/* * Copyright 2018 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/core/SkCubicMap.h" #include "include/private/SkNx.h" #include "include/private/SkTPin.h" #include "src/core/SkOpts.h" //#define CUBICMAP_TRACK_MAX_ERROR #ifdef CUBICMAP_TRACK_MAX_ERROR #include "src/pathops/SkPathOpsCubic.h" #endif static inline bool nearly_zero(SkScalar x) { SkASSERT(x >= 0); return x <= 0.0000000001f; } #ifdef CUBICMAP_TRACK_MAX_ERROR static int max_iters; #endif #ifdef CUBICMAP_TRACK_MAX_ERROR static float compute_slow(float A, float B, float C, float x) { double roots[3]; SkDEBUGCODE(int count =) SkDCubic::RootsValidT(A, B, C, -x, roots); SkASSERT(count == 1); return (float)roots[0]; } static float max_err; #endif static float compute_t_from_x(float A, float B, float C, float x) { #ifdef CUBICMAP_TRACK_MAX_ERROR float answer = compute_slow(A, B, C, x); #endif float answer2 = SkOpts::cubic_solver(A, B, C, -x); #ifdef CUBICMAP_TRACK_MAX_ERROR float err = sk_float_abs(answer - answer2); if (err > max_err) { max_err = err; SkDebugf("max error %g\n", max_err); } #endif return answer2; } float SkCubicMap::computeYFromX(float x) const { x = SkTPin(x, 0.0f, 1.0f); if (nearly_zero(x) || nearly_zero(1 - x)) { return x; } if (fType == kLine_Type) { return x; } float t; if (fType == kCubeRoot_Type) { t = sk_float_pow(x / fCoeff[0].fX, 1.0f / 3); } else { t = compute_t_from_x(fCoeff[0].fX, fCoeff[1].fX, fCoeff[2].fX, x); } float a = fCoeff[0].fY; float b = fCoeff[1].fY; float c = fCoeff[2].fY; float y = ((a * t + b) * t + c) * t; return y; } static inline bool coeff_nearly_zero(float delta) { return sk_float_abs(delta) <= 0.0000001f; } SkCubicMap::SkCubicMap(SkPoint p1, SkPoint p2) { // Clamp X values only (we allow Ys outside [0..1]). p1.fX = std::min(std::max(p1.fX, 0.0f), 1.0f); p2.fX = std::min(std::max(p2.fX, 0.0f), 1.0f); Sk2s s1 = Sk2s::Load(&p1) * 3; Sk2s s2 = Sk2s::Load(&p2) * 3; (Sk2s(1) + s1 - s2).store(&fCoeff[0]); (s2 - s1 - s1).store(&fCoeff[1]); s1.store(&fCoeff[2]); fType = kSolver_Type; if (SkScalarNearlyEqual(p1.fX, p1.fY) && SkScalarNearlyEqual(p2.fX, p2.fY)) { fType = kLine_Type; } else if (coeff_nearly_zero(fCoeff[1].fX) && coeff_nearly_zero(fCoeff[2].fX)) { fType = kCubeRoot_Type; } } SkPoint SkCubicMap::computeFromT(float t) const { Sk2s a = Sk2s::Load(&fCoeff[0]); Sk2s b = Sk2s::Load(&fCoeff[1]); Sk2s c = Sk2s::Load(&fCoeff[2]); SkPoint result; (((a * t + b) * t + c) * t).store(&result); return result; }