// Copyright (c) 2017 The Khronos Group Inc. // Copyright (c) 2017 Valve Corporation // Copyright (c) 2017 LunarG Inc. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "source/opt/inline_pass.h" #include #include #include "source/cfa.h" #include "source/opt/reflect.h" #include "source/util/make_unique.h" // Indices of operands in SPIR-V instructions static const int kSpvFunctionCallFunctionId = 2; static const int kSpvFunctionCallArgumentId = 3; static const int kSpvReturnValueId = 0; namespace spvtools { namespace opt { uint32_t InlinePass::AddPointerToType(uint32_t type_id, SpvStorageClass storage_class) { uint32_t resultId = context()->TakeNextId(); if (resultId == 0) { return resultId; } std::unique_ptr type_inst( new Instruction(context(), SpvOpTypePointer, 0, resultId, {{spv_operand_type_t::SPV_OPERAND_TYPE_STORAGE_CLASS, {uint32_t(storage_class)}}, {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {type_id}}})); context()->AddType(std::move(type_inst)); analysis::Type* pointeeTy; std::unique_ptr pointerTy; std::tie(pointeeTy, pointerTy) = context()->get_type_mgr()->GetTypeAndPointerType(type_id, SpvStorageClassFunction); context()->get_type_mgr()->RegisterType(resultId, *pointerTy); return resultId; } void InlinePass::AddBranch(uint32_t label_id, std::unique_ptr* block_ptr) { std::unique_ptr newBranch( new Instruction(context(), SpvOpBranch, 0, 0, {{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {label_id}}})); (*block_ptr)->AddInstruction(std::move(newBranch)); } void InlinePass::AddBranchCond(uint32_t cond_id, uint32_t true_id, uint32_t false_id, std::unique_ptr* block_ptr) { std::unique_ptr newBranch( new Instruction(context(), SpvOpBranchConditional, 0, 0, {{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {cond_id}}, {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {true_id}}, {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {false_id}}})); (*block_ptr)->AddInstruction(std::move(newBranch)); } void InlinePass::AddLoopMerge(uint32_t merge_id, uint32_t continue_id, std::unique_ptr* block_ptr) { std::unique_ptr newLoopMerge(new Instruction( context(), SpvOpLoopMerge, 0, 0, {{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {merge_id}}, {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {continue_id}}, {spv_operand_type_t::SPV_OPERAND_TYPE_LOOP_CONTROL, {0}}})); (*block_ptr)->AddInstruction(std::move(newLoopMerge)); } void InlinePass::AddStore(uint32_t ptr_id, uint32_t val_id, std::unique_ptr* block_ptr, const Instruction* line_inst, const DebugScope& dbg_scope) { std::unique_ptr newStore( new Instruction(context(), SpvOpStore, 0, 0, {{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {ptr_id}}, {spv_operand_type_t::SPV_OPERAND_TYPE_ID, {val_id}}})); if (line_inst != nullptr) { newStore->AddDebugLine(line_inst); } newStore->SetDebugScope(dbg_scope); (*block_ptr)->AddInstruction(std::move(newStore)); } void InlinePass::AddLoad(uint32_t type_id, uint32_t resultId, uint32_t ptr_id, std::unique_ptr* block_ptr, const Instruction* line_inst, const DebugScope& dbg_scope) { std::unique_ptr newLoad( new Instruction(context(), SpvOpLoad, type_id, resultId, {{spv_operand_type_t::SPV_OPERAND_TYPE_ID, {ptr_id}}})); if (line_inst != nullptr) { newLoad->AddDebugLine(line_inst); } newLoad->SetDebugScope(dbg_scope); (*block_ptr)->AddInstruction(std::move(newLoad)); } std::unique_ptr InlinePass::NewLabel(uint32_t label_id) { std::unique_ptr newLabel( new Instruction(context(), SpvOpLabel, 0, label_id, {})); return newLabel; } uint32_t InlinePass::GetFalseId() { if (false_id_ != 0) return false_id_; false_id_ = get_module()->GetGlobalValue(SpvOpConstantFalse); if (false_id_ != 0) return false_id_; uint32_t boolId = get_module()->GetGlobalValue(SpvOpTypeBool); if (boolId == 0) { boolId = context()->TakeNextId(); if (boolId == 0) { return 0; } get_module()->AddGlobalValue(SpvOpTypeBool, boolId, 0); } false_id_ = context()->TakeNextId(); if (false_id_ == 0) { return 0; } get_module()->AddGlobalValue(SpvOpConstantFalse, false_id_, boolId); return false_id_; } void InlinePass::MapParams( Function* calleeFn, BasicBlock::iterator call_inst_itr, std::unordered_map* callee2caller) { int param_idx = 0; calleeFn->ForEachParam( [&call_inst_itr, ¶m_idx, &callee2caller](const Instruction* cpi) { const uint32_t pid = cpi->result_id(); (*callee2caller)[pid] = call_inst_itr->GetSingleWordOperand( kSpvFunctionCallArgumentId + param_idx); ++param_idx; }); } bool InlinePass::CloneAndMapLocals( Function* calleeFn, std::vector>* new_vars, std::unordered_map* callee2caller, analysis::DebugInlinedAtContext* inlined_at_ctx) { auto callee_block_itr = calleeFn->begin(); auto callee_var_itr = callee_block_itr->begin(); while (callee_var_itr->opcode() == SpvOp::SpvOpVariable || callee_var_itr->GetCommonDebugOpcode() == CommonDebugInfoDebugDeclare) { if (callee_var_itr->opcode() != SpvOp::SpvOpVariable) { ++callee_var_itr; continue; } std::unique_ptr var_inst(callee_var_itr->Clone(context())); uint32_t newId = context()->TakeNextId(); if (newId == 0) { return false; } get_decoration_mgr()->CloneDecorations(callee_var_itr->result_id(), newId); var_inst->SetResultId(newId); var_inst->UpdateDebugInlinedAt( context()->get_debug_info_mgr()->BuildDebugInlinedAtChain( callee_var_itr->GetDebugInlinedAt(), inlined_at_ctx)); (*callee2caller)[callee_var_itr->result_id()] = newId; new_vars->push_back(std::move(var_inst)); ++callee_var_itr; } return true; } uint32_t InlinePass::CreateReturnVar( Function* calleeFn, std::vector>* new_vars) { uint32_t returnVarId = 0; const uint32_t calleeTypeId = calleeFn->type_id(); analysis::TypeManager* type_mgr = context()->get_type_mgr(); assert(type_mgr->GetType(calleeTypeId)->AsVoid() == nullptr && "Cannot create a return variable of type void."); // Find or create ptr to callee return type. uint32_t returnVarTypeId = type_mgr->FindPointerToType(calleeTypeId, SpvStorageClassFunction); if (returnVarTypeId == 0) { returnVarTypeId = AddPointerToType(calleeTypeId, SpvStorageClassFunction); if (returnVarTypeId == 0) { return 0; } } // Add return var to new function scope variables. returnVarId = context()->TakeNextId(); if (returnVarId == 0) { return 0; } std::unique_ptr var_inst( new Instruction(context(), SpvOpVariable, returnVarTypeId, returnVarId, {{spv_operand_type_t::SPV_OPERAND_TYPE_STORAGE_CLASS, {SpvStorageClassFunction}}})); new_vars->push_back(std::move(var_inst)); get_decoration_mgr()->CloneDecorations(calleeFn->result_id(), returnVarId); return returnVarId; } bool InlinePass::IsSameBlockOp(const Instruction* inst) const { return inst->opcode() == SpvOpSampledImage || inst->opcode() == SpvOpImage; } bool InlinePass::CloneSameBlockOps( std::unique_ptr* inst, std::unordered_map* postCallSB, std::unordered_map* preCallSB, std::unique_ptr* block_ptr) { return (*inst)->WhileEachInId([&postCallSB, &preCallSB, &block_ptr, this](uint32_t* iid) { const auto mapItr = (*postCallSB).find(*iid); if (mapItr == (*postCallSB).end()) { const auto mapItr2 = (*preCallSB).find(*iid); if (mapItr2 != (*preCallSB).end()) { // Clone pre-call same-block ops, map result id. const Instruction* inInst = mapItr2->second; std::unique_ptr sb_inst(inInst->Clone(context())); if (!CloneSameBlockOps(&sb_inst, postCallSB, preCallSB, block_ptr)) { return false; } const uint32_t rid = sb_inst->result_id(); const uint32_t nid = context()->TakeNextId(); if (nid == 0) { return false; } get_decoration_mgr()->CloneDecorations(rid, nid); sb_inst->SetResultId(nid); (*postCallSB)[rid] = nid; *iid = nid; (*block_ptr)->AddInstruction(std::move(sb_inst)); } } else { // Reset same-block op operand. *iid = mapItr->second; } return true; }); } void InlinePass::MoveInstsBeforeEntryBlock( std::unordered_map* preCallSB, BasicBlock* new_blk_ptr, BasicBlock::iterator call_inst_itr, UptrVectorIterator call_block_itr) { for (auto cii = call_block_itr->begin(); cii != call_inst_itr; cii = call_block_itr->begin()) { Instruction* inst = &*cii; inst->RemoveFromList(); std::unique_ptr cp_inst(inst); // Remember same-block ops for possible regeneration. if (IsSameBlockOp(&*cp_inst)) { auto* sb_inst_ptr = cp_inst.get(); (*preCallSB)[cp_inst->result_id()] = sb_inst_ptr; } new_blk_ptr->AddInstruction(std::move(cp_inst)); } } std::unique_ptr InlinePass::AddGuardBlock( std::vector>* new_blocks, std::unordered_map* callee2caller, std::unique_ptr new_blk_ptr, uint32_t entry_blk_label_id) { const auto guard_block_id = context()->TakeNextId(); if (guard_block_id == 0) { return nullptr; } AddBranch(guard_block_id, &new_blk_ptr); new_blocks->push_back(std::move(new_blk_ptr)); // Start the next block. new_blk_ptr = MakeUnique(NewLabel(guard_block_id)); // Reset the mapping of the callee's entry block to point to // the guard block. Do this so we can fix up phis later on to // satisfy dominance. (*callee2caller)[entry_blk_label_id] = guard_block_id; return new_blk_ptr; } InstructionList::iterator InlinePass::AddStoresForVariableInitializers( const std::unordered_map& callee2caller, analysis::DebugInlinedAtContext* inlined_at_ctx, std::unique_ptr* new_blk_ptr, UptrVectorIterator callee_first_block_itr) { auto callee_itr = callee_first_block_itr->begin(); while (callee_itr->opcode() == SpvOp::SpvOpVariable || callee_itr->GetCommonDebugOpcode() == CommonDebugInfoDebugDeclare) { if (callee_itr->opcode() == SpvOp::SpvOpVariable && callee_itr->NumInOperands() == 2) { assert(callee2caller.count(callee_itr->result_id()) && "Expected the variable to have already been mapped."); uint32_t new_var_id = callee2caller.at(callee_itr->result_id()); // The initializer must be a constant or global value. No mapped // should be used. uint32_t val_id = callee_itr->GetSingleWordInOperand(1); AddStore(new_var_id, val_id, new_blk_ptr, callee_itr->dbg_line_inst(), context()->get_debug_info_mgr()->BuildDebugScope( callee_itr->GetDebugScope(), inlined_at_ctx)); } if (callee_itr->GetCommonDebugOpcode() == CommonDebugInfoDebugDeclare) { InlineSingleInstruction( callee2caller, new_blk_ptr->get(), &*callee_itr, context()->get_debug_info_mgr()->BuildDebugInlinedAtChain( callee_itr->GetDebugScope().GetInlinedAt(), inlined_at_ctx)); } ++callee_itr; } return callee_itr; } bool InlinePass::InlineSingleInstruction( const std::unordered_map& callee2caller, BasicBlock* new_blk_ptr, const Instruction* inst, uint32_t dbg_inlined_at) { // If we have return, it must be at the end of the callee. We will handle // it at the end. if (inst->opcode() == SpvOpReturnValue || inst->opcode() == SpvOpReturn) return true; // Copy callee instruction and remap all input Ids. std::unique_ptr cp_inst(inst->Clone(context())); cp_inst->ForEachInId([&callee2caller](uint32_t* iid) { const auto mapItr = callee2caller.find(*iid); if (mapItr != callee2caller.end()) { *iid = mapItr->second; } }); // If result id is non-zero, remap it. const uint32_t rid = cp_inst->result_id(); if (rid != 0) { const auto mapItr = callee2caller.find(rid); if (mapItr == callee2caller.end()) { return false; } uint32_t nid = mapItr->second; cp_inst->SetResultId(nid); get_decoration_mgr()->CloneDecorations(rid, nid); } cp_inst->UpdateDebugInlinedAt(dbg_inlined_at); new_blk_ptr->AddInstruction(std::move(cp_inst)); return true; } std::unique_ptr InlinePass::InlineReturn( const std::unordered_map& callee2caller, std::vector>* new_blocks, std::unique_ptr new_blk_ptr, analysis::DebugInlinedAtContext* inlined_at_ctx, Function* calleeFn, const Instruction* inst, uint32_t returnVarId) { // Store return value to return variable. if (inst->opcode() == SpvOpReturnValue) { assert(returnVarId != 0); uint32_t valId = inst->GetInOperand(kSpvReturnValueId).words[0]; const auto mapItr = callee2caller.find(valId); if (mapItr != callee2caller.end()) { valId = mapItr->second; } AddStore(returnVarId, valId, &new_blk_ptr, inst->dbg_line_inst(), context()->get_debug_info_mgr()->BuildDebugScope( inst->GetDebugScope(), inlined_at_ctx)); } uint32_t returnLabelId = 0; for (auto callee_block_itr = calleeFn->begin(); callee_block_itr != calleeFn->end(); ++callee_block_itr) { if (spvOpcodeIsAbort(callee_block_itr->tail()->opcode())) { returnLabelId = context()->TakeNextId(); break; } } if (returnLabelId == 0) return new_blk_ptr; if (inst->opcode() == SpvOpReturn || inst->opcode() == SpvOpReturnValue) AddBranch(returnLabelId, &new_blk_ptr); new_blocks->push_back(std::move(new_blk_ptr)); return MakeUnique(NewLabel(returnLabelId)); } bool InlinePass::InlineEntryBlock( const std::unordered_map& callee2caller, std::unique_ptr* new_blk_ptr, UptrVectorIterator callee_first_block, analysis::DebugInlinedAtContext* inlined_at_ctx) { auto callee_inst_itr = AddStoresForVariableInitializers( callee2caller, inlined_at_ctx, new_blk_ptr, callee_first_block); while (callee_inst_itr != callee_first_block->end()) { // Don't inline function definition links, the calling function is not a // definition. if (callee_inst_itr->GetShader100DebugOpcode() == NonSemanticShaderDebugInfo100DebugFunctionDefinition) { ++callee_inst_itr; continue; } if (!InlineSingleInstruction( callee2caller, new_blk_ptr->get(), &*callee_inst_itr, context()->get_debug_info_mgr()->BuildDebugInlinedAtChain( callee_inst_itr->GetDebugScope().GetInlinedAt(), inlined_at_ctx))) { return false; } ++callee_inst_itr; } return true; } std::unique_ptr InlinePass::InlineBasicBlocks( std::vector>* new_blocks, const std::unordered_map& callee2caller, std::unique_ptr new_blk_ptr, analysis::DebugInlinedAtContext* inlined_at_ctx, Function* calleeFn) { auto callee_block_itr = calleeFn->begin(); ++callee_block_itr; while (callee_block_itr != calleeFn->end()) { new_blocks->push_back(std::move(new_blk_ptr)); const auto mapItr = callee2caller.find(callee_block_itr->GetLabelInst()->result_id()); if (mapItr == callee2caller.end()) return nullptr; new_blk_ptr = MakeUnique(NewLabel(mapItr->second)); auto tail_inst_itr = callee_block_itr->end(); for (auto inst_itr = callee_block_itr->begin(); inst_itr != tail_inst_itr; ++inst_itr) { // Don't inline function definition links, the calling function is not a // definition if (inst_itr->GetShader100DebugOpcode() == NonSemanticShaderDebugInfo100DebugFunctionDefinition) continue; if (!InlineSingleInstruction( callee2caller, new_blk_ptr.get(), &*inst_itr, context()->get_debug_info_mgr()->BuildDebugInlinedAtChain( inst_itr->GetDebugScope().GetInlinedAt(), inlined_at_ctx))) { return nullptr; } } ++callee_block_itr; } return new_blk_ptr; } bool InlinePass::MoveCallerInstsAfterFunctionCall( std::unordered_map* preCallSB, std::unordered_map* postCallSB, std::unique_ptr* new_blk_ptr, BasicBlock::iterator call_inst_itr, bool multiBlocks) { // Copy remaining instructions from caller block. for (Instruction* inst = call_inst_itr->NextNode(); inst; inst = call_inst_itr->NextNode()) { inst->RemoveFromList(); std::unique_ptr cp_inst(inst); // If multiple blocks generated, regenerate any same-block // instruction that has not been seen in this last block. if (multiBlocks) { if (!CloneSameBlockOps(&cp_inst, postCallSB, preCallSB, new_blk_ptr)) { return false; } // Remember same-block ops in this block. if (IsSameBlockOp(&*cp_inst)) { const uint32_t rid = cp_inst->result_id(); (*postCallSB)[rid] = rid; } } new_blk_ptr->get()->AddInstruction(std::move(cp_inst)); } return true; } void InlinePass::MoveLoopMergeInstToFirstBlock( std::vector>* new_blocks) { // Move the OpLoopMerge from the last block back to the first, where // it belongs. auto& first = new_blocks->front(); auto& last = new_blocks->back(); assert(first != last); // Insert a modified copy of the loop merge into the first block. auto loop_merge_itr = last->tail(); --loop_merge_itr; assert(loop_merge_itr->opcode() == SpvOpLoopMerge); std::unique_ptr cp_inst(loop_merge_itr->Clone(context())); first->tail().InsertBefore(std::move(cp_inst)); // Remove the loop merge from the last block. loop_merge_itr->RemoveFromList(); delete &*loop_merge_itr; } void InlinePass::UpdateSingleBlockLoopContinueTarget( uint32_t new_id, std::vector>* new_blocks) { auto& header = new_blocks->front(); auto* merge_inst = header->GetLoopMergeInst(); // The back-edge block is split at the branch to create a new back-edge // block. The old block is modified to branch to the new block. The loop // merge instruction is updated to declare the new block as the continue // target. This has the effect of changing the loop from being a large // continue construct and an empty loop construct to being a loop with a loop // construct and a trivial continue construct. This change is made to satisfy // structural dominance. // Add the new basic block. std::unique_ptr new_block = MakeUnique(NewLabel(new_id)); auto& old_backedge = new_blocks->back(); auto old_branch = old_backedge->tail(); // Move the old back edge into the new block. std::unique_ptr br(&*old_branch); new_block->AddInstruction(std::move(br)); // Add a branch to the new block from the old back-edge block. AddBranch(new_id, &old_backedge); new_blocks->push_back(std::move(new_block)); // Update the loop's continue target to the new block. merge_inst->SetInOperand(1u, {new_id}); } bool InlinePass::GenInlineCode( std::vector>* new_blocks, std::vector>* new_vars, BasicBlock::iterator call_inst_itr, UptrVectorIterator call_block_itr) { // Map from all ids in the callee to their equivalent id in the caller // as callee instructions are copied into caller. std::unordered_map callee2caller; // Pre-call same-block insts std::unordered_map preCallSB; // Post-call same-block op ids std::unordered_map postCallSB; analysis::DebugInlinedAtContext inlined_at_ctx(&*call_inst_itr); // Invalidate the def-use chains. They are not kept up to date while // inlining. However, certain calls try to keep them up-to-date if they are // valid. These operations can fail. context()->InvalidateAnalyses(IRContext::kAnalysisDefUse); // If the caller is a loop header and the callee has multiple blocks, then the // normal inlining logic will place the OpLoopMerge in the last of several // blocks in the loop. Instead, it should be placed at the end of the first // block. We'll wait to move the OpLoopMerge until the end of the regular // inlining logic, and only if necessary. bool caller_is_loop_header = call_block_itr->GetLoopMergeInst() != nullptr; // Single-trip loop continue block std::unique_ptr single_trip_loop_cont_blk; Function* calleeFn = id2function_[call_inst_itr->GetSingleWordOperand( kSpvFunctionCallFunctionId)]; // Map parameters to actual arguments. MapParams(calleeFn, call_inst_itr, &callee2caller); // Define caller local variables for all callee variables and create map to // them. if (!CloneAndMapLocals(calleeFn, new_vars, &callee2caller, &inlined_at_ctx)) { return false; } // First block needs to use label of original block // but map callee label in case of phi reference. uint32_t entry_blk_label_id = calleeFn->begin()->GetLabelInst()->result_id(); callee2caller[entry_blk_label_id] = call_block_itr->id(); std::unique_ptr new_blk_ptr = MakeUnique(NewLabel(call_block_itr->id())); // Move instructions of original caller block up to call instruction. MoveInstsBeforeEntryBlock(&preCallSB, new_blk_ptr.get(), call_inst_itr, call_block_itr); if (caller_is_loop_header && (*(calleeFn->begin())).GetMergeInst() != nullptr) { // We can't place both the caller's merge instruction and // another merge instruction in the same block. So split the // calling block. Insert an unconditional branch to a new guard // block. Later, once we know the ID of the last block, we // will move the caller's OpLoopMerge from the last generated // block into the first block. We also wait to avoid // invalidating various iterators. new_blk_ptr = AddGuardBlock(new_blocks, &callee2caller, std::move(new_blk_ptr), entry_blk_label_id); if (new_blk_ptr == nullptr) return false; } // Create return var if needed. const uint32_t calleeTypeId = calleeFn->type_id(); uint32_t returnVarId = 0; analysis::Type* calleeType = context()->get_type_mgr()->GetType(calleeTypeId); if (calleeType->AsVoid() == nullptr) { returnVarId = CreateReturnVar(calleeFn, new_vars); if (returnVarId == 0) { return false; } } calleeFn->WhileEachInst([&callee2caller, this](const Instruction* cpi) { // Create set of callee result ids. Used to detect forward references const uint32_t rid = cpi->result_id(); if (rid != 0 && callee2caller.find(rid) == callee2caller.end()) { const uint32_t nid = context()->TakeNextId(); if (nid == 0) return false; callee2caller[rid] = nid; } return true; }); // Inline DebugClare instructions in the callee's header. calleeFn->ForEachDebugInstructionsInHeader( [&new_blk_ptr, &callee2caller, &inlined_at_ctx, this](Instruction* inst) { InlineSingleInstruction( callee2caller, new_blk_ptr.get(), inst, context()->get_debug_info_mgr()->BuildDebugInlinedAtChain( inst->GetDebugScope().GetInlinedAt(), &inlined_at_ctx)); }); // Inline the entry block of the callee function. if (!InlineEntryBlock(callee2caller, &new_blk_ptr, calleeFn->begin(), &inlined_at_ctx)) { return false; } // Inline blocks of the callee function other than the entry block. new_blk_ptr = InlineBasicBlocks(new_blocks, callee2caller, std::move(new_blk_ptr), &inlined_at_ctx, calleeFn); if (new_blk_ptr == nullptr) return false; new_blk_ptr = InlineReturn(callee2caller, new_blocks, std::move(new_blk_ptr), &inlined_at_ctx, calleeFn, &*(calleeFn->tail()->tail()), returnVarId); // Load return value into result id of call, if it exists. if (returnVarId != 0) { const uint32_t resId = call_inst_itr->result_id(); assert(resId != 0); AddLoad(calleeTypeId, resId, returnVarId, &new_blk_ptr, call_inst_itr->dbg_line_inst(), call_inst_itr->GetDebugScope()); } // Move instructions of original caller block after call instruction. if (!MoveCallerInstsAfterFunctionCall(&preCallSB, &postCallSB, &new_blk_ptr, call_inst_itr, calleeFn->begin() != calleeFn->end())) return false; // Finalize inline code. new_blocks->push_back(std::move(new_blk_ptr)); if (caller_is_loop_header && (new_blocks->size() > 1)) { MoveLoopMergeInstToFirstBlock(new_blocks); // If the loop was a single basic block previously, update it's structure. auto& header = new_blocks->front(); auto* merge_inst = header->GetLoopMergeInst(); if (merge_inst->GetSingleWordInOperand(1u) == header->id()) { auto new_id = context()->TakeNextId(); if (new_id == 0) return false; UpdateSingleBlockLoopContinueTarget(new_id, new_blocks); } } // Update block map given replacement blocks. for (auto& blk : *new_blocks) { id2block_[blk->id()] = &*blk; } // We need to kill the name and decorations for the call, which will be // deleted. context()->KillNamesAndDecorates(&*call_inst_itr); return true; } bool InlinePass::IsInlinableFunctionCall(const Instruction* inst) { if (inst->opcode() != SpvOp::SpvOpFunctionCall) return false; const uint32_t calleeFnId = inst->GetSingleWordOperand(kSpvFunctionCallFunctionId); const auto ci = inlinable_.find(calleeFnId); if (ci == inlinable_.cend()) return false; if (early_return_funcs_.find(calleeFnId) != early_return_funcs_.end()) { // We rely on the merge-return pass to handle the early return case // in advance. std::string message = "The function '" + id2function_[calleeFnId]->DefInst().PrettyPrint() + "' could not be inlined because the return instruction " "is not at the end of the function. This could be fixed by " "running merge-return before inlining."; consumer()(SPV_MSG_WARNING, "", {0, 0, 0}, message.c_str()); return false; } return true; } void InlinePass::UpdateSucceedingPhis( std::vector>& new_blocks) { const auto firstBlk = new_blocks.begin(); const auto lastBlk = new_blocks.end() - 1; const uint32_t firstId = (*firstBlk)->id(); const uint32_t lastId = (*lastBlk)->id(); const BasicBlock& const_last_block = *lastBlk->get(); const_last_block.ForEachSuccessorLabel( [&firstId, &lastId, this](const uint32_t succ) { BasicBlock* sbp = this->id2block_[succ]; sbp->ForEachPhiInst([&firstId, &lastId](Instruction* phi) { phi->ForEachInId([&firstId, &lastId](uint32_t* id) { if (*id == firstId) *id = lastId; }); }); }); } bool InlinePass::HasNoReturnInLoop(Function* func) { // If control not structured, do not do loop/return analysis // TODO: Analyze returns in non-structured control flow if (!context()->get_feature_mgr()->HasCapability(SpvCapabilityShader)) return false; const auto structured_analysis = context()->GetStructuredCFGAnalysis(); // Search for returns in structured construct. bool return_in_loop = false; for (auto& blk : *func) { auto terminal_ii = blk.cend(); --terminal_ii; if (spvOpcodeIsReturn(terminal_ii->opcode()) && structured_analysis->ContainingLoop(blk.id()) != 0) { return_in_loop = true; break; } } return !return_in_loop; } void InlinePass::AnalyzeReturns(Function* func) { // Analyze functions without a return in loop. if (HasNoReturnInLoop(func)) { no_return_in_loop_.insert(func->result_id()); } // Analyze functions with a return before its tail basic block. for (auto& blk : *func) { auto terminal_ii = blk.cend(); --terminal_ii; if (spvOpcodeIsReturn(terminal_ii->opcode()) && &blk != func->tail()) { early_return_funcs_.insert(func->result_id()); break; } } } bool InlinePass::IsInlinableFunction(Function* func) { // We can only inline a function if it has blocks. if (func->cbegin() == func->cend()) return false; // Do not inline functions with DontInline flag. if (func->control_mask() & SpvFunctionControlDontInlineMask) { return false; } // Do not inline functions with returns in loops. Currently early return // functions are inlined by wrapping them in a one trip loop and implementing // the returns as a branch to the loop's merge block. However, this can only // done validly if the return was not in a loop in the original function. // Also remember functions with multiple (early) returns. AnalyzeReturns(func); if (no_return_in_loop_.find(func->result_id()) == no_return_in_loop_.cend()) { return false; } if (func->IsRecursive()) { return false; } // Do not inline functions with an abort instruction if they are called from a // continue construct. If it is inlined into a continue construct the backedge // will no longer post-dominate the continue target, which is invalid. An // `OpUnreachable` is acceptable because it will not change post-dominance if // it is statically unreachable. bool func_is_called_from_continue = funcs_called_from_continue_.count(func->result_id()) != 0; if (func_is_called_from_continue && ContainsAbortOtherThanUnreachable(func)) { return false; } return true; } bool InlinePass::ContainsAbortOtherThanUnreachable(Function* func) const { return !func->WhileEachInst([](Instruction* inst) { return inst->opcode() == SpvOpUnreachable || !spvOpcodeIsAbort(inst->opcode()); }); } void InlinePass::InitializeInline() { false_id_ = 0; // clear collections id2function_.clear(); id2block_.clear(); inlinable_.clear(); no_return_in_loop_.clear(); early_return_funcs_.clear(); funcs_called_from_continue_ = context()->GetStructuredCFGAnalysis()->FindFuncsCalledFromContinue(); for (auto& fn : *get_module()) { // Initialize function and block maps. id2function_[fn.result_id()] = &fn; for (auto& blk : fn) { id2block_[blk.id()] = &blk; } // Compute inlinability if (IsInlinableFunction(&fn)) inlinable_.insert(fn.result_id()); } } InlinePass::InlinePass() {} } // namespace opt } // namespace spvtools