/* * Copyright 2017 Google Inc. * * Use of this source code is governed by a BSD-style license that can be * found in the LICENSE file. */ #include "include/utils/SkShadowUtils.h" #include "include/core/SkCanvas.h" #include "include/core/SkColorFilter.h" #include "include/core/SkMaskFilter.h" #include "include/core/SkPath.h" #include "include/core/SkString.h" #include "include/core/SkVertices.h" #include "include/private/SkColorData.h" #include "include/private/SkIDChangeListener.h" #include "include/private/SkTPin.h" #include "include/utils/SkRandom.h" #include "src/core/SkBlurMask.h" #include "src/core/SkColorFilterBase.h" #include "src/core/SkColorFilterPriv.h" #include "src/core/SkDevice.h" #include "src/core/SkDrawShadowInfo.h" #include "src/core/SkEffectPriv.h" #include "src/core/SkPathPriv.h" #include "src/core/SkRasterPipeline.h" #include "src/core/SkResourceCache.h" #include "src/core/SkRuntimeEffectPriv.h" #include "src/core/SkTLazy.h" #include "src/core/SkVM.h" #include "src/core/SkVerticesPriv.h" #include "src/utils/SkShadowTessellator.h" #include #if SK_SUPPORT_GPU #include "src/gpu/effects/GrSkSLFP.h" #include "src/gpu/geometry/GrStyledShape.h" #endif /** * Gaussian color filter -- produces a Gaussian ramp based on the color's B value, * then blends with the color's G value. * Final result is black with alpha of Gaussian(B)*G. * The assumption is that the original color's alpha is 1. */ class SkGaussianColorFilter : public SkColorFilterBase { public: SkGaussianColorFilter() : INHERITED() {} #if SK_SUPPORT_GPU GrFPResult asFragmentProcessor(std::unique_ptr inputFP, GrRecordingContext*, const GrColorInfo&) const override; #endif protected: void flatten(SkWriteBuffer&) const override {} bool onAppendStages(const SkStageRec& rec, bool shaderIsOpaque) const override { rec.fPipeline->append(SkRasterPipeline::gauss_a_to_rgba); return true; } skvm::Color onProgram(skvm::Builder* p, skvm::Color c, const SkColorInfo& dst, skvm::Uniforms*, SkArenaAlloc*) const override { // x = 1 - x; // exp(-x * x * 4) - 0.018f; // ... now approximate with quartic // skvm::F32 x = p->splat(-2.26661229133605957031f); x = c.a * x + 2.89795351028442382812f; x = c.a * x + 0.21345567703247070312f; x = c.a * x + 0.15489584207534790039f; x = c.a * x + 0.00030726194381713867f; return {x, x, x, x}; } private: SK_FLATTENABLE_HOOKS(SkGaussianColorFilter) using INHERITED = SkColorFilterBase; }; sk_sp SkGaussianColorFilter::CreateProc(SkReadBuffer&) { return SkColorFilterPriv::MakeGaussian(); } #if SK_SUPPORT_GPU GrFPResult SkGaussianColorFilter::asFragmentProcessor(std::unique_ptr inputFP, GrRecordingContext*, const GrColorInfo&) const { static auto effect = SkMakeRuntimeEffect(SkRuntimeEffect::MakeForColorFilter, R"( half4 main(half4 inColor) { half factor = 1 - inColor.a; factor = exp(-factor * factor * 4) - 0.018; return half4(factor); } )"); SkASSERT(SkRuntimeEffectPriv::SupportsConstantOutputForConstantInput(effect)); return GrFPSuccess( GrSkSLFP::Make(effect, "gaussian_fp", std::move(inputFP), GrSkSLFP::OptFlags::kNone)); } #endif sk_sp SkColorFilterPriv::MakeGaussian() { return sk_sp(new SkGaussianColorFilter); } /////////////////////////////////////////////////////////////////////////////////////////////////// namespace { uint64_t resource_cache_shared_id() { return 0x2020776f64616873llu; // 'shadow ' } /** Factory for an ambient shadow mesh with particular shadow properties. */ struct AmbientVerticesFactory { SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed. bool fTransparent; SkVector fOffset; bool isCompatible(const AmbientVerticesFactory& that, SkVector* translate) const { if (fOccluderHeight != that.fOccluderHeight || fTransparent != that.fTransparent) { return false; } *translate = that.fOffset; return true; } sk_sp makeVertices(const SkPath& path, const SkMatrix& ctm, SkVector* translate) const { SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight); // pick a canonical place to generate shadow SkMatrix noTrans(ctm); if (!ctm.hasPerspective()) { noTrans[SkMatrix::kMTransX] = 0; noTrans[SkMatrix::kMTransY] = 0; } *translate = fOffset; return SkShadowTessellator::MakeAmbient(path, noTrans, zParams, fTransparent); } }; /** Factory for an spot shadow mesh with particular shadow properties. */ struct SpotVerticesFactory { enum class OccluderType { // The umbra cannot be dropped out because either the occluder is not opaque, // or the center of the umbra is visible. kTransparent, // The umbra can be dropped where it is occluded. kOpaquePartialUmbra, // It is known that the entire umbra is occluded. kOpaqueNoUmbra, // The light is directional kDirectional }; SkVector fOffset; SkPoint fLocalCenter; SkScalar fOccluderHeight = SK_ScalarNaN; // NaN so that isCompatible will fail until init'ed. SkPoint3 fDevLightPos; SkScalar fLightRadius; OccluderType fOccluderType; bool isCompatible(const SpotVerticesFactory& that, SkVector* translate) const { if (fOccluderHeight != that.fOccluderHeight || fDevLightPos.fZ != that.fDevLightPos.fZ || fLightRadius != that.fLightRadius || fOccluderType != that.fOccluderType) { return false; } switch (fOccluderType) { case OccluderType::kTransparent: case OccluderType::kOpaqueNoUmbra: // 'this' and 'that' will either both have no umbra removed or both have all the // umbra removed. *translate = that.fOffset; return true; case OccluderType::kOpaquePartialUmbra: // In this case we partially remove the umbra differently for 'this' and 'that' // if the offsets don't match. if (fOffset == that.fOffset) { translate->set(0, 0); return true; } return false; case OccluderType::kDirectional: *translate = that.fOffset - fOffset; return true; } SK_ABORT("Uninitialized occluder type?"); } sk_sp makeVertices(const SkPath& path, const SkMatrix& ctm, SkVector* translate) const { bool transparent = OccluderType::kTransparent == fOccluderType; bool directional = OccluderType::kDirectional == fOccluderType; SkPoint3 zParams = SkPoint3::Make(0, 0, fOccluderHeight); if (directional) { translate->set(0, 0); return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius, transparent, true); } else if (ctm.hasPerspective() || OccluderType::kOpaquePartialUmbra == fOccluderType) { translate->set(0, 0); return SkShadowTessellator::MakeSpot(path, ctm, zParams, fDevLightPos, fLightRadius, transparent, false); } else { // pick a canonical place to generate shadow, with light centered over path SkMatrix noTrans(ctm); noTrans[SkMatrix::kMTransX] = 0; noTrans[SkMatrix::kMTransY] = 0; SkPoint devCenter(fLocalCenter); noTrans.mapPoints(&devCenter, 1); SkPoint3 centerLightPos = SkPoint3::Make(devCenter.fX, devCenter.fY, fDevLightPos.fZ); *translate = fOffset; return SkShadowTessellator::MakeSpot(path, noTrans, zParams, centerLightPos, fLightRadius, transparent, false); } } }; /** * This manages a set of tessellations for a given shape in the cache. Because SkResourceCache * records are immutable this is not itself a Rec. When we need to update it we return this on * the FindVisitor and let the cache destroy the Rec. We'll update the tessellations and then add * a new Rec with an adjusted size for any deletions/additions. */ class CachedTessellations : public SkRefCnt { public: size_t size() const { return fAmbientSet.size() + fSpotSet.size(); } sk_sp find(const AmbientVerticesFactory& ambient, const SkMatrix& matrix, SkVector* translate) const { return fAmbientSet.find(ambient, matrix, translate); } sk_sp add(const SkPath& devPath, const AmbientVerticesFactory& ambient, const SkMatrix& matrix, SkVector* translate) { return fAmbientSet.add(devPath, ambient, matrix, translate); } sk_sp find(const SpotVerticesFactory& spot, const SkMatrix& matrix, SkVector* translate) const { return fSpotSet.find(spot, matrix, translate); } sk_sp add(const SkPath& devPath, const SpotVerticesFactory& spot, const SkMatrix& matrix, SkVector* translate) { return fSpotSet.add(devPath, spot, matrix, translate); } private: template class Set { public: size_t size() const { return fSize; } sk_sp find(const FACTORY& factory, const SkMatrix& matrix, SkVector* translate) const { for (int i = 0; i < MAX_ENTRIES; ++i) { if (fEntries[i].fFactory.isCompatible(factory, translate)) { const SkMatrix& m = fEntries[i].fMatrix; if (matrix.hasPerspective() || m.hasPerspective()) { if (matrix != fEntries[i].fMatrix) { continue; } } else if (matrix.getScaleX() != m.getScaleX() || matrix.getSkewX() != m.getSkewX() || matrix.getScaleY() != m.getScaleY() || matrix.getSkewY() != m.getSkewY()) { continue; } return fEntries[i].fVertices; } } return nullptr; } sk_sp add(const SkPath& path, const FACTORY& factory, const SkMatrix& matrix, SkVector* translate) { sk_sp vertices = factory.makeVertices(path, matrix, translate); if (!vertices) { return nullptr; } int i; if (fCount < MAX_ENTRIES) { i = fCount++; } else { i = fRandom.nextULessThan(MAX_ENTRIES); fSize -= fEntries[i].fVertices->approximateSize(); } fEntries[i].fFactory = factory; fEntries[i].fVertices = vertices; fEntries[i].fMatrix = matrix; fSize += vertices->approximateSize(); return vertices; } private: struct Entry { FACTORY fFactory; sk_sp fVertices; SkMatrix fMatrix; }; Entry fEntries[MAX_ENTRIES]; int fCount = 0; size_t fSize = 0; SkRandom fRandom; }; Set fAmbientSet; Set fSpotSet; }; /** * A record of shadow vertices stored in SkResourceCache of CachedTessellations for a particular * path. The key represents the path's geometry and not any shadow params. */ class CachedTessellationsRec : public SkResourceCache::Rec { public: CachedTessellationsRec(const SkResourceCache::Key& key, sk_sp tessellations) : fTessellations(std::move(tessellations)) { fKey.reset(new uint8_t[key.size()]); memcpy(fKey.get(), &key, key.size()); } const Key& getKey() const override { return *reinterpret_cast(fKey.get()); } size_t bytesUsed() const override { return fTessellations->size(); } const char* getCategory() const override { return "tessellated shadow masks"; } sk_sp refTessellations() const { return fTessellations; } template sk_sp find(const FACTORY& factory, const SkMatrix& matrix, SkVector* translate) const { return fTessellations->find(factory, matrix, translate); } private: std::unique_ptr fKey; sk_sp fTessellations; }; /** * Used by FindVisitor to determine whether a cache entry can be reused and if so returns the * vertices and a translation vector. If the CachedTessellations does not contain a suitable * mesh then we inform SkResourceCache to destroy the Rec and we return the CachedTessellations * to the caller. The caller will update it and reinsert it back into the cache. */ template struct FindContext { FindContext(const SkMatrix* viewMatrix, const FACTORY* factory) : fViewMatrix(viewMatrix), fFactory(factory) {} const SkMatrix* const fViewMatrix; // If this is valid after Find is called then we found the vertices and they should be drawn // with fTranslate applied. sk_sp fVertices; SkVector fTranslate = {0, 0}; // If this is valid after Find then the caller should add the vertices to the tessellation set // and create a new CachedTessellationsRec and insert it into SkResourceCache. sk_sp fTessellationsOnFailure; const FACTORY* fFactory; }; /** * Function called by SkResourceCache when a matching cache key is found. The FACTORY and matrix of * the FindContext are used to determine if the vertices are reusable. If so the vertices and * necessary translation vector are set on the FindContext. */ template bool FindVisitor(const SkResourceCache::Rec& baseRec, void* ctx) { FindContext* findContext = (FindContext*)ctx; const CachedTessellationsRec& rec = static_cast(baseRec); findContext->fVertices = rec.find(*findContext->fFactory, *findContext->fViewMatrix, &findContext->fTranslate); if (findContext->fVertices) { return true; } // We ref the tessellations and let the cache destroy the Rec. Once the tessellations have been // manipulated we will add a new Rec. findContext->fTessellationsOnFailure = rec.refTessellations(); return false; } class ShadowedPath { public: ShadowedPath(const SkPath* path, const SkMatrix* viewMatrix) : fPath(path) , fViewMatrix(viewMatrix) #if SK_SUPPORT_GPU , fShapeForKey(*path, GrStyle::SimpleFill()) #endif {} const SkPath& path() const { return *fPath; } const SkMatrix& viewMatrix() const { return *fViewMatrix; } #if SK_SUPPORT_GPU /** Negative means the vertices should not be cached for this path. */ int keyBytes() const { return fShapeForKey.unstyledKeySize() * sizeof(uint32_t); } void writeKey(void* key) const { fShapeForKey.writeUnstyledKey(reinterpret_cast(key)); } bool isRRect(SkRRect* rrect) { return fShapeForKey.asRRect(rrect, nullptr, nullptr, nullptr); } #else int keyBytes() const { return -1; } void writeKey(void* key) const { SK_ABORT("Should never be called"); } bool isRRect(SkRRect* rrect) { return false; } #endif private: const SkPath* fPath; const SkMatrix* fViewMatrix; #if SK_SUPPORT_GPU GrStyledShape fShapeForKey; #endif }; // This creates a domain of keys in SkResourceCache used by this file. static void* kNamespace; // When the SkPathRef genID changes, invalidate a corresponding GrResource described by key. class ShadowInvalidator : public SkIDChangeListener { public: ShadowInvalidator(const SkResourceCache::Key& key) { fKey.reset(new uint8_t[key.size()]); memcpy(fKey.get(), &key, key.size()); } private: const SkResourceCache::Key& getKey() const { return *reinterpret_cast(fKey.get()); } // always purge static bool FindVisitor(const SkResourceCache::Rec&, void*) { return false; } void changed() override { SkResourceCache::Find(this->getKey(), ShadowInvalidator::FindVisitor, nullptr); } std::unique_ptr fKey; }; /** * Draws a shadow to 'canvas'. The vertices used to draw the shadow are created by 'factory' unless * they are first found in SkResourceCache. */ template bool draw_shadow(const FACTORY& factory, std::function drawProc, ShadowedPath& path, SkColor color) { FindContext context(&path.viewMatrix(), &factory); SkResourceCache::Key* key = nullptr; SkAutoSTArray<32 * 4, uint8_t> keyStorage; int keyDataBytes = path.keyBytes(); if (keyDataBytes >= 0) { keyStorage.reset(keyDataBytes + sizeof(SkResourceCache::Key)); key = new (keyStorage.begin()) SkResourceCache::Key(); path.writeKey((uint32_t*)(keyStorage.begin() + sizeof(*key))); key->init(&kNamespace, resource_cache_shared_id(), keyDataBytes); SkResourceCache::Find(*key, FindVisitor, &context); } sk_sp vertices; bool foundInCache = SkToBool(context.fVertices); if (foundInCache) { vertices = std::move(context.fVertices); } else { // TODO: handle transforming the path as part of the tessellator if (key) { // Update or initialize a tessellation set and add it to the cache. sk_sp tessellations; if (context.fTessellationsOnFailure) { tessellations = std::move(context.fTessellationsOnFailure); } else { tessellations.reset(new CachedTessellations()); } vertices = tessellations->add(path.path(), factory, path.viewMatrix(), &context.fTranslate); if (!vertices) { return false; } auto rec = new CachedTessellationsRec(*key, std::move(tessellations)); SkPathPriv::AddGenIDChangeListener(path.path(), sk_make_sp(*key)); SkResourceCache::Add(rec); } else { vertices = factory.makeVertices(path.path(), path.viewMatrix(), &context.fTranslate); if (!vertices) { return false; } } } SkPaint paint; // Run the vertex color through a GaussianColorFilter and then modulate the grayscale result of // that against our 'color' param. paint.setColorFilter( SkColorFilters::Blend(color, SkBlendMode::kModulate)->makeComposed( SkColorFilterPriv::MakeGaussian())); drawProc(vertices.get(), SkBlendMode::kModulate, paint, context.fTranslate.fX, context.fTranslate.fY, path.viewMatrix().hasPerspective()); return true; } } // namespace static bool tilted(const SkPoint3& zPlaneParams) { return !SkScalarNearlyZero(zPlaneParams.fX) || !SkScalarNearlyZero(zPlaneParams.fY); } void SkShadowUtils::ComputeTonalColors(SkColor inAmbientColor, SkColor inSpotColor, SkColor* outAmbientColor, SkColor* outSpotColor) { // For tonal color we only compute color values for the spot shadow. // The ambient shadow is greyscale only. // Ambient *outAmbientColor = SkColorSetARGB(SkColorGetA(inAmbientColor), 0, 0, 0); // Spot int spotR = SkColorGetR(inSpotColor); int spotG = SkColorGetG(inSpotColor); int spotB = SkColorGetB(inSpotColor); int max = std::max(std::max(spotR, spotG), spotB); int min = std::min(std::min(spotR, spotG), spotB); SkScalar luminance = 0.5f*(max + min)/255.f; SkScalar origA = SkColorGetA(inSpotColor)/255.f; // We compute a color alpha value based on the luminance of the color, scaled by an // adjusted alpha value. We want the following properties to match the UX examples // (assuming a = 0.25) and to ensure that we have reasonable results when the color // is black and/or the alpha is 0: // f(0, a) = 0 // f(luminance, 0) = 0 // f(1, 0.25) = .5 // f(0.5, 0.25) = .4 // f(1, 1) = 1 // The following functions match this as closely as possible. SkScalar alphaAdjust = (2.6f + (-2.66667f + 1.06667f*origA)*origA)*origA; SkScalar colorAlpha = (3.544762f + (-4.891428f + 2.3466f*luminance)*luminance)*luminance; colorAlpha = SkTPin(alphaAdjust*colorAlpha, 0.0f, 1.0f); // Similarly, we set the greyscale alpha based on luminance and alpha so that // f(0, a) = a // f(luminance, 0) = 0 // f(1, 0.25) = 0.15 SkScalar greyscaleAlpha = SkTPin(origA*(1 - 0.4f*luminance), 0.0f, 1.0f); // The final color we want to emulate is generated by rendering a color shadow (C_rgb) using an // alpha computed from the color's luminance (C_a), and then a black shadow with alpha (S_a) // which is an adjusted value of 'a'. Assuming SrcOver, a background color of B_rgb, and // ignoring edge falloff, this becomes // // (C_a - S_a*C_a)*C_rgb + (1 - (S_a + C_a - S_a*C_a))*B_rgb // // Assuming premultiplied alpha, this means we scale the color by (C_a - S_a*C_a) and // set the alpha to (S_a + C_a - S_a*C_a). SkScalar colorScale = colorAlpha*(SK_Scalar1 - greyscaleAlpha); SkScalar tonalAlpha = colorScale + greyscaleAlpha; SkScalar unPremulScale = colorScale / tonalAlpha; *outSpotColor = SkColorSetARGB(tonalAlpha*255.999f, unPremulScale*spotR, unPremulScale*spotG, unPremulScale*spotB); } static bool fill_shadow_rec(const SkPath& path, const SkPoint3& zPlaneParams, const SkPoint3& lightPos, SkScalar lightRadius, SkColor ambientColor, SkColor spotColor, uint32_t flags, const SkMatrix& ctm, SkDrawShadowRec* rec) { SkPoint pt = { lightPos.fX, lightPos.fY }; if (!SkToBool(flags & kDirectionalLight_ShadowFlag)) { // If light position is in device space, need to transform to local space // before applying to SkCanvas. SkMatrix inverse; if (!ctm.invert(&inverse)) { return false; } inverse.mapPoints(&pt, 1); } rec->fZPlaneParams = zPlaneParams; rec->fLightPos = { pt.fX, pt.fY, lightPos.fZ }; rec->fLightRadius = lightRadius; rec->fAmbientColor = ambientColor; rec->fSpotColor = spotColor; rec->fFlags = flags; return true; } // Draw an offset spot shadow and outlining ambient shadow for the given path. void SkShadowUtils::DrawShadow(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams, const SkPoint3& lightPos, SkScalar lightRadius, SkColor ambientColor, SkColor spotColor, uint32_t flags) { DrawShadowStyle(canvas, path, zPlaneParams, lightPos, lightRadius, ambientColor, spotColor, flags, false); } void SkShadowUtils::DrawShadowStyle(SkCanvas* canvas, const SkPath& path, const SkPoint3& zPlaneParams, const SkPoint3& lightPos, SkScalar lightRadius, SkColor ambientColor, SkColor spotColor, uint32_t flags, bool isLimitElevation) { SkDrawShadowRec rec; rec.isLimitElevation = isLimitElevation; if (!fill_shadow_rec(path, zPlaneParams, lightPos, lightRadius, ambientColor, spotColor, flags, canvas->getTotalMatrix(), &rec)) { return; } canvas->private_draw_shadow_rec(path, rec); } bool SkShadowUtils::GetLocalBounds(const SkMatrix& ctm, const SkPath& path, const SkPoint3& zPlaneParams, const SkPoint3& lightPos, SkScalar lightRadius, uint32_t flags, SkRect* bounds) { SkDrawShadowRec rec; if (!fill_shadow_rec(path, zPlaneParams, lightPos, lightRadius, SK_ColorBLACK, SK_ColorBLACK, flags, ctm, &rec)) { return false; } SkDrawShadowMetrics::GetLocalBounds(path, rec, ctm, bounds); return true; } ////////////////////////////////////////////////////////////////////////////////////////////// static bool validate_rec(const SkDrawShadowRec& rec) { return rec.fLightPos.isFinite() && rec.fZPlaneParams.isFinite() && SkScalarIsFinite(rec.fLightRadius); } void SkBaseDevice::drawShadow(const SkPath& path, const SkDrawShadowRec& rec) { auto drawVertsProc = [this](const SkVertices* vertices, SkBlendMode mode, const SkPaint& paint, SkScalar tx, SkScalar ty, bool hasPerspective) { if (vertices->priv().vertexCount()) { // For perspective shadows we've already computed the shadow in world space, // and we can't translate it without changing it. Otherwise we concat the // change in translation from the cached version. SkAutoDeviceTransformRestore adr( this, hasPerspective ? SkMatrix::I() : this->localToDevice() * SkMatrix::Translate(tx, ty)); this->drawVertices(vertices, mode, paint); } }; if (!validate_rec(rec)) { return; } SkMatrix viewMatrix = this->localToDevice(); SkAutoDeviceTransformRestore adr(this, SkMatrix::I()); ShadowedPath shadowedPath(&path, &viewMatrix); bool tiltZPlane = tilted(rec.fZPlaneParams); bool transparent = SkToBool(rec.fFlags & SkShadowFlags::kTransparentOccluder_ShadowFlag); bool directional = SkToBool(rec.fFlags & kDirectionalLight_ShadowFlag); bool uncached = tiltZPlane || path.isVolatile(); SkPoint3 zPlaneParams = rec.fZPlaneParams; SkPoint3 devLightPos = rec.fLightPos; if (!directional) { viewMatrix.mapPoints((SkPoint*)&devLightPos.fX, 1); } float lightRadius = rec.fLightRadius; if (SkColorGetA(rec.fAmbientColor) > 0) { bool success = false; if (uncached) { sk_sp vertices = SkShadowTessellator::MakeAmbient(path, viewMatrix, zPlaneParams, transparent); if (vertices) { SkPaint paint; // Run the vertex color through a GaussianColorFilter and then modulate the // grayscale result of that against our 'color' param. paint.setColorFilter( SkColorFilters::Blend(rec.fAmbientColor, SkBlendMode::kModulate)->makeComposed( SkColorFilterPriv::MakeGaussian())); this->drawVertices(vertices.get(), SkBlendMode::kModulate, paint); success = true; } } if (!success) { AmbientVerticesFactory factory; factory.fOccluderHeight = zPlaneParams.fZ; factory.fTransparent = transparent; if (viewMatrix.hasPerspective()) { factory.fOffset.set(0, 0); } else { factory.fOffset.fX = viewMatrix.getTranslateX(); factory.fOffset.fY = viewMatrix.getTranslateY(); } if (!draw_shadow(factory, drawVertsProc, shadowedPath, rec.fAmbientColor)) { // Pretransform the path to avoid transforming the stroke, below. SkPath devSpacePath; path.transform(viewMatrix, &devSpacePath); devSpacePath.setIsVolatile(true); // The tesselator outsets by AmbientBlurRadius (or 'r') to get the outer ring of // the tesselation, and sets the alpha on the path to 1/AmbientRecipAlpha (or 'a'). // // We want to emulate this with a blur. The full blur width (2*blurRadius or 'f') // can be calculated by interpolating: // // original edge outer edge // | |<---------- r ------>| // |<------|--- f -------------->| // | | | // alpha = 1 alpha = a alpha = 0 // // Taking ratios, f/1 = r/a, so f = r/a and blurRadius = f/2. // // We now need to outset the path to place the new edge in the center of the // blur region: // // original new // | |<------|--- r ------>| // |<------|--- f -|------------>| // | |<- o ->|<--- f/2 --->| // // r = o + f/2, so o = r - f/2 // // We outset by using the stroker, so the strokeWidth is o/2. // SkScalar devSpaceOutset = SkDrawShadowMetrics::AmbientBlurRadius(zPlaneParams.fZ); SkScalar oneOverA = SkDrawShadowMetrics::AmbientRecipAlpha(zPlaneParams.fZ); SkScalar blurRadius = 0.5f*devSpaceOutset*oneOverA; SkScalar strokeWidth = 0.5f*(devSpaceOutset - blurRadius); // Now draw with blur SkPaint paint; paint.setColor(rec.fAmbientColor); paint.setStrokeWidth(strokeWidth); paint.setStyle(SkPaint::kStrokeAndFill_Style); SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(blurRadius); bool respectCTM = false; paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM)); this->drawPath(devSpacePath, paint); } } } if (SkColorGetA(rec.fSpotColor) > 0) { bool success = false; if (uncached) { sk_sp vertices = SkShadowTessellator::MakeSpot(path, viewMatrix, zPlaneParams, devLightPos, lightRadius, transparent, directional); if (vertices) { SkPaint paint; // Run the vertex color through a GaussianColorFilter and then modulate the // grayscale result of that against our 'color' param. paint.setColorFilter( SkColorFilters::Blend(rec.fSpotColor, SkBlendMode::kModulate)->makeComposed( SkColorFilterPriv::MakeGaussian())); this->drawVertices(vertices.get(), SkBlendMode::kModulate, paint); success = true; } } if (!success) { SpotVerticesFactory factory; factory.fOccluderHeight = zPlaneParams.fZ; factory.fDevLightPos = devLightPos; factory.fLightRadius = lightRadius; SkPoint center = SkPoint::Make(path.getBounds().centerX(), path.getBounds().centerY()); factory.fLocalCenter = center; viewMatrix.mapPoints(¢er, 1); SkScalar radius, scale; if (SkToBool(rec.fFlags & kDirectionalLight_ShadowFlag)) { SkDrawShadowMetrics::GetDirectionalParams(zPlaneParams.fZ, devLightPos.fX, devLightPos.fY, devLightPos.fZ, lightRadius, &radius, &scale, &factory.fOffset); } else { SkDrawShadowMetrics::GetSpotParams(zPlaneParams.fZ, devLightPos.fX - center.fX, devLightPos.fY - center.fY, devLightPos.fZ, lightRadius, &radius, &scale, &factory.fOffset, rec.isLimitElevation); } SkRect devBounds; viewMatrix.mapRect(&devBounds, path.getBounds()); if (directional) { factory.fOccluderType = SpotVerticesFactory::OccluderType::kDirectional; } else if (transparent || SkTAbs(factory.fOffset.fX) > 0.5f*devBounds.width() || SkTAbs(factory.fOffset.fY) > 0.5f*devBounds.height()) { // if the translation of the shadow is big enough we're going to end up // filling the entire umbra, so we can treat these as all the same factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent; } else if (factory.fOffset.length()*scale + scale < radius) { // if we don't translate more than the blur distance, can assume umbra is covered factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaqueNoUmbra; } else if (path.isConvex()) { factory.fOccluderType = SpotVerticesFactory::OccluderType::kOpaquePartialUmbra; } else { factory.fOccluderType = SpotVerticesFactory::OccluderType::kTransparent; } // need to add this after we classify the shadow factory.fOffset.fX += viewMatrix.getTranslateX(); factory.fOffset.fY += viewMatrix.getTranslateY(); SkColor color = rec.fSpotColor; #ifdef DEBUG_SHADOW_CHECKS switch (factory.fOccluderType) { case SpotVerticesFactory::OccluderType::kTransparent: color = 0xFFD2B48C; // tan for transparent break; case SpotVerticesFactory::OccluderType::kOpaquePartialUmbra: color = 0xFFFFA500; // orange for opaque break; case SpotVerticesFactory::OccluderType::kOpaqueNoUmbra: color = 0xFFE5E500; // corn yellow for covered break; case SpotVerticesFactory::OccluderType::kDirectional: color = 0xFF550000; // dark red for directional break; } #endif if (!draw_shadow(factory, drawVertsProc, shadowedPath, color)) { // draw with blur SkMatrix shadowMatrix; if (!SkDrawShadowMetrics::GetSpotShadowTransform(devLightPos, lightRadius, viewMatrix, zPlaneParams, path.getBounds(), directional, &shadowMatrix, &radius)) { return; } SkAutoDeviceTransformRestore adr2(this, shadowMatrix); SkPaint paint; paint.setColor(rec.fSpotColor); SkScalar sigma = SkBlurMask::ConvertRadiusToSigma(radius); bool respectCTM = false; paint.setMaskFilter(SkMaskFilter::MakeBlur(kNormal_SkBlurStyle, sigma, respectCTM)); this->drawPath(path, paint); } } } }