1 //===-- AMDGPUAtomicOptimizer.cpp -----------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 /// \file
10 /// This pass optimizes atomic operations by using a single lane of a wavefront
11 /// to perform the atomic operation, thus reducing contention on that memory
12 /// location.
13 //
14 //===----------------------------------------------------------------------===//
15
16 #include "AMDGPU.h"
17 #include "AMDGPUSubtarget.h"
18 #include "SIDefines.h"
19 #include "llvm/Analysis/LegacyDivergenceAnalysis.h"
20 #include "llvm/CodeGen/TargetPassConfig.h"
21 #include "llvm/IR/IRBuilder.h"
22 #include "llvm/IR/InstVisitor.h"
23 #include "llvm/InitializePasses.h"
24 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
25
26 #define DEBUG_TYPE "amdgpu-atomic-optimizer"
27
28 using namespace llvm;
29 using namespace llvm::AMDGPU;
30
31 namespace {
32
33 struct ReplacementInfo {
34 Instruction *I;
35 AtomicRMWInst::BinOp Op;
36 unsigned ValIdx;
37 bool ValDivergent;
38 };
39
40 class AMDGPUAtomicOptimizer : public FunctionPass,
41 public InstVisitor<AMDGPUAtomicOptimizer> {
42 private:
43 SmallVector<ReplacementInfo, 8> ToReplace;
44 const LegacyDivergenceAnalysis *DA;
45 const DataLayout *DL;
46 DominatorTree *DT;
47 const GCNSubtarget *ST;
48 bool IsPixelShader;
49
50 Value *buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op, Value *V,
51 Value *const Identity) const;
52 Value *buildShiftRight(IRBuilder<> &B, Value *V, Value *const Identity) const;
53 void optimizeAtomic(Instruction &I, AtomicRMWInst::BinOp Op, unsigned ValIdx,
54 bool ValDivergent) const;
55
56 public:
57 static char ID;
58
AMDGPUAtomicOptimizer()59 AMDGPUAtomicOptimizer() : FunctionPass(ID) {}
60
61 bool runOnFunction(Function &F) override;
62
getAnalysisUsage(AnalysisUsage & AU) const63 void getAnalysisUsage(AnalysisUsage &AU) const override {
64 AU.addPreserved<DominatorTreeWrapperPass>();
65 AU.addRequired<LegacyDivergenceAnalysis>();
66 AU.addRequired<TargetPassConfig>();
67 }
68
69 void visitAtomicRMWInst(AtomicRMWInst &I);
70 void visitIntrinsicInst(IntrinsicInst &I);
71 };
72
73 } // namespace
74
75 char AMDGPUAtomicOptimizer::ID = 0;
76
77 char &llvm::AMDGPUAtomicOptimizerID = AMDGPUAtomicOptimizer::ID;
78
runOnFunction(Function & F)79 bool AMDGPUAtomicOptimizer::runOnFunction(Function &F) {
80 if (skipFunction(F)) {
81 return false;
82 }
83
84 DA = &getAnalysis<LegacyDivergenceAnalysis>();
85 DL = &F.getParent()->getDataLayout();
86 DominatorTreeWrapperPass *const DTW =
87 getAnalysisIfAvailable<DominatorTreeWrapperPass>();
88 DT = DTW ? &DTW->getDomTree() : nullptr;
89 const TargetPassConfig &TPC = getAnalysis<TargetPassConfig>();
90 const TargetMachine &TM = TPC.getTM<TargetMachine>();
91 ST = &TM.getSubtarget<GCNSubtarget>(F);
92 IsPixelShader = F.getCallingConv() == CallingConv::AMDGPU_PS;
93
94 visit(F);
95
96 const bool Changed = !ToReplace.empty();
97
98 for (ReplacementInfo &Info : ToReplace) {
99 optimizeAtomic(*Info.I, Info.Op, Info.ValIdx, Info.ValDivergent);
100 }
101
102 ToReplace.clear();
103
104 return Changed;
105 }
106
visitAtomicRMWInst(AtomicRMWInst & I)107 void AMDGPUAtomicOptimizer::visitAtomicRMWInst(AtomicRMWInst &I) {
108 // Early exit for unhandled address space atomic instructions.
109 switch (I.getPointerAddressSpace()) {
110 default:
111 return;
112 case AMDGPUAS::GLOBAL_ADDRESS:
113 case AMDGPUAS::LOCAL_ADDRESS:
114 break;
115 }
116
117 AtomicRMWInst::BinOp Op = I.getOperation();
118
119 switch (Op) {
120 default:
121 return;
122 case AtomicRMWInst::Add:
123 case AtomicRMWInst::Sub:
124 case AtomicRMWInst::And:
125 case AtomicRMWInst::Or:
126 case AtomicRMWInst::Xor:
127 case AtomicRMWInst::Max:
128 case AtomicRMWInst::Min:
129 case AtomicRMWInst::UMax:
130 case AtomicRMWInst::UMin:
131 break;
132 }
133
134 const unsigned PtrIdx = 0;
135 const unsigned ValIdx = 1;
136
137 // If the pointer operand is divergent, then each lane is doing an atomic
138 // operation on a different address, and we cannot optimize that.
139 if (DA->isDivergentUse(&I.getOperandUse(PtrIdx))) {
140 return;
141 }
142
143 const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx));
144
145 // If the value operand is divergent, each lane is contributing a different
146 // value to the atomic calculation. We can only optimize divergent values if
147 // we have DPP available on our subtarget, and the atomic operation is 32
148 // bits.
149 if (ValDivergent &&
150 (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) {
151 return;
152 }
153
154 // If we get here, we can optimize the atomic using a single wavefront-wide
155 // atomic operation to do the calculation for the entire wavefront, so
156 // remember the instruction so we can come back to it.
157 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
158
159 ToReplace.push_back(Info);
160 }
161
visitIntrinsicInst(IntrinsicInst & I)162 void AMDGPUAtomicOptimizer::visitIntrinsicInst(IntrinsicInst &I) {
163 AtomicRMWInst::BinOp Op;
164
165 switch (I.getIntrinsicID()) {
166 default:
167 return;
168 case Intrinsic::amdgcn_buffer_atomic_add:
169 case Intrinsic::amdgcn_struct_buffer_atomic_add:
170 case Intrinsic::amdgcn_raw_buffer_atomic_add:
171 Op = AtomicRMWInst::Add;
172 break;
173 case Intrinsic::amdgcn_buffer_atomic_sub:
174 case Intrinsic::amdgcn_struct_buffer_atomic_sub:
175 case Intrinsic::amdgcn_raw_buffer_atomic_sub:
176 Op = AtomicRMWInst::Sub;
177 break;
178 case Intrinsic::amdgcn_buffer_atomic_and:
179 case Intrinsic::amdgcn_struct_buffer_atomic_and:
180 case Intrinsic::amdgcn_raw_buffer_atomic_and:
181 Op = AtomicRMWInst::And;
182 break;
183 case Intrinsic::amdgcn_buffer_atomic_or:
184 case Intrinsic::amdgcn_struct_buffer_atomic_or:
185 case Intrinsic::amdgcn_raw_buffer_atomic_or:
186 Op = AtomicRMWInst::Or;
187 break;
188 case Intrinsic::amdgcn_buffer_atomic_xor:
189 case Intrinsic::amdgcn_struct_buffer_atomic_xor:
190 case Intrinsic::amdgcn_raw_buffer_atomic_xor:
191 Op = AtomicRMWInst::Xor;
192 break;
193 case Intrinsic::amdgcn_buffer_atomic_smin:
194 case Intrinsic::amdgcn_struct_buffer_atomic_smin:
195 case Intrinsic::amdgcn_raw_buffer_atomic_smin:
196 Op = AtomicRMWInst::Min;
197 break;
198 case Intrinsic::amdgcn_buffer_atomic_umin:
199 case Intrinsic::amdgcn_struct_buffer_atomic_umin:
200 case Intrinsic::amdgcn_raw_buffer_atomic_umin:
201 Op = AtomicRMWInst::UMin;
202 break;
203 case Intrinsic::amdgcn_buffer_atomic_smax:
204 case Intrinsic::amdgcn_struct_buffer_atomic_smax:
205 case Intrinsic::amdgcn_raw_buffer_atomic_smax:
206 Op = AtomicRMWInst::Max;
207 break;
208 case Intrinsic::amdgcn_buffer_atomic_umax:
209 case Intrinsic::amdgcn_struct_buffer_atomic_umax:
210 case Intrinsic::amdgcn_raw_buffer_atomic_umax:
211 Op = AtomicRMWInst::UMax;
212 break;
213 }
214
215 const unsigned ValIdx = 0;
216
217 const bool ValDivergent = DA->isDivergentUse(&I.getOperandUse(ValIdx));
218
219 // If the value operand is divergent, each lane is contributing a different
220 // value to the atomic calculation. We can only optimize divergent values if
221 // we have DPP available on our subtarget, and the atomic operation is 32
222 // bits.
223 if (ValDivergent &&
224 (!ST->hasDPP() || DL->getTypeSizeInBits(I.getType()) != 32)) {
225 return;
226 }
227
228 // If any of the other arguments to the intrinsic are divergent, we can't
229 // optimize the operation.
230 for (unsigned Idx = 1; Idx < I.getNumOperands(); Idx++) {
231 if (DA->isDivergentUse(&I.getOperandUse(Idx))) {
232 return;
233 }
234 }
235
236 // If we get here, we can optimize the atomic using a single wavefront-wide
237 // atomic operation to do the calculation for the entire wavefront, so
238 // remember the instruction so we can come back to it.
239 const ReplacementInfo Info = {&I, Op, ValIdx, ValDivergent};
240
241 ToReplace.push_back(Info);
242 }
243
244 // Use the builder to create the non-atomic counterpart of the specified
245 // atomicrmw binary op.
buildNonAtomicBinOp(IRBuilder<> & B,AtomicRMWInst::BinOp Op,Value * LHS,Value * RHS)246 static Value *buildNonAtomicBinOp(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
247 Value *LHS, Value *RHS) {
248 CmpInst::Predicate Pred;
249
250 switch (Op) {
251 default:
252 llvm_unreachable("Unhandled atomic op");
253 case AtomicRMWInst::Add:
254 return B.CreateBinOp(Instruction::Add, LHS, RHS);
255 case AtomicRMWInst::Sub:
256 return B.CreateBinOp(Instruction::Sub, LHS, RHS);
257 case AtomicRMWInst::And:
258 return B.CreateBinOp(Instruction::And, LHS, RHS);
259 case AtomicRMWInst::Or:
260 return B.CreateBinOp(Instruction::Or, LHS, RHS);
261 case AtomicRMWInst::Xor:
262 return B.CreateBinOp(Instruction::Xor, LHS, RHS);
263
264 case AtomicRMWInst::Max:
265 Pred = CmpInst::ICMP_SGT;
266 break;
267 case AtomicRMWInst::Min:
268 Pred = CmpInst::ICMP_SLT;
269 break;
270 case AtomicRMWInst::UMax:
271 Pred = CmpInst::ICMP_UGT;
272 break;
273 case AtomicRMWInst::UMin:
274 Pred = CmpInst::ICMP_ULT;
275 break;
276 }
277 Value *Cond = B.CreateICmp(Pred, LHS, RHS);
278 return B.CreateSelect(Cond, LHS, RHS);
279 }
280
281 // Use the builder to create an inclusive scan of V across the wavefront, with
282 // all lanes active.
buildScan(IRBuilder<> & B,AtomicRMWInst::BinOp Op,Value * V,Value * const Identity) const283 Value *AMDGPUAtomicOptimizer::buildScan(IRBuilder<> &B, AtomicRMWInst::BinOp Op,
284 Value *V, Value *const Identity) const {
285 Type *const Ty = V->getType();
286 Module *M = B.GetInsertBlock()->getModule();
287 Function *UpdateDPP =
288 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty);
289 Function *PermLaneX16 =
290 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_permlanex16, {});
291 Function *ReadLane =
292 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {});
293
294 for (unsigned Idx = 0; Idx < 4; Idx++) {
295 V = buildNonAtomicBinOp(
296 B, Op, V,
297 B.CreateCall(UpdateDPP,
298 {Identity, V, B.getInt32(DPP::ROW_SHR0 | 1 << Idx),
299 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()}));
300 }
301 if (ST->hasDPPBroadcasts()) {
302 // GFX9 has DPP row broadcast operations.
303 V = buildNonAtomicBinOp(
304 B, Op, V,
305 B.CreateCall(UpdateDPP,
306 {Identity, V, B.getInt32(DPP::BCAST15), B.getInt32(0xa),
307 B.getInt32(0xf), B.getFalse()}));
308 V = buildNonAtomicBinOp(
309 B, Op, V,
310 B.CreateCall(UpdateDPP,
311 {Identity, V, B.getInt32(DPP::BCAST31), B.getInt32(0xc),
312 B.getInt32(0xf), B.getFalse()}));
313 } else {
314 // On GFX10 all DPP operations are confined to a single row. To get cross-
315 // row operations we have to use permlane or readlane.
316
317 // Combine lane 15 into lanes 16..31 (and, for wave 64, lane 47 into lanes
318 // 48..63).
319 Value *const PermX =
320 B.CreateCall(PermLaneX16, {V, V, B.getInt32(-1), B.getInt32(-1),
321 B.getFalse(), B.getFalse()});
322 V = buildNonAtomicBinOp(
323 B, Op, V,
324 B.CreateCall(UpdateDPP,
325 {Identity, PermX, B.getInt32(DPP::QUAD_PERM_ID),
326 B.getInt32(0xa), B.getInt32(0xf), B.getFalse()}));
327 if (!ST->isWave32()) {
328 // Combine lane 31 into lanes 32..63.
329 Value *const Lane31 = B.CreateCall(ReadLane, {V, B.getInt32(31)});
330 V = buildNonAtomicBinOp(
331 B, Op, V,
332 B.CreateCall(UpdateDPP,
333 {Identity, Lane31, B.getInt32(DPP::QUAD_PERM_ID),
334 B.getInt32(0xc), B.getInt32(0xf), B.getFalse()}));
335 }
336 }
337 return V;
338 }
339
340 // Use the builder to create a shift right of V across the wavefront, with all
341 // lanes active, to turn an inclusive scan into an exclusive scan.
buildShiftRight(IRBuilder<> & B,Value * V,Value * const Identity) const342 Value *AMDGPUAtomicOptimizer::buildShiftRight(IRBuilder<> &B, Value *V,
343 Value *const Identity) const {
344 Type *const Ty = V->getType();
345 Module *M = B.GetInsertBlock()->getModule();
346 Function *UpdateDPP =
347 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_update_dpp, Ty);
348 Function *ReadLane =
349 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_readlane, {});
350 Function *WriteLane =
351 Intrinsic::getDeclaration(M, Intrinsic::amdgcn_writelane, {});
352
353 if (ST->hasDPPWavefrontShifts()) {
354 // GFX9 has DPP wavefront shift operations.
355 V = B.CreateCall(UpdateDPP,
356 {Identity, V, B.getInt32(DPP::WAVE_SHR1), B.getInt32(0xf),
357 B.getInt32(0xf), B.getFalse()});
358 } else {
359 // On GFX10 all DPP operations are confined to a single row. To get cross-
360 // row operations we have to use permlane or readlane.
361 Value *Old = V;
362 V = B.CreateCall(UpdateDPP,
363 {Identity, V, B.getInt32(DPP::ROW_SHR0 + 1),
364 B.getInt32(0xf), B.getInt32(0xf), B.getFalse()});
365
366 // Copy the old lane 15 to the new lane 16.
367 V = B.CreateCall(WriteLane, {B.CreateCall(ReadLane, {Old, B.getInt32(15)}),
368 B.getInt32(16), V});
369
370 if (!ST->isWave32()) {
371 // Copy the old lane 31 to the new lane 32.
372 V = B.CreateCall(
373 WriteLane,
374 {B.CreateCall(ReadLane, {Old, B.getInt32(31)}), B.getInt32(32), V});
375
376 // Copy the old lane 47 to the new lane 48.
377 V = B.CreateCall(
378 WriteLane,
379 {B.CreateCall(ReadLane, {Old, B.getInt32(47)}), B.getInt32(48), V});
380 }
381 }
382
383 return V;
384 }
385
getIdentityValueForAtomicOp(AtomicRMWInst::BinOp Op,unsigned BitWidth)386 static APInt getIdentityValueForAtomicOp(AtomicRMWInst::BinOp Op,
387 unsigned BitWidth) {
388 switch (Op) {
389 default:
390 llvm_unreachable("Unhandled atomic op");
391 case AtomicRMWInst::Add:
392 case AtomicRMWInst::Sub:
393 case AtomicRMWInst::Or:
394 case AtomicRMWInst::Xor:
395 case AtomicRMWInst::UMax:
396 return APInt::getMinValue(BitWidth);
397 case AtomicRMWInst::And:
398 case AtomicRMWInst::UMin:
399 return APInt::getMaxValue(BitWidth);
400 case AtomicRMWInst::Max:
401 return APInt::getSignedMinValue(BitWidth);
402 case AtomicRMWInst::Min:
403 return APInt::getSignedMaxValue(BitWidth);
404 }
405 }
406
optimizeAtomic(Instruction & I,AtomicRMWInst::BinOp Op,unsigned ValIdx,bool ValDivergent) const407 void AMDGPUAtomicOptimizer::optimizeAtomic(Instruction &I,
408 AtomicRMWInst::BinOp Op,
409 unsigned ValIdx,
410 bool ValDivergent) const {
411 // Start building just before the instruction.
412 IRBuilder<> B(&I);
413
414 // If we are in a pixel shader, because of how we have to mask out helper
415 // lane invocations, we need to record the entry and exit BB's.
416 BasicBlock *PixelEntryBB = nullptr;
417 BasicBlock *PixelExitBB = nullptr;
418
419 // If we're optimizing an atomic within a pixel shader, we need to wrap the
420 // entire atomic operation in a helper-lane check. We do not want any helper
421 // lanes that are around only for the purposes of derivatives to take part
422 // in any cross-lane communication, and we use a branch on whether the lane is
423 // live to do this.
424 if (IsPixelShader) {
425 // Record I's original position as the entry block.
426 PixelEntryBB = I.getParent();
427
428 Value *const Cond = B.CreateIntrinsic(Intrinsic::amdgcn_ps_live, {}, {});
429 Instruction *const NonHelperTerminator =
430 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
431
432 // Record I's new position as the exit block.
433 PixelExitBB = I.getParent();
434
435 I.moveBefore(NonHelperTerminator);
436 B.SetInsertPoint(&I);
437 }
438
439 Type *const Ty = I.getType();
440 const unsigned TyBitWidth = DL->getTypeSizeInBits(Ty);
441 Type *const VecTy = VectorType::get(B.getInt32Ty(), 2);
442
443 // This is the value in the atomic operation we need to combine in order to
444 // reduce the number of atomic operations.
445 Value *const V = I.getOperand(ValIdx);
446
447 // We need to know how many lanes are active within the wavefront, and we do
448 // this by doing a ballot of active lanes.
449 Type *const WaveTy = B.getIntNTy(ST->getWavefrontSize());
450 CallInst *const Ballot = B.CreateIntrinsic(
451 Intrinsic::amdgcn_icmp, {WaveTy, B.getInt32Ty()},
452 {B.getInt32(1), B.getInt32(0), B.getInt32(CmpInst::ICMP_NE)});
453
454 // We need to know how many lanes are active within the wavefront that are
455 // below us. If we counted each lane linearly starting from 0, a lane is
456 // below us only if its associated index was less than ours. We do this by
457 // using the mbcnt intrinsic.
458 Value *Mbcnt;
459 if (ST->isWave32()) {
460 Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
461 {Ballot, B.getInt32(0)});
462 } else {
463 Value *const BitCast = B.CreateBitCast(Ballot, VecTy);
464 Value *const ExtractLo = B.CreateExtractElement(BitCast, B.getInt32(0));
465 Value *const ExtractHi = B.CreateExtractElement(BitCast, B.getInt32(1));
466 Mbcnt = B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_lo, {},
467 {ExtractLo, B.getInt32(0)});
468 Mbcnt =
469 B.CreateIntrinsic(Intrinsic::amdgcn_mbcnt_hi, {}, {ExtractHi, Mbcnt});
470 }
471 Mbcnt = B.CreateIntCast(Mbcnt, Ty, false);
472
473 Value *const Identity = B.getInt(getIdentityValueForAtomicOp(Op, TyBitWidth));
474
475 Value *ExclScan = nullptr;
476 Value *NewV = nullptr;
477
478 // If we have a divergent value in each lane, we need to combine the value
479 // using DPP.
480 if (ValDivergent) {
481 // First we need to set all inactive invocations to the identity value, so
482 // that they can correctly contribute to the final result.
483 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_set_inactive, Ty, {V, Identity});
484
485 const AtomicRMWInst::BinOp ScanOp =
486 Op == AtomicRMWInst::Sub ? AtomicRMWInst::Add : Op;
487 NewV = buildScan(B, ScanOp, NewV, Identity);
488 ExclScan = buildShiftRight(B, NewV, Identity);
489
490 // Read the value from the last lane, which has accumlated the values of
491 // each active lane in the wavefront. This will be our new value which we
492 // will provide to the atomic operation.
493 Value *const LastLaneIdx = B.getInt32(ST->getWavefrontSize() - 1);
494 if (TyBitWidth == 64) {
495 Value *const ExtractLo = B.CreateTrunc(NewV, B.getInt32Ty());
496 Value *const ExtractHi =
497 B.CreateTrunc(B.CreateLShr(NewV, 32), B.getInt32Ty());
498 CallInst *const ReadLaneLo = B.CreateIntrinsic(
499 Intrinsic::amdgcn_readlane, {}, {ExtractLo, LastLaneIdx});
500 CallInst *const ReadLaneHi = B.CreateIntrinsic(
501 Intrinsic::amdgcn_readlane, {}, {ExtractHi, LastLaneIdx});
502 Value *const PartialInsert = B.CreateInsertElement(
503 UndefValue::get(VecTy), ReadLaneLo, B.getInt32(0));
504 Value *const Insert =
505 B.CreateInsertElement(PartialInsert, ReadLaneHi, B.getInt32(1));
506 NewV = B.CreateBitCast(Insert, Ty);
507 } else if (TyBitWidth == 32) {
508 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_readlane, {},
509 {NewV, LastLaneIdx});
510 } else {
511 llvm_unreachable("Unhandled atomic bit width");
512 }
513
514 // Finally mark the readlanes in the WWM section.
515 NewV = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, NewV);
516 } else {
517 switch (Op) {
518 default:
519 llvm_unreachable("Unhandled atomic op");
520
521 case AtomicRMWInst::Add:
522 case AtomicRMWInst::Sub: {
523 // The new value we will be contributing to the atomic operation is the
524 // old value times the number of active lanes.
525 Value *const Ctpop = B.CreateIntCast(
526 B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
527 NewV = B.CreateMul(V, Ctpop);
528 break;
529 }
530
531 case AtomicRMWInst::And:
532 case AtomicRMWInst::Or:
533 case AtomicRMWInst::Max:
534 case AtomicRMWInst::Min:
535 case AtomicRMWInst::UMax:
536 case AtomicRMWInst::UMin:
537 // These operations with a uniform value are idempotent: doing the atomic
538 // operation multiple times has the same effect as doing it once.
539 NewV = V;
540 break;
541
542 case AtomicRMWInst::Xor:
543 // The new value we will be contributing to the atomic operation is the
544 // old value times the parity of the number of active lanes.
545 Value *const Ctpop = B.CreateIntCast(
546 B.CreateUnaryIntrinsic(Intrinsic::ctpop, Ballot), Ty, false);
547 NewV = B.CreateMul(V, B.CreateAnd(Ctpop, 1));
548 break;
549 }
550 }
551
552 // We only want a single lane to enter our new control flow, and we do this
553 // by checking if there are any active lanes below us. Only one lane will
554 // have 0 active lanes below us, so that will be the only one to progress.
555 Value *const Cond = B.CreateICmpEQ(Mbcnt, B.getIntN(TyBitWidth, 0));
556
557 // Store I's original basic block before we split the block.
558 BasicBlock *const EntryBB = I.getParent();
559
560 // We need to introduce some new control flow to force a single lane to be
561 // active. We do this by splitting I's basic block at I, and introducing the
562 // new block such that:
563 // entry --> single_lane -\
564 // \------------------> exit
565 Instruction *const SingleLaneTerminator =
566 SplitBlockAndInsertIfThen(Cond, &I, false, nullptr, DT, nullptr);
567
568 // Move the IR builder into single_lane next.
569 B.SetInsertPoint(SingleLaneTerminator);
570
571 // Clone the original atomic operation into single lane, replacing the
572 // original value with our newly created one.
573 Instruction *const NewI = I.clone();
574 B.Insert(NewI);
575 NewI->setOperand(ValIdx, NewV);
576
577 // Move the IR builder into exit next, and start inserting just before the
578 // original instruction.
579 B.SetInsertPoint(&I);
580
581 const bool NeedResult = !I.use_empty();
582 if (NeedResult) {
583 // Create a PHI node to get our new atomic result into the exit block.
584 PHINode *const PHI = B.CreatePHI(Ty, 2);
585 PHI->addIncoming(UndefValue::get(Ty), EntryBB);
586 PHI->addIncoming(NewI, SingleLaneTerminator->getParent());
587
588 // We need to broadcast the value who was the lowest active lane (the first
589 // lane) to all other lanes in the wavefront. We use an intrinsic for this,
590 // but have to handle 64-bit broadcasts with two calls to this intrinsic.
591 Value *BroadcastI = nullptr;
592
593 if (TyBitWidth == 64) {
594 Value *const ExtractLo = B.CreateTrunc(PHI, B.getInt32Ty());
595 Value *const ExtractHi =
596 B.CreateTrunc(B.CreateLShr(PHI, 32), B.getInt32Ty());
597 CallInst *const ReadFirstLaneLo =
598 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractLo);
599 CallInst *const ReadFirstLaneHi =
600 B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, ExtractHi);
601 Value *const PartialInsert = B.CreateInsertElement(
602 UndefValue::get(VecTy), ReadFirstLaneLo, B.getInt32(0));
603 Value *const Insert =
604 B.CreateInsertElement(PartialInsert, ReadFirstLaneHi, B.getInt32(1));
605 BroadcastI = B.CreateBitCast(Insert, Ty);
606 } else if (TyBitWidth == 32) {
607
608 BroadcastI = B.CreateIntrinsic(Intrinsic::amdgcn_readfirstlane, {}, PHI);
609 } else {
610 llvm_unreachable("Unhandled atomic bit width");
611 }
612
613 // Now that we have the result of our single atomic operation, we need to
614 // get our individual lane's slice into the result. We use the lane offset
615 // we previously calculated combined with the atomic result value we got
616 // from the first lane, to get our lane's index into the atomic result.
617 Value *LaneOffset = nullptr;
618 if (ValDivergent) {
619 LaneOffset = B.CreateIntrinsic(Intrinsic::amdgcn_wwm, Ty, ExclScan);
620 } else {
621 switch (Op) {
622 default:
623 llvm_unreachable("Unhandled atomic op");
624 case AtomicRMWInst::Add:
625 case AtomicRMWInst::Sub:
626 LaneOffset = B.CreateMul(V, Mbcnt);
627 break;
628 case AtomicRMWInst::And:
629 case AtomicRMWInst::Or:
630 case AtomicRMWInst::Max:
631 case AtomicRMWInst::Min:
632 case AtomicRMWInst::UMax:
633 case AtomicRMWInst::UMin:
634 LaneOffset = B.CreateSelect(Cond, Identity, V);
635 break;
636 case AtomicRMWInst::Xor:
637 LaneOffset = B.CreateMul(V, B.CreateAnd(Mbcnt, 1));
638 break;
639 }
640 }
641 Value *const Result = buildNonAtomicBinOp(B, Op, BroadcastI, LaneOffset);
642
643 if (IsPixelShader) {
644 // Need a final PHI to reconverge to above the helper lane branch mask.
645 B.SetInsertPoint(PixelExitBB->getFirstNonPHI());
646
647 PHINode *const PHI = B.CreatePHI(Ty, 2);
648 PHI->addIncoming(UndefValue::get(Ty), PixelEntryBB);
649 PHI->addIncoming(Result, I.getParent());
650 I.replaceAllUsesWith(PHI);
651 } else {
652 // Replace the original atomic instruction with the new one.
653 I.replaceAllUsesWith(Result);
654 }
655 }
656
657 // And delete the original.
658 I.eraseFromParent();
659 }
660
661 INITIALIZE_PASS_BEGIN(AMDGPUAtomicOptimizer, DEBUG_TYPE,
662 "AMDGPU atomic optimizations", false, false)
INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)663 INITIALIZE_PASS_DEPENDENCY(LegacyDivergenceAnalysis)
664 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
665 INITIALIZE_PASS_END(AMDGPUAtomicOptimizer, DEBUG_TYPE,
666 "AMDGPU atomic optimizations", false, false)
667
668 FunctionPass *llvm::createAMDGPUAtomicOptimizerPass() {
669 return new AMDGPUAtomicOptimizer();
670 }
671