// Copyright 2018, VIXL authors // All rights reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of ARM Limited nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS CONTRIBUTORS "AS IS" AND // ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED // WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE // DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE // FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL // DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR // SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER // CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, // OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #ifdef VIXL_INCLUDE_SIMULATOR_AARCH64 #include "simulator-aarch64.h" #include "utils-vixl.h" namespace vixl { namespace aarch64 { // Randomly generated example keys for simulating only. const Simulator::PACKey Simulator::kPACKeyIA = {0xc31718727de20f71, 0xab9fd4e14b2fec51, 0}; const Simulator::PACKey Simulator::kPACKeyIB = {0xeebb163b474e04c8, 0x5267ac6fc280fb7c, 1}; const Simulator::PACKey Simulator::kPACKeyDA = {0x5caef808deb8b1e2, 0xd347cbc06b7b0f77, 0}; const Simulator::PACKey Simulator::kPACKeyDB = {0xe06aa1a949ba8cc7, 0xcfde69e3db6d0432, 1}; // The general PAC key isn't intended to be used with AuthPAC so we ensure the // key number is invalid and asserts if used incorrectly. const Simulator::PACKey Simulator::kPACKeyGA = {0xfcd98a44d564b3d5, 0x6c56df1904bf0ddc, -1}; static uint64_t GetNibble(uint64_t in_data, int position) { return (in_data >> position) & 0xf; } static uint64_t ShuffleNibbles(uint64_t in_data) { static int in_positions[16] = {4, 36, 52, 40, 44, 0, 24, 12, 56, 60, 8, 32, 16, 28, 20, 48}; uint64_t out_data = 0; for (int i = 0; i < 16; i++) { out_data |= GetNibble(in_data, in_positions[i]) << (4 * i); } return out_data; } static uint64_t SubstituteNibbles(uint64_t in_data) { // Randomly chosen substitutes. static uint64_t subs[16] = {4, 7, 3, 9, 10, 14, 0, 1, 15, 2, 8, 6, 12, 5, 11, 13}; uint64_t out_data = 0; for (int i = 0; i < 16; i++) { int index = (in_data >> (4 * i)) & 0xf; out_data |= subs[index] << (4 * i); } return out_data; } // Rotate nibble to the left by the amount specified. static uint64_t RotNibble(uint64_t in_cell, int amount) { VIXL_ASSERT((amount >= 0) && (amount <= 3)); in_cell &= 0xf; uint64_t temp = (in_cell << 4) | in_cell; return (temp >> (4 - amount)) & 0xf; } static uint64_t BigShuffle(uint64_t in_data) { uint64_t out_data = 0; for (int i = 0; i < 4; i++) { uint64_t n12 = GetNibble(in_data, 4 * (i + 12)); uint64_t n8 = GetNibble(in_data, 4 * (i + 8)); uint64_t n4 = GetNibble(in_data, 4 * (i + 4)); uint64_t n0 = GetNibble(in_data, 4 * (i + 0)); uint64_t t0 = RotNibble(n8, 2) ^ RotNibble(n4, 1) ^ RotNibble(n0, 1); uint64_t t1 = RotNibble(n12, 1) ^ RotNibble(n4, 2) ^ RotNibble(n0, 1); uint64_t t2 = RotNibble(n12, 2) ^ RotNibble(n8, 1) ^ RotNibble(n0, 1); uint64_t t3 = RotNibble(n12, 1) ^ RotNibble(n8, 1) ^ RotNibble(n4, 2); out_data |= t3 << (4 * (i + 0)); out_data |= t2 << (4 * (i + 4)); out_data |= t1 << (4 * (i + 8)); out_data |= t0 << (4 * (i + 12)); } return out_data; } // A simple, non-standard hash function invented for simulating. It mixes // reasonably well, however it is unlikely to be cryptographically secure and // may have a higher collision chance than other hashing algorithms. uint64_t Simulator::ComputePAC(uint64_t data, uint64_t context, PACKey key) { uint64_t working_value = data ^ key.high; working_value = BigShuffle(working_value); working_value = ShuffleNibbles(working_value); working_value ^= key.low; working_value = ShuffleNibbles(working_value); working_value = BigShuffle(working_value); working_value ^= context; working_value = SubstituteNibbles(working_value); working_value = BigShuffle(working_value); working_value = SubstituteNibbles(working_value); return working_value; } // The TTBR is selected by bit 63 or 55 depending on TBI for pointers without // codes, but is always 55 once a PAC code is added to a pointer. For this // reason, it must be calculated at the call site. uint64_t Simulator::CalculatePACMask(uint64_t ptr, PointerType type, int ttbr) { int bottom_pac_bit = GetBottomPACBit(ptr, ttbr); int top_pac_bit = GetTopPACBit(ptr, type); return ExtractUnsignedBitfield64(top_pac_bit, bottom_pac_bit, 0xffffffffffffffff & ~kTTBRMask) << bottom_pac_bit; } uint64_t Simulator::AuthPAC(uint64_t ptr, uint64_t context, PACKey key, PointerType type) { VIXL_ASSERT((key.number == 0) || (key.number == 1)); uint64_t pac_mask = CalculatePACMask(ptr, type, (ptr >> 55) & 1); uint64_t original_ptr = ((ptr & kTTBRMask) == 0) ? (ptr & ~pac_mask) : (ptr | pac_mask); uint64_t pac = ComputePAC(original_ptr, context, key); uint64_t error_code = 1 << key.number; if ((pac & pac_mask) == (ptr & pac_mask)) { return original_ptr; } else { int error_lsb = GetTopPACBit(ptr, type) - 2; uint64_t error_mask = UINT64_C(0x3) << error_lsb; return (original_ptr & ~error_mask) | (error_code << error_lsb); } } uint64_t Simulator::AddPAC(uint64_t ptr, uint64_t context, PACKey key, PointerType type) { int top_pac_bit = GetTopPACBit(ptr, type); // TODO: Properly handle the case where extension bits are bad and TBI is // turned off, and also test me. VIXL_ASSERT(HasTBI(ptr, type)); int ttbr = (ptr >> 55) & 1; uint64_t pac_mask = CalculatePACMask(ptr, type, ttbr); uint64_t ext_ptr = (ttbr == 0) ? (ptr & ~pac_mask) : (ptr | pac_mask); uint64_t pac = ComputePAC(ext_ptr, context, key); // If the pointer isn't all zeroes or all ones in the PAC bitfield, corrupt // the resulting code. if (((ptr & (pac_mask | kTTBRMask)) != 0x0) && ((~ptr & (pac_mask | kTTBRMask)) != 0x0)) { pac ^= UINT64_C(1) << (top_pac_bit - 1); } uint64_t ttbr_shifted = static_cast(ttbr) << 55; return (pac & pac_mask) | ttbr_shifted | (ptr & ~pac_mask); } uint64_t Simulator::StripPAC(uint64_t ptr, PointerType type) { uint64_t pac_mask = CalculatePACMask(ptr, type, (ptr >> 55) & 1); return ((ptr & kTTBRMask) == 0) ? (ptr & ~pac_mask) : (ptr | pac_mask); } } // namespace aarch64 } // namespace vixl #endif // VIXL_INCLUDE_SIMULATOR_AARCH64