/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/GrGeometryProcessor.h" #include "src/core/SkMatrixPriv.h" #include "src/gpu/GrPipeline.h" #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" #include "src/gpu/glsl/GrGLSLProgramBuilder.h" #include "src/gpu/glsl/GrGLSLUniformHandler.h" #include "src/gpu/glsl/GrGLSLVarying.h" #include GrGeometryProcessor::GrGeometryProcessor(ClassID classID) : GrProcessor(classID) {} const GrGeometryProcessor::TextureSampler& GrGeometryProcessor::textureSampler(int i) const { SkASSERT(i >= 0 && i < this->numTextureSamplers()); return this->onTextureSampler(i); } uint32_t GrGeometryProcessor::ComputeCoordTransformsKey(const GrFragmentProcessor& fp) { // This is highly coupled with the code in ProgramImpl::collectTransforms(). uint32_t key = static_cast(fp.sampleUsage().kind()) << 1; // This needs to be updated if GP starts specializing varyings on additional matrix types. if (fp.sampleUsage().hasPerspective()) { key |= 0b1; } return key; } /////////////////////////////////////////////////////////////////////////////////////////////////// static inline GrSamplerState::Filter clamp_filter(GrTextureType type, GrSamplerState::Filter requestedFilter) { if (GrTextureTypeHasRestrictedSampling(type)) { return std::min(requestedFilter, GrSamplerState::Filter::kLinear); } return requestedFilter; } GrGeometryProcessor::TextureSampler::TextureSampler(GrSamplerState samplerState, const GrBackendFormat& backendFormat, const GrSwizzle& swizzle) { this->reset(samplerState, backendFormat, swizzle); } void GrGeometryProcessor::TextureSampler::reset(GrSamplerState samplerState, const GrBackendFormat& backendFormat, const GrSwizzle& swizzle) { fSamplerState = samplerState; fSamplerState.setFilterMode(clamp_filter(backendFormat.textureType(), samplerState.filter())); fBackendFormat = backendFormat; fSwizzle = swizzle; fIsInitialized = true; } ////////////////////////////////////////////////////////////////////////////// using ProgramImpl = GrGeometryProcessor::ProgramImpl; ProgramImpl::FPCoordsMap ProgramImpl::emitCode(EmitArgs& args, const GrPipeline& pipeline) { GrGPArgs gpArgs; this->onEmitCode(args, &gpArgs); GrShaderVar positionVar = gpArgs.fPositionVar; // skia:12198 if (args.fGeomProc.willUseTessellationShaders()) { positionVar = {}; } FPCoordsMap transformMap = this->collectTransforms(args.fVertBuilder, args.fVaryingHandler, args.fUniformHandler, gpArgs.fLocalCoordVar, positionVar, pipeline); if (args.fGeomProc.willUseTessellationShaders()) { // Tessellation shaders are temporarily responsible for integrating their own code strings // while we work out full support. return transformMap; } GrGLSLVertexBuilder* vBuilder = args.fVertBuilder; // Emit the vertex position to the hardware in the normalized window coordinates it expects. SkASSERT(kFloat2_GrSLType == gpArgs.fPositionVar.getType() || kFloat3_GrSLType == gpArgs.fPositionVar.getType()); vBuilder->emitNormalizedSkPosition(gpArgs.fPositionVar.c_str(), gpArgs.fPositionVar.getType()); if (kFloat2_GrSLType == gpArgs.fPositionVar.getType()) { args.fVaryingHandler->setNoPerspective(); } return transformMap; } ProgramImpl::FPCoordsMap ProgramImpl::collectTransforms(GrGLSLVertexBuilder* vb, GrGLSLVaryingHandler* varyingHandler, GrGLSLUniformHandler* uniformHandler, const GrShaderVar& localCoordsVar, const GrShaderVar& positionVar, const GrPipeline& pipeline) { SkASSERT(localCoordsVar.getType() == kFloat2_GrSLType || localCoordsVar.getType() == kFloat3_GrSLType || localCoordsVar.getType() == kVoid_GrSLType); SkASSERT(positionVar.getType() == kFloat2_GrSLType || positionVar.getType() == kFloat3_GrSLType || positionVar.getType() == kVoid_GrSLType); enum class BaseCoord { kNone, kLocal, kPosition }; auto baseLocalCoordFSVar = [&, baseLocalCoord = GrGLSLVarying()]() mutable { SkASSERT(GrSLTypeIsFloatType(localCoordsVar.getType())); if (baseLocalCoord.type() == kVoid_GrSLType) { // Initialize to the GP provided coordinate baseLocalCoord = GrGLSLVarying(localCoordsVar.getType()); varyingHandler->addVarying("LocalCoord", &baseLocalCoord); vb->codeAppendf("%s = %s;\n", baseLocalCoord.vsOut(), localCoordsVar.getName().c_str()); } return baseLocalCoord.fsInVar(); }; bool canUsePosition = positionVar.getType() != kVoid_GrSLType; FPCoordsMap result; // Performs a pre-order traversal of FP hierarchy rooted at fp and identifies FPs that are // sampled with a series of matrices applied to local coords. For each such FP a varying is // added to the varying handler and added to 'result'. auto liftTransforms = [&, traversalIndex = 0]( auto& self, const GrFragmentProcessor& fp, bool hasPerspective, const GrFragmentProcessor* lastMatrixFP = nullptr, int lastMatrixTraversalIndex = -1, BaseCoord baseCoord = BaseCoord::kLocal) mutable -> void { ++traversalIndex; switch (fp.sampleUsage().kind()) { case SkSL::SampleUsage::Kind::kNone: // This should only happen at the root. Otherwise how did this FP get added? SkASSERT(!fp.parent()); break; case SkSL::SampleUsage::Kind::kPassThrough: break; case SkSL::SampleUsage::Kind::kUniformMatrix: // Update tracking of last matrix and matrix props. hasPerspective |= fp.sampleUsage().hasPerspective(); lastMatrixFP = &fp; lastMatrixTraversalIndex = traversalIndex; break; case SkSL::SampleUsage::Kind::kFragCoord: hasPerspective = positionVar.getType() == kFloat3_GrSLType; lastMatrixFP = nullptr; lastMatrixTraversalIndex = -1; baseCoord = BaseCoord::kPosition; break; case SkSL::SampleUsage::Kind::kExplicit: baseCoord = BaseCoord::kNone; break; } auto& [varyingFSVar, hasCoordsParam] = result[&fp]; hasCoordsParam = fp.usesSampleCoordsDirectly(); // We add a varying if we're in a chain of matrices multiplied by local or device coords. // If the coord is the untransformed local coord we add a varying. We don't if it is // untransformed device coords since it doesn't save us anything over "sk_FragCoord.xy". Of // course, if the FP doesn't directly use its coords then we don't add a varying. if (fp.usesSampleCoordsDirectly() && (baseCoord == BaseCoord::kLocal || (baseCoord == BaseCoord::kPosition && lastMatrixFP && canUsePosition))) { // Associate the varying with the highest possible node in the FP tree that shares the // same coordinates so that multiple FPs in a subtree can share. If there are no matrix // sample nodes on the way up the tree then directly use the local coord. if (!lastMatrixFP) { varyingFSVar = baseLocalCoordFSVar(); } else { // If there is an already a varying that incorporates all matrices from the root to // lastMatrixFP just use it. Otherwise, we add it. auto& [varying, inputCoords, varyingIdx] = fTransformVaryingsMap[lastMatrixFP]; if (varying.type() == kVoid_GrSLType) { varying = GrGLSLVarying(hasPerspective ? kFloat3_GrSLType : kFloat2_GrSLType); SkString strVaryingName = SkStringPrintf("TransformedCoords_%d", lastMatrixTraversalIndex); varyingHandler->addVarying(strVaryingName.c_str(), &varying); inputCoords = baseCoord == BaseCoord::kLocal ? localCoordsVar : positionVar; varyingIdx = lastMatrixTraversalIndex; } SkASSERT(varyingIdx == lastMatrixTraversalIndex); // The FP will use the varying in the fragment shader as its coords. varyingFSVar = varying.fsInVar(); } hasCoordsParam = false; } for (int c = 0; c < fp.numChildProcessors(); ++c) { if (auto* child = fp.childProcessor(c)) { self(self, *child, hasPerspective, lastMatrixFP, lastMatrixTraversalIndex, baseCoord); // If we have a varying then we never need a param. Otherwise, if one of our // children takes a non-explicit coord then we'll need our coord. hasCoordsParam |= varyingFSVar.getType() == kVoid_GrSLType && !child->sampleUsage().isExplicit() && !child->sampleUsage().isFragCoord() && result[child].hasCoordsParam; } } }; bool hasPerspective = GrSLTypeVecLength(localCoordsVar.getType()) == 3; for (int i = 0; i < pipeline.numFragmentProcessors(); ++i) { liftTransforms(liftTransforms, pipeline.getFragmentProcessor(i), hasPerspective); } return result; } void ProgramImpl::emitTransformCode(GrGLSLVertexBuilder* vb, GrGLSLUniformHandler* uniformHandler) { // Because descendant varyings may be computed using the varyings of ancestor FPs we make // sure to visit the varyings according to FP pre-order traversal by dumping them into a // priority queue. using FPAndInfo = std::tuple; auto compare = [](const FPAndInfo& a, const FPAndInfo& b) { return std::get<1>(a).traversalOrder > std::get<1>(b).traversalOrder; }; std::priority_queue, decltype(compare)> pq(compare); std::for_each(fTransformVaryingsMap.begin(), fTransformVaryingsMap.end(), [&pq](auto entry) { pq.push(entry); }); for (; !pq.empty(); pq.pop()) { const auto& [fp, info] = pq.top(); // If we recorded a transform info, its sample matrix must be uniform SkASSERT(fp->sampleUsage().isUniformMatrix()); GrShaderVar uniform = uniformHandler->liftUniformToVertexShader( *fp->parent(), SkString(SkSL::SampleUsage::MatrixUniformName())); // Start with this matrix and accumulate additional matrices as we walk up the FP tree // to either the base coords or an ancestor FP that has an associated varying. SkString transformExpression = uniform.getName(); // If we hit an ancestor with a varying on our walk up then save off the varying as the // input to our accumulated transformExpression. Start off assuming we'll reach the root. GrShaderVar inputCoords = info.inputCoords; for (const auto* base = fp->parent(); base; base = base->parent()) { if (auto iter = fTransformVaryingsMap.find(base); iter != fTransformVaryingsMap.end()) { // Can stop here, as this varying already holds all transforms from higher FPs // We'll apply the residual transformExpression we've accumulated up from our // starting FP to this varying. inputCoords = iter->second.varying.vsOutVar(); break; } else if (base->sampleUsage().isUniformMatrix()) { // Accumulate any matrices along the path to either the original local/device coords // or a parent varying. Getting here means this FP was sampled with a uniform matrix // but all uses of coords below here in the FP hierarchy are beneath additional // matrix samples and thus this node wasn't assigned a varying. GrShaderVar parentUniform = uniformHandler->liftUniformToVertexShader( *base->parent(), SkString(SkSL::SampleUsage::MatrixUniformName())); transformExpression.appendf(" * %s", parentUniform.getName().c_str()); } else if (base->sampleUsage().isFragCoord()) { // Our chain of matrices starts here and is based on the device space position. break; } else { // This intermediate FP is just a pass through and doesn't need to be built // in to the expression, but we must visit its parents in case they add transforms. SkASSERT(base->sampleUsage().isPassThrough() || !base->sampleUsage().isSampled()); } } SkString inputStr; if (inputCoords.getType() == kFloat2_GrSLType) { inputStr = SkStringPrintf("%s.xy1", inputCoords.getName().c_str()); } else { SkASSERT(inputCoords.getType() == kFloat3_GrSLType); inputStr = inputCoords.getName(); } vb->codeAppend("{\n"); if (info.varying.type() == kFloat2_GrSLType) { if (vb->getProgramBuilder()->shaderCaps()->nonsquareMatrixSupport()) { vb->codeAppendf("%s = float3x2(%s) * %s", info.varying.vsOut(), transformExpression.c_str(), inputStr.c_str()); } else { vb->codeAppendf("%s = (%s * %s).xy", info.varying.vsOut(), transformExpression.c_str(), inputStr.c_str()); } } else { SkASSERT(info.varying.type() == kFloat3_GrSLType); vb->codeAppendf("%s = %s * %s", info.varying.vsOut(), transformExpression.c_str(), inputStr.c_str()); } vb->codeAppend(";\n"); vb->codeAppend("}\n"); } // We don't need this map anymore. fTransformVaryingsMap.clear(); } void ProgramImpl::setupUniformColor(GrGLSLFPFragmentBuilder* fragBuilder, GrGLSLUniformHandler* uniformHandler, const char* outputName, UniformHandle* colorUniform) { SkASSERT(colorUniform); const char* stagedLocalVarName; *colorUniform = uniformHandler->addUniform(nullptr, kFragment_GrShaderFlag, kHalf4_GrSLType, "Color", &stagedLocalVarName); fragBuilder->codeAppendf("%s = %s;", outputName, stagedLocalVarName); if (fragBuilder->getProgramBuilder()->shaderCaps()->mustObfuscateUniformColor()) { fragBuilder->codeAppendf("%s = max(%s, half4(0));", outputName, outputName); } } void ProgramImpl::SetTransform(const GrGLSLProgramDataManager& pdman, const GrShaderCaps& shaderCaps, const UniformHandle& uniform, const SkMatrix& matrix, SkMatrix* state) { if (!uniform.isValid() || (state && SkMatrixPriv::CheapEqual(*state, matrix))) { // No update needed return; } if (state) { *state = matrix; } if (matrix.isScaleTranslate() && !shaderCaps.reducedShaderMode()) { // ComputeMatrixKey and writeX() assume the uniform is a float4 (can't assert since nothing // is exposed on a handle, but should be caught lower down). float values[4] = {matrix.getScaleX(), matrix.getTranslateX(), matrix.getScaleY(), matrix.getTranslateY()}; pdman.set4fv(uniform, 1, values); } else { pdman.setSkMatrix(uniform, matrix); } } static void write_passthrough_vertex_position(GrGLSLVertexBuilder* vertBuilder, const GrShaderVar& inPos, GrShaderVar* outPos) { SkASSERT(inPos.getType() == kFloat3_GrSLType || inPos.getType() == kFloat2_GrSLType); SkString outName = vertBuilder->newTmpVarName(inPos.getName().c_str()); outPos->set(inPos.getType(), outName.c_str()); vertBuilder->codeAppendf("float%d %s = %s;", GrSLTypeVecLength(inPos.getType()), outName.c_str(), inPos.getName().c_str()); } static void write_vertex_position(GrGLSLVertexBuilder* vertBuilder, GrGLSLUniformHandler* uniformHandler, const GrShaderCaps& shaderCaps, const GrShaderVar& inPos, const SkMatrix& matrix, const char* matrixName, GrShaderVar* outPos, ProgramImpl::UniformHandle* matrixUniform) { SkASSERT(inPos.getType() == kFloat3_GrSLType || inPos.getType() == kFloat2_GrSLType); SkString outName = vertBuilder->newTmpVarName(inPos.getName().c_str()); if (matrix.isIdentity() && !shaderCaps.reducedShaderMode()) { write_passthrough_vertex_position(vertBuilder, inPos, outPos); return; } SkASSERT(matrixUniform); bool useCompactTransform = matrix.isScaleTranslate() && !shaderCaps.reducedShaderMode(); const char* mangledMatrixName; *matrixUniform = uniformHandler->addUniform(nullptr, kVertex_GrShaderFlag, useCompactTransform ? kFloat4_GrSLType : kFloat3x3_GrSLType, matrixName, &mangledMatrixName); if (inPos.getType() == kFloat3_GrSLType) { // A float3 stays a float3 whether or not the matrix adds perspective if (useCompactTransform) { vertBuilder->codeAppendf("float3 %s = %s.xz1 * %s + %s.yw0;\n", outName.c_str(), mangledMatrixName, inPos.getName().c_str(), mangledMatrixName); } else { vertBuilder->codeAppendf("float3 %s = %s * %s;\n", outName.c_str(), mangledMatrixName, inPos.getName().c_str()); } outPos->set(kFloat3_GrSLType, outName.c_str()); return; } if (matrix.hasPerspective()) { // A float2 is promoted to a float3 if we add perspective via the matrix SkASSERT(!useCompactTransform); vertBuilder->codeAppendf("float3 %s = (%s * %s.xy1);", outName.c_str(), mangledMatrixName, inPos.getName().c_str()); outPos->set(kFloat3_GrSLType, outName.c_str()); return; } if (useCompactTransform) { vertBuilder->codeAppendf("float2 %s = %s.xz * %s + %s.yw;\n", outName.c_str(), mangledMatrixName, inPos.getName().c_str(), mangledMatrixName); } else if (shaderCaps.nonsquareMatrixSupport()) { vertBuilder->codeAppendf("float2 %s = float3x2(%s) * %s.xy1;\n", outName.c_str(), mangledMatrixName, inPos.getName().c_str()); } else { vertBuilder->codeAppendf("float2 %s = (%s * %s.xy1).xy;\n", outName.c_str(), mangledMatrixName, inPos.getName().c_str()); } outPos->set(kFloat2_GrSLType, outName.c_str()); } void ProgramImpl::WriteOutputPosition(GrGLSLVertexBuilder* vertBuilder, GrGPArgs* gpArgs, const char* posName) { // writeOutputPosition assumes the incoming pos name points to a float2 variable GrShaderVar inPos(posName, kFloat2_GrSLType); write_passthrough_vertex_position(vertBuilder, inPos, &gpArgs->fPositionVar); } void ProgramImpl::WriteOutputPosition(GrGLSLVertexBuilder* vertBuilder, GrGLSLUniformHandler* uniformHandler, const GrShaderCaps& shaderCaps, GrGPArgs* gpArgs, const char* posName, const SkMatrix& mat, UniformHandle* viewMatrixUniform) { GrShaderVar inPos(posName, kFloat2_GrSLType); write_vertex_position(vertBuilder, uniformHandler, shaderCaps, inPos, mat, "viewMatrix", &gpArgs->fPositionVar, viewMatrixUniform); } void ProgramImpl::WriteLocalCoord(GrGLSLVertexBuilder* vertBuilder, GrGLSLUniformHandler* uniformHandler, const GrShaderCaps& shaderCaps, GrGPArgs* gpArgs, GrShaderVar localVar, const SkMatrix& localMatrix, UniformHandle* localMatrixUniform) { write_vertex_position(vertBuilder, uniformHandler, shaderCaps, localVar, localMatrix, "localMatrix", &gpArgs->fLocalCoordVar, localMatrixUniform); }