/* * Copyright 2012 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "src/core/SkTSort.h" #include "src/pathops/SkOpAngle.h" #include "src/pathops/SkOpSegment.h" #include "src/pathops/SkPathOpsCurve.h" /* Angles are sorted counterclockwise. The smallest angle has a positive x and the smallest positive y. The largest angle has a positive x and a zero y. */ #if DEBUG_ANGLE static bool CompareResult(const char* func, SkString* bugOut, SkString* bugPart, int append, bool compare) { SkDebugf("%s %c %d\n", bugOut->c_str(), compare ? 'T' : 'F', append); SkDebugf("%sPart %s\n", func, bugPart[0].c_str()); SkDebugf("%sPart %s\n", func, bugPart[1].c_str()); SkDebugf("%sPart %s\n", func, bugPart[2].c_str()); return compare; } #define COMPARE_RESULT(append, compare) CompareResult(__FUNCTION__, &bugOut, bugPart, append, \ compare) #else #define COMPARE_RESULT(append, compare) compare #endif /* quarter angle values for sector 31 x > 0, y == 0 horizontal line (to the right) 0 x > 0, y == epsilon quad/cubic horizontal tangent eventually going +y 1 x > 0, y > 0, x > y nearer horizontal angle 2 x + e == y quad/cubic 45 going horiz 3 x > 0, y > 0, x == y 45 angle 4 x == y + e quad/cubic 45 going vert 5 x > 0, y > 0, x < y nearer vertical angle 6 x == epsilon, y > 0 quad/cubic vertical tangent eventually going +x 7 x == 0, y > 0 vertical line (to the top) 8 7 6 9 | 5 10 | 4 11 | 3 12 \ | / 2 13 | 1 14 | 0 15 --------------+------------- 31 16 | 30 17 | 29 18 / | \ 28 19 | 27 20 | 26 21 | 25 22 23 24 */ // return true if lh < this < rh bool SkOpAngle::after(SkOpAngle* test) { SkOpAngle* lh = test; SkOpAngle* rh = lh->fNext; SkASSERT(lh != rh); fPart.fCurve = fOriginalCurvePart; lh->fPart.fCurve = lh->fOriginalCurvePart; lh->fPart.fCurve.offset(lh->segment()->verb(), fPart.fCurve[0] - lh->fPart.fCurve[0]); rh->fPart.fCurve = rh->fOriginalCurvePart; rh->fPart.fCurve.offset(rh->segment()->verb(), fPart.fCurve[0] - rh->fPart.fCurve[0]); #if DEBUG_ANGLE SkString bugOut; bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g" " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g" " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__, lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd, lh->fStart->t(), lh->fEnd->t(), segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(), rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd, rh->fStart->t(), rh->fEnd->t()); SkString bugPart[3] = { lh->debugPart(), this->debugPart(), rh->debugPart() }; #endif if (lh->fComputeSector && !lh->computeSector()) { return COMPARE_RESULT(1, true); } if (fComputeSector && !this->computeSector()) { return COMPARE_RESULT(2, true); } if (rh->fComputeSector && !rh->computeSector()) { return COMPARE_RESULT(3, true); } #if DEBUG_ANGLE // reset bugOut with computed sectors bugOut.printf("%s [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g" " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g" " < [%d/%d] %d/%d tStart=%1.9g tEnd=%1.9g ", __FUNCTION__, lh->segment()->debugID(), lh->debugID(), lh->fSectorStart, lh->fSectorEnd, lh->fStart->t(), lh->fEnd->t(), segment()->debugID(), debugID(), fSectorStart, fSectorEnd, fStart->t(), fEnd->t(), rh->segment()->debugID(), rh->debugID(), rh->fSectorStart, rh->fSectorEnd, rh->fStart->t(), rh->fEnd->t()); #endif bool ltrOverlap = (lh->fSectorMask | rh->fSectorMask) & fSectorMask; bool lrOverlap = lh->fSectorMask & rh->fSectorMask; int lrOrder; // set to -1 if either order works if (!lrOverlap) { // no lh/rh sector overlap if (!ltrOverlap) { // no lh/this/rh sector overlap return COMPARE_RESULT(4, (lh->fSectorEnd > rh->fSectorStart) ^ (fSectorStart > lh->fSectorEnd) ^ (fSectorStart > rh->fSectorStart)); } int lrGap = (rh->fSectorStart - lh->fSectorStart + 32) & 0x1f; /* A tiny change can move the start +/- 4. The order can only be determined if lr gap is not 12 to 20 or -12 to -20. -31 ..-21 1 -20 ..-12 -1 -11 .. -1 0 0 shouldn't get here 11 .. 1 1 12 .. 20 -1 21 .. 31 0 */ lrOrder = lrGap > 20 ? 0 : lrGap > 11 ? -1 : 1; } else { lrOrder = lh->orderable(rh); if (!ltrOverlap && lrOrder >= 0) { return COMPARE_RESULT(5, !lrOrder); } } int ltOrder; SkASSERT((lh->fSectorMask & fSectorMask) || (rh->fSectorMask & fSectorMask) || -1 == lrOrder); if (lh->fSectorMask & fSectorMask) { ltOrder = lh->orderable(this); } else { int ltGap = (fSectorStart - lh->fSectorStart + 32) & 0x1f; ltOrder = ltGap > 20 ? 0 : ltGap > 11 ? -1 : 1; } int trOrder; if (rh->fSectorMask & fSectorMask) { trOrder = this->orderable(rh); } else { int trGap = (rh->fSectorStart - fSectorStart + 32) & 0x1f; trOrder = trGap > 20 ? 0 : trGap > 11 ? -1 : 1; } this->alignmentSameSide(lh, <Order); this->alignmentSameSide(rh, &trOrder); if (lrOrder >= 0 && ltOrder >= 0 && trOrder >= 0) { return COMPARE_RESULT(7, lrOrder ? (ltOrder & trOrder) : (ltOrder | trOrder)); } // SkASSERT(lrOrder >= 0 || ltOrder >= 0 || trOrder >= 0); // There's not enough information to sort. Get the pairs of angles in opposite planes. // If an order is < 0, the pair is already in an opposite plane. Check the remaining pairs. // FIXME : once all variants are understood, rewrite this more simply if (ltOrder == 0 && lrOrder == 0) { SkASSERT(trOrder < 0); // FIXME : once this is verified to work, remove one opposite angle call SkDEBUGCODE(bool lrOpposite = lh->oppositePlanes(rh)); bool ltOpposite = lh->oppositePlanes(this); SkOPASSERT(lrOpposite != ltOpposite); return COMPARE_RESULT(8, ltOpposite); } else if (ltOrder == 1 && trOrder == 0) { SkASSERT(lrOrder < 0); bool trOpposite = oppositePlanes(rh); return COMPARE_RESULT(9, trOpposite); } else if (lrOrder == 1 && trOrder == 1) { SkASSERT(ltOrder < 0); // SkDEBUGCODE(bool trOpposite = oppositePlanes(rh)); bool lrOpposite = lh->oppositePlanes(rh); // SkASSERT(lrOpposite != trOpposite); return COMPARE_RESULT(10, lrOpposite); } // If a pair couldn't be ordered, there's not enough information to determine the sort. // Refer to: https://docs.google.com/drawings/d/1KV-8SJTedku9fj4K6fd1SB-8divuV_uivHVsSgwXICQ if (fUnorderable || lh->fUnorderable || rh->fUnorderable) { // limit to lines; should work with curves, but wait for a failing test to verify if (!fPart.isCurve() && !lh->fPart.isCurve() && !rh->fPart.isCurve()) { // see if original raw data is orderable // if two share a point, check if third has both points in same half plane int ltShare = lh->fOriginalCurvePart[0] == fOriginalCurvePart[0]; int lrShare = lh->fOriginalCurvePart[0] == rh->fOriginalCurvePart[0]; int trShare = fOriginalCurvePart[0] == rh->fOriginalCurvePart[0]; // if only one pair are the same, the third point touches neither of the pair if (ltShare + lrShare + trShare == 1) { if (lrShare) { int ltOOrder = lh->linesOnOriginalSide(this); int rtOOrder = rh->linesOnOriginalSide(this); if ((rtOOrder ^ ltOOrder) == 1) { return ltOOrder; } } else if (trShare) { int tlOOrder = this->linesOnOriginalSide(lh); int rlOOrder = rh->linesOnOriginalSide(lh); if ((tlOOrder ^ rlOOrder) == 1) { return rlOOrder; } } else { SkASSERT(ltShare); int trOOrder = rh->linesOnOriginalSide(this); int lrOOrder = lh->linesOnOriginalSide(rh); // result must be 0 and 1 or 1 and 0 to be valid if ((lrOOrder ^ trOOrder) == 1) { return trOOrder; } } } } } if (lrOrder < 0) { if (ltOrder < 0) { return COMPARE_RESULT(11, trOrder); } return COMPARE_RESULT(12, ltOrder); } return COMPARE_RESULT(13, !lrOrder); } int SkOpAngle::lineOnOneSide(const SkDPoint& origin, const SkDVector& line, const SkOpAngle* test, bool useOriginal) const { double crosses[3]; SkPath::Verb testVerb = test->segment()->verb(); int iMax = SkPathOpsVerbToPoints(testVerb); // SkASSERT(origin == test.fCurveHalf[0]); const SkDCurve& testCurve = useOriginal ? test->fOriginalCurvePart : test->fPart.fCurve; for (int index = 1; index <= iMax; ++index) { double xy1 = line.fX * (testCurve[index].fY - origin.fY); double xy2 = line.fY * (testCurve[index].fX - origin.fX); crosses[index - 1] = AlmostBequalUlps(xy1, xy2) ? 0 : xy1 - xy2; } if (crosses[0] * crosses[1] < 0) { return -1; } if (SkPath::kCubic_Verb == testVerb) { if (crosses[0] * crosses[2] < 0 || crosses[1] * crosses[2] < 0) { return -1; } } if (crosses[0]) { return crosses[0] < 0; } if (crosses[1]) { return crosses[1] < 0; } if (SkPath::kCubic_Verb == testVerb && crosses[2]) { return crosses[2] < 0; } return -2; } // given a line, see if the opposite curve's convex hull is all on one side // returns -1=not on one side 0=this CW of test 1=this CCW of test int SkOpAngle::lineOnOneSide(const SkOpAngle* test, bool useOriginal) { SkASSERT(!fPart.isCurve()); SkASSERT(test->fPart.isCurve()); SkDPoint origin = fPart.fCurve[0]; SkDVector line = fPart.fCurve[1] - origin; int result = this->lineOnOneSide(origin, line, test, useOriginal); if (-2 == result) { fUnorderable = true; result = -1; } return result; } // experiment works only with lines for now int SkOpAngle::linesOnOriginalSide(const SkOpAngle* test) { SkASSERT(!fPart.isCurve()); SkASSERT(!test->fPart.isCurve()); SkDPoint origin = fOriginalCurvePart[0]; SkDVector line = fOriginalCurvePart[1] - origin; double dots[2]; double crosses[2]; const SkDCurve& testCurve = test->fOriginalCurvePart; for (int index = 0; index < 2; ++index) { SkDVector testLine = testCurve[index] - origin; double xy1 = line.fX * testLine.fY; double xy2 = line.fY * testLine.fX; dots[index] = line.fX * testLine.fX + line.fY * testLine.fY; crosses[index] = AlmostBequalUlps(xy1, xy2) ? 0 : xy1 - xy2; } if (crosses[0] * crosses[1] < 0) { return -1; } if (crosses[0]) { return crosses[0] < 0; } if (crosses[1]) { return crosses[1] < 0; } if ((!dots[0] && dots[1] < 0) || (dots[0] < 0 && !dots[1])) { return 2; // 180 degrees apart } fUnorderable = true; return -1; } // To sort the angles, all curves are translated to have the same starting point. // If the curve's control point in its original position is on one side of a compared line, // and translated is on the opposite side, reverse the previously computed order. void SkOpAngle::alignmentSameSide(const SkOpAngle* test, int* order) const { if (*order < 0) { return; } if (fPart.isCurve()) { // This should support all curve types, but only bug that requires this has lines // Turning on for curves causes existing tests to fail return; } if (test->fPart.isCurve()) { return; } const SkDPoint& xOrigin = test->fPart.fCurve.fLine[0]; const SkDPoint& oOrigin = test->fOriginalCurvePart.fLine[0]; if (xOrigin == oOrigin) { return; } int iMax = SkPathOpsVerbToPoints(this->segment()->verb()); SkDVector xLine = test->fPart.fCurve.fLine[1] - xOrigin; SkDVector oLine = test->fOriginalCurvePart.fLine[1] - oOrigin; for (int index = 1; index <= iMax; ++index) { const SkDPoint& testPt = fPart.fCurve[index]; double xCross = oLine.crossCheck(testPt - xOrigin); double oCross = xLine.crossCheck(testPt - oOrigin); if (oCross * xCross < 0) { *order ^= 1; break; } } } bool SkOpAngle::checkCrossesZero() const { int start = std::min(fSectorStart, fSectorEnd); int end = std::max(fSectorStart, fSectorEnd); bool crossesZero = end - start > 16; return crossesZero; } bool SkOpAngle::checkParallel(SkOpAngle* rh) { SkDVector scratch[2]; const SkDVector* sweep, * tweep; if (this->fPart.isOrdered()) { sweep = this->fPart.fSweep; } else { scratch[0] = this->fPart.fCurve[1] - this->fPart.fCurve[0]; sweep = &scratch[0]; } if (rh->fPart.isOrdered()) { tweep = rh->fPart.fSweep; } else { scratch[1] = rh->fPart.fCurve[1] - rh->fPart.fCurve[0]; tweep = &scratch[1]; } double s0xt0 = sweep->crossCheck(*tweep); if (tangentsDiverge(rh, s0xt0)) { return s0xt0 < 0; } // compute the perpendicular to the endpoints and see where it intersects the opposite curve // if the intersections within the t range, do a cross check on those bool inside; if (!fEnd->contains(rh->fEnd)) { if (this->endToSide(rh, &inside)) { return inside; } if (rh->endToSide(this, &inside)) { return !inside; } } if (this->midToSide(rh, &inside)) { return inside; } if (rh->midToSide(this, &inside)) { return !inside; } // compute the cross check from the mid T values (last resort) SkDVector m0 = segment()->dPtAtT(this->midT()) - this->fPart.fCurve[0]; SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fPart.fCurve[0]; double m0xm1 = m0.crossCheck(m1); if (m0xm1 == 0) { this->fUnorderable = true; rh->fUnorderable = true; return true; } return m0xm1 < 0; } // the original angle is too short to get meaningful sector information // lengthen it until it is long enough to be meaningful or leave it unset if lengthening it // would cause it to intersect one of the adjacent angles bool SkOpAngle::computeSector() { if (fComputedSector) { return !fUnorderable; } fComputedSector = true; bool stepUp = fStart->t() < fEnd->t(); SkOpSpanBase* checkEnd = fEnd; if (checkEnd->final() && stepUp) { fUnorderable = true; return false; } do { // advance end const SkOpSegment* other = checkEnd->segment(); const SkOpSpanBase* oSpan = other->head(); do { if (oSpan->segment() != segment()) { continue; } if (oSpan == checkEnd) { continue; } if (!approximately_equal(oSpan->t(), checkEnd->t())) { continue; } goto recomputeSector; } while (!oSpan->final() && (oSpan = oSpan->upCast()->next())); checkEnd = stepUp ? !checkEnd->final() ? checkEnd->upCast()->next() : nullptr : checkEnd->prev(); } while (checkEnd); recomputeSector: SkOpSpanBase* computedEnd = stepUp ? checkEnd ? checkEnd->prev() : fEnd->segment()->head() : checkEnd ? checkEnd->upCast()->next() : fEnd->segment()->tail(); if (checkEnd == fEnd || computedEnd == fEnd || computedEnd == fStart) { fUnorderable = true; return false; } if (stepUp != (fStart->t() < computedEnd->t())) { fUnorderable = true; return false; } SkOpSpanBase* saveEnd = fEnd; fComputedEnd = fEnd = computedEnd; setSpans(); setSector(); fEnd = saveEnd; return !fUnorderable; } int SkOpAngle::convexHullOverlaps(const SkOpAngle* rh) { const SkDVector* sweep = this->fPart.fSweep; const SkDVector* tweep = rh->fPart.fSweep; double s0xs1 = sweep[0].crossCheck(sweep[1]); double s0xt0 = sweep[0].crossCheck(tweep[0]); double s1xt0 = sweep[1].crossCheck(tweep[0]); bool tBetweenS = s0xs1 > 0 ? s0xt0 > 0 && s1xt0 < 0 : s0xt0 < 0 && s1xt0 > 0; double s0xt1 = sweep[0].crossCheck(tweep[1]); double s1xt1 = sweep[1].crossCheck(tweep[1]); tBetweenS |= s0xs1 > 0 ? s0xt1 > 0 && s1xt1 < 0 : s0xt1 < 0 && s1xt1 > 0; double t0xt1 = tweep[0].crossCheck(tweep[1]); if (tBetweenS) { return -1; } if ((s0xt0 == 0 && s1xt1 == 0) || (s1xt0 == 0 && s0xt1 == 0)) { // s0 to s1 equals t0 to t1 return -1; } bool sBetweenT = t0xt1 > 0 ? s0xt0 < 0 && s0xt1 > 0 : s0xt0 > 0 && s0xt1 < 0; sBetweenT |= t0xt1 > 0 ? s1xt0 < 0 && s1xt1 > 0 : s1xt0 > 0 && s1xt1 < 0; if (sBetweenT) { return -1; } // if all of the sweeps are in the same half plane, then the order of any pair is enough if (s0xt0 >= 0 && s0xt1 >= 0 && s1xt0 >= 0 && s1xt1 >= 0) { return 0; } if (s0xt0 <= 0 && s0xt1 <= 0 && s1xt0 <= 0 && s1xt1 <= 0) { return 1; } // if the outside sweeps are greater than 180 degress: // first assume the inital tangents are the ordering // if the midpoint direction matches the inital order, that is enough SkDVector m0 = this->segment()->dPtAtT(this->midT()) - this->fPart.fCurve[0]; SkDVector m1 = rh->segment()->dPtAtT(rh->midT()) - rh->fPart.fCurve[0]; double m0xm1 = m0.crossCheck(m1); if (s0xt0 > 0 && m0xm1 > 0) { return 0; } if (s0xt0 < 0 && m0xm1 < 0) { return 1; } if (tangentsDiverge(rh, s0xt0)) { return s0xt0 < 0; } return m0xm1 < 0; } // OPTIMIZATION: longest can all be either lazily computed here or precomputed in setup double SkOpAngle::distEndRatio(double dist) const { double longest = 0; const SkOpSegment& segment = *this->segment(); int ptCount = SkPathOpsVerbToPoints(segment.verb()); const SkPoint* pts = segment.pts(); for (int idx1 = 0; idx1 <= ptCount - 1; ++idx1) { for (int idx2 = idx1 + 1; idx2 <= ptCount; ++idx2) { if (idx1 == idx2) { continue; } SkDVector v; v.set(pts[idx2] - pts[idx1]); double lenSq = v.lengthSquared(); longest = std::max(longest, lenSq); } } return sqrt(longest) / dist; } bool SkOpAngle::endsIntersect(SkOpAngle* rh) { SkPath::Verb lVerb = this->segment()->verb(); SkPath::Verb rVerb = rh->segment()->verb(); int lPts = SkPathOpsVerbToPoints(lVerb); int rPts = SkPathOpsVerbToPoints(rVerb); SkDLine rays[] = {{{this->fPart.fCurve[0], rh->fPart.fCurve[rPts]}}, {{this->fPart.fCurve[0], this->fPart.fCurve[lPts]}}}; if (this->fEnd->contains(rh->fEnd)) { return checkParallel(rh); } double smallTs[2] = {-1, -1}; bool limited[2] = {false, false}; for (int index = 0; index < 2; ++index) { SkPath::Verb cVerb = index ? rVerb : lVerb; // if the curve is a line, then the line and the ray intersect only at their crossing if (cVerb == SkPath::kLine_Verb) { continue; } const SkOpSegment& segment = index ? *rh->segment() : *this->segment(); SkIntersections i; (*CurveIntersectRay[cVerb])(segment.pts(), segment.weight(), rays[index], &i); double tStart = index ? rh->fStart->t() : this->fStart->t(); double tEnd = index ? rh->fComputedEnd->t() : this->fComputedEnd->t(); bool testAscends = tStart < (index ? rh->fComputedEnd->t() : this->fComputedEnd->t()); double t = testAscends ? 0 : 1; for (int idx2 = 0; idx2 < i.used(); ++idx2) { double testT = i[0][idx2]; if (!approximately_between_orderable(tStart, testT, tEnd)) { continue; } if (approximately_equal_orderable(tStart, testT)) { continue; } smallTs[index] = t = testAscends ? std::max(t, testT) : std::min(t, testT); limited[index] = approximately_equal_orderable(t, tEnd); } } bool sRayLonger = false; SkDVector sCept = {0, 0}; double sCeptT = -1; int sIndex = -1; bool useIntersect = false; for (int index = 0; index < 2; ++index) { if (smallTs[index] < 0) { continue; } const SkOpSegment& segment = index ? *rh->segment() : *this->segment(); const SkDPoint& dPt = segment.dPtAtT(smallTs[index]); SkDVector cept = dPt - rays[index][0]; // If this point is on the curve, it should have been detected earlier by ordinary // curve intersection. This may be hard to determine in general, but for lines, // the point could be close to or equal to its end, but shouldn't be near the start. if ((index ? lPts : rPts) == 1) { SkDVector total = rays[index][1] - rays[index][0]; if (cept.lengthSquared() * 2 < total.lengthSquared()) { continue; } } SkDVector end = rays[index][1] - rays[index][0]; if (cept.fX * end.fX < 0 || cept.fY * end.fY < 0) { continue; } double rayDist = cept.length(); double endDist = end.length(); bool rayLonger = rayDist > endDist; if (limited[0] && limited[1] && rayLonger) { useIntersect = true; sRayLonger = rayLonger; sCept = cept; sCeptT = smallTs[index]; sIndex = index; break; } double delta = fabs(rayDist - endDist); double minX, minY, maxX, maxY; minX = minY = SK_ScalarInfinity; maxX = maxY = -SK_ScalarInfinity; const SkDCurve& curve = index ? rh->fPart.fCurve : this->fPart.fCurve; int ptCount = index ? rPts : lPts; for (int idx2 = 0; idx2 <= ptCount; ++idx2) { minX = std::min(minX, curve[idx2].fX); minY = std::min(minY, curve[idx2].fY); maxX = std::max(maxX, curve[idx2].fX); maxY = std::max(maxY, curve[idx2].fY); } double maxWidth = std::max(maxX - minX, maxY - minY); delta = sk_ieee_double_divide(delta, maxWidth); // FIXME: move these magic numbers // This fixes skbug.com/8380 // Larger changes (like changing the constant in the next block) cause other // tests to fail as documented in the bug. // This could probably become a more general test: e.g., if translating the // curve causes the cross product of any control point or end point to change // sign with regard to the opposite curve's hull, treat the curves as parallel. // Moreso, this points to the general fragility of this approach of assigning // winding by sorting the angles of curves sharing a common point, as mentioned // in the bug. if (delta < 4e-3 && delta > 1e-3 && !useIntersect && fPart.isCurve() && rh->fPart.isCurve() && fOriginalCurvePart[0] != fPart.fCurve.fLine[0]) { // see if original curve is on one side of hull; translated is on the other const SkDPoint& origin = rh->fOriginalCurvePart[0]; int count = SkPathOpsVerbToPoints(rh->segment()->verb()); const SkDVector line = rh->fOriginalCurvePart[count] - origin; int originalSide = rh->lineOnOneSide(origin, line, this, true); if (originalSide >= 0) { int translatedSide = rh->lineOnOneSide(origin, line, this, false); if (originalSide != translatedSide) { continue; } } } if (delta > 1e-3 && (useIntersect ^= true)) { sRayLonger = rayLonger; sCept = cept; sCeptT = smallTs[index]; sIndex = index; } } if (useIntersect) { const SkDCurve& curve = sIndex ? rh->fPart.fCurve : this->fPart.fCurve; const SkOpSegment& segment = sIndex ? *rh->segment() : *this->segment(); double tStart = sIndex ? rh->fStart->t() : fStart->t(); SkDVector mid = segment.dPtAtT(tStart + (sCeptT - tStart) / 2) - curve[0]; double septDir = mid.crossCheck(sCept); if (!septDir) { return checkParallel(rh); } return sRayLonger ^ (sIndex == 0) ^ (septDir < 0); } else { return checkParallel(rh); } } bool SkOpAngle::endToSide(const SkOpAngle* rh, bool* inside) const { const SkOpSegment* segment = this->segment(); SkPath::Verb verb = segment->verb(); SkDLine rayEnd; rayEnd[0].set(this->fEnd->pt()); rayEnd[1] = rayEnd[0]; SkDVector slopeAtEnd = (*CurveDSlopeAtT[verb])(segment->pts(), segment->weight(), this->fEnd->t()); rayEnd[1].fX += slopeAtEnd.fY; rayEnd[1].fY -= slopeAtEnd.fX; SkIntersections iEnd; const SkOpSegment* oppSegment = rh->segment(); SkPath::Verb oppVerb = oppSegment->verb(); (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayEnd, &iEnd); double endDist; int closestEnd = iEnd.closestTo(rh->fStart->t(), rh->fEnd->t(), rayEnd[0], &endDist); if (closestEnd < 0) { return false; } if (!endDist) { return false; } SkDPoint start; start.set(this->fStart->pt()); // OPTIMIZATION: multiple times in the code we find the max scalar double minX, minY, maxX, maxY; minX = minY = SK_ScalarInfinity; maxX = maxY = -SK_ScalarInfinity; const SkDCurve& curve = rh->fPart.fCurve; int oppPts = SkPathOpsVerbToPoints(oppVerb); for (int idx2 = 0; idx2 <= oppPts; ++idx2) { minX = std::min(minX, curve[idx2].fX); minY = std::min(minY, curve[idx2].fY); maxX = std::max(maxX, curve[idx2].fX); maxY = std::max(maxY, curve[idx2].fY); } double maxWidth = std::max(maxX - minX, maxY - minY); endDist = sk_ieee_double_divide(endDist, maxWidth); if (!(endDist >= 5e-12)) { // empirically found return false; // ! above catches NaN } const SkDPoint* endPt = &rayEnd[0]; SkDPoint oppPt = iEnd.pt(closestEnd); SkDVector vLeft = *endPt - start; SkDVector vRight = oppPt - start; double dir = vLeft.crossNoNormalCheck(vRight); if (!dir) { return false; } *inside = dir < 0; return true; } /* y<0 y==0 y>0 x<0 x==0 x>0 xy<0 xy==0 xy>0 0 x x x 1 x x x 2 x x x 3 x x x 4 x x x 5 x x x 6 x x x 7 x x x 8 x x x 9 x x x 10 x x x 11 x x x 12 x x x 13 x x x 14 x x x 15 x x x */ int SkOpAngle::findSector(SkPath::Verb verb, double x, double y) const { double absX = fabs(x); double absY = fabs(y); double xy = SkPath::kLine_Verb == verb || !AlmostEqualUlps(absX, absY) ? absX - absY : 0; // If there are four quadrants and eight octants, and since the Latin for sixteen is sedecim, // one could coin the term sedecimant for a space divided into 16 sections. // http://english.stackexchange.com/questions/133688/word-for-something-partitioned-into-16-parts static const int sedecimant[3][3][3] = { // y<0 y==0 y>0 // x<0 x==0 x>0 x<0 x==0 x>0 x<0 x==0 x>0 {{ 4, 3, 2}, { 7, -1, 15}, {10, 11, 12}}, // abs(x) < abs(y) {{ 5, -1, 1}, {-1, -1, -1}, { 9, -1, 13}}, // abs(x) == abs(y) {{ 6, 3, 0}, { 7, -1, 15}, { 8, 11, 14}}, // abs(x) > abs(y) }; int sector = sedecimant[(xy >= 0) + (xy > 0)][(y >= 0) + (y > 0)][(x >= 0) + (x > 0)] * 2 + 1; // SkASSERT(SkPath::kLine_Verb == verb || sector >= 0); return sector; } SkOpGlobalState* SkOpAngle::globalState() const { return this->segment()->globalState(); } // OPTIMIZE: if this loops to only one other angle, after first compare fails, insert on other side // OPTIMIZE: return where insertion succeeded. Then, start next insertion on opposite side bool SkOpAngle::insert(SkOpAngle* angle) { if (angle->fNext) { if (loopCount() >= angle->loopCount()) { if (!merge(angle)) { return true; } } else if (fNext) { if (!angle->merge(this)) { return true; } } else { angle->insert(this); } return true; } bool singleton = nullptr == fNext; if (singleton) { fNext = this; } SkOpAngle* next = fNext; if (next->fNext == this) { if (singleton || angle->after(this)) { this->fNext = angle; angle->fNext = next; } else { next->fNext = angle; angle->fNext = this; } debugValidateNext(); return true; } SkOpAngle* last = this; bool flipAmbiguity = false; do { SkASSERT(last->fNext == next); if (angle->after(last) ^ (angle->tangentsAmbiguous() & flipAmbiguity)) { last->fNext = angle; angle->fNext = next; debugValidateNext(); return true; } last = next; if (last == this) { FAIL_IF(flipAmbiguity); // We're in a loop. If a sort was ambiguous, flip it to end the loop. flipAmbiguity = true; } next = next->fNext; } while (true); return true; } SkOpSpanBase* SkOpAngle::lastMarked() const { if (fLastMarked) { if (fLastMarked->chased()) { return nullptr; } fLastMarked->setChased(true); } return fLastMarked; } bool SkOpAngle::loopContains(const SkOpAngle* angle) const { if (!fNext) { return false; } const SkOpAngle* first = this; const SkOpAngle* loop = this; const SkOpSegment* tSegment = angle->fStart->segment(); double tStart = angle->fStart->t(); double tEnd = angle->fEnd->t(); do { const SkOpSegment* lSegment = loop->fStart->segment(); if (lSegment != tSegment) { continue; } double lStart = loop->fStart->t(); if (lStart != tEnd) { continue; } double lEnd = loop->fEnd->t(); if (lEnd == tStart) { return true; } } while ((loop = loop->fNext) != first); return false; } int SkOpAngle::loopCount() const { int count = 0; const SkOpAngle* first = this; const SkOpAngle* next = this; do { next = next->fNext; ++count; } while (next && next != first); return count; } bool SkOpAngle::merge(SkOpAngle* angle) { SkASSERT(fNext); SkASSERT(angle->fNext); SkOpAngle* working = angle; do { if (this == working) { return false; } working = working->fNext; } while (working != angle); do { SkOpAngle* next = working->fNext; working->fNext = nullptr; insert(working); working = next; } while (working != angle); // it's likely that a pair of the angles are unorderable debugValidateNext(); return true; } double SkOpAngle::midT() const { return (fStart->t() + fEnd->t()) / 2; } bool SkOpAngle::midToSide(const SkOpAngle* rh, bool* inside) const { const SkOpSegment* segment = this->segment(); SkPath::Verb verb = segment->verb(); const SkPoint& startPt = this->fStart->pt(); const SkPoint& endPt = this->fEnd->pt(); SkDPoint dStartPt; dStartPt.set(startPt); SkDLine rayMid; rayMid[0].fX = (startPt.fX + endPt.fX) / 2; rayMid[0].fY = (startPt.fY + endPt.fY) / 2; rayMid[1].fX = rayMid[0].fX + (endPt.fY - startPt.fY); rayMid[1].fY = rayMid[0].fY - (endPt.fX - startPt.fX); SkIntersections iMid; (*CurveIntersectRay[verb])(segment->pts(), segment->weight(), rayMid, &iMid); int iOutside = iMid.mostOutside(this->fStart->t(), this->fEnd->t(), dStartPt); if (iOutside < 0) { return false; } const SkOpSegment* oppSegment = rh->segment(); SkPath::Verb oppVerb = oppSegment->verb(); SkIntersections oppMid; (*CurveIntersectRay[oppVerb])(oppSegment->pts(), oppSegment->weight(), rayMid, &oppMid); int oppOutside = oppMid.mostOutside(rh->fStart->t(), rh->fEnd->t(), dStartPt); if (oppOutside < 0) { return false; } SkDVector iSide = iMid.pt(iOutside) - dStartPt; SkDVector oppSide = oppMid.pt(oppOutside) - dStartPt; double dir = iSide.crossCheck(oppSide); if (!dir) { return false; } *inside = dir < 0; return true; } bool SkOpAngle::oppositePlanes(const SkOpAngle* rh) const { int startSpan = SkTAbs(rh->fSectorStart - fSectorStart); return startSpan >= 8; } int SkOpAngle::orderable(SkOpAngle* rh) { int result; if (!fPart.isCurve()) { if (!rh->fPart.isCurve()) { double leftX = fTangentHalf.dx(); double leftY = fTangentHalf.dy(); double rightX = rh->fTangentHalf.dx(); double rightY = rh->fTangentHalf.dy(); double x_ry = leftX * rightY; double rx_y = rightX * leftY; if (x_ry == rx_y) { if (leftX * rightX < 0 || leftY * rightY < 0) { return 1; // exactly 180 degrees apart } goto unorderable; } SkASSERT(x_ry != rx_y); // indicates an undetected coincidence -- worth finding earlier return x_ry < rx_y ? 1 : 0; } if ((result = this->lineOnOneSide(rh, false)) >= 0) { return result; } if (fUnorderable || approximately_zero(rh->fSide)) { goto unorderable; } } else if (!rh->fPart.isCurve()) { if ((result = rh->lineOnOneSide(this, false)) >= 0) { return result ? 0 : 1; } if (rh->fUnorderable || approximately_zero(fSide)) { goto unorderable; } } else if ((result = this->convexHullOverlaps(rh)) >= 0) { return result; } return this->endsIntersect(rh) ? 1 : 0; unorderable: fUnorderable = true; rh->fUnorderable = true; return -1; } // OPTIMIZE: if this shows up in a profile, add a previous pointer // as is, this should be rarely called SkOpAngle* SkOpAngle::previous() const { SkOpAngle* last = fNext; do { SkOpAngle* next = last->fNext; if (next == this) { return last; } last = next; } while (true); } SkOpSegment* SkOpAngle::segment() const { return fStart->segment(); } void SkOpAngle::set(SkOpSpanBase* start, SkOpSpanBase* end) { fStart = start; fComputedEnd = fEnd = end; SkASSERT(start != end); fNext = nullptr; fComputeSector = fComputedSector = fCheckCoincidence = fTangentsAmbiguous = false; setSpans(); setSector(); SkDEBUGCODE(fID = start ? start->globalState()->nextAngleID() : -1); } void SkOpAngle::setSpans() { fUnorderable = false; fLastMarked = nullptr; if (!fStart) { fUnorderable = true; return; } const SkOpSegment* segment = fStart->segment(); const SkPoint* pts = segment->pts(); SkDEBUGCODE(fPart.fCurve.fVerb = SkPath::kCubic_Verb); // required for SkDCurve debug check SkDEBUGCODE(fPart.fCurve[2].fX = fPart.fCurve[2].fY = fPart.fCurve[3].fX = fPart.fCurve[3].fY = SK_ScalarNaN); // make the non-line part uninitialized SkDEBUGCODE(fPart.fCurve.fVerb = segment->verb()); // set the curve type for real segment->subDivide(fStart, fEnd, &fPart.fCurve); // set at least the line part if not more fOriginalCurvePart = fPart.fCurve; const SkPath::Verb verb = segment->verb(); fPart.setCurveHullSweep(verb); if (SkPath::kLine_Verb != verb && !fPart.isCurve()) { SkDLine lineHalf; fPart.fCurve[1] = fPart.fCurve[SkPathOpsVerbToPoints(verb)]; fOriginalCurvePart[1] = fPart.fCurve[1]; lineHalf[0].set(fPart.fCurve[0].asSkPoint()); lineHalf[1].set(fPart.fCurve[1].asSkPoint()); fTangentHalf.lineEndPoints(lineHalf); fSide = 0; } switch (verb) { case SkPath::kLine_Verb: { SkASSERT(fStart != fEnd); const SkPoint& cP1 = pts[fStart->t() < fEnd->t()]; SkDLine lineHalf; lineHalf[0].set(fStart->pt()); lineHalf[1].set(cP1); fTangentHalf.lineEndPoints(lineHalf); fSide = 0; } return; case SkPath::kQuad_Verb: case SkPath::kConic_Verb: { SkLineParameters tangentPart; (void) tangentPart.quadEndPoints(fPart.fCurve.fQuad); fSide = -tangentPart.pointDistance(fPart.fCurve[2]); // not normalized -- compare sign only } break; case SkPath::kCubic_Verb: { SkLineParameters tangentPart; (void) tangentPart.cubicPart(fPart.fCurve.fCubic); fSide = -tangentPart.pointDistance(fPart.fCurve[3]); double testTs[4]; // OPTIMIZATION: keep inflections precomputed with cubic segment? int testCount = SkDCubic::FindInflections(pts, testTs); double startT = fStart->t(); double endT = fEnd->t(); double limitT = endT; int index; for (index = 0; index < testCount; ++index) { if (!::between(startT, testTs[index], limitT)) { testTs[index] = -1; } } testTs[testCount++] = startT; testTs[testCount++] = endT; SkTQSort(testTs, testTs + testCount); double bestSide = 0; int testCases = (testCount << 1) - 1; index = 0; while (testTs[index] < 0) { ++index; } index <<= 1; for (; index < testCases; ++index) { int testIndex = index >> 1; double testT = testTs[testIndex]; if (index & 1) { testT = (testT + testTs[testIndex + 1]) / 2; } // OPTIMIZE: could avoid call for t == startT, endT SkDPoint pt = dcubic_xy_at_t(pts, segment->weight(), testT); SkLineParameters testPart; testPart.cubicEndPoints(fPart.fCurve.fCubic); double testSide = testPart.pointDistance(pt); if (fabs(bestSide) < fabs(testSide)) { bestSide = testSide; } } fSide = -bestSide; // compare sign only } break; default: SkASSERT(0); } } void SkOpAngle::setSector() { if (!fStart) { fUnorderable = true; return; } const SkOpSegment* segment = fStart->segment(); SkPath::Verb verb = segment->verb(); fSectorStart = this->findSector(verb, fPart.fSweep[0].fX, fPart.fSweep[0].fY); if (fSectorStart < 0) { goto deferTilLater; } if (!fPart.isCurve()) { // if it's a line or line-like, note that both sectors are the same SkASSERT(fSectorStart >= 0); fSectorEnd = fSectorStart; fSectorMask = 1 << fSectorStart; return; } SkASSERT(SkPath::kLine_Verb != verb); fSectorEnd = this->findSector(verb, fPart.fSweep[1].fX, fPart.fSweep[1].fY); if (fSectorEnd < 0) { deferTilLater: fSectorStart = fSectorEnd = -1; fSectorMask = 0; fComputeSector = true; // can't determine sector until segment length can be found return; } if (fSectorEnd == fSectorStart && (fSectorStart & 3) != 3) { // if the sector has no span, it can't be an exact angle fSectorMask = 1 << fSectorStart; return; } bool crossesZero = this->checkCrossesZero(); int start = std::min(fSectorStart, fSectorEnd); bool curveBendsCCW = (fSectorStart == start) ^ crossesZero; // bump the start and end of the sector span if they are on exact compass points if ((fSectorStart & 3) == 3) { fSectorStart = (fSectorStart + (curveBendsCCW ? 1 : 31)) & 0x1f; } if ((fSectorEnd & 3) == 3) { fSectorEnd = (fSectorEnd + (curveBendsCCW ? 31 : 1)) & 0x1f; } crossesZero = this->checkCrossesZero(); start = std::min(fSectorStart, fSectorEnd); int end = std::max(fSectorStart, fSectorEnd); if (!crossesZero) { fSectorMask = (unsigned) -1 >> (31 - end + start) << start; } else { fSectorMask = (unsigned) -1 >> (31 - start) | ((unsigned) -1 << end); } } SkOpSpan* SkOpAngle::starter() { return fStart->starter(fEnd); } bool SkOpAngle::tangentsDiverge(const SkOpAngle* rh, double s0xt0) { if (s0xt0 == 0) { return false; } // if the ctrl tangents are not nearly parallel, use them // solve for opposite direction displacement scale factor == m // initial dir = v1.cross(v2) == v2.x * v1.y - v2.y * v1.x // displacement of q1[1] : dq1 = { -m * v1.y, m * v1.x } + q1[1] // straight angle when : v2.x * (dq1.y - q1[0].y) == v2.y * (dq1.x - q1[0].x) // v2.x * (m * v1.x + v1.y) == v2.y * (-m * v1.y + v1.x) // - m * (v2.x * v1.x + v2.y * v1.y) == v2.x * v1.y - v2.y * v1.x // m = (v2.y * v1.x - v2.x * v1.y) / (v2.x * v1.x + v2.y * v1.y) // m = v1.cross(v2) / v1.dot(v2) const SkDVector* sweep = fPart.fSweep; const SkDVector* tweep = rh->fPart.fSweep; double s0dt0 = sweep[0].dot(tweep[0]); if (!s0dt0) { return true; } SkASSERT(s0dt0 != 0); double m = s0xt0 / s0dt0; double sDist = sweep[0].length() * m; double tDist = tweep[0].length() * m; bool useS = fabs(sDist) < fabs(tDist); double mFactor = fabs(useS ? this->distEndRatio(sDist) : rh->distEndRatio(tDist)); fTangentsAmbiguous = mFactor >= 50 && mFactor < 200; return mFactor < 50; // empirically found limit }