/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #ifndef GrResourceAllocator_DEFINED #define GrResourceAllocator_DEFINED #include "include/private/SkTHash.h" #include "src/gpu/GrHashMapWithCache.h" #include "src/gpu/GrSurface.h" #include "src/gpu/GrSurfaceProxy.h" #include "src/core/SkArenaAlloc.h" #include "src/core/SkTMultiMap.h" class GrDirectContext; // Print out explicit allocation information #define GR_ALLOCATION_SPEW 0 // Print out information about interval creation #define GR_TRACK_INTERVAL_CREATION 0 /* * The ResourceAllocator explicitly distributes GPU resources at flush time. It operates by * being given the usage intervals of the various proxies. It keeps these intervals in a singly * linked list sorted by increasing start index. (It also maintains a hash table from proxyID * to interval to find proxy reuse). The ResourceAllocator uses Registers (in the sense of register * allocation) to represent a future surface that will be used for each proxy during * `planAssignment`, and then assigns actual surfaces during `assign`. * * Note: the op indices (used in the usage intervals) come from the order of the ops in * their opsTasks after the opsTask DAG has been linearized. * * The planAssignment method traverses the sorted list and: * moves intervals from the active list that have completed (returning their registers * to the free pool) into the finished list (sorted by increasing start) * * allocates a new register (preferably from the free pool) for the new interval * adds the new interval to the active list (that is sorted by increasing end index) * * After assignment planning, the user can choose to call `makeBudgetHeadroom` which: * computes how much VRAM would be needed for new resources for all extant Registers * * asks the resource cache to purge enough resources to get that much free space * * if it's not possible, do nothing and return false. The user may opt to reset * the allocator and start over with a different DAG. * * If the user wants to commit to the current assignment plan, they call `assign` which: * instantiates lazy proxies * * instantantiates new surfaces for all registers that need them * * assigns the surface for each register to all the proxies that will use it * ************************************************************************************************* * How does instantiation failure handling work when explicitly allocating? * * In the gather usage intervals pass all the GrSurfaceProxies used in the flush should be * gathered (i.e., in OpsTask::gatherProxyIntervals). * * During addInterval, read-only lazy proxies are instantiated. If that fails, the resource * allocator will note the failure and ignore pretty much anything else until `reset`. * * During planAssignment, fully-lazy proxies are instantiated so that we can know their size for * budgeting purposes. If this fails, return false. * * During assign, partially-lazy proxies are instantiated and new surfaces are created for all other * proxies. If any of these fails, return false. * * The drawing manager will drop the flush if any proxies fail to instantiate. */ class GrResourceAllocator { public: GrResourceAllocator(GrDirectContext* dContext) : fDContext(dContext) {} ~GrResourceAllocator(); unsigned int curOp() const { return fNumOps; } void incOps() { fNumOps++; } /** Indicates whether a given call to addInterval represents an actual usage of the * provided proxy. This is mainly here to accommodate deferred proxies attached to opsTasks. * In that case we need to create an extra long interval for them (due to the upload) but * don't want to count that usage/reference towards the proxy's recyclability. */ enum class ActualUse : bool { kNo = false, kYes = true }; // Add a usage interval from 'start' to 'end' inclusive. This is usually used for renderTargets. // If an existing interval already exists it will be expanded to include the new range. void addInterval(GrSurfaceProxy*, unsigned int start, unsigned int end, ActualUse actualUse SkDEBUGCODE(, bool isDirectDstRead = false)); bool failedInstantiation() const { return fFailedInstantiation; } // Generate an internal plan for resource allocation. After this you can optionally call // `makeBudgetHeadroom` to check whether that plan would go over our memory budget. // Fully-lazy proxies are also instantiated at this point so that their size can // be known accurately. Returns false if any lazy proxy failed to instantiate, true otherwise. bool planAssignment(); // Figure out how much VRAM headroom this plan requires. If there's enough purgeable resources, // purge them and return true. Otherwise return false. bool makeBudgetHeadroom(); // Clear all internal state in preparation for a new set of intervals. void reset(); // Instantiate and assign resources to all proxies. bool assign(); #if GR_ALLOCATION_SPEW void dumpIntervals(); #endif private: class Interval; class Register; // Remove dead intervals from the active list void expire(unsigned int curIndex); // These two methods wrap the interactions with the free pool void recycleRegister(Register* r); Register* findOrCreateRegisterFor(GrSurfaceProxy* proxy); struct FreePoolTraits { static const GrScratchKey& GetKey(const Register& r) { return r.scratchKey(); } static uint32_t Hash(const GrScratchKey& key) { return key.hash(); } static void OnFree(Register* r) { } }; typedef SkTMultiMap FreePoolMultiMap; typedef SkTHashMap IntvlHash; struct UniqueKeyHash { uint32_t operator()(const GrUniqueKey& key) const { return key.hash(); } }; typedef SkTHashMap UniqueKeyRegisterHash; // Each proxy – with some exceptions – is assigned a register. After all assignments are made, // another pass is performed to instantiate and assign actual surfaces to the proxies. Right // now these are performed in one call, but in the future they will be separable and the user // will be able to query re: memory cost before committing to surface creation. class Register { public: // It's OK to pass an invalid scratch key iff the proxy has a unique key. Register(GrSurfaceProxy* originatingProxy, GrScratchKey, GrResourceProvider*); const GrScratchKey& scratchKey() const { return fScratchKey; } const GrUniqueKey& uniqueKey() const { return fOriginatingProxy->getUniqueKey(); } bool accountedForInBudget() const { return fAccountedForInBudget; } void setAccountedForInBudget() { fAccountedForInBudget = true; } GrSurface* existingSurface() const { return fExistingSurface.get(); } // Can this register be used by other proxies after this one? bool isRecyclable(const GrCaps&, GrSurfaceProxy* proxy, int knownUseCount) const; // Resolve the register allocation to an actual GrSurface. 'fOriginatingProxy' // is used to cache the allocation when a given register is used by multiple // proxies. bool instantiateSurface(GrSurfaceProxy*, GrResourceProvider*); SkDEBUGCODE(uint32_t uniqueID() const { return fUniqueID; }) private: GrSurfaceProxy* fOriginatingProxy; GrScratchKey fScratchKey; // free pool wants a reference to this. sk_sp fExistingSurface; // queried from resource cache. may be null. bool fAccountedForInBudget = false; #ifdef SK_DEBUG uint32_t fUniqueID; static uint32_t CreateUniqueID(); #endif }; class Interval { public: Interval(GrSurfaceProxy* proxy, unsigned int start, unsigned int end) : fProxy(proxy) , fStart(start) , fEnd(end) { SkASSERT(proxy); SkDEBUGCODE(fUniqueID = CreateUniqueID()); #if GR_TRACK_INTERVAL_CREATION SkString proxyStr = proxy->dump(); SkDebugf("New intvl %d: %s [%d, %d]\n", fUniqueID, proxyStr.c_str(), start, end); #endif } const GrSurfaceProxy* proxy() const { return fProxy; } GrSurfaceProxy* proxy() { return fProxy; } unsigned int start() const { return fStart; } unsigned int end() const { return fEnd; } void setNext(Interval* next) { fNext = next; } const Interval* next() const { return fNext; } Interval* next() { return fNext; } Register* getRegister() const { return fRegister; } void setRegister(Register* r) { fRegister = r; } void addUse() { fUses++; } int uses() const { return fUses; } void extendEnd(unsigned int newEnd) { if (newEnd > fEnd) { fEnd = newEnd; #if GR_TRACK_INTERVAL_CREATION SkDebugf("intvl %d: extending from %d to %d\n", fUniqueID, fEnd, newEnd); #endif } } SkDEBUGCODE(uint32_t uniqueID() const { return fUniqueID; }) private: GrSurfaceProxy* fProxy; unsigned int fStart; unsigned int fEnd; Interval* fNext = nullptr; unsigned int fUses = 0; Register* fRegister = nullptr; #ifdef SK_DEBUG uint32_t fUniqueID; static uint32_t CreateUniqueID(); #endif }; class IntervalList { public: IntervalList() = default; // N.B. No need for a destructor – the arena allocator will clean up for us. bool empty() const { SkASSERT(SkToBool(fHead) == SkToBool(fTail)); return !SkToBool(fHead); } const Interval* peekHead() const { return fHead; } Interval* peekHead() { return fHead; } Interval* popHead(); void insertByIncreasingStart(Interval*); void insertByIncreasingEnd(Interval*); private: SkDEBUGCODE(void validate() const;) Interval* fHead = nullptr; Interval* fTail = nullptr; }; // Compositing use cases can create > 80 intervals. static const int kInitialArenaSize = 128 * sizeof(Interval); GrDirectContext* fDContext; FreePoolMultiMap fFreePool; // Recently created/used GrSurfaces IntvlHash fIntvlHash; // All the intervals, hashed by proxyID IntervalList fIntvlList; // All the intervals sorted by increasing start IntervalList fActiveIntvls; // List of live intervals during assignment // (sorted by increasing end) IntervalList fFinishedIntvls; // All the completed intervals // (sorted by increasing start) UniqueKeyRegisterHash fUniqueKeyRegisters; unsigned int fNumOps = 0; SkDEBUGCODE(bool fPlanned = false;) SkDEBUGCODE(bool fAssigned = false;) SkSTArenaAllocWithReset fInternalAllocator; // intervals & registers bool fFailedInstantiation = false; }; #endif // GrResourceAllocator_DEFINED