// Copyright 2012 the V8 project authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #ifndef V8_IC_STUB_CACHE_H_ #define V8_IC_STUB_CACHE_H_ #include "src/objects/name.h" #include "src/objects/tagged-value.h" namespace v8 { namespace internal { // The stub cache is used for megamorphic property accesses. // It maps (map, name, type) to property access handlers. The cache does not // need explicit invalidation when a prototype chain is modified, since the // handlers verify the chain. class SCTableReference { public: Address address() const { return address_; } private: explicit SCTableReference(Address address) : address_(address) {} Address address_; friend class StubCache; }; class V8_EXPORT_PRIVATE StubCache { public: struct Entry { // {key} is a tagged Name pointer, may be cleared by setting to empty // string. StrongTaggedValue key; // {value} is a tagged heap object reference (weak or strong), equivalent // to a MaybeObject's payload. TaggedValue value; // {map} is a tagged Map pointer, may be cleared by setting to Smi::zero(). StrongTaggedValue map; }; void Initialize(); // Access cache for entry hash(name, map). void Set(Name name, Map map, MaybeObject handler); MaybeObject Get(Name name, Map map); // Clear the lookup table (@ mark compact collection). void Clear(); enum Table { kPrimary, kSecondary }; SCTableReference key_reference(StubCache::Table table) { return SCTableReference( reinterpret_cast
(&first_entry(table)->key)); } SCTableReference map_reference(StubCache::Table table) { return SCTableReference( reinterpret_cast(&first_entry(table)->map)); } SCTableReference value_reference(StubCache::Table table) { return SCTableReference( reinterpret_cast(&first_entry(table)->value)); } StubCache::Entry* first_entry(StubCache::Table table) { switch (table) { case StubCache::kPrimary: return StubCache::primary_; case StubCache::kSecondary: return StubCache::secondary_; } UNREACHABLE(); } Isolate* isolate() { return isolate_; } // Setting kCacheIndexShift to Name::HashBits::kShift is convenient because it // causes the bit field inside the hash field to get shifted out implicitly. // Note that kCacheIndexShift must not get too large, because // sizeof(Entry) needs to be a multiple of 1 << kCacheIndexShift (see // the STATIC_ASSERT below, in {entry(...)}). static const int kCacheIndexShift = Name::HashBits::kShift; static const int kPrimaryTableBits = 11; static const int kPrimaryTableSize = (1 << kPrimaryTableBits); static const int kSecondaryTableBits = 9; static const int kSecondaryTableSize = (1 << kSecondaryTableBits); // Used to introduce more entropy from the higher bits of the Map address. // This should fill in the masked out kCacheIndexShift-bits. static const int kMapKeyShift = kPrimaryTableBits + kCacheIndexShift; static const int kSecondaryKeyShift = kSecondaryTableBits + kCacheIndexShift; static int PrimaryOffsetForTesting(Name name, Map map); static int SecondaryOffsetForTesting(Name name, Map map); // The constructor is made public only for the purposes of testing. explicit StubCache(Isolate* isolate); StubCache(const StubCache&) = delete; StubCache& operator=(const StubCache&) = delete; private: // The stub cache has a primary and secondary level. The two levels have // different hashing algorithms in order to avoid simultaneous collisions // in both caches. Unlike a probing strategy (quadratic or otherwise) the // update strategy on updates is fairly clear and simple: Any existing entry // in the primary cache is moved to the secondary cache, and secondary cache // entries are overwritten. // Hash algorithm for the primary table. This algorithm is replicated in // assembler for every architecture. Returns an index into the table that // is scaled by 1 << kCacheIndexShift. static int PrimaryOffset(Name name, Map map); // Hash algorithm for the secondary table. This algorithm is replicated in // assembler for every architecture. Returns an index into the table that // is scaled by 1 << kCacheIndexShift. static int SecondaryOffset(Name name, Map map); // Compute the entry for a given offset in exactly the same way as // we do in generated code. We generate an hash code that already // ends in Name::HashBits::kShift 0s. Then we multiply it so it is a multiple // of sizeof(Entry). This makes it easier to avoid making mistakes // in the hashed offset computations. static Entry* entry(Entry* table, int offset) { // The size of {Entry} must be a multiple of 1 << kCacheIndexShift. STATIC_ASSERT((sizeof(*table) >> kCacheIndexShift) << kCacheIndexShift == sizeof(*table)); const int multiplier = sizeof(*table) >> kCacheIndexShift; return reinterpret_cast