/* * Copyright 2006 The Android Open Source Project * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/utils/SkCamera.h" static SkScalar SkScalarDotDiv(int count, const SkScalar a[], int step_a, const SkScalar b[], int step_b, SkScalar denom) { SkScalar prod = 0; for (int i = 0; i < count; i++) { prod += a[0] * b[0]; a += step_a; b += step_b; } return prod / denom; } /////////////////////////////////////////////////////////////////////////////// SkPatch3D::SkPatch3D() { this->reset(); } void SkPatch3D::reset() { fOrigin = {0, 0, 0}; fU = {SK_Scalar1, 0, 0}; fV = {0, -SK_Scalar1, 0}; } void SkPatch3D::transform(const SkM44& m, SkPatch3D* dst) const { if (dst == nullptr) { dst = (SkPatch3D*)this; } dst->fU = m * fU; dst->fV = m * fV; auto [x,y,z,_] = m.map(fOrigin.x, fOrigin.y, fOrigin.z, 1); dst->fOrigin = {x, y, z}; } SkScalar SkPatch3D::dotWith(SkScalar dx, SkScalar dy, SkScalar dz) const { SkScalar cx = fU.y * fV.z - fU.z * fV.y; SkScalar cy = fU.z * fV.x - fU.x * fV.y; SkScalar cz = fU.x * fV.y - fU.y * fV.x; return cx * dx + cy * dy + cz * dz; } /////////////////////////////////////////////////////////////////////////////// SkCamera3D::SkCamera3D() { this->reset(); } void SkCamera3D::reset() { fLocation = {0, 0, -SkIntToScalar(576)}; // 8 inches backward fAxis = {0, 0, SK_Scalar1}; // forward fZenith = {0, -SK_Scalar1, 0}; // up fObserver = {0, 0, fLocation.z}; fNeedToUpdate = true; } void SkCamera3D::update() { fNeedToUpdate = true; } void SkCamera3D::doUpdate() const { SkV3 axis, zenith, cross; // construct a orthonormal basis of cross (x), zenith (y), and axis (z) axis = fAxis.normalize(); zenith = fZenith - (axis * fZenith) * axis; zenith = zenith.normalize(); cross = axis.cross(zenith); { SkMatrix* orien = &fOrientation; auto [x, y, z] = fObserver; // Looking along the view axis we have: // // /|\ zenith // | // | // | * observer (projected on XY plane) // | // |____________\ cross // / // // So this does a z-shear along the view axis based on the observer's x and y values, // and scales in x and y relative to the negative of the observer's z value // (the observer is in the negative z direction). orien->set(SkMatrix::kMScaleX, x * axis.x - z * cross.x); orien->set(SkMatrix::kMSkewX, x * axis.y - z * cross.y); orien->set(SkMatrix::kMTransX, x * axis.z - z * cross.z); orien->set(SkMatrix::kMSkewY, y * axis.x - z * zenith.x); orien->set(SkMatrix::kMScaleY, y * axis.y - z * zenith.y); orien->set(SkMatrix::kMTransY, y * axis.z - z * zenith.z); orien->set(SkMatrix::kMPersp0, axis.x); orien->set(SkMatrix::kMPersp1, axis.y); orien->set(SkMatrix::kMPersp2, axis.z); } } void SkCamera3D::patchToMatrix(const SkPatch3D& quilt, SkMatrix* matrix) const { if (fNeedToUpdate) { this->doUpdate(); fNeedToUpdate = false; } const SkScalar* mapPtr = (const SkScalar*)(const void*)&fOrientation; const SkScalar* patchPtr; SkV3 diff = quilt.fOrigin - fLocation; SkScalar dot = diff.dot({mapPtr[6], mapPtr[7], mapPtr[8]}); // This multiplies fOrientation by the matrix [quilt.fU quilt.fV diff] -- U, V, and diff are // column vectors in the matrix -- then divides by the length of the projection of diff onto // the view axis (which is 'dot'). This transforms the patch (which transforms from local path // space to world space) into view space (since fOrientation transforms from world space to // view space). // // The divide by 'dot' isn't strictly necessary as the homogeneous divide would do much the // same thing (it's just scaling the entire matrix by 1/dot). It looks like it's normalizing // the matrix into some canonical space. patchPtr = (const SkScalar*)&quilt; matrix->set(SkMatrix::kMScaleX, SkScalarDotDiv(3, patchPtr, 1, mapPtr, 1, dot)); matrix->set(SkMatrix::kMSkewY, SkScalarDotDiv(3, patchPtr, 1, mapPtr+3, 1, dot)); matrix->set(SkMatrix::kMPersp0, SkScalarDotDiv(3, patchPtr, 1, mapPtr+6, 1, dot)); patchPtr += 3; matrix->set(SkMatrix::kMSkewX, SkScalarDotDiv(3, patchPtr, 1, mapPtr, 1, dot)); matrix->set(SkMatrix::kMScaleY, SkScalarDotDiv(3, patchPtr, 1, mapPtr+3, 1, dot)); matrix->set(SkMatrix::kMPersp1, SkScalarDotDiv(3, patchPtr, 1, mapPtr+6, 1, dot)); patchPtr = (const SkScalar*)(const void*)&diff; matrix->set(SkMatrix::kMTransX, SkScalarDotDiv(3, patchPtr, 1, mapPtr, 1, dot)); matrix->set(SkMatrix::kMTransY, SkScalarDotDiv(3, patchPtr, 1, mapPtr+3, 1, dot)); matrix->set(SkMatrix::kMPersp2, SK_Scalar1); } /////////////////////////////////////////////////////////////////////////////// Sk3DView::Sk3DView() { fRec = &fInitialRec; } Sk3DView::~Sk3DView() { Rec* rec = fRec; while (rec != &fInitialRec) { Rec* next = rec->fNext; delete rec; rec = next; } } void Sk3DView::save() { Rec* rec = new Rec; rec->fNext = fRec; rec->fMatrix = fRec->fMatrix; fRec = rec; } void Sk3DView::restore() { SkASSERT(fRec != &fInitialRec); Rec* next = fRec->fNext; delete fRec; fRec = next; } void Sk3DView::setCameraLocation(SkScalar x, SkScalar y, SkScalar z) { // the camera location is passed in inches, set in pt SkScalar lz = z * 72.0f; fCamera.fLocation = {x * 72.0f, y * 72.0f, lz}; fCamera.fObserver = {0, 0, lz}; fCamera.update(); } SkScalar Sk3DView::getCameraLocationX() const { return fCamera.fLocation.x / 72.0f; } SkScalar Sk3DView::getCameraLocationY() const { return fCamera.fLocation.y / 72.0f; } SkScalar Sk3DView::getCameraLocationZ() const { return fCamera.fLocation.z / 72.0f; } void Sk3DView::translate(SkScalar x, SkScalar y, SkScalar z) { fRec->fMatrix.preTranslate(x, y, z); } void Sk3DView::rotateX(SkScalar deg) { fRec->fMatrix.preConcat(SkM44::Rotate({1, 0, 0}, deg * SK_ScalarPI / 180)); } void Sk3DView::rotateY(SkScalar deg) { fRec->fMatrix.preConcat(SkM44::Rotate({0,-1, 0}, deg * SK_ScalarPI / 180)); } void Sk3DView::rotateZ(SkScalar deg) { fRec->fMatrix.preConcat(SkM44::Rotate({0, 0, 1}, deg * SK_ScalarPI / 180)); } SkScalar Sk3DView::dotWithNormal(SkScalar x, SkScalar y, SkScalar z) const { SkPatch3D patch; patch.transform(fRec->fMatrix); return patch.dotWith(x, y, z); } void Sk3DView::getMatrix(SkMatrix* matrix) const { if (matrix != nullptr) { SkPatch3D patch; patch.transform(fRec->fMatrix); fCamera.patchToMatrix(patch, matrix); } } #include "include/core/SkCanvas.h" void Sk3DView::applyToCanvas(SkCanvas* canvas) const { SkMatrix matrix; this->getMatrix(&matrix); canvas->concat(matrix); }