/* * Copyright 2014 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/gpu/ops/DashOp.h" #include "include/gpu/GrRecordingContext.h" #include "src/core/SkMatrixPriv.h" #include "src/core/SkPointPriv.h" #include "src/gpu/BufferWriter.h" #include "src/gpu/GrAppliedClip.h" #include "src/gpu/GrCaps.h" #include "src/gpu/GrDefaultGeoProcFactory.h" #include "src/gpu/GrGeometryProcessor.h" #include "src/gpu/GrMemoryPool.h" #include "src/gpu/GrOpFlushState.h" #include "src/gpu/GrProcessor.h" #include "src/gpu/GrProgramInfo.h" #include "src/gpu/GrRecordingContextPriv.h" #include "src/gpu/GrStyle.h" #include "src/gpu/SkGr.h" #include "src/gpu/geometry/GrQuad.h" #include "src/gpu/glsl/GrGLSLFragmentShaderBuilder.h" #include "src/gpu/glsl/GrGLSLProgramDataManager.h" #include "src/gpu/glsl/GrGLSLUniformHandler.h" #include "src/gpu/glsl/GrGLSLVarying.h" #include "src/gpu/glsl/GrGLSLVertexGeoBuilder.h" #include "src/gpu/ops/GrMeshDrawOp.h" #include "src/gpu/ops/GrSimpleMeshDrawOpHelper.h" using AAMode = skgpu::v1::DashOp::AAMode; #if GR_TEST_UTILS static const int kAAModeCnt = static_cast(skgpu::v1::DashOp::AAMode::kCoverageWithMSAA) + 1; #endif namespace skgpu::v1::DashOp { namespace { void calc_dash_scaling(SkScalar* parallelScale, SkScalar* perpScale, const SkMatrix& viewMatrix, const SkPoint pts[2]) { SkVector vecSrc = pts[1] - pts[0]; if (pts[1] == pts[0]) { vecSrc.set(1.0, 0.0); } SkScalar magSrc = vecSrc.length(); SkScalar invSrc = magSrc ? SkScalarInvert(magSrc) : 0; vecSrc.scale(invSrc); SkVector vecSrcPerp; SkPointPriv::RotateCW(vecSrc, &vecSrcPerp); viewMatrix.mapVectors(&vecSrc, 1); viewMatrix.mapVectors(&vecSrcPerp, 1); // parallelScale tells how much to scale along the line parallel to the dash line // perpScale tells how much to scale in the direction perpendicular to the dash line *parallelScale = vecSrc.length(); *perpScale = vecSrcPerp.length(); } // calculates the rotation needed to aligned pts to the x axis with pts[0] < pts[1] // Stores the rotation matrix in rotMatrix, and the mapped points in ptsRot void align_to_x_axis(const SkPoint pts[2], SkMatrix* rotMatrix, SkPoint ptsRot[2] = nullptr) { SkVector vec = pts[1] - pts[0]; if (pts[1] == pts[0]) { vec.set(1.0, 0.0); } SkScalar mag = vec.length(); SkScalar inv = mag ? SkScalarInvert(mag) : 0; vec.scale(inv); rotMatrix->setSinCos(-vec.fY, vec.fX, pts[0].fX, pts[0].fY); if (ptsRot) { rotMatrix->mapPoints(ptsRot, pts, 2); // correction for numerical issues if map doesn't make ptsRot exactly horizontal ptsRot[1].fY = pts[0].fY; } } // Assumes phase < sum of all intervals SkScalar calc_start_adjustment(const SkScalar intervals[2], SkScalar phase) { SkASSERT(phase < intervals[0] + intervals[1]); if (phase >= intervals[0] && phase != 0) { SkScalar srcIntervalLen = intervals[0] + intervals[1]; return srcIntervalLen - phase; } return 0; } SkScalar calc_end_adjustment(const SkScalar intervals[2], const SkPoint pts[2], SkScalar phase, SkScalar* endingInt) { if (pts[1].fX <= pts[0].fX) { return 0; } SkScalar srcIntervalLen = intervals[0] + intervals[1]; SkScalar totalLen = pts[1].fX - pts[0].fX; SkScalar temp = totalLen / srcIntervalLen; SkScalar numFullIntervals = SkScalarFloorToScalar(temp); *endingInt = totalLen - numFullIntervals * srcIntervalLen + phase; temp = *endingInt / srcIntervalLen; *endingInt = *endingInt - SkScalarFloorToScalar(temp) * srcIntervalLen; if (0 == *endingInt) { *endingInt = srcIntervalLen; } if (*endingInt > intervals[0]) { return *endingInt - intervals[0]; } return 0; } enum DashCap { kRound_DashCap, kNonRound_DashCap, }; void setup_dashed_rect(const SkRect& rect, VertexWriter& vertices, const SkMatrix& matrix, SkScalar offset, SkScalar bloatX, SkScalar len, SkScalar startInterval, SkScalar endInterval, SkScalar strokeWidth, SkScalar perpScale, DashCap cap) { SkScalar intervalLength = startInterval + endInterval; // 'dashRect' gets interpolated over the rendered 'rect'. For y we want the perpendicular signed // distance from the stroke center line in device space. 'perpScale' is the scale factor applied // to the y dimension of 'rect' isolated from 'matrix'. SkScalar halfDevRectHeight = rect.height() * perpScale / 2.f; SkRect dashRect = { offset - bloatX, -halfDevRectHeight, offset + len + bloatX, halfDevRectHeight }; if (kRound_DashCap == cap) { SkScalar radius = SkScalarHalf(strokeWidth) - 0.5f; SkScalar centerX = SkScalarHalf(endInterval); vertices.writeQuad(GrQuad::MakeFromRect(rect, matrix), VertexWriter::TriStripFromRect(dashRect), intervalLength, radius, centerX); } else { SkASSERT(kNonRound_DashCap == cap); SkScalar halfOffLen = SkScalarHalf(endInterval); SkScalar halfStroke = SkScalarHalf(strokeWidth); SkRect rectParam; rectParam.setLTRB(halfOffLen + 0.5f, -halfStroke + 0.5f, halfOffLen + startInterval - 0.5f, halfStroke - 0.5f); vertices.writeQuad(GrQuad::MakeFromRect(rect, matrix), VertexWriter::TriStripFromRect(dashRect), intervalLength, rectParam); } } /** * An GrGeometryProcessor that renders a dashed line. * This GrGeometryProcessor is meant for dashed lines that only have a single on/off interval pair. * Bounding geometry is rendered and the effect computes coverage based on the fragment's * position relative to the dashed line. */ GrGeometryProcessor* make_dash_gp(SkArenaAlloc* arena, const SkPMColor4f&, AAMode aaMode, DashCap cap, const SkMatrix& localMatrix, bool usesLocalCoords); class DashOpImpl final : public GrMeshDrawOp { public: DEFINE_OP_CLASS_ID struct LineData { SkMatrix fViewMatrix; SkMatrix fSrcRotInv; SkPoint fPtsRot[2]; SkScalar fSrcStrokeWidth; SkScalar fPhase; SkScalar fIntervals[2]; SkScalar fParallelScale; SkScalar fPerpendicularScale; }; static GrOp::Owner Make(GrRecordingContext* context, GrPaint&& paint, const LineData& geometry, SkPaint::Cap cap, AAMode aaMode, bool fullDash, const GrUserStencilSettings* stencilSettings) { return GrOp::Make(context, std::move(paint), geometry, cap, aaMode, fullDash, stencilSettings); } const char* name() const override { return "DashOp"; } void visitProxies(const GrVisitProxyFunc& func) const override { if (fProgramInfo) { fProgramInfo->visitFPProxies(func); } else { fProcessorSet.visitProxies(func); } } FixedFunctionFlags fixedFunctionFlags() const override { FixedFunctionFlags flags = FixedFunctionFlags::kNone; if (AAMode::kCoverageWithMSAA == fAAMode) { flags |= FixedFunctionFlags::kUsesHWAA; } if (fStencilSettings != &GrUserStencilSettings::kUnused) { flags |= FixedFunctionFlags::kUsesStencil; } return flags; } GrProcessorSet::Analysis finalize(const GrCaps& caps, const GrAppliedClip* clip, GrClampType clampType) override { GrProcessorAnalysisCoverage coverage = GrProcessorAnalysisCoverage::kSingleChannel; auto analysis = fProcessorSet.finalize(fColor, coverage, clip, fStencilSettings, caps, clampType, &fColor); fUsesLocalCoords = analysis.usesLocalCoords(); return analysis; } private: friend class GrOp; // for ctor DashOpImpl(GrPaint&& paint, const LineData& geometry, SkPaint::Cap cap, AAMode aaMode, bool fullDash, const GrUserStencilSettings* stencilSettings) : INHERITED(ClassID()) , fColor(paint.getColor4f()) , fFullDash(fullDash) , fCap(cap) , fAAMode(aaMode) , fProcessorSet(std::move(paint)) , fStencilSettings(stencilSettings) { fLines.push_back(geometry); // compute bounds SkScalar halfStrokeWidth = 0.5f * geometry.fSrcStrokeWidth; SkScalar xBloat = SkPaint::kButt_Cap == cap ? 0 : halfStrokeWidth; SkRect bounds; bounds.set(geometry.fPtsRot[0], geometry.fPtsRot[1]); bounds.outset(xBloat, halfStrokeWidth); // Note, we actually create the combined matrix here, and save the work SkMatrix& combinedMatrix = fLines[0].fSrcRotInv; combinedMatrix.postConcat(geometry.fViewMatrix); IsHairline zeroArea = geometry.fSrcStrokeWidth ? IsHairline::kNo : IsHairline::kYes; HasAABloat aaBloat = (aaMode == AAMode::kNone) ? HasAABloat::kNo : HasAABloat::kYes; this->setTransformedBounds(bounds, combinedMatrix, aaBloat, zeroArea); } struct DashDraw { DashDraw(const LineData& geo) { memcpy(fPtsRot, geo.fPtsRot, sizeof(geo.fPtsRot)); memcpy(fIntervals, geo.fIntervals, sizeof(geo.fIntervals)); fPhase = geo.fPhase; } SkPoint fPtsRot[2]; SkScalar fIntervals[2]; SkScalar fPhase; SkScalar fStartOffset; SkScalar fStrokeWidth; SkScalar fLineLength; SkScalar fDevBloatX; SkScalar fPerpendicularScale; bool fLineDone; bool fHasStartRect; bool fHasEndRect; }; GrProgramInfo* programInfo() override { return fProgramInfo; } void onCreateProgramInfo(const GrCaps* caps, SkArenaAlloc* arena, const GrSurfaceProxyView& writeView, bool usesMSAASurface, GrAppliedClip&& appliedClip, const GrDstProxyView& dstProxyView, GrXferBarrierFlags renderPassXferBarriers, GrLoadOp colorLoadOp) override { DashCap capType = (this->cap() == SkPaint::kRound_Cap) ? kRound_DashCap : kNonRound_DashCap; GrGeometryProcessor* gp; if (this->fullDash()) { gp = make_dash_gp(arena, this->color(), this->aaMode(), capType, this->viewMatrix(), fUsesLocalCoords); } else { // Set up the vertex data for the line and start/end dashes using namespace GrDefaultGeoProcFactory; Color color(this->color()); LocalCoords::Type localCoordsType = fUsesLocalCoords ? LocalCoords::kUsePosition_Type : LocalCoords::kUnused_Type; gp = MakeForDeviceSpace(arena, color, Coverage::kSolid_Type, localCoordsType, this->viewMatrix()); } if (!gp) { SkDebugf("Could not create GrGeometryProcessor\n"); return; } fProgramInfo = GrSimpleMeshDrawOpHelper::CreateProgramInfo(caps, arena, writeView, usesMSAASurface, std::move(appliedClip), dstProxyView, gp, std::move(fProcessorSet), GrPrimitiveType::kTriangles, renderPassXferBarriers, colorLoadOp, GrPipeline::InputFlags::kNone, fStencilSettings); } void onPrepareDraws(GrMeshDrawTarget* target) override { int instanceCount = fLines.count(); SkPaint::Cap cap = this->cap(); DashCap capType = (SkPaint::kRound_Cap == cap) ? kRound_DashCap : kNonRound_DashCap; if (!fProgramInfo) { this->createProgramInfo(target); if (!fProgramInfo) { return; } } // useAA here means Edge AA or MSAA bool useAA = this->aaMode() != AAMode::kNone; bool fullDash = this->fullDash(); // We do two passes over all of the dashes. First we setup the start, end, and bounds, // rectangles. We preserve all of this work in the rects / draws arrays below. Then we // iterate again over these decomposed dashes to generate vertices static const int kNumStackDashes = 128; SkSTArray rects; SkSTArray draws; int totalRectCount = 0; int rectOffset = 0; rects.push_back_n(3 * instanceCount); for (int i = 0; i < instanceCount; i++) { const LineData& args = fLines[i]; DashDraw& draw = draws.push_back(args); bool hasCap = SkPaint::kButt_Cap != cap; SkScalar halfSrcStroke = args.fSrcStrokeWidth * 0.5f; if (halfSrcStroke == 0.0f || this->aaMode() != AAMode::kCoverageWithMSAA) { // In the non-MSAA case, we always want to at least stroke out half a pixel on each // side in device space. 0.5f / fPerpendicularScale gives us this min in src space. // This is also necessary when the stroke width is zero, to allow hairlines to draw. halfSrcStroke = std::max(halfSrcStroke, 0.5f / args.fPerpendicularScale); } SkScalar strokeAdj = hasCap ? halfSrcStroke : 0.0f; SkScalar startAdj = 0; bool lineDone = false; // Too simplify the algorithm, we always push back rects for start and end rect. // Otherwise we'd have to track start / end rects for each individual geometry SkRect& bounds = rects[rectOffset++]; SkRect& startRect = rects[rectOffset++]; SkRect& endRect = rects[rectOffset++]; bool hasStartRect = false; // If we are using AA, check to see if we are drawing a partial dash at the start. If so // draw it separately here and adjust our start point accordingly if (useAA) { if (draw.fPhase > 0 && draw.fPhase < draw.fIntervals[0]) { SkPoint startPts[2]; startPts[0] = draw.fPtsRot[0]; startPts[1].fY = startPts[0].fY; startPts[1].fX = std::min(startPts[0].fX + draw.fIntervals[0] - draw.fPhase, draw.fPtsRot[1].fX); startRect.setBounds(startPts, 2); startRect.outset(strokeAdj, halfSrcStroke); hasStartRect = true; startAdj = draw.fIntervals[0] + draw.fIntervals[1] - draw.fPhase; } } // adjustments for start and end of bounding rect so we only draw dash intervals // contained in the original line segment. startAdj += calc_start_adjustment(draw.fIntervals, draw.fPhase); if (startAdj != 0) { draw.fPtsRot[0].fX += startAdj; draw.fPhase = 0; } SkScalar endingInterval = 0; SkScalar endAdj = calc_end_adjustment(draw.fIntervals, draw.fPtsRot, draw.fPhase, &endingInterval); draw.fPtsRot[1].fX -= endAdj; if (draw.fPtsRot[0].fX >= draw.fPtsRot[1].fX) { lineDone = true; } bool hasEndRect = false; // If we are using AA, check to see if we are drawing a partial dash at then end. If so // draw it separately here and adjust our end point accordingly if (useAA && !lineDone) { // If we adjusted the end then we will not be drawing a partial dash at the end. // If we didn't adjust the end point then we just need to make sure the ending // dash isn't a full dash if (0 == endAdj && endingInterval != draw.fIntervals[0]) { SkPoint endPts[2]; endPts[1] = draw.fPtsRot[1]; endPts[0].fY = endPts[1].fY; endPts[0].fX = endPts[1].fX - endingInterval; endRect.setBounds(endPts, 2); endRect.outset(strokeAdj, halfSrcStroke); hasEndRect = true; endAdj = endingInterval + draw.fIntervals[1]; draw.fPtsRot[1].fX -= endAdj; if (draw.fPtsRot[0].fX >= draw.fPtsRot[1].fX) { lineDone = true; } } } if (draw.fPtsRot[0].fX == draw.fPtsRot[1].fX && (0 != endAdj || 0 == startAdj) && hasCap) { // At this point the fPtsRot[0]/[1] represent the start and end of the inner rect of // dashes that we want to draw. The only way they can be equal is if the on interval // is zero (or an edge case if the end of line ends at a full off interval, but this // is handled as well). Thus if the on interval is zero then we need to draw a cap // at this position if the stroke has caps. The spec says we only draw this point if // point lies between [start of line, end of line). Thus we check if we are at the // end (but not the start), and if so we don't draw the cap. lineDone = false; } if (startAdj != 0) { draw.fPhase = 0; } // Change the dashing info from src space into device space SkScalar* devIntervals = draw.fIntervals; devIntervals[0] = draw.fIntervals[0] * args.fParallelScale; devIntervals[1] = draw.fIntervals[1] * args.fParallelScale; SkScalar devPhase = draw.fPhase * args.fParallelScale; SkScalar strokeWidth = args.fSrcStrokeWidth * args.fPerpendicularScale; if ((strokeWidth < 1.f && !useAA) || 0.f == strokeWidth) { strokeWidth = 1.f; } SkScalar halfDevStroke = strokeWidth * 0.5f; if (SkPaint::kSquare_Cap == cap) { // add cap to on interval and remove from off interval devIntervals[0] += strokeWidth; devIntervals[1] -= strokeWidth; } SkScalar startOffset = devIntervals[1] * 0.5f + devPhase; SkScalar devBloatX = 0.0f; SkScalar devBloatY = 0.0f; switch (this->aaMode()) { case AAMode::kNone: break; case AAMode::kCoverage: // For EdgeAA, we bloat in X & Y for both square and round caps. devBloatX = 0.5f; devBloatY = 0.5f; break; case AAMode::kCoverageWithMSAA: // For MSAA, we only bloat in Y for round caps. devBloatY = (cap == SkPaint::kRound_Cap) ? 0.5f : 0.0f; break; } SkScalar bloatX = devBloatX / args.fParallelScale; SkScalar bloatY = devBloatY / args.fPerpendicularScale; if (devIntervals[1] <= 0.f && useAA) { // Case when we end up drawing a solid AA rect // Reset the start rect to draw this single solid rect // but it requires to upload a new intervals uniform so we can mimic // one giant dash draw.fPtsRot[0].fX -= hasStartRect ? startAdj : 0; draw.fPtsRot[1].fX += hasEndRect ? endAdj : 0; startRect.setBounds(draw.fPtsRot, 2); startRect.outset(strokeAdj, halfSrcStroke); hasStartRect = true; hasEndRect = false; lineDone = true; SkPoint devicePts[2]; args.fSrcRotInv.mapPoints(devicePts, draw.fPtsRot, 2); SkScalar lineLength = SkPoint::Distance(devicePts[0], devicePts[1]); if (hasCap) { lineLength += 2.f * halfDevStroke; } devIntervals[0] = lineLength; } totalRectCount += !lineDone ? 1 : 0; totalRectCount += hasStartRect ? 1 : 0; totalRectCount += hasEndRect ? 1 : 0; if (SkPaint::kRound_Cap == cap && 0 != args.fSrcStrokeWidth) { // need to adjust this for round caps to correctly set the dashPos attrib on // vertices startOffset -= halfDevStroke; } if (!lineDone) { SkPoint devicePts[2]; args.fSrcRotInv.mapPoints(devicePts, draw.fPtsRot, 2); draw.fLineLength = SkPoint::Distance(devicePts[0], devicePts[1]); if (hasCap) { draw.fLineLength += 2.f * halfDevStroke; } bounds.setLTRB(draw.fPtsRot[0].fX, draw.fPtsRot[0].fY, draw.fPtsRot[1].fX, draw.fPtsRot[1].fY); bounds.outset(bloatX + strokeAdj, bloatY + halfSrcStroke); } if (hasStartRect) { SkASSERT(useAA); // so that we know bloatX and bloatY have been set startRect.outset(bloatX, bloatY); } if (hasEndRect) { SkASSERT(useAA); // so that we know bloatX and bloatY have been set endRect.outset(bloatX, bloatY); } draw.fStartOffset = startOffset; draw.fDevBloatX = devBloatX; draw.fPerpendicularScale = args.fPerpendicularScale; draw.fStrokeWidth = strokeWidth; draw.fHasStartRect = hasStartRect; draw.fLineDone = lineDone; draw.fHasEndRect = hasEndRect; } if (!totalRectCount) { return; } QuadHelper helper(target, fProgramInfo->geomProc().vertexStride(), totalRectCount); VertexWriter vertices{ helper.vertices() }; if (!vertices) { return; } int rectIndex = 0; for (int i = 0; i < instanceCount; i++) { const LineData& geom = fLines[i]; if (!draws[i].fLineDone) { if (fullDash) { setup_dashed_rect(rects[rectIndex], vertices, geom.fSrcRotInv, draws[i].fStartOffset, draws[i].fDevBloatX, draws[i].fLineLength, draws[i].fIntervals[0], draws[i].fIntervals[1], draws[i].fStrokeWidth, draws[i].fPerpendicularScale, capType); } else { vertices.writeQuad(GrQuad::MakeFromRect(rects[rectIndex], geom.fSrcRotInv)); } } rectIndex++; if (draws[i].fHasStartRect) { if (fullDash) { setup_dashed_rect(rects[rectIndex], vertices, geom.fSrcRotInv, draws[i].fStartOffset, draws[i].fDevBloatX, draws[i].fIntervals[0], draws[i].fIntervals[0], draws[i].fIntervals[1], draws[i].fStrokeWidth, draws[i].fPerpendicularScale, capType); } else { vertices.writeQuad(GrQuad::MakeFromRect(rects[rectIndex], geom.fSrcRotInv)); } } rectIndex++; if (draws[i].fHasEndRect) { if (fullDash) { setup_dashed_rect(rects[rectIndex], vertices, geom.fSrcRotInv, draws[i].fStartOffset, draws[i].fDevBloatX, draws[i].fIntervals[0], draws[i].fIntervals[0], draws[i].fIntervals[1], draws[i].fStrokeWidth, draws[i].fPerpendicularScale, capType); } else { vertices.writeQuad(GrQuad::MakeFromRect(rects[rectIndex], geom.fSrcRotInv)); } } rectIndex++; } fMesh = helper.mesh(); } void onExecute(GrOpFlushState* flushState, const SkRect& chainBounds) override { if (!fProgramInfo || !fMesh) { return; } flushState->bindPipelineAndScissorClip(*fProgramInfo, chainBounds); flushState->bindTextures(fProgramInfo->geomProc(), nullptr, fProgramInfo->pipeline()); flushState->drawMesh(*fMesh); } CombineResult onCombineIfPossible(GrOp* t, SkArenaAlloc*, const GrCaps& caps) override { auto that = t->cast(); if (fProcessorSet != that->fProcessorSet) { return CombineResult::kCannotCombine; } if (this->aaMode() != that->aaMode()) { return CombineResult::kCannotCombine; } if (this->fullDash() != that->fullDash()) { return CombineResult::kCannotCombine; } if (this->cap() != that->cap()) { return CombineResult::kCannotCombine; } // TODO vertex color if (this->color() != that->color()) { return CombineResult::kCannotCombine; } if (fUsesLocalCoords && !SkMatrixPriv::CheapEqual(this->viewMatrix(), that->viewMatrix())) { return CombineResult::kCannotCombine; } fLines.push_back_n(that->fLines.count(), that->fLines.begin()); return CombineResult::kMerged; } #if GR_TEST_UTILS SkString onDumpInfo() const override { SkString string; for (const auto& geo : fLines) { string.appendf("Pt0: [%.2f, %.2f], Pt1: [%.2f, %.2f], Width: %.2f, Ival0: %.2f, " "Ival1 : %.2f, Phase: %.2f\n", geo.fPtsRot[0].fX, geo.fPtsRot[0].fY, geo.fPtsRot[1].fX, geo.fPtsRot[1].fY, geo.fSrcStrokeWidth, geo.fIntervals[0], geo.fIntervals[1], geo.fPhase); } string += fProcessorSet.dumpProcessors(); return string; } #endif const SkPMColor4f& color() const { return fColor; } const SkMatrix& viewMatrix() const { return fLines[0].fViewMatrix; } AAMode aaMode() const { return fAAMode; } bool fullDash() const { return fFullDash; } SkPaint::Cap cap() const { return fCap; } SkSTArray<1, LineData, true> fLines; SkPMColor4f fColor; bool fUsesLocalCoords : 1; bool fFullDash : 1; // We use 3 bits for this 3-value enum because MSVS makes the underlying types signed. SkPaint::Cap fCap : 3; AAMode fAAMode; GrProcessorSet fProcessorSet; const GrUserStencilSettings* fStencilSettings; GrSimpleMesh* fMesh = nullptr; GrProgramInfo* fProgramInfo = nullptr; using INHERITED = GrMeshDrawOp; }; /* * This effect will draw a dotted line (defined as a dashed lined with round caps and no on * interval). The radius of the dots is given by the strokeWidth and the spacing by the DashInfo. * Both of the previous two parameters are in device space. This effect also requires the setting of * a float2 vertex attribute for the the four corners of the bounding rect. This attribute is the * "dash position" of each vertex. In other words it is the vertex coords (in device space) if we * transform the line to be horizontal, with the start of line at the origin then shifted to the * right by half the off interval. The line then goes in the positive x direction. */ class DashingCircleEffect : public GrGeometryProcessor { public: typedef SkPathEffect::DashInfo DashInfo; static GrGeometryProcessor* Make(SkArenaAlloc* arena, const SkPMColor4f&, AAMode aaMode, const SkMatrix& localMatrix, bool usesLocalCoords); const char* name() const override { return "DashingCircleEffect"; } void addToKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override; std::unique_ptr makeProgramImpl(const GrShaderCaps&) const override; private: class Impl; DashingCircleEffect(const SkPMColor4f&, AAMode aaMode, const SkMatrix& localMatrix, bool usesLocalCoords); SkPMColor4f fColor; SkMatrix fLocalMatrix; bool fUsesLocalCoords; AAMode fAAMode; Attribute fInPosition; Attribute fInDashParams; Attribute fInCircleParams; GR_DECLARE_GEOMETRY_PROCESSOR_TEST using INHERITED = GrGeometryProcessor; }; ////////////////////////////////////////////////////////////////////////////// class DashingCircleEffect::Impl : public ProgramImpl { public: void setData(const GrGLSLProgramDataManager&, const GrShaderCaps&, const GrGeometryProcessor&) override; private: void onEmitCode(EmitArgs&, GrGPArgs*) override; SkMatrix fLocalMatrix = SkMatrix::InvalidMatrix(); SkPMColor4f fColor = SK_PMColor4fILLEGAL; float fPrevRadius = SK_FloatNaN; float fPrevCenterX = SK_FloatNaN; float fPrevIntervalLength = SK_FloatNaN; UniformHandle fParamUniform; UniformHandle fColorUniform; UniformHandle fLocalMatrixUniform; }; void DashingCircleEffect::Impl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { const DashingCircleEffect& dce = args.fGeomProc.cast(); GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; // emit attributes varyingHandler->emitAttributes(dce); // XY are dashPos, Z is dashInterval GrGLSLVarying dashParams(kHalf3_GrSLType); varyingHandler->addVarying("DashParam", &dashParams); vertBuilder->codeAppendf("%s = %s;", dashParams.vsOut(), dce.fInDashParams.name()); // x refers to circle radius - 0.5, y refers to cicle's center x coord GrGLSLVarying circleParams(kHalf2_GrSLType); varyingHandler->addVarying("CircleParams", &circleParams); vertBuilder->codeAppendf("%s = %s;", circleParams.vsOut(), dce.fInCircleParams.name()); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; // Setup pass through color fragBuilder->codeAppendf("half4 %s;", args.fOutputColor); this->setupUniformColor(fragBuilder, uniformHandler, args.fOutputColor, &fColorUniform); // Setup position WriteOutputPosition(vertBuilder, gpArgs, dce.fInPosition.name()); if (dce.fUsesLocalCoords) { WriteLocalCoord(vertBuilder, uniformHandler, *args.fShaderCaps, gpArgs, dce.fInPosition.asShaderVar(), dce.fLocalMatrix, &fLocalMatrixUniform); } // transforms all points so that we can compare them to our test circle fragBuilder->codeAppendf("half xShifted = half(%s.x - floor(%s.x / %s.z) * %s.z);", dashParams.fsIn(), dashParams.fsIn(), dashParams.fsIn(), dashParams.fsIn()); fragBuilder->codeAppendf("half2 fragPosShifted = half2(xShifted, half(%s.y));", dashParams.fsIn()); fragBuilder->codeAppendf("half2 center = half2(%s.y, 0.0);", circleParams.fsIn()); fragBuilder->codeAppend("half dist = length(center - fragPosShifted);"); if (dce.fAAMode != AAMode::kNone) { fragBuilder->codeAppendf("half diff = dist - %s.x;", circleParams.fsIn()); fragBuilder->codeAppend("diff = 1.0 - diff;"); fragBuilder->codeAppend("half alpha = saturate(diff);"); } else { fragBuilder->codeAppendf("half alpha = 1.0;"); fragBuilder->codeAppendf("alpha *= dist < %s.x + 0.5 ? 1.0 : 0.0;", circleParams.fsIn()); } fragBuilder->codeAppendf("half4 %s = half4(alpha);", args.fOutputCoverage); } void DashingCircleEffect::Impl::setData(const GrGLSLProgramDataManager& pdman, const GrShaderCaps& shaderCaps, const GrGeometryProcessor& geomProc) { const DashingCircleEffect& dce = geomProc.cast(); if (dce.fColor != fColor) { pdman.set4fv(fColorUniform, 1, dce.fColor.vec()); fColor = dce.fColor; } SetTransform(pdman, shaderCaps, fLocalMatrixUniform, dce.fLocalMatrix, &fLocalMatrix); } ////////////////////////////////////////////////////////////////////////////// GrGeometryProcessor* DashingCircleEffect::Make(SkArenaAlloc* arena, const SkPMColor4f& color, AAMode aaMode, const SkMatrix& localMatrix, bool usesLocalCoords) { return arena->make([&](void* ptr) { return new (ptr) DashingCircleEffect(color, aaMode, localMatrix, usesLocalCoords); }); } void DashingCircleEffect::addToKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { uint32_t key = 0; key |= fUsesLocalCoords ? 0x1 : 0x0; key |= static_cast(fAAMode) << 1; key |= ProgramImpl::ComputeMatrixKey(caps, fLocalMatrix) << 3; b->add32(key); } std::unique_ptr DashingCircleEffect::makeProgramImpl( const GrShaderCaps&) const { return std::make_unique(); } DashingCircleEffect::DashingCircleEffect(const SkPMColor4f& color, AAMode aaMode, const SkMatrix& localMatrix, bool usesLocalCoords) : INHERITED(kDashingCircleEffect_ClassID) , fColor(color) , fLocalMatrix(localMatrix) , fUsesLocalCoords(usesLocalCoords) , fAAMode(aaMode) { fInPosition = {"inPosition", kFloat2_GrVertexAttribType, kFloat2_GrSLType}; fInDashParams = {"inDashParams", kFloat3_GrVertexAttribType, kHalf3_GrSLType}; fInCircleParams = {"inCircleParams", kFloat2_GrVertexAttribType, kHalf2_GrSLType}; this->setVertexAttributes(&fInPosition, 3); } GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DashingCircleEffect); #if GR_TEST_UTILS GrGeometryProcessor* DashingCircleEffect::TestCreate(GrProcessorTestData* d) { AAMode aaMode = static_cast(d->fRandom->nextULessThan(kAAModeCnt)); GrColor color = GrTest::RandomColor(d->fRandom); SkMatrix matrix = GrTest::TestMatrix(d->fRandom); return DashingCircleEffect::Make(d->allocator(), SkPMColor4f::FromBytes_RGBA(color), aaMode, matrix, d->fRandom->nextBool()); } #endif ////////////////////////////////////////////////////////////////////////////// /* * This effect will draw a dashed line. The width of the dash is given by the strokeWidth and the * length and spacing by the DashInfo. Both of the previous two parameters are in device space. * This effect also requires the setting of a float2 vertex attribute for the the four corners of the * bounding rect. This attribute is the "dash position" of each vertex. In other words it is the * vertex coords (in device space) if we transform the line to be horizontal, with the start of * line at the origin then shifted to the right by half the off interval. The line then goes in the * positive x direction. */ class DashingLineEffect : public GrGeometryProcessor { public: typedef SkPathEffect::DashInfo DashInfo; static GrGeometryProcessor* Make(SkArenaAlloc* arena, const SkPMColor4f&, AAMode aaMode, const SkMatrix& localMatrix, bool usesLocalCoords); const char* name() const override { return "DashingEffect"; } bool usesLocalCoords() const { return fUsesLocalCoords; } void addToKey(const GrShaderCaps&, GrProcessorKeyBuilder*) const override; std::unique_ptr makeProgramImpl(const GrShaderCaps&) const override; private: class Impl; DashingLineEffect(const SkPMColor4f&, AAMode aaMode, const SkMatrix& localMatrix, bool usesLocalCoords); SkPMColor4f fColor; SkMatrix fLocalMatrix; bool fUsesLocalCoords; AAMode fAAMode; Attribute fInPosition; Attribute fInDashParams; Attribute fInRect; GR_DECLARE_GEOMETRY_PROCESSOR_TEST using INHERITED = GrGeometryProcessor; }; ////////////////////////////////////////////////////////////////////////////// class DashingLineEffect::Impl : public ProgramImpl { public: void setData(const GrGLSLProgramDataManager&, const GrShaderCaps&, const GrGeometryProcessor&) override; private: void onEmitCode(EmitArgs&, GrGPArgs*) override; SkPMColor4f fColor = SK_PMColor4fILLEGAL; SkMatrix fLocalMatrix = SkMatrix::InvalidMatrix(); UniformHandle fLocalMatrixUniform; UniformHandle fColorUniform; }; void DashingLineEffect::Impl::onEmitCode(EmitArgs& args, GrGPArgs* gpArgs) { const DashingLineEffect& de = args.fGeomProc.cast(); GrGLSLVertexBuilder* vertBuilder = args.fVertBuilder; GrGLSLVaryingHandler* varyingHandler = args.fVaryingHandler; GrGLSLUniformHandler* uniformHandler = args.fUniformHandler; // emit attributes varyingHandler->emitAttributes(de); // XY refers to dashPos, Z is the dash interval length GrGLSLVarying inDashParams(kFloat3_GrSLType); varyingHandler->addVarying("DashParams", &inDashParams); vertBuilder->codeAppendf("%s = %s;", inDashParams.vsOut(), de.fInDashParams.name()); // The rect uniform's xyzw refer to (left + 0.5, top + 0.5, right - 0.5, bottom - 0.5), // respectively. GrGLSLVarying inRectParams(kFloat4_GrSLType); varyingHandler->addVarying("RectParams", &inRectParams); vertBuilder->codeAppendf("%s = %s;", inRectParams.vsOut(), de.fInRect.name()); GrGLSLFPFragmentBuilder* fragBuilder = args.fFragBuilder; // Setup pass through color fragBuilder->codeAppendf("half4 %s;", args.fOutputColor); this->setupUniformColor(fragBuilder, uniformHandler, args.fOutputColor, &fColorUniform); // Setup position WriteOutputPosition(vertBuilder, gpArgs, de.fInPosition.name()); if (de.usesLocalCoords()) { WriteLocalCoord(vertBuilder, uniformHandler, *args.fShaderCaps, gpArgs, de.fInPosition.asShaderVar(), de.fLocalMatrix, &fLocalMatrixUniform); } // transforms all points so that we can compare them to our test rect fragBuilder->codeAppendf("half xShifted = half(%s.x - floor(%s.x / %s.z) * %s.z);", inDashParams.fsIn(), inDashParams.fsIn(), inDashParams.fsIn(), inDashParams.fsIn()); fragBuilder->codeAppendf("half2 fragPosShifted = half2(xShifted, half(%s.y));", inDashParams.fsIn()); if (de.fAAMode == AAMode::kCoverage) { // The amount of coverage removed in x and y by the edges is computed as a pair of negative // numbers, xSub and ySub. fragBuilder->codeAppend("half xSub, ySub;"); fragBuilder->codeAppendf("xSub = half(min(fragPosShifted.x - %s.x, 0.0));", inRectParams.fsIn()); fragBuilder->codeAppendf("xSub += half(min(%s.z - fragPosShifted.x, 0.0));", inRectParams.fsIn()); fragBuilder->codeAppendf("ySub = half(min(fragPosShifted.y - %s.y, 0.0));", inRectParams.fsIn()); fragBuilder->codeAppendf("ySub += half(min(%s.w - fragPosShifted.y, 0.0));", inRectParams.fsIn()); // Now compute coverage in x and y and multiply them to get the fraction of the pixel // covered. fragBuilder->codeAppendf( "half alpha = (1.0 + max(xSub, -1.0)) * (1.0 + max(ySub, -1.0));"); } else if (de.fAAMode == AAMode::kCoverageWithMSAA) { // For MSAA, we don't modulate the alpha by the Y distance, since MSAA coverage will handle // AA on the the top and bottom edges. The shader is only responsible for intra-dash alpha. fragBuilder->codeAppend("half xSub;"); fragBuilder->codeAppendf("xSub = half(min(fragPosShifted.x - %s.x, 0.0));", inRectParams.fsIn()); fragBuilder->codeAppendf("xSub += half(min(%s.z - fragPosShifted.x, 0.0));", inRectParams.fsIn()); // Now compute coverage in x to get the fraction of the pixel covered. fragBuilder->codeAppendf("half alpha = (1.0 + max(xSub, -1.0));"); } else { // Assuming the bounding geometry is tight so no need to check y values fragBuilder->codeAppendf("half alpha = 1.0;"); fragBuilder->codeAppendf("alpha *= (fragPosShifted.x - %s.x) > -0.5 ? 1.0 : 0.0;", inRectParams.fsIn()); fragBuilder->codeAppendf("alpha *= (%s.z - fragPosShifted.x) >= -0.5 ? 1.0 : 0.0;", inRectParams.fsIn()); } fragBuilder->codeAppendf("half4 %s = half4(alpha);", args.fOutputCoverage); } void DashingLineEffect::Impl::setData(const GrGLSLProgramDataManager& pdman, const GrShaderCaps& shaderCaps, const GrGeometryProcessor& geomProc) { const DashingLineEffect& de = geomProc.cast(); if (de.fColor != fColor) { pdman.set4fv(fColorUniform, 1, de.fColor.vec()); fColor = de.fColor; } SetTransform(pdman, shaderCaps, fLocalMatrixUniform, de.fLocalMatrix, &fLocalMatrix); } ////////////////////////////////////////////////////////////////////////////// GrGeometryProcessor* DashingLineEffect::Make(SkArenaAlloc* arena, const SkPMColor4f& color, AAMode aaMode, const SkMatrix& localMatrix, bool usesLocalCoords) { return arena->make([&](void* ptr) { return new (ptr) DashingLineEffect(color, aaMode, localMatrix, usesLocalCoords); }); } void DashingLineEffect::addToKey(const GrShaderCaps& caps, GrProcessorKeyBuilder* b) const { uint32_t key = 0; key |= fUsesLocalCoords ? 0x1 : 0x0; key |= static_cast(fAAMode) << 1; key |= ProgramImpl::ComputeMatrixKey(caps, fLocalMatrix) << 3; b->add32(key); } std::unique_ptr DashingLineEffect::makeProgramImpl( const GrShaderCaps&) const { return std::make_unique(); } DashingLineEffect::DashingLineEffect(const SkPMColor4f& color, AAMode aaMode, const SkMatrix& localMatrix, bool usesLocalCoords) : INHERITED(kDashingLineEffect_ClassID) , fColor(color) , fLocalMatrix(localMatrix) , fUsesLocalCoords(usesLocalCoords) , fAAMode(aaMode) { fInPosition = {"inPosition", kFloat2_GrVertexAttribType, kFloat2_GrSLType}; fInDashParams = {"inDashParams", kFloat3_GrVertexAttribType, kHalf3_GrSLType}; fInRect = {"inRect", kFloat4_GrVertexAttribType, kHalf4_GrSLType}; this->setVertexAttributes(&fInPosition, 3); } GR_DEFINE_GEOMETRY_PROCESSOR_TEST(DashingLineEffect); #if GR_TEST_UTILS GrGeometryProcessor* DashingLineEffect::TestCreate(GrProcessorTestData* d) { AAMode aaMode = static_cast(d->fRandom->nextULessThan(kAAModeCnt)); GrColor color = GrTest::RandomColor(d->fRandom); SkMatrix matrix = GrTest::TestMatrix(d->fRandom); return DashingLineEffect::Make(d->allocator(), SkPMColor4f::FromBytes_RGBA(color), aaMode, matrix, d->fRandom->nextBool()); } #endif ////////////////////////////////////////////////////////////////////////////// GrGeometryProcessor* make_dash_gp(SkArenaAlloc* arena, const SkPMColor4f& color, AAMode aaMode, DashCap cap, const SkMatrix& viewMatrix, bool usesLocalCoords) { SkMatrix invert; if (usesLocalCoords && !viewMatrix.invert(&invert)) { SkDebugf("Failed to invert\n"); return nullptr; } switch (cap) { case kRound_DashCap: return DashingCircleEffect::Make(arena, color, aaMode, invert, usesLocalCoords); case kNonRound_DashCap: return DashingLineEffect::Make(arena, color, aaMode, invert, usesLocalCoords); } return nullptr; } } // anonymous namespace ///////////////////////////////////////////////////////////////////////////////////////////////// GrOp::Owner MakeDashLineOp(GrRecordingContext* context, GrPaint&& paint, const SkMatrix& viewMatrix, const SkPoint pts[2], AAMode aaMode, const GrStyle& style, const GrUserStencilSettings* stencilSettings) { SkASSERT(CanDrawDashLine(pts, style, viewMatrix)); const SkScalar* intervals = style.dashIntervals(); SkScalar phase = style.dashPhase(); SkPaint::Cap cap = style.strokeRec().getCap(); DashOpImpl::LineData lineData; lineData.fSrcStrokeWidth = style.strokeRec().getWidth(); // the phase should be normalized to be [0, sum of all intervals) SkASSERT(phase >= 0 && phase < intervals[0] + intervals[1]); // Rotate the src pts so they are aligned horizontally with pts[0].fX < pts[1].fX if (pts[0].fY != pts[1].fY || pts[0].fX > pts[1].fX) { SkMatrix rotMatrix; align_to_x_axis(pts, &rotMatrix, lineData.fPtsRot); if (!rotMatrix.invert(&lineData.fSrcRotInv)) { SkDebugf("Failed to create invertible rotation matrix!\n"); return nullptr; } } else { lineData.fSrcRotInv.reset(); memcpy(lineData.fPtsRot, pts, 2 * sizeof(SkPoint)); } // Scale corrections of intervals and stroke from view matrix calc_dash_scaling(&lineData.fParallelScale, &lineData.fPerpendicularScale, viewMatrix, pts); if (SkScalarNearlyZero(lineData.fParallelScale) || SkScalarNearlyZero(lineData.fPerpendicularScale)) { return nullptr; } SkScalar offInterval = intervals[1] * lineData.fParallelScale; SkScalar strokeWidth = lineData.fSrcStrokeWidth * lineData.fPerpendicularScale; if (SkPaint::kSquare_Cap == cap && 0 != lineData.fSrcStrokeWidth) { // add cap to on interval and remove from off interval offInterval -= strokeWidth; } // TODO we can do a real rect call if not using fulldash(ie no off interval, not using AA) bool fullDash = offInterval > 0.f || aaMode != AAMode::kNone; lineData.fViewMatrix = viewMatrix; lineData.fPhase = phase; lineData.fIntervals[0] = intervals[0]; lineData.fIntervals[1] = intervals[1]; return DashOpImpl::Make(context, std::move(paint), lineData, cap, aaMode, fullDash, stencilSettings); } // Returns whether or not the gpu can fast path the dash line effect. bool CanDrawDashLine(const SkPoint pts[2], const GrStyle& style, const SkMatrix& viewMatrix) { // Pts must be either horizontal or vertical in src space if (pts[0].fX != pts[1].fX && pts[0].fY != pts[1].fY) { return false; } // May be able to relax this to include skew. As of now cannot do perspective // because of the non uniform scaling of bloating a rect if (!viewMatrix.preservesRightAngles()) { return false; } if (!style.isDashed() || 2 != style.dashIntervalCnt()) { return false; } const SkScalar* intervals = style.dashIntervals(); if (0 == intervals[0] && 0 == intervals[1]) { return false; } SkPaint::Cap cap = style.strokeRec().getCap(); if (SkPaint::kRound_Cap == cap) { // Current we don't support round caps unless the on interval is zero if (intervals[0] != 0.f) { return false; } // If the width of the circle caps in greater than the off interval we will pick up unwanted // segments of circles at the start and end of the dash line. if (style.strokeRec().getWidth() > intervals[1]) { return false; } } return true; } } // namespace skgpu::v1::DashOp #if GR_TEST_UTILS #include "src/gpu/GrDrawOpTest.h" GR_DRAW_OP_TEST_DEFINE(DashOpImpl) { SkMatrix viewMatrix = GrTest::TestMatrixPreservesRightAngles(random); AAMode aaMode; do { aaMode = static_cast(random->nextULessThan(kAAModeCnt)); } while (AAMode::kCoverageWithMSAA == aaMode && numSamples <= 1); // We can only dash either horizontal or vertical lines SkPoint pts[2]; if (random->nextBool()) { // vertical pts[0].fX = 1.f; pts[0].fY = random->nextF() * 10.f; pts[1].fX = 1.f; pts[1].fY = random->nextF() * 10.f; } else { // horizontal pts[0].fX = random->nextF() * 10.f; pts[0].fY = 1.f; pts[1].fX = random->nextF() * 10.f; pts[1].fY = 1.f; } // pick random cap SkPaint::Cap cap = SkPaint::Cap(random->nextULessThan(SkPaint::kCapCount)); SkScalar intervals[2]; // We can only dash with the following intervals enum Intervals { kOpenOpen_Intervals , kOpenClose_Intervals, kCloseOpen_Intervals, }; Intervals intervalType = SkPaint::kRound_Cap == cap ? kOpenClose_Intervals : Intervals(random->nextULessThan(kCloseOpen_Intervals + 1)); static const SkScalar kIntervalMin = 0.1f; static const SkScalar kIntervalMinCircles = 1.f; // Must be >= to stroke width static const SkScalar kIntervalMax = 10.f; switch (intervalType) { case kOpenOpen_Intervals: intervals[0] = random->nextRangeScalar(kIntervalMin, kIntervalMax); intervals[1] = random->nextRangeScalar(kIntervalMin, kIntervalMax); break; case kOpenClose_Intervals: { intervals[0] = 0.f; SkScalar min = SkPaint::kRound_Cap == cap ? kIntervalMinCircles : kIntervalMin; intervals[1] = random->nextRangeScalar(min, kIntervalMax); break; } case kCloseOpen_Intervals: intervals[0] = random->nextRangeScalar(kIntervalMin, kIntervalMax); intervals[1] = 0.f; break; } // phase is 0 < sum (i0, i1) SkScalar phase = random->nextRangeScalar(0, intervals[0] + intervals[1]); SkPaint p; p.setStyle(SkPaint::kStroke_Style); p.setStrokeWidth(SkIntToScalar(1)); p.setStrokeCap(cap); p.setPathEffect(GrTest::TestDashPathEffect::Make(intervals, 2, phase)); GrStyle style(p); return skgpu::v1::DashOp::MakeDashLineOp(context, std::move(paint), viewMatrix, pts, aaMode, style, GrGetRandomStencil(random, context)); } #endif // GR_TEST_UTILS