/* * Copyright 2015 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/codec/SkAndroidCodec.h" #include "include/codec/SkCodec.h" #include "include/core/SkPixmap.h" #include "src/codec/SkAndroidCodecAdapter.h" #include "src/codec/SkCodecPriv.h" #include "src/codec/SkSampledCodec.h" static bool is_valid_sample_size(int sampleSize) { // FIXME: As Leon has mentioned elsewhere, surely there is also a maximum sampleSize? return sampleSize > 0; } /** * Loads the gamut as a set of three points (triangle). */ static void load_gamut(SkPoint rgb[], const skcms_Matrix3x3& xyz) { // rx = rX / (rX + rY + rZ) // ry = rY / (rX + rY + rZ) // gx, gy, bx, and gy are calulcated similarly. for (int rgbIdx = 0; rgbIdx < 3; rgbIdx++) { float sum = xyz.vals[rgbIdx][0] + xyz.vals[rgbIdx][1] + xyz.vals[rgbIdx][2]; rgb[rgbIdx].fX = xyz.vals[rgbIdx][0] / sum; rgb[rgbIdx].fY = xyz.vals[rgbIdx][1] / sum; } } /** * Calculates the area of the triangular gamut. */ static float calculate_area(SkPoint abc[]) { SkPoint a = abc[0]; SkPoint b = abc[1]; SkPoint c = abc[2]; return 0.5f * SkTAbs(a.fX*b.fY + b.fX*c.fY - a.fX*c.fY - c.fX*b.fY - b.fX*a.fY); } static constexpr float kSRGB_D50_GamutArea = 0.084f; static bool is_wide_gamut(const skcms_ICCProfile& profile) { // Determine if the source image has a gamut that is wider than sRGB. If so, we // will use P3 as the output color space to avoid clipping the gamut. if (profile.has_toXYZD50) { SkPoint rgb[3]; load_gamut(rgb, profile.toXYZD50); return calculate_area(rgb) > kSRGB_D50_GamutArea; } return false; } SkAndroidCodec::SkAndroidCodec(SkCodec* codec) : fInfo(codec->getInfo()) , fCodec(codec) {} SkAndroidCodec::~SkAndroidCodec() {} std::unique_ptr SkAndroidCodec::MakeFromStream(std::unique_ptr stream, SkPngChunkReader* chunkReader) { auto codec = SkCodec::MakeFromStream(std::move(stream), nullptr, chunkReader); return MakeFromCodec(std::move(codec)); } std::unique_ptr SkAndroidCodec::MakeFromCodec(std::unique_ptr codec) { if (nullptr == codec) { return nullptr; } switch ((SkEncodedImageFormat)codec->getEncodedFormat()) { case SkEncodedImageFormat::kPNG: case SkEncodedImageFormat::kICO: case SkEncodedImageFormat::kJPEG: #ifndef SK_HAS_WUFFS_LIBRARY case SkEncodedImageFormat::kGIF: #endif case SkEncodedImageFormat::kBMP: case SkEncodedImageFormat::kWBMP: case SkEncodedImageFormat::kHEIF: case SkEncodedImageFormat::kAVIF: return std::make_unique(codec.release()); #ifdef SK_HAS_WUFFS_LIBRARY case SkEncodedImageFormat::kGIF: #endif #ifdef SK_CODEC_DECODES_WEBP case SkEncodedImageFormat::kWEBP: #endif #ifdef SK_CODEC_DECODES_RAW case SkEncodedImageFormat::kDNG: #endif #if defined(SK_CODEC_DECODES_WEBP) || defined(SK_CODEC_DECODES_RAW) || defined(SK_HAS_WUFFS_LIBRARY) return std::make_unique(codec.release()); #endif default: return nullptr; } } std::unique_ptr SkAndroidCodec::MakeFromData(sk_sp data, SkPngChunkReader* chunkReader) { if (!data) { return nullptr; } return MakeFromStream(SkMemoryStream::Make(std::move(data)), chunkReader); } SkColorType SkAndroidCodec::computeOutputColorType(SkColorType requestedColorType) { bool highPrecision = fCodec->getEncodedInfo().bitsPerComponent() > 8; switch (requestedColorType) { case kARGB_4444_SkColorType: return kN32_SkColorType; case kN32_SkColorType: break; case kAlpha_8_SkColorType: // Fall through to kGray_8. Before kGray_8_SkColorType existed, // we allowed clients to request kAlpha_8 when they wanted a // grayscale decode. case kGray_8_SkColorType: if (kGray_8_SkColorType == this->getInfo().colorType()) { return kGray_8_SkColorType; } break; case kRGB_565_SkColorType: if (kOpaque_SkAlphaType == this->getInfo().alphaType()) { return kRGB_565_SkColorType; } break; case kRGBA_F16_SkColorType: return kRGBA_F16_SkColorType; default: break; } // F16 is the Android default for high precision images. return highPrecision ? kRGBA_F16_SkColorType : kN32_SkColorType; } SkAlphaType SkAndroidCodec::computeOutputAlphaType(bool requestedUnpremul) { if (kOpaque_SkAlphaType == this->getInfo().alphaType()) { return kOpaque_SkAlphaType; } return requestedUnpremul ? kUnpremul_SkAlphaType : kPremul_SkAlphaType; } sk_sp SkAndroidCodec::computeOutputColorSpace(SkColorType outputColorType, sk_sp prefColorSpace) { switch (outputColorType) { case kRGBA_F16_SkColorType: case kRGB_565_SkColorType: case kRGBA_8888_SkColorType: case kBGRA_8888_SkColorType: { // If |prefColorSpace| is supplied, choose it. if (prefColorSpace) { return prefColorSpace; } const skcms_ICCProfile* encodedProfile = fCodec->getEncodedInfo().profile(); if (encodedProfile) { if (auto encodedSpace = SkColorSpace::Make(*encodedProfile)) { // Leave the pixels in the encoded color space. Color space conversion // will be handled after decode time. return encodedSpace; } if (is_wide_gamut(*encodedProfile)) { return SkColorSpace::MakeRGB(SkNamedTransferFn::kSRGB, SkNamedGamut::kDisplayP3); } } return SkColorSpace::MakeSRGB(); } default: // Color correction not supported for kGray. return nullptr; } } static bool supports_any_down_scale(const SkCodec* codec) { return codec->getEncodedFormat() == SkEncodedImageFormat::kWEBP; } // There are a variety of ways two SkISizes could be compared. This method // returns true if either dimensions of a is < that of b. // computeSampleSize also uses the opposite, which means that both // dimensions of a >= b. static inline bool smaller_than(const SkISize& a, const SkISize& b) { return a.width() < b.width() || a.height() < b.height(); } // Both dimensions of a > that of b. static inline bool strictly_bigger_than(const SkISize& a, const SkISize& b) { return a.width() > b.width() && a.height() > b.height(); } int SkAndroidCodec::computeSampleSize(SkISize* desiredSize) const { SkASSERT(desiredSize); const auto origDims = fCodec->dimensions(); if (!desiredSize || *desiredSize == origDims) { return 1; } if (smaller_than(origDims, *desiredSize)) { *desiredSize = origDims; return 1; } // Handle bad input: if (desiredSize->width() < 1 || desiredSize->height() < 1) { *desiredSize = SkISize::Make(std::max(1, desiredSize->width()), std::max(1, desiredSize->height())); } if (supports_any_down_scale(fCodec.get())) { return 1; } int sampleX = origDims.width() / desiredSize->width(); int sampleY = origDims.height() / desiredSize->height(); int sampleSize = std::min(sampleX, sampleY); auto computedSize = this->getSampledDimensions(sampleSize); if (computedSize == *desiredSize) { return sampleSize; } if (computedSize == origDims || sampleSize == 1) { // Cannot downscale *desiredSize = computedSize; return 1; } if (strictly_bigger_than(computedSize, *desiredSize)) { // See if there is a tighter fit. while (true) { auto smaller = this->getSampledDimensions(sampleSize + 1); if (smaller == *desiredSize) { return sampleSize + 1; } if (smaller == computedSize || smaller_than(smaller, *desiredSize)) { // Cannot get any smaller without being smaller than desired. *desiredSize = computedSize; return sampleSize; } sampleSize++; computedSize = smaller; } SkASSERT(false); } if (!smaller_than(computedSize, *desiredSize)) { // This means one of the computed dimensions is equal to desired, and // the other is bigger. This is as close as we can get. *desiredSize = computedSize; return sampleSize; } // computedSize is too small. Make it larger. while (sampleSize > 2) { auto bigger = this->getSampledDimensions(sampleSize - 1); if (bigger == *desiredSize || !smaller_than(bigger, *desiredSize)) { *desiredSize = bigger; return sampleSize - 1; } sampleSize--; } *desiredSize = origDims; return 1; } SkISize SkAndroidCodec::getSampledDimensions(int sampleSize) const { if (!is_valid_sample_size(sampleSize)) { return {0, 0}; } // Fast path for when we are not scaling. if (1 == sampleSize) { return fCodec->dimensions(); } return this->onGetSampledDimensions(sampleSize); } bool SkAndroidCodec::getSupportedSubset(SkIRect* desiredSubset) const { if (!desiredSubset || !is_valid_subset(*desiredSubset, fCodec->dimensions())) { return false; } return this->onGetSupportedSubset(desiredSubset); } SkISize SkAndroidCodec::getSampledSubsetDimensions(int sampleSize, const SkIRect& subset) const { if (!is_valid_sample_size(sampleSize)) { return {0, 0}; } // We require that the input subset is a subset that is supported by SkAndroidCodec. // We test this by calling getSupportedSubset() and verifying that no modifications // are made to the subset. SkIRect copySubset = subset; if (!this->getSupportedSubset(©Subset) || copySubset != subset) { return {0, 0}; } // If the subset is the entire image, for consistency, use getSampledDimensions(). if (fCodec->dimensions() == subset.size()) { return this->getSampledDimensions(sampleSize); } // This should perhaps call a virtual function, but currently both of our subclasses // want the same implementation. return {get_scaled_dimension(subset.width(), sampleSize), get_scaled_dimension(subset.height(), sampleSize)}; } SkCodec::Result SkAndroidCodec::getAndroidPixels(const SkImageInfo& requestInfo, void* requestPixels, size_t requestRowBytes, const AndroidOptions* options) { if (!requestPixels) { return SkCodec::kInvalidParameters; } if (requestRowBytes < requestInfo.minRowBytes()) { return SkCodec::kInvalidParameters; } AndroidOptions defaultOptions; if (!options) { options = &defaultOptions; } else { if (options->fSubset) { if (!is_valid_subset(*options->fSubset, fCodec->dimensions())) { return SkCodec::kInvalidParameters; } if (SkIRect::MakeSize(fCodec->dimensions()) == *options->fSubset) { // The caller wants the whole thing, rather than a subset. Modify // the AndroidOptions passed to onGetAndroidPixels to not specify // a subset. defaultOptions = *options; defaultOptions.fSubset = nullptr; options = &defaultOptions; } } } if (auto result = fCodec->handleFrameIndex(requestInfo, requestPixels, requestRowBytes, *options, this); result != SkCodec::kSuccess) { return result; } return this->onGetAndroidPixels(requestInfo, requestPixels, requestRowBytes, *options); } SkCodec::Result SkAndroidCodec::getAndroidPixels(const SkImageInfo& info, void* pixels, size_t rowBytes) { return this->getAndroidPixels(info, pixels, rowBytes, nullptr); }