCHECK(can_access_heap_objects() && isolate()->heap()->gc_state() == Heap::NOT_IN_GC); return function().shared().internal_formal_parameter_count_without_receiver(); } int JavaScriptFrame::GetActualArgumentCount() const { return static_cast( Memory(fp() + StandardFrameConstants::kArgCOffset)) - kJSArgcReceiverSlots; } Handle CommonFrameWithJSLinkage::GetParameters() const { if (V8_LIKELY(!FLAG_detailed_error_stack_trace)) { return isolate()->factory()->empty_fixed_array(); } int param_count = ComputeParametersCount(); Handle parameters = isolate()->factory()->NewFixedArray(param_count); for (int i = 0; i < param_count; i++) { parameters->set(i, GetParameter(i)); } return parameters; } JSFunction JavaScriptBuiltinContinuationFrame::function() const { const int offset = BuiltinContinuationFrameConstants::kFunctionOffset; return JSFunction::cast(Object(base::Memory
(fp() + offset))); } int JavaScriptBuiltinContinuationFrame::ComputeParametersCount() const { // Assert that the first allocatable register is also the argument count // register. DCHECK_EQ(RegisterConfiguration::Default()->GetAllocatableGeneralCode(0), kJavaScriptCallArgCountRegister.code()); Object argc_object( Memory
(fp() + BuiltinContinuationFrameConstants::kArgCOffset)); return Smi::ToInt(argc_object) - kJSArgcReceiverSlots; } intptr_t JavaScriptBuiltinContinuationFrame::GetSPToFPDelta() const { Address height_slot = fp() + BuiltinContinuationFrameConstants::kFrameSPtoFPDeltaAtDeoptimize; intptr_t height = Smi::ToInt(Smi(Memory
(height_slot))); return height; } Object JavaScriptBuiltinContinuationFrame::context() const { return Object(Memory
( fp() + BuiltinContinuationFrameConstants::kBuiltinContextOffset)); } void JavaScriptBuiltinContinuationWithCatchFrame::SetException( Object exception) { int argc = ComputeParametersCount(); Address exception_argument_slot = fp() + BuiltinContinuationFrameConstants::kFixedFrameSizeAboveFp + (argc - 1) * kSystemPointerSize; // Only allow setting exception if previous value was the hole. CHECK_EQ(ReadOnlyRoots(isolate()).the_hole_value(), Object(Memory
(exception_argument_slot))); Memory
(exception_argument_slot) = exception.ptr(); } FrameSummary::JavaScriptFrameSummary::JavaScriptFrameSummary( Isolate* isolate, Object receiver, JSFunction function, AbstractCode abstract_code, int code_offset, bool is_constructor, FixedArray parameters) : FrameSummaryBase(isolate, FrameSummary::JAVA_SCRIPT), receiver_(receiver, isolate), function_(function, isolate), abstract_code_(abstract_code, isolate), code_offset_(code_offset), is_constructor_(is_constructor), parameters_(parameters, isolate) { DCHECK(abstract_code.IsBytecodeArray() || !CodeKindIsOptimizedJSFunction(Code::cast(abstract_code).kind())); } void FrameSummary::EnsureSourcePositionsAvailable() { if (IsJavaScript()) { java_script_summary_.EnsureSourcePositionsAvailable(); } } bool FrameSummary::AreSourcePositionsAvailable() const { if (IsJavaScript()) { return java_script_summary_.AreSourcePositionsAvailable(); } return true; } void FrameSummary::JavaScriptFrameSummary::EnsureSourcePositionsAvailable() { Handle shared(function()->shared(), isolate()); SharedFunctionInfo::EnsureSourcePositionsAvailable(isolate(), shared); } bool FrameSummary::JavaScriptFrameSummary::AreSourcePositionsAvailable() const { return !FLAG_enable_lazy_source_positions || function() ->shared() .GetBytecodeArray(isolate()) .HasSourcePositionTable(); } bool FrameSummary::JavaScriptFrameSummary::is_subject_to_debugging() const { return function()->shared().IsSubjectToDebugging(); } int FrameSummary::JavaScriptFrameSummary::SourcePosition() const { return abstract_code()->SourcePosition(code_offset()); } int FrameSummary::JavaScriptFrameSummary::SourceStatementPosition() const { return abstract_code()->SourceStatementPosition(code_offset()); } Handle FrameSummary::JavaScriptFrameSummary::script() const { return handle(function_->shared().script(), isolate()); } Handle FrameSummary::JavaScriptFrameSummary::native_context() const { return handle(function_->native_context(), isolate()); } Handle FrameSummary::JavaScriptFrameSummary::CreateStackFrameInfo() const { Handle shared(function_->shared(), isolate()); Handle