1 //===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains support for writing Microsoft CodeView debug info.
10 //
11 //===----------------------------------------------------------------------===//
12
13 #include "CodeViewDebug.h"
14 #include "DwarfExpression.h"
15 #include "llvm/ADT/APSInt.h"
16 #include "llvm/ADT/ArrayRef.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/MapVector.h"
20 #include "llvm/ADT/None.h"
21 #include "llvm/ADT/Optional.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/ADT/SmallString.h"
24 #include "llvm/ADT/SmallVector.h"
25 #include "llvm/ADT/StringRef.h"
26 #include "llvm/ADT/TinyPtrVector.h"
27 #include "llvm/ADT/Triple.h"
28 #include "llvm/ADT/Twine.h"
29 #include "llvm/BinaryFormat/COFF.h"
30 #include "llvm/BinaryFormat/Dwarf.h"
31 #include "llvm/CodeGen/AsmPrinter.h"
32 #include "llvm/CodeGen/LexicalScopes.h"
33 #include "llvm/CodeGen/MachineFrameInfo.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineInstr.h"
36 #include "llvm/CodeGen/MachineModuleInfo.h"
37 #include "llvm/CodeGen/MachineOperand.h"
38 #include "llvm/CodeGen/TargetFrameLowering.h"
39 #include "llvm/CodeGen/TargetRegisterInfo.h"
40 #include "llvm/CodeGen/TargetSubtargetInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
43 #include "llvm/DebugInfo/CodeView/CodeView.h"
44 #include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h"
45 #include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
46 #include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
47 #include "llvm/DebugInfo/CodeView/EnumTables.h"
48 #include "llvm/DebugInfo/CodeView/Line.h"
49 #include "llvm/DebugInfo/CodeView/SymbolRecord.h"
50 #include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
51 #include "llvm/DebugInfo/CodeView/TypeIndex.h"
52 #include "llvm/DebugInfo/CodeView/TypeRecord.h"
53 #include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
54 #include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h"
55 #include "llvm/IR/Constants.h"
56 #include "llvm/IR/DataLayout.h"
57 #include "llvm/IR/DebugInfoMetadata.h"
58 #include "llvm/IR/DebugLoc.h"
59 #include "llvm/IR/Function.h"
60 #include "llvm/IR/GlobalValue.h"
61 #include "llvm/IR/GlobalVariable.h"
62 #include "llvm/IR/Metadata.h"
63 #include "llvm/IR/Module.h"
64 #include "llvm/MC/MCAsmInfo.h"
65 #include "llvm/MC/MCContext.h"
66 #include "llvm/MC/MCSectionCOFF.h"
67 #include "llvm/MC/MCStreamer.h"
68 #include "llvm/MC/MCSymbol.h"
69 #include "llvm/Support/BinaryByteStream.h"
70 #include "llvm/Support/BinaryStreamReader.h"
71 #include "llvm/Support/BinaryStreamWriter.h"
72 #include "llvm/Support/Casting.h"
73 #include "llvm/Support/CommandLine.h"
74 #include "llvm/Support/Compiler.h"
75 #include "llvm/Support/Endian.h"
76 #include "llvm/Support/Error.h"
77 #include "llvm/Support/ErrorHandling.h"
78 #include "llvm/Support/FormatVariadic.h"
79 #include "llvm/Support/Path.h"
80 #include "llvm/Support/SMLoc.h"
81 #include "llvm/Support/ScopedPrinter.h"
82 #include "llvm/Target/TargetLoweringObjectFile.h"
83 #include "llvm/Target/TargetMachine.h"
84 #include <algorithm>
85 #include <cassert>
86 #include <cctype>
87 #include <cstddef>
88 #include <cstdint>
89 #include <iterator>
90 #include <limits>
91 #include <string>
92 #include <utility>
93 #include <vector>
94
95 using namespace llvm;
96 using namespace llvm::codeview;
97
98 namespace {
99 class CVMCAdapter : public CodeViewRecordStreamer {
100 public:
CVMCAdapter(MCStreamer & OS,TypeCollection & TypeTable)101 CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable)
102 : OS(&OS), TypeTable(TypeTable) {}
103
EmitBytes(StringRef Data)104 void EmitBytes(StringRef Data) { OS->EmitBytes(Data); }
105
EmitIntValue(uint64_t Value,unsigned Size)106 void EmitIntValue(uint64_t Value, unsigned Size) {
107 OS->EmitIntValueInHex(Value, Size);
108 }
109
EmitBinaryData(StringRef Data)110 void EmitBinaryData(StringRef Data) { OS->EmitBinaryData(Data); }
111
AddComment(const Twine & T)112 void AddComment(const Twine &T) { OS->AddComment(T); }
113
AddRawComment(const Twine & T)114 void AddRawComment(const Twine &T) { OS->emitRawComment(T); }
115
isVerboseAsm()116 bool isVerboseAsm() { return OS->isVerboseAsm(); }
117
getTypeName(TypeIndex TI)118 std::string getTypeName(TypeIndex TI) {
119 std::string TypeName;
120 if (!TI.isNoneType()) {
121 if (TI.isSimple())
122 TypeName = TypeIndex::simpleTypeName(TI);
123 else
124 TypeName = TypeTable.getTypeName(TI);
125 }
126 return TypeName;
127 }
128
129 private:
130 MCStreamer *OS = nullptr;
131 TypeCollection &TypeTable;
132 };
133 } // namespace
134
mapArchToCVCPUType(Triple::ArchType Type)135 static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
136 switch (Type) {
137 case Triple::ArchType::x86:
138 return CPUType::Pentium3;
139 case Triple::ArchType::x86_64:
140 return CPUType::X64;
141 case Triple::ArchType::thumb:
142 return CPUType::Thumb;
143 case Triple::ArchType::aarch64:
144 return CPUType::ARM64;
145 default:
146 report_fatal_error("target architecture doesn't map to a CodeView CPUType");
147 }
148 }
149
CodeViewDebug(AsmPrinter * AP)150 CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
151 : DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
152 // If module doesn't have named metadata anchors or COFF debug section
153 // is not available, skip any debug info related stuff.
154 if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
155 !AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
156 Asm = nullptr;
157 MMI->setDebugInfoAvailability(false);
158 return;
159 }
160 // Tell MMI that we have debug info.
161 MMI->setDebugInfoAvailability(true);
162
163 TheCPU =
164 mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
165
166 collectGlobalVariableInfo();
167
168 // Check if we should emit type record hashes.
169 ConstantInt *GH = mdconst::extract_or_null<ConstantInt>(
170 MMI->getModule()->getModuleFlag("CodeViewGHash"));
171 EmitDebugGlobalHashes = GH && !GH->isZero();
172 }
173
getFullFilepath(const DIFile * File)174 StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
175 std::string &Filepath = FileToFilepathMap[File];
176 if (!Filepath.empty())
177 return Filepath;
178
179 StringRef Dir = File->getDirectory(), Filename = File->getFilename();
180
181 // If this is a Unix-style path, just use it as is. Don't try to canonicalize
182 // it textually because one of the path components could be a symlink.
183 if (Dir.startswith("/") || Filename.startswith("/")) {
184 if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix))
185 return Filename;
186 Filepath = Dir;
187 if (Dir.back() != '/')
188 Filepath += '/';
189 Filepath += Filename;
190 return Filepath;
191 }
192
193 // Clang emits directory and relative filename info into the IR, but CodeView
194 // operates on full paths. We could change Clang to emit full paths too, but
195 // that would increase the IR size and probably not needed for other users.
196 // For now, just concatenate and canonicalize the path here.
197 if (Filename.find(':') == 1)
198 Filepath = Filename;
199 else
200 Filepath = (Dir + "\\" + Filename).str();
201
202 // Canonicalize the path. We have to do it textually because we may no longer
203 // have access the file in the filesystem.
204 // First, replace all slashes with backslashes.
205 std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
206
207 // Remove all "\.\" with "\".
208 size_t Cursor = 0;
209 while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
210 Filepath.erase(Cursor, 2);
211
212 // Replace all "\XXX\..\" with "\". Don't try too hard though as the original
213 // path should be well-formatted, e.g. start with a drive letter, etc.
214 Cursor = 0;
215 while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
216 // Something's wrong if the path starts with "\..\", abort.
217 if (Cursor == 0)
218 break;
219
220 size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
221 if (PrevSlash == std::string::npos)
222 // Something's wrong, abort.
223 break;
224
225 Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
226 // The next ".." might be following the one we've just erased.
227 Cursor = PrevSlash;
228 }
229
230 // Remove all duplicate backslashes.
231 Cursor = 0;
232 while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
233 Filepath.erase(Cursor, 1);
234
235 return Filepath;
236 }
237
maybeRecordFile(const DIFile * F)238 unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
239 StringRef FullPath = getFullFilepath(F);
240 unsigned NextId = FileIdMap.size() + 1;
241 auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
242 if (Insertion.second) {
243 // We have to compute the full filepath and emit a .cv_file directive.
244 ArrayRef<uint8_t> ChecksumAsBytes;
245 FileChecksumKind CSKind = FileChecksumKind::None;
246 if (F->getChecksum()) {
247 std::string Checksum = fromHex(F->getChecksum()->Value);
248 void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
249 memcpy(CKMem, Checksum.data(), Checksum.size());
250 ChecksumAsBytes = ArrayRef<uint8_t>(
251 reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
252 switch (F->getChecksum()->Kind) {
253 case DIFile::CSK_MD5: CSKind = FileChecksumKind::MD5; break;
254 case DIFile::CSK_SHA1: CSKind = FileChecksumKind::SHA1; break;
255 }
256 }
257 bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
258 static_cast<unsigned>(CSKind));
259 (void)Success;
260 assert(Success && ".cv_file directive failed");
261 }
262 return Insertion.first->second;
263 }
264
265 CodeViewDebug::InlineSite &
getInlineSite(const DILocation * InlinedAt,const DISubprogram * Inlinee)266 CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
267 const DISubprogram *Inlinee) {
268 auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
269 InlineSite *Site = &SiteInsertion.first->second;
270 if (SiteInsertion.second) {
271 unsigned ParentFuncId = CurFn->FuncId;
272 if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
273 ParentFuncId =
274 getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
275 .SiteFuncId;
276
277 Site->SiteFuncId = NextFuncId++;
278 OS.EmitCVInlineSiteIdDirective(
279 Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
280 InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
281 Site->Inlinee = Inlinee;
282 InlinedSubprograms.insert(Inlinee);
283 getFuncIdForSubprogram(Inlinee);
284 }
285 return *Site;
286 }
287
getPrettyScopeName(const DIScope * Scope)288 static StringRef getPrettyScopeName(const DIScope *Scope) {
289 StringRef ScopeName = Scope->getName();
290 if (!ScopeName.empty())
291 return ScopeName;
292
293 switch (Scope->getTag()) {
294 case dwarf::DW_TAG_enumeration_type:
295 case dwarf::DW_TAG_class_type:
296 case dwarf::DW_TAG_structure_type:
297 case dwarf::DW_TAG_union_type:
298 return "<unnamed-tag>";
299 case dwarf::DW_TAG_namespace:
300 return "`anonymous namespace'";
301 }
302
303 return StringRef();
304 }
305
getQualifiedNameComponents(const DIScope * Scope,SmallVectorImpl<StringRef> & QualifiedNameComponents)306 static const DISubprogram *getQualifiedNameComponents(
307 const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
308 const DISubprogram *ClosestSubprogram = nullptr;
309 while (Scope != nullptr) {
310 if (ClosestSubprogram == nullptr)
311 ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
312 StringRef ScopeName = getPrettyScopeName(Scope);
313 if (!ScopeName.empty())
314 QualifiedNameComponents.push_back(ScopeName);
315 Scope = Scope->getScope();
316 }
317 return ClosestSubprogram;
318 }
319
getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,StringRef TypeName)320 static std::string getQualifiedName(ArrayRef<StringRef> QualifiedNameComponents,
321 StringRef TypeName) {
322 std::string FullyQualifiedName;
323 for (StringRef QualifiedNameComponent :
324 llvm::reverse(QualifiedNameComponents)) {
325 FullyQualifiedName.append(QualifiedNameComponent);
326 FullyQualifiedName.append("::");
327 }
328 FullyQualifiedName.append(TypeName);
329 return FullyQualifiedName;
330 }
331
getFullyQualifiedName(const DIScope * Scope,StringRef Name)332 static std::string getFullyQualifiedName(const DIScope *Scope, StringRef Name) {
333 SmallVector<StringRef, 5> QualifiedNameComponents;
334 getQualifiedNameComponents(Scope, QualifiedNameComponents);
335 return getQualifiedName(QualifiedNameComponents, Name);
336 }
337
338 struct CodeViewDebug::TypeLoweringScope {
TypeLoweringScopeCodeViewDebug::TypeLoweringScope339 TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
~TypeLoweringScopeCodeViewDebug::TypeLoweringScope340 ~TypeLoweringScope() {
341 // Don't decrement TypeEmissionLevel until after emitting deferred types, so
342 // inner TypeLoweringScopes don't attempt to emit deferred types.
343 if (CVD.TypeEmissionLevel == 1)
344 CVD.emitDeferredCompleteTypes();
345 --CVD.TypeEmissionLevel;
346 }
347 CodeViewDebug &CVD;
348 };
349
getFullyQualifiedName(const DIScope * Ty)350 static std::string getFullyQualifiedName(const DIScope *Ty) {
351 const DIScope *Scope = Ty->getScope();
352 return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
353 }
354
getScopeIndex(const DIScope * Scope)355 TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
356 // No scope means global scope and that uses the zero index.
357 if (!Scope || isa<DIFile>(Scope))
358 return TypeIndex();
359
360 assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
361
362 // Check if we've already translated this scope.
363 auto I = TypeIndices.find({Scope, nullptr});
364 if (I != TypeIndices.end())
365 return I->second;
366
367 // Build the fully qualified name of the scope.
368 std::string ScopeName = getFullyQualifiedName(Scope);
369 StringIdRecord SID(TypeIndex(), ScopeName);
370 auto TI = TypeTable.writeLeafType(SID);
371 return recordTypeIndexForDINode(Scope, TI);
372 }
373
getFuncIdForSubprogram(const DISubprogram * SP)374 TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
375 assert(SP);
376
377 // Check if we've already translated this subprogram.
378 auto I = TypeIndices.find({SP, nullptr});
379 if (I != TypeIndices.end())
380 return I->second;
381
382 // The display name includes function template arguments. Drop them to match
383 // MSVC.
384 StringRef DisplayName = SP->getName().split('<').first;
385
386 const DIScope *Scope = SP->getScope();
387 TypeIndex TI;
388 if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
389 // If the scope is a DICompositeType, then this must be a method. Member
390 // function types take some special handling, and require access to the
391 // subprogram.
392 TypeIndex ClassType = getTypeIndex(Class);
393 MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
394 DisplayName);
395 TI = TypeTable.writeLeafType(MFuncId);
396 } else {
397 // Otherwise, this must be a free function.
398 TypeIndex ParentScope = getScopeIndex(Scope);
399 FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
400 TI = TypeTable.writeLeafType(FuncId);
401 }
402
403 return recordTypeIndexForDINode(SP, TI);
404 }
405
isNonTrivial(const DICompositeType * DCTy)406 static bool isNonTrivial(const DICompositeType *DCTy) {
407 return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial);
408 }
409
410 static FunctionOptions
getFunctionOptions(const DISubroutineType * Ty,const DICompositeType * ClassTy=nullptr,StringRef SPName=StringRef (""))411 getFunctionOptions(const DISubroutineType *Ty,
412 const DICompositeType *ClassTy = nullptr,
413 StringRef SPName = StringRef("")) {
414 FunctionOptions FO = FunctionOptions::None;
415 const DIType *ReturnTy = nullptr;
416 if (auto TypeArray = Ty->getTypeArray()) {
417 if (TypeArray.size())
418 ReturnTy = TypeArray[0];
419 }
420
421 if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy)) {
422 if (isNonTrivial(ReturnDCTy))
423 FO |= FunctionOptions::CxxReturnUdt;
424 }
425
426 // DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
427 if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) {
428 FO |= FunctionOptions::Constructor;
429
430 // TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
431
432 }
433 return FO;
434 }
435
getMemberFunctionType(const DISubprogram * SP,const DICompositeType * Class)436 TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
437 const DICompositeType *Class) {
438 // Always use the method declaration as the key for the function type. The
439 // method declaration contains the this adjustment.
440 if (SP->getDeclaration())
441 SP = SP->getDeclaration();
442 assert(!SP->getDeclaration() && "should use declaration as key");
443
444 // Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
445 // with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
446 auto I = TypeIndices.find({SP, Class});
447 if (I != TypeIndices.end())
448 return I->second;
449
450 // Make sure complete type info for the class is emitted *after* the member
451 // function type, as the complete class type is likely to reference this
452 // member function type.
453 TypeLoweringScope S(*this);
454 const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
455
456 FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName());
457 TypeIndex TI = lowerTypeMemberFunction(
458 SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO);
459 return recordTypeIndexForDINode(SP, TI, Class);
460 }
461
recordTypeIndexForDINode(const DINode * Node,TypeIndex TI,const DIType * ClassTy)462 TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
463 TypeIndex TI,
464 const DIType *ClassTy) {
465 auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
466 (void)InsertResult;
467 assert(InsertResult.second && "DINode was already assigned a type index");
468 return TI;
469 }
470
getPointerSizeInBytes()471 unsigned CodeViewDebug::getPointerSizeInBytes() {
472 return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
473 }
474
recordLocalVariable(LocalVariable && Var,const LexicalScope * LS)475 void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
476 const LexicalScope *LS) {
477 if (const DILocation *InlinedAt = LS->getInlinedAt()) {
478 // This variable was inlined. Associate it with the InlineSite.
479 const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
480 InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
481 Site.InlinedLocals.emplace_back(Var);
482 } else {
483 // This variable goes into the corresponding lexical scope.
484 ScopeVariables[LS].emplace_back(Var);
485 }
486 }
487
addLocIfNotPresent(SmallVectorImpl<const DILocation * > & Locs,const DILocation * Loc)488 static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
489 const DILocation *Loc) {
490 auto B = Locs.begin(), E = Locs.end();
491 if (std::find(B, E, Loc) == E)
492 Locs.push_back(Loc);
493 }
494
maybeRecordLocation(const DebugLoc & DL,const MachineFunction * MF)495 void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
496 const MachineFunction *MF) {
497 // Skip this instruction if it has the same location as the previous one.
498 if (!DL || DL == PrevInstLoc)
499 return;
500
501 const DIScope *Scope = DL.get()->getScope();
502 if (!Scope)
503 return;
504
505 // Skip this line if it is longer than the maximum we can record.
506 LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
507 if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
508 LI.isNeverStepInto())
509 return;
510
511 ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
512 if (CI.getStartColumn() != DL.getCol())
513 return;
514
515 if (!CurFn->HaveLineInfo)
516 CurFn->HaveLineInfo = true;
517 unsigned FileId = 0;
518 if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
519 FileId = CurFn->LastFileId;
520 else
521 FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
522 PrevInstLoc = DL;
523
524 unsigned FuncId = CurFn->FuncId;
525 if (const DILocation *SiteLoc = DL->getInlinedAt()) {
526 const DILocation *Loc = DL.get();
527
528 // If this location was actually inlined from somewhere else, give it the ID
529 // of the inline call site.
530 FuncId =
531 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
532
533 // Ensure we have links in the tree of inline call sites.
534 bool FirstLoc = true;
535 while ((SiteLoc = Loc->getInlinedAt())) {
536 InlineSite &Site =
537 getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
538 if (!FirstLoc)
539 addLocIfNotPresent(Site.ChildSites, Loc);
540 FirstLoc = false;
541 Loc = SiteLoc;
542 }
543 addLocIfNotPresent(CurFn->ChildSites, Loc);
544 }
545
546 OS.EmitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
547 /*PrologueEnd=*/false, /*IsStmt=*/false,
548 DL->getFilename(), SMLoc());
549 }
550
emitCodeViewMagicVersion()551 void CodeViewDebug::emitCodeViewMagicVersion() {
552 OS.EmitValueToAlignment(4);
553 OS.AddComment("Debug section magic");
554 OS.EmitIntValue(COFF::DEBUG_SECTION_MAGIC, 4);
555 }
556
endModule()557 void CodeViewDebug::endModule() {
558 if (!Asm || !MMI->hasDebugInfo())
559 return;
560
561 assert(Asm != nullptr);
562
563 // The COFF .debug$S section consists of several subsections, each starting
564 // with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
565 // of the payload followed by the payload itself. The subsections are 4-byte
566 // aligned.
567
568 // Use the generic .debug$S section, and make a subsection for all the inlined
569 // subprograms.
570 switchToDebugSectionForSymbol(nullptr);
571
572 MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
573 emitCompilerInformation();
574 endCVSubsection(CompilerInfo);
575
576 emitInlineeLinesSubsection();
577
578 // Emit per-function debug information.
579 for (auto &P : FnDebugInfo)
580 if (!P.first->isDeclarationForLinker())
581 emitDebugInfoForFunction(P.first, *P.second);
582
583 // Emit global variable debug information.
584 setCurrentSubprogram(nullptr);
585 emitDebugInfoForGlobals();
586
587 // Emit retained types.
588 emitDebugInfoForRetainedTypes();
589
590 // Switch back to the generic .debug$S section after potentially processing
591 // comdat symbol sections.
592 switchToDebugSectionForSymbol(nullptr);
593
594 // Emit UDT records for any types used by global variables.
595 if (!GlobalUDTs.empty()) {
596 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
597 emitDebugInfoForUDTs(GlobalUDTs);
598 endCVSubsection(SymbolsEnd);
599 }
600
601 // This subsection holds a file index to offset in string table table.
602 OS.AddComment("File index to string table offset subsection");
603 OS.EmitCVFileChecksumsDirective();
604
605 // This subsection holds the string table.
606 OS.AddComment("String table");
607 OS.EmitCVStringTableDirective();
608
609 // Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
610 // subsection in the generic .debug$S section at the end. There is no
611 // particular reason for this ordering other than to match MSVC.
612 emitBuildInfo();
613
614 // Emit type information and hashes last, so that any types we translate while
615 // emitting function info are included.
616 emitTypeInformation();
617
618 if (EmitDebugGlobalHashes)
619 emitTypeGlobalHashes();
620
621 clear();
622 }
623
624 static void
emitNullTerminatedSymbolName(MCStreamer & OS,StringRef S,unsigned MaxFixedRecordLength=0xF00)625 emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
626 unsigned MaxFixedRecordLength = 0xF00) {
627 // The maximum CV record length is 0xFF00. Most of the strings we emit appear
628 // after a fixed length portion of the record. The fixed length portion should
629 // always be less than 0xF00 (3840) bytes, so truncate the string so that the
630 // overall record size is less than the maximum allowed.
631 SmallString<32> NullTerminatedString(
632 S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
633 NullTerminatedString.push_back('\0');
634 OS.EmitBytes(NullTerminatedString);
635 }
636
emitTypeInformation()637 void CodeViewDebug::emitTypeInformation() {
638 if (TypeTable.empty())
639 return;
640
641 // Start the .debug$T or .debug$P section with 0x4.
642 OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
643 emitCodeViewMagicVersion();
644
645 TypeTableCollection Table(TypeTable.records());
646 TypeVisitorCallbackPipeline Pipeline;
647
648 // To emit type record using Codeview MCStreamer adapter
649 CVMCAdapter CVMCOS(OS, Table);
650 TypeRecordMapping typeMapping(CVMCOS);
651 Pipeline.addCallbackToPipeline(typeMapping);
652
653 Optional<TypeIndex> B = Table.getFirst();
654 while (B) {
655 // This will fail if the record data is invalid.
656 CVType Record = Table.getType(*B);
657
658 Error E = codeview::visitTypeRecord(Record, *B, Pipeline);
659
660 if (E) {
661 logAllUnhandledErrors(std::move(E), errs(), "error: ");
662 llvm_unreachable("produced malformed type record");
663 }
664
665 B = Table.getNext(*B);
666 }
667 }
668
emitTypeGlobalHashes()669 void CodeViewDebug::emitTypeGlobalHashes() {
670 if (TypeTable.empty())
671 return;
672
673 // Start the .debug$H section with the version and hash algorithm, currently
674 // hardcoded to version 0, SHA1.
675 OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
676
677 OS.EmitValueToAlignment(4);
678 OS.AddComment("Magic");
679 OS.EmitIntValue(COFF::DEBUG_HASHES_SECTION_MAGIC, 4);
680 OS.AddComment("Section Version");
681 OS.EmitIntValue(0, 2);
682 OS.AddComment("Hash Algorithm");
683 OS.EmitIntValue(uint16_t(GlobalTypeHashAlg::SHA1_8), 2);
684
685 TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
686 for (const auto &GHR : TypeTable.hashes()) {
687 if (OS.isVerboseAsm()) {
688 // Emit an EOL-comment describing which TypeIndex this hash corresponds
689 // to, as well as the stringified SHA1 hash.
690 SmallString<32> Comment;
691 raw_svector_ostream CommentOS(Comment);
692 CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
693 OS.AddComment(Comment);
694 ++TI;
695 }
696 assert(GHR.Hash.size() == 8);
697 StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
698 GHR.Hash.size());
699 OS.EmitBinaryData(S);
700 }
701 }
702
MapDWLangToCVLang(unsigned DWLang)703 static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
704 switch (DWLang) {
705 case dwarf::DW_LANG_C:
706 case dwarf::DW_LANG_C89:
707 case dwarf::DW_LANG_C99:
708 case dwarf::DW_LANG_C11:
709 case dwarf::DW_LANG_ObjC:
710 return SourceLanguage::C;
711 case dwarf::DW_LANG_C_plus_plus:
712 case dwarf::DW_LANG_C_plus_plus_03:
713 case dwarf::DW_LANG_C_plus_plus_11:
714 case dwarf::DW_LANG_C_plus_plus_14:
715 return SourceLanguage::Cpp;
716 case dwarf::DW_LANG_Fortran77:
717 case dwarf::DW_LANG_Fortran90:
718 case dwarf::DW_LANG_Fortran03:
719 case dwarf::DW_LANG_Fortran08:
720 return SourceLanguage::Fortran;
721 case dwarf::DW_LANG_Pascal83:
722 return SourceLanguage::Pascal;
723 case dwarf::DW_LANG_Cobol74:
724 case dwarf::DW_LANG_Cobol85:
725 return SourceLanguage::Cobol;
726 case dwarf::DW_LANG_Java:
727 return SourceLanguage::Java;
728 case dwarf::DW_LANG_D:
729 return SourceLanguage::D;
730 case dwarf::DW_LANG_Swift:
731 return SourceLanguage::Swift;
732 default:
733 // There's no CodeView representation for this language, and CV doesn't
734 // have an "unknown" option for the language field, so we'll use MASM,
735 // as it's very low level.
736 return SourceLanguage::Masm;
737 }
738 }
739
740 namespace {
741 struct Version {
742 int Part[4];
743 };
744 } // end anonymous namespace
745
746 // Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
747 // the version number.
parseVersion(StringRef Name)748 static Version parseVersion(StringRef Name) {
749 Version V = {{0}};
750 int N = 0;
751 for (const char C : Name) {
752 if (isdigit(C)) {
753 V.Part[N] *= 10;
754 V.Part[N] += C - '0';
755 } else if (C == '.') {
756 ++N;
757 if (N >= 4)
758 return V;
759 } else if (N > 0)
760 return V;
761 }
762 return V;
763 }
764
emitCompilerInformation()765 void CodeViewDebug::emitCompilerInformation() {
766 MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3);
767 uint32_t Flags = 0;
768
769 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
770 const MDNode *Node = *CUs->operands().begin();
771 const auto *CU = cast<DICompileUnit>(Node);
772
773 // The low byte of the flags indicates the source language.
774 Flags = MapDWLangToCVLang(CU->getSourceLanguage());
775 // TODO: Figure out which other flags need to be set.
776
777 OS.AddComment("Flags and language");
778 OS.EmitIntValue(Flags, 4);
779
780 OS.AddComment("CPUType");
781 OS.EmitIntValue(static_cast<uint64_t>(TheCPU), 2);
782
783 StringRef CompilerVersion = CU->getProducer();
784 Version FrontVer = parseVersion(CompilerVersion);
785 OS.AddComment("Frontend version");
786 for (int N = 0; N < 4; ++N)
787 OS.EmitIntValue(FrontVer.Part[N], 2);
788
789 // Some Microsoft tools, like Binscope, expect a backend version number of at
790 // least 8.something, so we'll coerce the LLVM version into a form that
791 // guarantees it'll be big enough without really lying about the version.
792 int Major = 1000 * LLVM_VERSION_MAJOR +
793 10 * LLVM_VERSION_MINOR +
794 LLVM_VERSION_PATCH;
795 // Clamp it for builds that use unusually large version numbers.
796 Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
797 Version BackVer = {{ Major, 0, 0, 0 }};
798 OS.AddComment("Backend version");
799 for (int N = 0; N < 4; ++N)
800 OS.EmitIntValue(BackVer.Part[N], 2);
801
802 OS.AddComment("Null-terminated compiler version string");
803 emitNullTerminatedSymbolName(OS, CompilerVersion);
804
805 endSymbolRecord(CompilerEnd);
806 }
807
getStringIdTypeIdx(GlobalTypeTableBuilder & TypeTable,StringRef S)808 static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable,
809 StringRef S) {
810 StringIdRecord SIR(TypeIndex(0x0), S);
811 return TypeTable.writeLeafType(SIR);
812 }
813
emitBuildInfo()814 void CodeViewDebug::emitBuildInfo() {
815 // First, make LF_BUILDINFO. It's a sequence of strings with various bits of
816 // build info. The known prefix is:
817 // - Absolute path of current directory
818 // - Compiler path
819 // - Main source file path, relative to CWD or absolute
820 // - Type server PDB file
821 // - Canonical compiler command line
822 // If frontend and backend compilation are separated (think llc or LTO), it's
823 // not clear if the compiler path should refer to the executable for the
824 // frontend or the backend. Leave it blank for now.
825 TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {};
826 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
827 const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs.
828 const auto *CU = cast<DICompileUnit>(Node);
829 const DIFile *MainSourceFile = CU->getFile();
830 BuildInfoArgs[BuildInfoRecord::CurrentDirectory] =
831 getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory());
832 BuildInfoArgs[BuildInfoRecord::SourceFile] =
833 getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename());
834 // FIXME: Path to compiler and command line. PDB is intentionally blank unless
835 // we implement /Zi type servers.
836 BuildInfoRecord BIR(BuildInfoArgs);
837 TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR);
838
839 // Make a new .debug$S subsection for the S_BUILDINFO record, which points
840 // from the module symbols into the type stream.
841 MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
842 MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO);
843 OS.AddComment("LF_BUILDINFO index");
844 OS.EmitIntValue(BuildInfoIndex.getIndex(), 4);
845 endSymbolRecord(BIEnd);
846 endCVSubsection(BISubsecEnd);
847 }
848
emitInlineeLinesSubsection()849 void CodeViewDebug::emitInlineeLinesSubsection() {
850 if (InlinedSubprograms.empty())
851 return;
852
853 OS.AddComment("Inlinee lines subsection");
854 MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
855
856 // We emit the checksum info for files. This is used by debuggers to
857 // determine if a pdb matches the source before loading it. Visual Studio,
858 // for instance, will display a warning that the breakpoints are not valid if
859 // the pdb does not match the source.
860 OS.AddComment("Inlinee lines signature");
861 OS.EmitIntValue(unsigned(InlineeLinesSignature::Normal), 4);
862
863 for (const DISubprogram *SP : InlinedSubprograms) {
864 assert(TypeIndices.count({SP, nullptr}));
865 TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
866
867 OS.AddBlankLine();
868 unsigned FileId = maybeRecordFile(SP->getFile());
869 OS.AddComment("Inlined function " + SP->getName() + " starts at " +
870 SP->getFilename() + Twine(':') + Twine(SP->getLine()));
871 OS.AddBlankLine();
872 OS.AddComment("Type index of inlined function");
873 OS.EmitIntValue(InlineeIdx.getIndex(), 4);
874 OS.AddComment("Offset into filechecksum table");
875 OS.EmitCVFileChecksumOffsetDirective(FileId);
876 OS.AddComment("Starting line number");
877 OS.EmitIntValue(SP->getLine(), 4);
878 }
879
880 endCVSubsection(InlineEnd);
881 }
882
emitInlinedCallSite(const FunctionInfo & FI,const DILocation * InlinedAt,const InlineSite & Site)883 void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
884 const DILocation *InlinedAt,
885 const InlineSite &Site) {
886 assert(TypeIndices.count({Site.Inlinee, nullptr}));
887 TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
888
889 // SymbolRecord
890 MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE);
891
892 OS.AddComment("PtrParent");
893 OS.EmitIntValue(0, 4);
894 OS.AddComment("PtrEnd");
895 OS.EmitIntValue(0, 4);
896 OS.AddComment("Inlinee type index");
897 OS.EmitIntValue(InlineeIdx.getIndex(), 4);
898
899 unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
900 unsigned StartLineNum = Site.Inlinee->getLine();
901
902 OS.EmitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
903 FI.Begin, FI.End);
904
905 endSymbolRecord(InlineEnd);
906
907 emitLocalVariableList(FI, Site.InlinedLocals);
908
909 // Recurse on child inlined call sites before closing the scope.
910 for (const DILocation *ChildSite : Site.ChildSites) {
911 auto I = FI.InlineSites.find(ChildSite);
912 assert(I != FI.InlineSites.end() &&
913 "child site not in function inline site map");
914 emitInlinedCallSite(FI, ChildSite, I->second);
915 }
916
917 // Close the scope.
918 emitEndSymbolRecord(SymbolKind::S_INLINESITE_END);
919 }
920
switchToDebugSectionForSymbol(const MCSymbol * GVSym)921 void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
922 // If we have a symbol, it may be in a section that is COMDAT. If so, find the
923 // comdat key. A section may be comdat because of -ffunction-sections or
924 // because it is comdat in the IR.
925 MCSectionCOFF *GVSec =
926 GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
927 const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
928
929 MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
930 Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
931 DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
932
933 OS.SwitchSection(DebugSec);
934
935 // Emit the magic version number if this is the first time we've switched to
936 // this section.
937 if (ComdatDebugSections.insert(DebugSec).second)
938 emitCodeViewMagicVersion();
939 }
940
941 // Emit an S_THUNK32/S_END symbol pair for a thunk routine.
942 // The only supported thunk ordinal is currently the standard type.
emitDebugInfoForThunk(const Function * GV,FunctionInfo & FI,const MCSymbol * Fn)943 void CodeViewDebug::emitDebugInfoForThunk(const Function *GV,
944 FunctionInfo &FI,
945 const MCSymbol *Fn) {
946 std::string FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
947 const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind.
948
949 OS.AddComment("Symbol subsection for " + Twine(FuncName));
950 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
951
952 // Emit S_THUNK32
953 MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32);
954 OS.AddComment("PtrParent");
955 OS.EmitIntValue(0, 4);
956 OS.AddComment("PtrEnd");
957 OS.EmitIntValue(0, 4);
958 OS.AddComment("PtrNext");
959 OS.EmitIntValue(0, 4);
960 OS.AddComment("Thunk section relative address");
961 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
962 OS.AddComment("Thunk section index");
963 OS.EmitCOFFSectionIndex(Fn);
964 OS.AddComment("Code size");
965 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2);
966 OS.AddComment("Ordinal");
967 OS.EmitIntValue(unsigned(ordinal), 1);
968 OS.AddComment("Function name");
969 emitNullTerminatedSymbolName(OS, FuncName);
970 // Additional fields specific to the thunk ordinal would go here.
971 endSymbolRecord(ThunkRecordEnd);
972
973 // Local variables/inlined routines are purposely omitted here. The point of
974 // marking this as a thunk is so Visual Studio will NOT stop in this routine.
975
976 // Emit S_PROC_ID_END
977 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
978
979 endCVSubsection(SymbolsEnd);
980 }
981
emitDebugInfoForFunction(const Function * GV,FunctionInfo & FI)982 void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
983 FunctionInfo &FI) {
984 // For each function there is a separate subsection which holds the PC to
985 // file:line table.
986 const MCSymbol *Fn = Asm->getSymbol(GV);
987 assert(Fn);
988
989 // Switch to the to a comdat section, if appropriate.
990 switchToDebugSectionForSymbol(Fn);
991
992 std::string FuncName;
993 auto *SP = GV->getSubprogram();
994 assert(SP);
995 setCurrentSubprogram(SP);
996
997 if (SP->isThunk()) {
998 emitDebugInfoForThunk(GV, FI, Fn);
999 return;
1000 }
1001
1002 // If we have a display name, build the fully qualified name by walking the
1003 // chain of scopes.
1004 if (!SP->getName().empty())
1005 FuncName = getFullyQualifiedName(SP->getScope(), SP->getName());
1006
1007 // If our DISubprogram name is empty, use the mangled name.
1008 if (FuncName.empty())
1009 FuncName = GlobalValue::dropLLVMManglingEscape(GV->getName());
1010
1011 // Emit FPO data, but only on 32-bit x86. No other platforms use it.
1012 if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
1013 OS.EmitCVFPOData(Fn);
1014
1015 // Emit a symbol subsection, required by VS2012+ to find function boundaries.
1016 OS.AddComment("Symbol subsection for " + Twine(FuncName));
1017 MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
1018 {
1019 SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID
1020 : SymbolKind::S_GPROC32_ID;
1021 MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind);
1022
1023 // These fields are filled in by tools like CVPACK which run after the fact.
1024 OS.AddComment("PtrParent");
1025 OS.EmitIntValue(0, 4);
1026 OS.AddComment("PtrEnd");
1027 OS.EmitIntValue(0, 4);
1028 OS.AddComment("PtrNext");
1029 OS.EmitIntValue(0, 4);
1030 // This is the important bit that tells the debugger where the function
1031 // code is located and what's its size:
1032 OS.AddComment("Code size");
1033 OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
1034 OS.AddComment("Offset after prologue");
1035 OS.EmitIntValue(0, 4);
1036 OS.AddComment("Offset before epilogue");
1037 OS.EmitIntValue(0, 4);
1038 OS.AddComment("Function type index");
1039 OS.EmitIntValue(getFuncIdForSubprogram(GV->getSubprogram()).getIndex(), 4);
1040 OS.AddComment("Function section relative address");
1041 OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
1042 OS.AddComment("Function section index");
1043 OS.EmitCOFFSectionIndex(Fn);
1044 OS.AddComment("Flags");
1045 OS.EmitIntValue(0, 1);
1046 // Emit the function display name as a null-terminated string.
1047 OS.AddComment("Function name");
1048 // Truncate the name so we won't overflow the record length field.
1049 emitNullTerminatedSymbolName(OS, FuncName);
1050 endSymbolRecord(ProcRecordEnd);
1051
1052 MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC);
1053 // Subtract out the CSR size since MSVC excludes that and we include it.
1054 OS.AddComment("FrameSize");
1055 OS.EmitIntValue(FI.FrameSize - FI.CSRSize, 4);
1056 OS.AddComment("Padding");
1057 OS.EmitIntValue(0, 4);
1058 OS.AddComment("Offset of padding");
1059 OS.EmitIntValue(0, 4);
1060 OS.AddComment("Bytes of callee saved registers");
1061 OS.EmitIntValue(FI.CSRSize, 4);
1062 OS.AddComment("Exception handler offset");
1063 OS.EmitIntValue(0, 4);
1064 OS.AddComment("Exception handler section");
1065 OS.EmitIntValue(0, 2);
1066 OS.AddComment("Flags (defines frame register)");
1067 OS.EmitIntValue(uint32_t(FI.FrameProcOpts), 4);
1068 endSymbolRecord(FrameProcEnd);
1069
1070 emitLocalVariableList(FI, FI.Locals);
1071 emitGlobalVariableList(FI.Globals);
1072 emitLexicalBlockList(FI.ChildBlocks, FI);
1073
1074 // Emit inlined call site information. Only emit functions inlined directly
1075 // into the parent function. We'll emit the other sites recursively as part
1076 // of their parent inline site.
1077 for (const DILocation *InlinedAt : FI.ChildSites) {
1078 auto I = FI.InlineSites.find(InlinedAt);
1079 assert(I != FI.InlineSites.end() &&
1080 "child site not in function inline site map");
1081 emitInlinedCallSite(FI, InlinedAt, I->second);
1082 }
1083
1084 for (auto Annot : FI.Annotations) {
1085 MCSymbol *Label = Annot.first;
1086 MDTuple *Strs = cast<MDTuple>(Annot.second);
1087 MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION);
1088 OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
1089 // FIXME: Make sure we don't overflow the max record size.
1090 OS.EmitCOFFSectionIndex(Label);
1091 OS.EmitIntValue(Strs->getNumOperands(), 2);
1092 for (Metadata *MD : Strs->operands()) {
1093 // MDStrings are null terminated, so we can do EmitBytes and get the
1094 // nice .asciz directive.
1095 StringRef Str = cast<MDString>(MD)->getString();
1096 assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
1097 OS.EmitBytes(StringRef(Str.data(), Str.size() + 1));
1098 }
1099 endSymbolRecord(AnnotEnd);
1100 }
1101
1102 for (auto HeapAllocSite : FI.HeapAllocSites) {
1103 const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite);
1104 const MCSymbol *EndLabel = std::get<1>(HeapAllocSite);
1105 const DIType *DITy = std::get<2>(HeapAllocSite);
1106 MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE);
1107 OS.AddComment("Call site offset");
1108 OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0);
1109 OS.AddComment("Call site section index");
1110 OS.EmitCOFFSectionIndex(BeginLabel);
1111 OS.AddComment("Call instruction length");
1112 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
1113 OS.AddComment("Type index");
1114 OS.EmitIntValue(getCompleteTypeIndex(DITy).getIndex(), 4);
1115 endSymbolRecord(HeapAllocEnd);
1116 }
1117
1118 if (SP != nullptr)
1119 emitDebugInfoForUDTs(LocalUDTs);
1120
1121 // We're done with this function.
1122 emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
1123 }
1124 endCVSubsection(SymbolsEnd);
1125
1126 // We have an assembler directive that takes care of the whole line table.
1127 OS.EmitCVLinetableDirective(FI.FuncId, Fn, FI.End);
1128 }
1129
1130 CodeViewDebug::LocalVarDefRange
createDefRangeMem(uint16_t CVRegister,int Offset)1131 CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
1132 LocalVarDefRange DR;
1133 DR.InMemory = -1;
1134 DR.DataOffset = Offset;
1135 assert(DR.DataOffset == Offset && "truncation");
1136 DR.IsSubfield = 0;
1137 DR.StructOffset = 0;
1138 DR.CVRegister = CVRegister;
1139 return DR;
1140 }
1141
collectVariableInfoFromMFTable(DenseSet<InlinedEntity> & Processed)1142 void CodeViewDebug::collectVariableInfoFromMFTable(
1143 DenseSet<InlinedEntity> &Processed) {
1144 const MachineFunction &MF = *Asm->MF;
1145 const TargetSubtargetInfo &TSI = MF.getSubtarget();
1146 const TargetFrameLowering *TFI = TSI.getFrameLowering();
1147 const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1148
1149 for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
1150 if (!VI.Var)
1151 continue;
1152 assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
1153 "Expected inlined-at fields to agree");
1154
1155 Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt()));
1156 LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
1157
1158 // If variable scope is not found then skip this variable.
1159 if (!Scope)
1160 continue;
1161
1162 // If the variable has an attached offset expression, extract it.
1163 // FIXME: Try to handle DW_OP_deref as well.
1164 int64_t ExprOffset = 0;
1165 bool Deref = false;
1166 if (VI.Expr) {
1167 // If there is one DW_OP_deref element, use offset of 0 and keep going.
1168 if (VI.Expr->getNumElements() == 1 &&
1169 VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref)
1170 Deref = true;
1171 else if (!VI.Expr->extractIfOffset(ExprOffset))
1172 continue;
1173 }
1174
1175 // Get the frame register used and the offset.
1176 unsigned FrameReg = 0;
1177 int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
1178 uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
1179
1180 // Calculate the label ranges.
1181 LocalVarDefRange DefRange =
1182 createDefRangeMem(CVReg, FrameOffset + ExprOffset);
1183
1184 for (const InsnRange &Range : Scope->getRanges()) {
1185 const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
1186 const MCSymbol *End = getLabelAfterInsn(Range.second);
1187 End = End ? End : Asm->getFunctionEnd();
1188 DefRange.Ranges.emplace_back(Begin, End);
1189 }
1190
1191 LocalVariable Var;
1192 Var.DIVar = VI.Var;
1193 Var.DefRanges.emplace_back(std::move(DefRange));
1194 if (Deref)
1195 Var.UseReferenceType = true;
1196
1197 recordLocalVariable(std::move(Var), Scope);
1198 }
1199 }
1200
canUseReferenceType(const DbgVariableLocation & Loc)1201 static bool canUseReferenceType(const DbgVariableLocation &Loc) {
1202 return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
1203 }
1204
needsReferenceType(const DbgVariableLocation & Loc)1205 static bool needsReferenceType(const DbgVariableLocation &Loc) {
1206 return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
1207 }
1208
calculateRanges(LocalVariable & Var,const DbgValueHistoryMap::Entries & Entries)1209 void CodeViewDebug::calculateRanges(
1210 LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) {
1211 const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
1212
1213 // Calculate the definition ranges.
1214 for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) {
1215 const auto &Entry = *I;
1216 if (!Entry.isDbgValue())
1217 continue;
1218 const MachineInstr *DVInst = Entry.getInstr();
1219 assert(DVInst->isDebugValue() && "Invalid History entry");
1220 // FIXME: Find a way to represent constant variables, since they are
1221 // relatively common.
1222 Optional<DbgVariableLocation> Location =
1223 DbgVariableLocation::extractFromMachineInstruction(*DVInst);
1224 if (!Location)
1225 continue;
1226
1227 // CodeView can only express variables in register and variables in memory
1228 // at a constant offset from a register. However, for variables passed
1229 // indirectly by pointer, it is common for that pointer to be spilled to a
1230 // stack location. For the special case of one offseted load followed by a
1231 // zero offset load (a pointer spilled to the stack), we change the type of
1232 // the local variable from a value type to a reference type. This tricks the
1233 // debugger into doing the load for us.
1234 if (Var.UseReferenceType) {
1235 // We're using a reference type. Drop the last zero offset load.
1236 if (canUseReferenceType(*Location))
1237 Location->LoadChain.pop_back();
1238 else
1239 continue;
1240 } else if (needsReferenceType(*Location)) {
1241 // This location can't be expressed without switching to a reference type.
1242 // Start over using that.
1243 Var.UseReferenceType = true;
1244 Var.DefRanges.clear();
1245 calculateRanges(Var, Entries);
1246 return;
1247 }
1248
1249 // We can only handle a register or an offseted load of a register.
1250 if (Location->Register == 0 || Location->LoadChain.size() > 1)
1251 continue;
1252 {
1253 LocalVarDefRange DR;
1254 DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
1255 DR.InMemory = !Location->LoadChain.empty();
1256 DR.DataOffset =
1257 !Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
1258 if (Location->FragmentInfo) {
1259 DR.IsSubfield = true;
1260 DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
1261 } else {
1262 DR.IsSubfield = false;
1263 DR.StructOffset = 0;
1264 }
1265
1266 if (Var.DefRanges.empty() ||
1267 Var.DefRanges.back().isDifferentLocation(DR)) {
1268 Var.DefRanges.emplace_back(std::move(DR));
1269 }
1270 }
1271
1272 // Compute the label range.
1273 const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr());
1274 const MCSymbol *End;
1275 if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) {
1276 auto &EndingEntry = Entries[Entry.getEndIndex()];
1277 End = EndingEntry.isDbgValue()
1278 ? getLabelBeforeInsn(EndingEntry.getInstr())
1279 : getLabelAfterInsn(EndingEntry.getInstr());
1280 } else
1281 End = Asm->getFunctionEnd();
1282
1283 // If the last range end is our begin, just extend the last range.
1284 // Otherwise make a new range.
1285 SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
1286 Var.DefRanges.back().Ranges;
1287 if (!R.empty() && R.back().second == Begin)
1288 R.back().second = End;
1289 else
1290 R.emplace_back(Begin, End);
1291
1292 // FIXME: Do more range combining.
1293 }
1294 }
1295
collectVariableInfo(const DISubprogram * SP)1296 void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
1297 DenseSet<InlinedEntity> Processed;
1298 // Grab the variable info that was squirreled away in the MMI side-table.
1299 collectVariableInfoFromMFTable(Processed);
1300
1301 for (const auto &I : DbgValues) {
1302 InlinedEntity IV = I.first;
1303 if (Processed.count(IV))
1304 continue;
1305 const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first);
1306 const DILocation *InlinedAt = IV.second;
1307
1308 // Instruction ranges, specifying where IV is accessible.
1309 const auto &Entries = I.second;
1310
1311 LexicalScope *Scope = nullptr;
1312 if (InlinedAt)
1313 Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
1314 else
1315 Scope = LScopes.findLexicalScope(DIVar->getScope());
1316 // If variable scope is not found then skip this variable.
1317 if (!Scope)
1318 continue;
1319
1320 LocalVariable Var;
1321 Var.DIVar = DIVar;
1322
1323 calculateRanges(Var, Entries);
1324 recordLocalVariable(std::move(Var), Scope);
1325 }
1326 }
1327
beginFunctionImpl(const MachineFunction * MF)1328 void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
1329 const TargetSubtargetInfo &TSI = MF->getSubtarget();
1330 const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
1331 const MachineFrameInfo &MFI = MF->getFrameInfo();
1332 const Function &GV = MF->getFunction();
1333 auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()});
1334 assert(Insertion.second && "function already has info");
1335 CurFn = Insertion.first->second.get();
1336 CurFn->FuncId = NextFuncId++;
1337 CurFn->Begin = Asm->getFunctionBegin();
1338
1339 // The S_FRAMEPROC record reports the stack size, and how many bytes of
1340 // callee-saved registers were used. For targets that don't use a PUSH
1341 // instruction (AArch64), this will be zero.
1342 CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters();
1343 CurFn->FrameSize = MFI.getStackSize();
1344 CurFn->OffsetAdjustment = MFI.getOffsetAdjustment();
1345 CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF);
1346
1347 // For this function S_FRAMEPROC record, figure out which codeview register
1348 // will be the frame pointer.
1349 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None.
1350 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None.
1351 if (CurFn->FrameSize > 0) {
1352 if (!TSI.getFrameLowering()->hasFP(*MF)) {
1353 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1354 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr;
1355 } else {
1356 // If there is an FP, parameters are always relative to it.
1357 CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr;
1358 if (CurFn->HasStackRealignment) {
1359 // If the stack needs realignment, locals are relative to SP or VFRAME.
1360 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
1361 } else {
1362 // Otherwise, locals are relative to EBP, and we probably have VLAs or
1363 // other stack adjustments.
1364 CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr;
1365 }
1366 }
1367 }
1368
1369 // Compute other frame procedure options.
1370 FrameProcedureOptions FPO = FrameProcedureOptions::None;
1371 if (MFI.hasVarSizedObjects())
1372 FPO |= FrameProcedureOptions::HasAlloca;
1373 if (MF->exposesReturnsTwice())
1374 FPO |= FrameProcedureOptions::HasSetJmp;
1375 // FIXME: Set HasLongJmp if we ever track that info.
1376 if (MF->hasInlineAsm())
1377 FPO |= FrameProcedureOptions::HasInlineAssembly;
1378 if (GV.hasPersonalityFn()) {
1379 if (isAsynchronousEHPersonality(
1380 classifyEHPersonality(GV.getPersonalityFn())))
1381 FPO |= FrameProcedureOptions::HasStructuredExceptionHandling;
1382 else
1383 FPO |= FrameProcedureOptions::HasExceptionHandling;
1384 }
1385 if (GV.hasFnAttribute(Attribute::InlineHint))
1386 FPO |= FrameProcedureOptions::MarkedInline;
1387 if (GV.hasFnAttribute(Attribute::Naked))
1388 FPO |= FrameProcedureOptions::Naked;
1389 if (MFI.hasStackProtectorIndex())
1390 FPO |= FrameProcedureOptions::SecurityChecks;
1391 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U);
1392 FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U);
1393 if (Asm->TM.getOptLevel() != CodeGenOpt::None &&
1394 !GV.hasOptSize() && !GV.hasOptNone())
1395 FPO |= FrameProcedureOptions::OptimizedForSpeed;
1396 // FIXME: Set GuardCfg when it is implemented.
1397 CurFn->FrameProcOpts = FPO;
1398
1399 OS.EmitCVFuncIdDirective(CurFn->FuncId);
1400
1401 // Find the end of the function prolog. First known non-DBG_VALUE and
1402 // non-frame setup location marks the beginning of the function body.
1403 // FIXME: is there a simpler a way to do this? Can we just search
1404 // for the first instruction of the function, not the last of the prolog?
1405 DebugLoc PrologEndLoc;
1406 bool EmptyPrologue = true;
1407 for (const auto &MBB : *MF) {
1408 for (const auto &MI : MBB) {
1409 if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
1410 MI.getDebugLoc()) {
1411 PrologEndLoc = MI.getDebugLoc();
1412 break;
1413 } else if (!MI.isMetaInstruction()) {
1414 EmptyPrologue = false;
1415 }
1416 }
1417 }
1418
1419 // Record beginning of function if we have a non-empty prologue.
1420 if (PrologEndLoc && !EmptyPrologue) {
1421 DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
1422 maybeRecordLocation(FnStartDL, MF);
1423 }
1424
1425 // Find heap alloc sites and emit labels around them.
1426 for (const auto &MBB : *MF) {
1427 for (const auto &MI : MBB) {
1428 if (MI.getHeapAllocMarker()) {
1429 requestLabelBeforeInsn(&MI);
1430 requestLabelAfterInsn(&MI);
1431 }
1432 }
1433 }
1434 }
1435
shouldEmitUdt(const DIType * T)1436 static bool shouldEmitUdt(const DIType *T) {
1437 if (!T)
1438 return false;
1439
1440 // MSVC does not emit UDTs for typedefs that are scoped to classes.
1441 if (T->getTag() == dwarf::DW_TAG_typedef) {
1442 if (DIScope *Scope = T->getScope()) {
1443 switch (Scope->getTag()) {
1444 case dwarf::DW_TAG_structure_type:
1445 case dwarf::DW_TAG_class_type:
1446 case dwarf::DW_TAG_union_type:
1447 return false;
1448 }
1449 }
1450 }
1451
1452 while (true) {
1453 if (!T || T->isForwardDecl())
1454 return false;
1455
1456 const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
1457 if (!DT)
1458 return true;
1459 T = DT->getBaseType();
1460 }
1461 return true;
1462 }
1463
addToUDTs(const DIType * Ty)1464 void CodeViewDebug::addToUDTs(const DIType *Ty) {
1465 // Don't record empty UDTs.
1466 if (Ty->getName().empty())
1467 return;
1468 if (!shouldEmitUdt(Ty))
1469 return;
1470
1471 SmallVector<StringRef, 5> QualifiedNameComponents;
1472 const DISubprogram *ClosestSubprogram =
1473 getQualifiedNameComponents(Ty->getScope(), QualifiedNameComponents);
1474
1475 std::string FullyQualifiedName =
1476 getQualifiedName(QualifiedNameComponents, getPrettyScopeName(Ty));
1477
1478 if (ClosestSubprogram == nullptr) {
1479 GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1480 } else if (ClosestSubprogram == CurrentSubprogram) {
1481 LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
1482 }
1483
1484 // TODO: What if the ClosestSubprogram is neither null or the current
1485 // subprogram? Currently, the UDT just gets dropped on the floor.
1486 //
1487 // The current behavior is not desirable. To get maximal fidelity, we would
1488 // need to perform all type translation before beginning emission of .debug$S
1489 // and then make LocalUDTs a member of FunctionInfo
1490 }
1491
lowerType(const DIType * Ty,const DIType * ClassTy)1492 TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
1493 // Generic dispatch for lowering an unknown type.
1494 switch (Ty->getTag()) {
1495 case dwarf::DW_TAG_array_type:
1496 return lowerTypeArray(cast<DICompositeType>(Ty));
1497 case dwarf::DW_TAG_typedef:
1498 return lowerTypeAlias(cast<DIDerivedType>(Ty));
1499 case dwarf::DW_TAG_base_type:
1500 return lowerTypeBasic(cast<DIBasicType>(Ty));
1501 case dwarf::DW_TAG_pointer_type:
1502 if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
1503 return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
1504 LLVM_FALLTHROUGH;
1505 case dwarf::DW_TAG_reference_type:
1506 case dwarf::DW_TAG_rvalue_reference_type:
1507 return lowerTypePointer(cast<DIDerivedType>(Ty));
1508 case dwarf::DW_TAG_ptr_to_member_type:
1509 return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
1510 case dwarf::DW_TAG_restrict_type:
1511 case dwarf::DW_TAG_const_type:
1512 case dwarf::DW_TAG_volatile_type:
1513 // TODO: add support for DW_TAG_atomic_type here
1514 return lowerTypeModifier(cast<DIDerivedType>(Ty));
1515 case dwarf::DW_TAG_subroutine_type:
1516 if (ClassTy) {
1517 // The member function type of a member function pointer has no
1518 // ThisAdjustment.
1519 return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
1520 /*ThisAdjustment=*/0,
1521 /*IsStaticMethod=*/false);
1522 }
1523 return lowerTypeFunction(cast<DISubroutineType>(Ty));
1524 case dwarf::DW_TAG_enumeration_type:
1525 return lowerTypeEnum(cast<DICompositeType>(Ty));
1526 case dwarf::DW_TAG_class_type:
1527 case dwarf::DW_TAG_structure_type:
1528 return lowerTypeClass(cast<DICompositeType>(Ty));
1529 case dwarf::DW_TAG_union_type:
1530 return lowerTypeUnion(cast<DICompositeType>(Ty));
1531 case dwarf::DW_TAG_unspecified_type:
1532 if (Ty->getName() == "decltype(nullptr)")
1533 return TypeIndex::NullptrT();
1534 return TypeIndex::None();
1535 default:
1536 // Use the null type index.
1537 return TypeIndex();
1538 }
1539 }
1540
lowerTypeAlias(const DIDerivedType * Ty)1541 TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
1542 TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType());
1543 StringRef TypeName = Ty->getName();
1544
1545 addToUDTs(Ty);
1546
1547 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
1548 TypeName == "HRESULT")
1549 return TypeIndex(SimpleTypeKind::HResult);
1550 if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
1551 TypeName == "wchar_t")
1552 return TypeIndex(SimpleTypeKind::WideCharacter);
1553
1554 return UnderlyingTypeIndex;
1555 }
1556
lowerTypeArray(const DICompositeType * Ty)1557 TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
1558 const DIType *ElementType = Ty->getBaseType();
1559 TypeIndex ElementTypeIndex = getTypeIndex(ElementType);
1560 // IndexType is size_t, which depends on the bitness of the target.
1561 TypeIndex IndexType = getPointerSizeInBytes() == 8
1562 ? TypeIndex(SimpleTypeKind::UInt64Quad)
1563 : TypeIndex(SimpleTypeKind::UInt32Long);
1564
1565 uint64_t ElementSize = getBaseTypeSize(ElementType) / 8;
1566
1567 // Add subranges to array type.
1568 DINodeArray Elements = Ty->getElements();
1569 for (int i = Elements.size() - 1; i >= 0; --i) {
1570 const DINode *Element = Elements[i];
1571 assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
1572
1573 const DISubrange *Subrange = cast<DISubrange>(Element);
1574 assert(Subrange->getLowerBound() == 0 &&
1575 "codeview doesn't support subranges with lower bounds");
1576 int64_t Count = -1;
1577 if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>())
1578 Count = CI->getSExtValue();
1579
1580 // Forward declarations of arrays without a size and VLAs use a count of -1.
1581 // Emit a count of zero in these cases to match what MSVC does for arrays
1582 // without a size. MSVC doesn't support VLAs, so it's not clear what we
1583 // should do for them even if we could distinguish them.
1584 if (Count == -1)
1585 Count = 0;
1586
1587 // Update the element size and element type index for subsequent subranges.
1588 ElementSize *= Count;
1589
1590 // If this is the outermost array, use the size from the array. It will be
1591 // more accurate if we had a VLA or an incomplete element type size.
1592 uint64_t ArraySize =
1593 (i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
1594
1595 StringRef Name = (i == 0) ? Ty->getName() : "";
1596 ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
1597 ElementTypeIndex = TypeTable.writeLeafType(AR);
1598 }
1599
1600 return ElementTypeIndex;
1601 }
1602
lowerTypeBasic(const DIBasicType * Ty)1603 TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
1604 TypeIndex Index;
1605 dwarf::TypeKind Kind;
1606 uint32_t ByteSize;
1607
1608 Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
1609 ByteSize = Ty->getSizeInBits() / 8;
1610
1611 SimpleTypeKind STK = SimpleTypeKind::None;
1612 switch (Kind) {
1613 case dwarf::DW_ATE_address:
1614 // FIXME: Translate
1615 break;
1616 case dwarf::DW_ATE_boolean:
1617 switch (ByteSize) {
1618 case 1: STK = SimpleTypeKind::Boolean8; break;
1619 case 2: STK = SimpleTypeKind::Boolean16; break;
1620 case 4: STK = SimpleTypeKind::Boolean32; break;
1621 case 8: STK = SimpleTypeKind::Boolean64; break;
1622 case 16: STK = SimpleTypeKind::Boolean128; break;
1623 }
1624 break;
1625 case dwarf::DW_ATE_complex_float:
1626 switch (ByteSize) {
1627 case 2: STK = SimpleTypeKind::Complex16; break;
1628 case 4: STK = SimpleTypeKind::Complex32; break;
1629 case 8: STK = SimpleTypeKind::Complex64; break;
1630 case 10: STK = SimpleTypeKind::Complex80; break;
1631 case 16: STK = SimpleTypeKind::Complex128; break;
1632 }
1633 break;
1634 case dwarf::DW_ATE_float:
1635 switch (ByteSize) {
1636 case 2: STK = SimpleTypeKind::Float16; break;
1637 case 4: STK = SimpleTypeKind::Float32; break;
1638 case 6: STK = SimpleTypeKind::Float48; break;
1639 case 8: STK = SimpleTypeKind::Float64; break;
1640 case 10: STK = SimpleTypeKind::Float80; break;
1641 case 16: STK = SimpleTypeKind::Float128; break;
1642 }
1643 break;
1644 case dwarf::DW_ATE_signed:
1645 switch (ByteSize) {
1646 case 1: STK = SimpleTypeKind::SignedCharacter; break;
1647 case 2: STK = SimpleTypeKind::Int16Short; break;
1648 case 4: STK = SimpleTypeKind::Int32; break;
1649 case 8: STK = SimpleTypeKind::Int64Quad; break;
1650 case 16: STK = SimpleTypeKind::Int128Oct; break;
1651 }
1652 break;
1653 case dwarf::DW_ATE_unsigned:
1654 switch (ByteSize) {
1655 case 1: STK = SimpleTypeKind::UnsignedCharacter; break;
1656 case 2: STK = SimpleTypeKind::UInt16Short; break;
1657 case 4: STK = SimpleTypeKind::UInt32; break;
1658 case 8: STK = SimpleTypeKind::UInt64Quad; break;
1659 case 16: STK = SimpleTypeKind::UInt128Oct; break;
1660 }
1661 break;
1662 case dwarf::DW_ATE_UTF:
1663 switch (ByteSize) {
1664 case 2: STK = SimpleTypeKind::Character16; break;
1665 case 4: STK = SimpleTypeKind::Character32; break;
1666 }
1667 break;
1668 case dwarf::DW_ATE_signed_char:
1669 if (ByteSize == 1)
1670 STK = SimpleTypeKind::SignedCharacter;
1671 break;
1672 case dwarf::DW_ATE_unsigned_char:
1673 if (ByteSize == 1)
1674 STK = SimpleTypeKind::UnsignedCharacter;
1675 break;
1676 default:
1677 break;
1678 }
1679
1680 // Apply some fixups based on the source-level type name.
1681 if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
1682 STK = SimpleTypeKind::Int32Long;
1683 if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
1684 STK = SimpleTypeKind::UInt32Long;
1685 if (STK == SimpleTypeKind::UInt16Short &&
1686 (Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
1687 STK = SimpleTypeKind::WideCharacter;
1688 if ((STK == SimpleTypeKind::SignedCharacter ||
1689 STK == SimpleTypeKind::UnsignedCharacter) &&
1690 Ty->getName() == "char")
1691 STK = SimpleTypeKind::NarrowCharacter;
1692
1693 return TypeIndex(STK);
1694 }
1695
lowerTypePointer(const DIDerivedType * Ty,PointerOptions PO)1696 TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
1697 PointerOptions PO) {
1698 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
1699
1700 // Pointers to simple types without any options can use SimpleTypeMode, rather
1701 // than having a dedicated pointer type record.
1702 if (PointeeTI.isSimple() && PO == PointerOptions::None &&
1703 PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
1704 Ty->getTag() == dwarf::DW_TAG_pointer_type) {
1705 SimpleTypeMode Mode = Ty->getSizeInBits() == 64
1706 ? SimpleTypeMode::NearPointer64
1707 : SimpleTypeMode::NearPointer32;
1708 return TypeIndex(PointeeTI.getSimpleKind(), Mode);
1709 }
1710
1711 PointerKind PK =
1712 Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
1713 PointerMode PM = PointerMode::Pointer;
1714 switch (Ty->getTag()) {
1715 default: llvm_unreachable("not a pointer tag type");
1716 case dwarf::DW_TAG_pointer_type:
1717 PM = PointerMode::Pointer;
1718 break;
1719 case dwarf::DW_TAG_reference_type:
1720 PM = PointerMode::LValueReference;
1721 break;
1722 case dwarf::DW_TAG_rvalue_reference_type:
1723 PM = PointerMode::RValueReference;
1724 break;
1725 }
1726
1727 if (Ty->isObjectPointer())
1728 PO |= PointerOptions::Const;
1729
1730 PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
1731 return TypeTable.writeLeafType(PR);
1732 }
1733
1734 static PointerToMemberRepresentation
translatePtrToMemberRep(unsigned SizeInBytes,bool IsPMF,unsigned Flags)1735 translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
1736 // SizeInBytes being zero generally implies that the member pointer type was
1737 // incomplete, which can happen if it is part of a function prototype. In this
1738 // case, use the unknown model instead of the general model.
1739 if (IsPMF) {
1740 switch (Flags & DINode::FlagPtrToMemberRep) {
1741 case 0:
1742 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1743 : PointerToMemberRepresentation::GeneralFunction;
1744 case DINode::FlagSingleInheritance:
1745 return PointerToMemberRepresentation::SingleInheritanceFunction;
1746 case DINode::FlagMultipleInheritance:
1747 return PointerToMemberRepresentation::MultipleInheritanceFunction;
1748 case DINode::FlagVirtualInheritance:
1749 return PointerToMemberRepresentation::VirtualInheritanceFunction;
1750 }
1751 } else {
1752 switch (Flags & DINode::FlagPtrToMemberRep) {
1753 case 0:
1754 return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
1755 : PointerToMemberRepresentation::GeneralData;
1756 case DINode::FlagSingleInheritance:
1757 return PointerToMemberRepresentation::SingleInheritanceData;
1758 case DINode::FlagMultipleInheritance:
1759 return PointerToMemberRepresentation::MultipleInheritanceData;
1760 case DINode::FlagVirtualInheritance:
1761 return PointerToMemberRepresentation::VirtualInheritanceData;
1762 }
1763 }
1764 llvm_unreachable("invalid ptr to member representation");
1765 }
1766
lowerTypeMemberPointer(const DIDerivedType * Ty,PointerOptions PO)1767 TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
1768 PointerOptions PO) {
1769 assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
1770 TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
1771 TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType(), Ty->getClassType());
1772 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
1773 : PointerKind::Near32;
1774 bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
1775 PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
1776 : PointerMode::PointerToDataMember;
1777
1778 assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
1779 uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
1780 MemberPointerInfo MPI(
1781 ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
1782 PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
1783 return TypeTable.writeLeafType(PR);
1784 }
1785
1786 /// Given a DWARF calling convention, get the CodeView equivalent. If we don't
1787 /// have a translation, use the NearC convention.
dwarfCCToCodeView(unsigned DwarfCC)1788 static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
1789 switch (DwarfCC) {
1790 case dwarf::DW_CC_normal: return CallingConvention::NearC;
1791 case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
1792 case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall;
1793 case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall;
1794 case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal;
1795 case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector;
1796 }
1797 return CallingConvention::NearC;
1798 }
1799
lowerTypeModifier(const DIDerivedType * Ty)1800 TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
1801 ModifierOptions Mods = ModifierOptions::None;
1802 PointerOptions PO = PointerOptions::None;
1803 bool IsModifier = true;
1804 const DIType *BaseTy = Ty;
1805 while (IsModifier && BaseTy) {
1806 // FIXME: Need to add DWARF tags for __unaligned and _Atomic
1807 switch (BaseTy->getTag()) {
1808 case dwarf::DW_TAG_const_type:
1809 Mods |= ModifierOptions::Const;
1810 PO |= PointerOptions::Const;
1811 break;
1812 case dwarf::DW_TAG_volatile_type:
1813 Mods |= ModifierOptions::Volatile;
1814 PO |= PointerOptions::Volatile;
1815 break;
1816 case dwarf::DW_TAG_restrict_type:
1817 // Only pointer types be marked with __restrict. There is no known flag
1818 // for __restrict in LF_MODIFIER records.
1819 PO |= PointerOptions::Restrict;
1820 break;
1821 default:
1822 IsModifier = false;
1823 break;
1824 }
1825 if (IsModifier)
1826 BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType();
1827 }
1828
1829 // Check if the inner type will use an LF_POINTER record. If so, the
1830 // qualifiers will go in the LF_POINTER record. This comes up for types like
1831 // 'int *const' and 'int *__restrict', not the more common cases like 'const
1832 // char *'.
1833 if (BaseTy) {
1834 switch (BaseTy->getTag()) {
1835 case dwarf::DW_TAG_pointer_type:
1836 case dwarf::DW_TAG_reference_type:
1837 case dwarf::DW_TAG_rvalue_reference_type:
1838 return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
1839 case dwarf::DW_TAG_ptr_to_member_type:
1840 return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
1841 default:
1842 break;
1843 }
1844 }
1845
1846 TypeIndex ModifiedTI = getTypeIndex(BaseTy);
1847
1848 // Return the base type index if there aren't any modifiers. For example, the
1849 // metadata could contain restrict wrappers around non-pointer types.
1850 if (Mods == ModifierOptions::None)
1851 return ModifiedTI;
1852
1853 ModifierRecord MR(ModifiedTI, Mods);
1854 return TypeTable.writeLeafType(MR);
1855 }
1856
lowerTypeFunction(const DISubroutineType * Ty)1857 TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
1858 SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
1859 for (const DIType *ArgType : Ty->getTypeArray())
1860 ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType));
1861
1862 // MSVC uses type none for variadic argument.
1863 if (ReturnAndArgTypeIndices.size() > 1 &&
1864 ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
1865 ReturnAndArgTypeIndices.back() = TypeIndex::None();
1866 }
1867 TypeIndex ReturnTypeIndex = TypeIndex::Void();
1868 ArrayRef<TypeIndex> ArgTypeIndices = None;
1869 if (!ReturnAndArgTypeIndices.empty()) {
1870 auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
1871 ReturnTypeIndex = ReturnAndArgTypesRef.front();
1872 ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
1873 }
1874
1875 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1876 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1877
1878 CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1879
1880 FunctionOptions FO = getFunctionOptions(Ty);
1881 ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(),
1882 ArgListIndex);
1883 return TypeTable.writeLeafType(Procedure);
1884 }
1885
lowerTypeMemberFunction(const DISubroutineType * Ty,const DIType * ClassTy,int ThisAdjustment,bool IsStaticMethod,FunctionOptions FO)1886 TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
1887 const DIType *ClassTy,
1888 int ThisAdjustment,
1889 bool IsStaticMethod,
1890 FunctionOptions FO) {
1891 // Lower the containing class type.
1892 TypeIndex ClassType = getTypeIndex(ClassTy);
1893
1894 DITypeRefArray ReturnAndArgs = Ty->getTypeArray();
1895
1896 unsigned Index = 0;
1897 SmallVector<TypeIndex, 8> ArgTypeIndices;
1898 TypeIndex ReturnTypeIndex = TypeIndex::Void();
1899 if (ReturnAndArgs.size() > Index) {
1900 ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]);
1901 }
1902
1903 // If the first argument is a pointer type and this isn't a static method,
1904 // treat it as the special 'this' parameter, which is encoded separately from
1905 // the arguments.
1906 TypeIndex ThisTypeIndex;
1907 if (!IsStaticMethod && ReturnAndArgs.size() > Index) {
1908 if (const DIDerivedType *PtrTy =
1909 dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) {
1910 if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) {
1911 ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty);
1912 Index++;
1913 }
1914 }
1915 }
1916
1917 while (Index < ReturnAndArgs.size())
1918 ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++]));
1919
1920 // MSVC uses type none for variadic argument.
1921 if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void())
1922 ArgTypeIndices.back() = TypeIndex::None();
1923
1924 ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
1925 TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
1926
1927 CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
1928
1929 MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO,
1930 ArgTypeIndices.size(), ArgListIndex, ThisAdjustment);
1931 return TypeTable.writeLeafType(MFR);
1932 }
1933
lowerTypeVFTableShape(const DIDerivedType * Ty)1934 TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
1935 unsigned VSlotCount =
1936 Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
1937 SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
1938
1939 VFTableShapeRecord VFTSR(Slots);
1940 return TypeTable.writeLeafType(VFTSR);
1941 }
1942
translateAccessFlags(unsigned RecordTag,unsigned Flags)1943 static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
1944 switch (Flags & DINode::FlagAccessibility) {
1945 case DINode::FlagPrivate: return MemberAccess::Private;
1946 case DINode::FlagPublic: return MemberAccess::Public;
1947 case DINode::FlagProtected: return MemberAccess::Protected;
1948 case 0:
1949 // If there was no explicit access control, provide the default for the tag.
1950 return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
1951 : MemberAccess::Public;
1952 }
1953 llvm_unreachable("access flags are exclusive");
1954 }
1955
translateMethodOptionFlags(const DISubprogram * SP)1956 static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
1957 if (SP->isArtificial())
1958 return MethodOptions::CompilerGenerated;
1959
1960 // FIXME: Handle other MethodOptions.
1961
1962 return MethodOptions::None;
1963 }
1964
translateMethodKindFlags(const DISubprogram * SP,bool Introduced)1965 static MethodKind translateMethodKindFlags(const DISubprogram *SP,
1966 bool Introduced) {
1967 if (SP->getFlags() & DINode::FlagStaticMember)
1968 return MethodKind::Static;
1969
1970 switch (SP->getVirtuality()) {
1971 case dwarf::DW_VIRTUALITY_none:
1972 break;
1973 case dwarf::DW_VIRTUALITY_virtual:
1974 return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
1975 case dwarf::DW_VIRTUALITY_pure_virtual:
1976 return Introduced ? MethodKind::PureIntroducingVirtual
1977 : MethodKind::PureVirtual;
1978 default:
1979 llvm_unreachable("unhandled virtuality case");
1980 }
1981
1982 return MethodKind::Vanilla;
1983 }
1984
getRecordKind(const DICompositeType * Ty)1985 static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
1986 switch (Ty->getTag()) {
1987 case dwarf::DW_TAG_class_type: return TypeRecordKind::Class;
1988 case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
1989 }
1990 llvm_unreachable("unexpected tag");
1991 }
1992
1993 /// Return ClassOptions that should be present on both the forward declaration
1994 /// and the defintion of a tag type.
getCommonClassOptions(const DICompositeType * Ty)1995 static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
1996 ClassOptions CO = ClassOptions::None;
1997
1998 // MSVC always sets this flag, even for local types. Clang doesn't always
1999 // appear to give every type a linkage name, which may be problematic for us.
2000 // FIXME: Investigate the consequences of not following them here.
2001 if (!Ty->getIdentifier().empty())
2002 CO |= ClassOptions::HasUniqueName;
2003
2004 // Put the Nested flag on a type if it appears immediately inside a tag type.
2005 // Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
2006 // here. That flag is only set on definitions, and not forward declarations.
2007 const DIScope *ImmediateScope = Ty->getScope();
2008 if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
2009 CO |= ClassOptions::Nested;
2010
2011 // Put the Scoped flag on function-local types. MSVC puts this flag for enum
2012 // type only when it has an immediate function scope. Clang never puts enums
2013 // inside DILexicalBlock scopes. Enum types, as generated by clang, are
2014 // always in function, class, or file scopes.
2015 if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) {
2016 if (ImmediateScope && isa<DISubprogram>(ImmediateScope))
2017 CO |= ClassOptions::Scoped;
2018 } else {
2019 for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
2020 Scope = Scope->getScope()) {
2021 if (isa<DISubprogram>(Scope)) {
2022 CO |= ClassOptions::Scoped;
2023 break;
2024 }
2025 }
2026 }
2027
2028 return CO;
2029 }
2030
addUDTSrcLine(const DIType * Ty,TypeIndex TI)2031 void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
2032 switch (Ty->getTag()) {
2033 case dwarf::DW_TAG_class_type:
2034 case dwarf::DW_TAG_structure_type:
2035 case dwarf::DW_TAG_union_type:
2036 case dwarf::DW_TAG_enumeration_type:
2037 break;
2038 default:
2039 return;
2040 }
2041
2042 if (const auto *File = Ty->getFile()) {
2043 StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
2044 TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
2045
2046 UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
2047 TypeTable.writeLeafType(USLR);
2048 }
2049 }
2050
lowerTypeEnum(const DICompositeType * Ty)2051 TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
2052 ClassOptions CO = getCommonClassOptions(Ty);
2053 TypeIndex FTI;
2054 unsigned EnumeratorCount = 0;
2055
2056 if (Ty->isForwardDecl()) {
2057 CO |= ClassOptions::ForwardReference;
2058 } else {
2059 ContinuationRecordBuilder ContinuationBuilder;
2060 ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2061 for (const DINode *Element : Ty->getElements()) {
2062 // We assume that the frontend provides all members in source declaration
2063 // order, which is what MSVC does.
2064 if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
2065 EnumeratorRecord ER(MemberAccess::Public,
2066 APSInt::getUnsigned(Enumerator->getValue()),
2067 Enumerator->getName());
2068 ContinuationBuilder.writeMemberType(ER);
2069 EnumeratorCount++;
2070 }
2071 }
2072 FTI = TypeTable.insertRecord(ContinuationBuilder);
2073 }
2074
2075 std::string FullName = getFullyQualifiedName(Ty);
2076
2077 EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
2078 getTypeIndex(Ty->getBaseType()));
2079 TypeIndex EnumTI = TypeTable.writeLeafType(ER);
2080
2081 addUDTSrcLine(Ty, EnumTI);
2082
2083 return EnumTI;
2084 }
2085
2086 //===----------------------------------------------------------------------===//
2087 // ClassInfo
2088 //===----------------------------------------------------------------------===//
2089
2090 struct llvm::ClassInfo {
2091 struct MemberInfo {
2092 const DIDerivedType *MemberTypeNode;
2093 uint64_t BaseOffset;
2094 };
2095 // [MemberInfo]
2096 using MemberList = std::vector<MemberInfo>;
2097
2098 using MethodsList = TinyPtrVector<const DISubprogram *>;
2099 // MethodName -> MethodsList
2100 using MethodsMap = MapVector<MDString *, MethodsList>;
2101
2102 /// Base classes.
2103 std::vector<const DIDerivedType *> Inheritance;
2104
2105 /// Direct members.
2106 MemberList Members;
2107 // Direct overloaded methods gathered by name.
2108 MethodsMap Methods;
2109
2110 TypeIndex VShapeTI;
2111
2112 std::vector<const DIType *> NestedTypes;
2113 };
2114
clear()2115 void CodeViewDebug::clear() {
2116 assert(CurFn == nullptr);
2117 FileIdMap.clear();
2118 FnDebugInfo.clear();
2119 FileToFilepathMap.clear();
2120 LocalUDTs.clear();
2121 GlobalUDTs.clear();
2122 TypeIndices.clear();
2123 CompleteTypeIndices.clear();
2124 ScopeGlobals.clear();
2125 }
2126
collectMemberInfo(ClassInfo & Info,const DIDerivedType * DDTy)2127 void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
2128 const DIDerivedType *DDTy) {
2129 if (!DDTy->getName().empty()) {
2130 Info.Members.push_back({DDTy, 0});
2131 return;
2132 }
2133
2134 // An unnamed member may represent a nested struct or union. Attempt to
2135 // interpret the unnamed member as a DICompositeType possibly wrapped in
2136 // qualifier types. Add all the indirect fields to the current record if that
2137 // succeeds, and drop the member if that fails.
2138 assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
2139 uint64_t Offset = DDTy->getOffsetInBits();
2140 const DIType *Ty = DDTy->getBaseType();
2141 bool FullyResolved = false;
2142 while (!FullyResolved) {
2143 switch (Ty->getTag()) {
2144 case dwarf::DW_TAG_const_type:
2145 case dwarf::DW_TAG_volatile_type:
2146 // FIXME: we should apply the qualifier types to the indirect fields
2147 // rather than dropping them.
2148 Ty = cast<DIDerivedType>(Ty)->getBaseType();
2149 break;
2150 default:
2151 FullyResolved = true;
2152 break;
2153 }
2154 }
2155
2156 const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
2157 if (!DCTy)
2158 return;
2159
2160 ClassInfo NestedInfo = collectClassInfo(DCTy);
2161 for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
2162 Info.Members.push_back(
2163 {IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
2164 }
2165
collectClassInfo(const DICompositeType * Ty)2166 ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
2167 ClassInfo Info;
2168 // Add elements to structure type.
2169 DINodeArray Elements = Ty->getElements();
2170 for (auto *Element : Elements) {
2171 // We assume that the frontend provides all members in source declaration
2172 // order, which is what MSVC does.
2173 if (!Element)
2174 continue;
2175 if (auto *SP = dyn_cast<DISubprogram>(Element)) {
2176 Info.Methods[SP->getRawName()].push_back(SP);
2177 } else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
2178 if (DDTy->getTag() == dwarf::DW_TAG_member) {
2179 collectMemberInfo(Info, DDTy);
2180 } else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
2181 Info.Inheritance.push_back(DDTy);
2182 } else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
2183 DDTy->getName() == "__vtbl_ptr_type") {
2184 Info.VShapeTI = getTypeIndex(DDTy);
2185 } else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
2186 Info.NestedTypes.push_back(DDTy);
2187 } else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
2188 // Ignore friend members. It appears that MSVC emitted info about
2189 // friends in the past, but modern versions do not.
2190 }
2191 } else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
2192 Info.NestedTypes.push_back(Composite);
2193 }
2194 // Skip other unrecognized kinds of elements.
2195 }
2196 return Info;
2197 }
2198
shouldAlwaysEmitCompleteClassType(const DICompositeType * Ty)2199 static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) {
2200 // This routine is used by lowerTypeClass and lowerTypeUnion to determine
2201 // if a complete type should be emitted instead of a forward reference.
2202 return Ty->getName().empty() && Ty->getIdentifier().empty() &&
2203 !Ty->isForwardDecl();
2204 }
2205
lowerTypeClass(const DICompositeType * Ty)2206 TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
2207 // Emit the complete type for unnamed structs. C++ classes with methods
2208 // which have a circular reference back to the class type are expected to
2209 // be named by the front-end and should not be "unnamed". C unnamed
2210 // structs should not have circular references.
2211 if (shouldAlwaysEmitCompleteClassType(Ty)) {
2212 // If this unnamed complete type is already in the process of being defined
2213 // then the description of the type is malformed and cannot be emitted
2214 // into CodeView correctly so report a fatal error.
2215 auto I = CompleteTypeIndices.find(Ty);
2216 if (I != CompleteTypeIndices.end() && I->second == TypeIndex())
2217 report_fatal_error("cannot debug circular reference to unnamed type");
2218 return getCompleteTypeIndex(Ty);
2219 }
2220
2221 // First, construct the forward decl. Don't look into Ty to compute the
2222 // forward decl options, since it might not be available in all TUs.
2223 TypeRecordKind Kind = getRecordKind(Ty);
2224 ClassOptions CO =
2225 ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2226 std::string FullName = getFullyQualifiedName(Ty);
2227 ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
2228 FullName, Ty->getIdentifier());
2229 TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
2230 if (!Ty->isForwardDecl())
2231 DeferredCompleteTypes.push_back(Ty);
2232 return FwdDeclTI;
2233 }
2234
lowerCompleteTypeClass(const DICompositeType * Ty)2235 TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
2236 // Construct the field list and complete type record.
2237 TypeRecordKind Kind = getRecordKind(Ty);
2238 ClassOptions CO = getCommonClassOptions(Ty);
2239 TypeIndex FieldTI;
2240 TypeIndex VShapeTI;
2241 unsigned FieldCount;
2242 bool ContainsNestedClass;
2243 std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
2244 lowerRecordFieldList(Ty);
2245
2246 if (ContainsNestedClass)
2247 CO |= ClassOptions::ContainsNestedClass;
2248
2249 // MSVC appears to set this flag by searching any destructor or method with
2250 // FunctionOptions::Constructor among the emitted members. Clang AST has all
2251 // the members, however special member functions are not yet emitted into
2252 // debug information. For now checking a class's non-triviality seems enough.
2253 // FIXME: not true for a nested unnamed struct.
2254 if (isNonTrivial(Ty))
2255 CO |= ClassOptions::HasConstructorOrDestructor;
2256
2257 std::string FullName = getFullyQualifiedName(Ty);
2258
2259 uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2260
2261 ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
2262 SizeInBytes, FullName, Ty->getIdentifier());
2263 TypeIndex ClassTI = TypeTable.writeLeafType(CR);
2264
2265 addUDTSrcLine(Ty, ClassTI);
2266
2267 addToUDTs(Ty);
2268
2269 return ClassTI;
2270 }
2271
lowerTypeUnion(const DICompositeType * Ty)2272 TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
2273 // Emit the complete type for unnamed unions.
2274 if (shouldAlwaysEmitCompleteClassType(Ty))
2275 return getCompleteTypeIndex(Ty);
2276
2277 ClassOptions CO =
2278 ClassOptions::ForwardReference | getCommonClassOptions(Ty);
2279 std::string FullName = getFullyQualifiedName(Ty);
2280 UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
2281 TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
2282 if (!Ty->isForwardDecl())
2283 DeferredCompleteTypes.push_back(Ty);
2284 return FwdDeclTI;
2285 }
2286
lowerCompleteTypeUnion(const DICompositeType * Ty)2287 TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
2288 ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
2289 TypeIndex FieldTI;
2290 unsigned FieldCount;
2291 bool ContainsNestedClass;
2292 std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
2293 lowerRecordFieldList(Ty);
2294
2295 if (ContainsNestedClass)
2296 CO |= ClassOptions::ContainsNestedClass;
2297
2298 uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
2299 std::string FullName = getFullyQualifiedName(Ty);
2300
2301 UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
2302 Ty->getIdentifier());
2303 TypeIndex UnionTI = TypeTable.writeLeafType(UR);
2304
2305 addUDTSrcLine(Ty, UnionTI);
2306
2307 addToUDTs(Ty);
2308
2309 return UnionTI;
2310 }
2311
2312 std::tuple<TypeIndex, TypeIndex, unsigned, bool>
lowerRecordFieldList(const DICompositeType * Ty)2313 CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
2314 // Manually count members. MSVC appears to count everything that generates a
2315 // field list record. Each individual overload in a method overload group
2316 // contributes to this count, even though the overload group is a single field
2317 // list record.
2318 unsigned MemberCount = 0;
2319 ClassInfo Info = collectClassInfo(Ty);
2320 ContinuationRecordBuilder ContinuationBuilder;
2321 ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
2322
2323 // Create base classes.
2324 for (const DIDerivedType *I : Info.Inheritance) {
2325 if (I->getFlags() & DINode::FlagVirtual) {
2326 // Virtual base.
2327 unsigned VBPtrOffset = I->getVBPtrOffset();
2328 // FIXME: Despite the accessor name, the offset is really in bytes.
2329 unsigned VBTableIndex = I->getOffsetInBits() / 4;
2330 auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
2331 ? TypeRecordKind::IndirectVirtualBaseClass
2332 : TypeRecordKind::VirtualBaseClass;
2333 VirtualBaseClassRecord VBCR(
2334 RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
2335 getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
2336 VBTableIndex);
2337
2338 ContinuationBuilder.writeMemberType(VBCR);
2339 MemberCount++;
2340 } else {
2341 assert(I->getOffsetInBits() % 8 == 0 &&
2342 "bases must be on byte boundaries");
2343 BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
2344 getTypeIndex(I->getBaseType()),
2345 I->getOffsetInBits() / 8);
2346 ContinuationBuilder.writeMemberType(BCR);
2347 MemberCount++;
2348 }
2349 }
2350
2351 // Create members.
2352 for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
2353 const DIDerivedType *Member = MemberInfo.MemberTypeNode;
2354 TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
2355 StringRef MemberName = Member->getName();
2356 MemberAccess Access =
2357 translateAccessFlags(Ty->getTag(), Member->getFlags());
2358
2359 if (Member->isStaticMember()) {
2360 StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
2361 ContinuationBuilder.writeMemberType(SDMR);
2362 MemberCount++;
2363 continue;
2364 }
2365
2366 // Virtual function pointer member.
2367 if ((Member->getFlags() & DINode::FlagArtificial) &&
2368 Member->getName().startswith("_vptr$")) {
2369 VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
2370 ContinuationBuilder.writeMemberType(VFPR);
2371 MemberCount++;
2372 continue;
2373 }
2374
2375 // Data member.
2376 uint64_t MemberOffsetInBits =
2377 Member->getOffsetInBits() + MemberInfo.BaseOffset;
2378 if (Member->isBitField()) {
2379 uint64_t StartBitOffset = MemberOffsetInBits;
2380 if (const auto *CI =
2381 dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
2382 MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
2383 }
2384 StartBitOffset -= MemberOffsetInBits;
2385 BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
2386 StartBitOffset);
2387 MemberBaseType = TypeTable.writeLeafType(BFR);
2388 }
2389 uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
2390 DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
2391 MemberName);
2392 ContinuationBuilder.writeMemberType(DMR);
2393 MemberCount++;
2394 }
2395
2396 // Create methods
2397 for (auto &MethodItr : Info.Methods) {
2398 StringRef Name = MethodItr.first->getString();
2399
2400 std::vector<OneMethodRecord> Methods;
2401 for (const DISubprogram *SP : MethodItr.second) {
2402 TypeIndex MethodType = getMemberFunctionType(SP, Ty);
2403 bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
2404
2405 unsigned VFTableOffset = -1;
2406 if (Introduced)
2407 VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
2408
2409 Methods.push_back(OneMethodRecord(
2410 MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
2411 translateMethodKindFlags(SP, Introduced),
2412 translateMethodOptionFlags(SP), VFTableOffset, Name));
2413 MemberCount++;
2414 }
2415 assert(!Methods.empty() && "Empty methods map entry");
2416 if (Methods.size() == 1)
2417 ContinuationBuilder.writeMemberType(Methods[0]);
2418 else {
2419 // FIXME: Make this use its own ContinuationBuilder so that
2420 // MethodOverloadList can be split correctly.
2421 MethodOverloadListRecord MOLR(Methods);
2422 TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
2423
2424 OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
2425 ContinuationBuilder.writeMemberType(OMR);
2426 }
2427 }
2428
2429 // Create nested classes.
2430 for (const DIType *Nested : Info.NestedTypes) {
2431 NestedTypeRecord R(getTypeIndex(Nested), Nested->getName());
2432 ContinuationBuilder.writeMemberType(R);
2433 MemberCount++;
2434 }
2435
2436 TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
2437 return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
2438 !Info.NestedTypes.empty());
2439 }
2440
getVBPTypeIndex()2441 TypeIndex CodeViewDebug::getVBPTypeIndex() {
2442 if (!VBPType.getIndex()) {
2443 // Make a 'const int *' type.
2444 ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
2445 TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
2446
2447 PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
2448 : PointerKind::Near32;
2449 PointerMode PM = PointerMode::Pointer;
2450 PointerOptions PO = PointerOptions::None;
2451 PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
2452 VBPType = TypeTable.writeLeafType(PR);
2453 }
2454
2455 return VBPType;
2456 }
2457
getTypeIndex(const DIType * Ty,const DIType * ClassTy)2458 TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) {
2459 // The null DIType is the void type. Don't try to hash it.
2460 if (!Ty)
2461 return TypeIndex::Void();
2462
2463 // Check if we've already translated this type. Don't try to do a
2464 // get-or-create style insertion that caches the hash lookup across the
2465 // lowerType call. It will update the TypeIndices map.
2466 auto I = TypeIndices.find({Ty, ClassTy});
2467 if (I != TypeIndices.end())
2468 return I->second;
2469
2470 TypeLoweringScope S(*this);
2471 TypeIndex TI = lowerType(Ty, ClassTy);
2472 return recordTypeIndexForDINode(Ty, TI, ClassTy);
2473 }
2474
2475 codeview::TypeIndex
getTypeIndexForThisPtr(const DIDerivedType * PtrTy,const DISubroutineType * SubroutineTy)2476 CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy,
2477 const DISubroutineType *SubroutineTy) {
2478 assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type &&
2479 "this type must be a pointer type");
2480
2481 PointerOptions Options = PointerOptions::None;
2482 if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference)
2483 Options = PointerOptions::LValueRefThisPointer;
2484 else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference)
2485 Options = PointerOptions::RValueRefThisPointer;
2486
2487 // Check if we've already translated this type. If there is no ref qualifier
2488 // on the function then we look up this pointer type with no associated class
2489 // so that the TypeIndex for the this pointer can be shared with the type
2490 // index for other pointers to this class type. If there is a ref qualifier
2491 // then we lookup the pointer using the subroutine as the parent type.
2492 auto I = TypeIndices.find({PtrTy, SubroutineTy});
2493 if (I != TypeIndices.end())
2494 return I->second;
2495
2496 TypeLoweringScope S(*this);
2497 TypeIndex TI = lowerTypePointer(PtrTy, Options);
2498 return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy);
2499 }
2500
getTypeIndexForReferenceTo(const DIType * Ty)2501 TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) {
2502 PointerRecord PR(getTypeIndex(Ty),
2503 getPointerSizeInBytes() == 8 ? PointerKind::Near64
2504 : PointerKind::Near32,
2505 PointerMode::LValueReference, PointerOptions::None,
2506 Ty->getSizeInBits() / 8);
2507 return TypeTable.writeLeafType(PR);
2508 }
2509
getCompleteTypeIndex(const DIType * Ty)2510 TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) {
2511 // The null DIType is the void type. Don't try to hash it.
2512 if (!Ty)
2513 return TypeIndex::Void();
2514
2515 // Look through typedefs when getting the complete type index. Call
2516 // getTypeIndex on the typdef to ensure that any UDTs are accumulated and are
2517 // emitted only once.
2518 if (Ty->getTag() == dwarf::DW_TAG_typedef)
2519 (void)getTypeIndex(Ty);
2520 while (Ty->getTag() == dwarf::DW_TAG_typedef)
2521 Ty = cast<DIDerivedType>(Ty)->getBaseType();
2522
2523 // If this is a non-record type, the complete type index is the same as the
2524 // normal type index. Just call getTypeIndex.
2525 switch (Ty->getTag()) {
2526 case dwarf::DW_TAG_class_type:
2527 case dwarf::DW_TAG_structure_type:
2528 case dwarf::DW_TAG_union_type:
2529 break;
2530 default:
2531 return getTypeIndex(Ty);
2532 }
2533
2534 const auto *CTy = cast<DICompositeType>(Ty);
2535
2536 TypeLoweringScope S(*this);
2537
2538 // Make sure the forward declaration is emitted first. It's unclear if this
2539 // is necessary, but MSVC does it, and we should follow suit until we can show
2540 // otherwise.
2541 // We only emit a forward declaration for named types.
2542 if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) {
2543 TypeIndex FwdDeclTI = getTypeIndex(CTy);
2544
2545 // Just use the forward decl if we don't have complete type info. This
2546 // might happen if the frontend is using modules and expects the complete
2547 // definition to be emitted elsewhere.
2548 if (CTy->isForwardDecl())
2549 return FwdDeclTI;
2550 }
2551
2552 // Check if we've already translated the complete record type.
2553 // Insert the type with a null TypeIndex to signify that the type is currently
2554 // being lowered.
2555 auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
2556 if (!InsertResult.second)
2557 return InsertResult.first->second;
2558
2559 TypeIndex TI;
2560 switch (CTy->getTag()) {
2561 case dwarf::DW_TAG_class_type:
2562 case dwarf::DW_TAG_structure_type:
2563 TI = lowerCompleteTypeClass(CTy);
2564 break;
2565 case dwarf::DW_TAG_union_type:
2566 TI = lowerCompleteTypeUnion(CTy);
2567 break;
2568 default:
2569 llvm_unreachable("not a record");
2570 }
2571
2572 // Update the type index associated with this CompositeType. This cannot
2573 // use the 'InsertResult' iterator above because it is potentially
2574 // invalidated by map insertions which can occur while lowering the class
2575 // type above.
2576 CompleteTypeIndices[CTy] = TI;
2577 return TI;
2578 }
2579
2580 /// Emit all the deferred complete record types. Try to do this in FIFO order,
2581 /// and do this until fixpoint, as each complete record type typically
2582 /// references
2583 /// many other record types.
emitDeferredCompleteTypes()2584 void CodeViewDebug::emitDeferredCompleteTypes() {
2585 SmallVector<const DICompositeType *, 4> TypesToEmit;
2586 while (!DeferredCompleteTypes.empty()) {
2587 std::swap(DeferredCompleteTypes, TypesToEmit);
2588 for (const DICompositeType *RecordTy : TypesToEmit)
2589 getCompleteTypeIndex(RecordTy);
2590 TypesToEmit.clear();
2591 }
2592 }
2593
emitLocalVariableList(const FunctionInfo & FI,ArrayRef<LocalVariable> Locals)2594 void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI,
2595 ArrayRef<LocalVariable> Locals) {
2596 // Get the sorted list of parameters and emit them first.
2597 SmallVector<const LocalVariable *, 6> Params;
2598 for (const LocalVariable &L : Locals)
2599 if (L.DIVar->isParameter())
2600 Params.push_back(&L);
2601 llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) {
2602 return L->DIVar->getArg() < R->DIVar->getArg();
2603 });
2604 for (const LocalVariable *L : Params)
2605 emitLocalVariable(FI, *L);
2606
2607 // Next emit all non-parameters in the order that we found them.
2608 for (const LocalVariable &L : Locals)
2609 if (!L.DIVar->isParameter())
2610 emitLocalVariable(FI, L);
2611 }
2612
emitLocalVariable(const FunctionInfo & FI,const LocalVariable & Var)2613 void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI,
2614 const LocalVariable &Var) {
2615 // LocalSym record, see SymbolRecord.h for more info.
2616 MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL);
2617
2618 LocalSymFlags Flags = LocalSymFlags::None;
2619 if (Var.DIVar->isParameter())
2620 Flags |= LocalSymFlags::IsParameter;
2621 if (Var.DefRanges.empty())
2622 Flags |= LocalSymFlags::IsOptimizedOut;
2623
2624 OS.AddComment("TypeIndex");
2625 TypeIndex TI = Var.UseReferenceType
2626 ? getTypeIndexForReferenceTo(Var.DIVar->getType())
2627 : getCompleteTypeIndex(Var.DIVar->getType());
2628 OS.EmitIntValue(TI.getIndex(), 4);
2629 OS.AddComment("Flags");
2630 OS.EmitIntValue(static_cast<uint16_t>(Flags), 2);
2631 // Truncate the name so we won't overflow the record length field.
2632 emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
2633 endSymbolRecord(LocalEnd);
2634
2635 // Calculate the on disk prefix of the appropriate def range record. The
2636 // records and on disk formats are described in SymbolRecords.h. BytePrefix
2637 // should be big enough to hold all forms without memory allocation.
2638 SmallString<20> BytePrefix;
2639 for (const LocalVarDefRange &DefRange : Var.DefRanges) {
2640 BytePrefix.clear();
2641 if (DefRange.InMemory) {
2642 int Offset = DefRange.DataOffset;
2643 unsigned Reg = DefRange.CVRegister;
2644
2645 // 32-bit x86 call sequences often use PUSH instructions, which disrupt
2646 // ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
2647 // instead. In frames without stack realignment, $T0 will be the CFA.
2648 if (RegisterId(Reg) == RegisterId::ESP) {
2649 Reg = unsigned(RegisterId::VFRAME);
2650 Offset += FI.OffsetAdjustment;
2651 }
2652
2653 // If we can use the chosen frame pointer for the frame and this isn't a
2654 // sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
2655 // Otherwise, use S_DEFRANGE_REGISTER_REL.
2656 EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU);
2657 if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None &&
2658 (bool(Flags & LocalSymFlags::IsParameter)
2659 ? (EncFP == FI.EncodedParamFramePtrReg)
2660 : (EncFP == FI.EncodedLocalFramePtrReg))) {
2661 DefRangeFramePointerRelHeader DRHdr;
2662 DRHdr.Offset = Offset;
2663 OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2664 } else {
2665 uint16_t RegRelFlags = 0;
2666 if (DefRange.IsSubfield) {
2667 RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
2668 (DefRange.StructOffset
2669 << DefRangeRegisterRelSym::OffsetInParentShift);
2670 }
2671 DefRangeRegisterRelHeader DRHdr;
2672 DRHdr.Register = Reg;
2673 DRHdr.Flags = RegRelFlags;
2674 DRHdr.BasePointerOffset = Offset;
2675 OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2676 }
2677 } else {
2678 assert(DefRange.DataOffset == 0 && "unexpected offset into register");
2679 if (DefRange.IsSubfield) {
2680 DefRangeSubfieldRegisterHeader DRHdr;
2681 DRHdr.Register = DefRange.CVRegister;
2682 DRHdr.MayHaveNoName = 0;
2683 DRHdr.OffsetInParent = DefRange.StructOffset;
2684 OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2685 } else {
2686 DefRangeRegisterHeader DRHdr;
2687 DRHdr.Register = DefRange.CVRegister;
2688 DRHdr.MayHaveNoName = 0;
2689 OS.EmitCVDefRangeDirective(DefRange.Ranges, DRHdr);
2690 }
2691 }
2692 }
2693 }
2694
emitLexicalBlockList(ArrayRef<LexicalBlock * > Blocks,const FunctionInfo & FI)2695 void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
2696 const FunctionInfo& FI) {
2697 for (LexicalBlock *Block : Blocks)
2698 emitLexicalBlock(*Block, FI);
2699 }
2700
2701 /// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
2702 /// lexical block scope.
emitLexicalBlock(const LexicalBlock & Block,const FunctionInfo & FI)2703 void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
2704 const FunctionInfo& FI) {
2705 MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32);
2706 OS.AddComment("PtrParent");
2707 OS.EmitIntValue(0, 4); // PtrParent
2708 OS.AddComment("PtrEnd");
2709 OS.EmitIntValue(0, 4); // PtrEnd
2710 OS.AddComment("Code size");
2711 OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size
2712 OS.AddComment("Function section relative address");
2713 OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset
2714 OS.AddComment("Function section index");
2715 OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol
2716 OS.AddComment("Lexical block name");
2717 emitNullTerminatedSymbolName(OS, Block.Name); // Name
2718 endSymbolRecord(RecordEnd);
2719
2720 // Emit variables local to this lexical block.
2721 emitLocalVariableList(FI, Block.Locals);
2722 emitGlobalVariableList(Block.Globals);
2723
2724 // Emit lexical blocks contained within this block.
2725 emitLexicalBlockList(Block.Children, FI);
2726
2727 // Close the lexical block scope.
2728 emitEndSymbolRecord(SymbolKind::S_END);
2729 }
2730
2731 /// Convenience routine for collecting lexical block information for a list
2732 /// of lexical scopes.
collectLexicalBlockInfo(SmallVectorImpl<LexicalScope * > & Scopes,SmallVectorImpl<LexicalBlock * > & Blocks,SmallVectorImpl<LocalVariable> & Locals,SmallVectorImpl<CVGlobalVariable> & Globals)2733 void CodeViewDebug::collectLexicalBlockInfo(
2734 SmallVectorImpl<LexicalScope *> &Scopes,
2735 SmallVectorImpl<LexicalBlock *> &Blocks,
2736 SmallVectorImpl<LocalVariable> &Locals,
2737 SmallVectorImpl<CVGlobalVariable> &Globals) {
2738 for (LexicalScope *Scope : Scopes)
2739 collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals);
2740 }
2741
2742 /// Populate the lexical blocks and local variable lists of the parent with
2743 /// information about the specified lexical scope.
collectLexicalBlockInfo(LexicalScope & Scope,SmallVectorImpl<LexicalBlock * > & ParentBlocks,SmallVectorImpl<LocalVariable> & ParentLocals,SmallVectorImpl<CVGlobalVariable> & ParentGlobals)2744 void CodeViewDebug::collectLexicalBlockInfo(
2745 LexicalScope &Scope,
2746 SmallVectorImpl<LexicalBlock *> &ParentBlocks,
2747 SmallVectorImpl<LocalVariable> &ParentLocals,
2748 SmallVectorImpl<CVGlobalVariable> &ParentGlobals) {
2749 if (Scope.isAbstractScope())
2750 return;
2751
2752 // Gather information about the lexical scope including local variables,
2753 // global variables, and address ranges.
2754 bool IgnoreScope = false;
2755 auto LI = ScopeVariables.find(&Scope);
2756 SmallVectorImpl<LocalVariable> *Locals =
2757 LI != ScopeVariables.end() ? &LI->second : nullptr;
2758 auto GI = ScopeGlobals.find(Scope.getScopeNode());
2759 SmallVectorImpl<CVGlobalVariable> *Globals =
2760 GI != ScopeGlobals.end() ? GI->second.get() : nullptr;
2761 const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
2762 const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();
2763
2764 // Ignore lexical scopes which do not contain variables.
2765 if (!Locals && !Globals)
2766 IgnoreScope = true;
2767
2768 // Ignore lexical scopes which are not lexical blocks.
2769 if (!DILB)
2770 IgnoreScope = true;
2771
2772 // Ignore scopes which have too many address ranges to represent in the
2773 // current CodeView format or do not have a valid address range.
2774 //
2775 // For lexical scopes with multiple address ranges you may be tempted to
2776 // construct a single range covering every instruction where the block is
2777 // live and everything in between. Unfortunately, Visual Studio only
2778 // displays variables from the first matching lexical block scope. If the
2779 // first lexical block contains exception handling code or cold code which
2780 // is moved to the bottom of the routine creating a single range covering
2781 // nearly the entire routine, then it will hide all other lexical blocks
2782 // and the variables they contain.
2783 if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second))
2784 IgnoreScope = true;
2785
2786 if (IgnoreScope) {
2787 // This scope can be safely ignored and eliminating it will reduce the
2788 // size of the debug information. Be sure to collect any variable and scope
2789 // information from the this scope or any of its children and collapse them
2790 // into the parent scope.
2791 if (Locals)
2792 ParentLocals.append(Locals->begin(), Locals->end());
2793 if (Globals)
2794 ParentGlobals.append(Globals->begin(), Globals->end());
2795 collectLexicalBlockInfo(Scope.getChildren(),
2796 ParentBlocks,
2797 ParentLocals,
2798 ParentGlobals);
2799 return;
2800 }
2801
2802 // Create a new CodeView lexical block for this lexical scope. If we've
2803 // seen this DILexicalBlock before then the scope tree is malformed and
2804 // we can handle this gracefully by not processing it a second time.
2805 auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
2806 if (!BlockInsertion.second)
2807 return;
2808
2809 // Create a lexical block containing the variables and collect the the
2810 // lexical block information for the children.
2811 const InsnRange &Range = Ranges.front();
2812 assert(Range.first && Range.second);
2813 LexicalBlock &Block = BlockInsertion.first->second;
2814 Block.Begin = getLabelBeforeInsn(Range.first);
2815 Block.End = getLabelAfterInsn(Range.second);
2816 assert(Block.Begin && "missing label for scope begin");
2817 assert(Block.End && "missing label for scope end");
2818 Block.Name = DILB->getName();
2819 if (Locals)
2820 Block.Locals = std::move(*Locals);
2821 if (Globals)
2822 Block.Globals = std::move(*Globals);
2823 ParentBlocks.push_back(&Block);
2824 collectLexicalBlockInfo(Scope.getChildren(),
2825 Block.Children,
2826 Block.Locals,
2827 Block.Globals);
2828 }
2829
endFunctionImpl(const MachineFunction * MF)2830 void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
2831 const Function &GV = MF->getFunction();
2832 assert(FnDebugInfo.count(&GV));
2833 assert(CurFn == FnDebugInfo[&GV].get());
2834
2835 collectVariableInfo(GV.getSubprogram());
2836
2837 // Build the lexical block structure to emit for this routine.
2838 if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
2839 collectLexicalBlockInfo(*CFS,
2840 CurFn->ChildBlocks,
2841 CurFn->Locals,
2842 CurFn->Globals);
2843
2844 // Clear the scope and variable information from the map which will not be
2845 // valid after we have finished processing this routine. This also prepares
2846 // the map for the subsequent routine.
2847 ScopeVariables.clear();
2848
2849 // Don't emit anything if we don't have any line tables.
2850 // Thunks are compiler-generated and probably won't have source correlation.
2851 if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) {
2852 FnDebugInfo.erase(&GV);
2853 CurFn = nullptr;
2854 return;
2855 }
2856
2857 // Find heap alloc sites and add to list.
2858 for (const auto &MBB : *MF) {
2859 for (const auto &MI : MBB) {
2860 if (MDNode *MD = MI.getHeapAllocMarker()) {
2861 CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI),
2862 getLabelAfterInsn(&MI),
2863 dyn_cast<DIType>(MD)));
2864 }
2865 }
2866 }
2867
2868 CurFn->Annotations = MF->getCodeViewAnnotations();
2869
2870 CurFn->End = Asm->getFunctionEnd();
2871
2872 CurFn = nullptr;
2873 }
2874
2875 // Usable locations are valid with non-zero line numbers. A line number of zero
2876 // corresponds to optimized code that doesn't have a distinct source location.
2877 // In this case, we try to use the previous or next source location depending on
2878 // the context.
isUsableDebugLoc(DebugLoc DL)2879 static bool isUsableDebugLoc(DebugLoc DL) {
2880 return DL && DL.getLine() != 0;
2881 }
2882
beginInstruction(const MachineInstr * MI)2883 void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
2884 DebugHandlerBase::beginInstruction(MI);
2885
2886 // Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
2887 if (!Asm || !CurFn || MI->isDebugInstr() ||
2888 MI->getFlag(MachineInstr::FrameSetup))
2889 return;
2890
2891 // If the first instruction of a new MBB has no location, find the first
2892 // instruction with a location and use that.
2893 DebugLoc DL = MI->getDebugLoc();
2894 if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) {
2895 for (const auto &NextMI : *MI->getParent()) {
2896 if (NextMI.isDebugInstr())
2897 continue;
2898 DL = NextMI.getDebugLoc();
2899 if (isUsableDebugLoc(DL))
2900 break;
2901 }
2902 // FIXME: Handle the case where the BB has no valid locations. This would
2903 // probably require doing a real dataflow analysis.
2904 }
2905 PrevInstBB = MI->getParent();
2906
2907 // If we still don't have a debug location, don't record a location.
2908 if (!isUsableDebugLoc(DL))
2909 return;
2910
2911 maybeRecordLocation(DL, Asm->MF);
2912 }
2913
beginCVSubsection(DebugSubsectionKind Kind)2914 MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
2915 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2916 *EndLabel = MMI->getContext().createTempSymbol();
2917 OS.EmitIntValue(unsigned(Kind), 4);
2918 OS.AddComment("Subsection size");
2919 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
2920 OS.EmitLabel(BeginLabel);
2921 return EndLabel;
2922 }
2923
endCVSubsection(MCSymbol * EndLabel)2924 void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
2925 OS.EmitLabel(EndLabel);
2926 // Every subsection must be aligned to a 4-byte boundary.
2927 OS.EmitValueToAlignment(4);
2928 }
2929
getSymbolName(SymbolKind SymKind)2930 static StringRef getSymbolName(SymbolKind SymKind) {
2931 for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames())
2932 if (EE.Value == SymKind)
2933 return EE.Name;
2934 return "";
2935 }
2936
beginSymbolRecord(SymbolKind SymKind)2937 MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) {
2938 MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
2939 *EndLabel = MMI->getContext().createTempSymbol();
2940 OS.AddComment("Record length");
2941 OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
2942 OS.EmitLabel(BeginLabel);
2943 if (OS.isVerboseAsm())
2944 OS.AddComment("Record kind: " + getSymbolName(SymKind));
2945 OS.EmitIntValue(unsigned(SymKind), 2);
2946 return EndLabel;
2947 }
2948
endSymbolRecord(MCSymbol * SymEnd)2949 void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) {
2950 // MSVC does not pad out symbol records to four bytes, but LLVM does to avoid
2951 // an extra copy of every symbol record in LLD. This increases object file
2952 // size by less than 1% in the clang build, and is compatible with the Visual
2953 // C++ linker.
2954 OS.EmitValueToAlignment(4);
2955 OS.EmitLabel(SymEnd);
2956 }
2957
emitEndSymbolRecord(SymbolKind EndKind)2958 void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) {
2959 OS.AddComment("Record length");
2960 OS.EmitIntValue(2, 2);
2961 if (OS.isVerboseAsm())
2962 OS.AddComment("Record kind: " + getSymbolName(EndKind));
2963 OS.EmitIntValue(unsigned(EndKind), 2); // Record Kind
2964 }
2965
emitDebugInfoForUDTs(ArrayRef<std::pair<std::string,const DIType * >> UDTs)2966 void CodeViewDebug::emitDebugInfoForUDTs(
2967 ArrayRef<std::pair<std::string, const DIType *>> UDTs) {
2968 for (const auto &UDT : UDTs) {
2969 const DIType *T = UDT.second;
2970 assert(shouldEmitUdt(T));
2971
2972 MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT);
2973 OS.AddComment("Type");
2974 OS.EmitIntValue(getCompleteTypeIndex(T).getIndex(), 4);
2975 emitNullTerminatedSymbolName(OS, UDT.first);
2976 endSymbolRecord(UDTRecordEnd);
2977 }
2978 }
2979
collectGlobalVariableInfo()2980 void CodeViewDebug::collectGlobalVariableInfo() {
2981 DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
2982 GlobalMap;
2983 for (const GlobalVariable &GV : MMI->getModule()->globals()) {
2984 SmallVector<DIGlobalVariableExpression *, 1> GVEs;
2985 GV.getDebugInfo(GVEs);
2986 for (const auto *GVE : GVEs)
2987 GlobalMap[GVE] = &GV;
2988 }
2989
2990 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
2991 for (const MDNode *Node : CUs->operands()) {
2992 const auto *CU = cast<DICompileUnit>(Node);
2993 for (const auto *GVE : CU->getGlobalVariables()) {
2994 const DIGlobalVariable *DIGV = GVE->getVariable();
2995 const DIExpression *DIE = GVE->getExpression();
2996
2997 // Emit constant global variables in a global symbol section.
2998 if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) {
2999 CVGlobalVariable CVGV = {DIGV, DIE};
3000 GlobalVariables.emplace_back(std::move(CVGV));
3001 }
3002
3003 const auto *GV = GlobalMap.lookup(GVE);
3004 if (!GV || GV->isDeclarationForLinker())
3005 continue;
3006
3007 DIScope *Scope = DIGV->getScope();
3008 SmallVector<CVGlobalVariable, 1> *VariableList;
3009 if (Scope && isa<DILocalScope>(Scope)) {
3010 // Locate a global variable list for this scope, creating one if
3011 // necessary.
3012 auto Insertion = ScopeGlobals.insert(
3013 {Scope, std::unique_ptr<GlobalVariableList>()});
3014 if (Insertion.second)
3015 Insertion.first->second = std::make_unique<GlobalVariableList>();
3016 VariableList = Insertion.first->second.get();
3017 } else if (GV->hasComdat())
3018 // Emit this global variable into a COMDAT section.
3019 VariableList = &ComdatVariables;
3020 else
3021 // Emit this global variable in a single global symbol section.
3022 VariableList = &GlobalVariables;
3023 CVGlobalVariable CVGV = {DIGV, GV};
3024 VariableList->emplace_back(std::move(CVGV));
3025 }
3026 }
3027 }
3028
emitDebugInfoForGlobals()3029 void CodeViewDebug::emitDebugInfoForGlobals() {
3030 // First, emit all globals that are not in a comdat in a single symbol
3031 // substream. MSVC doesn't like it if the substream is empty, so only open
3032 // it if we have at least one global to emit.
3033 switchToDebugSectionForSymbol(nullptr);
3034 if (!GlobalVariables.empty()) {
3035 OS.AddComment("Symbol subsection for globals");
3036 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3037 emitGlobalVariableList(GlobalVariables);
3038 endCVSubsection(EndLabel);
3039 }
3040
3041 // Second, emit each global that is in a comdat into its own .debug$S
3042 // section along with its own symbol substream.
3043 for (const CVGlobalVariable &CVGV : ComdatVariables) {
3044 const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>();
3045 MCSymbol *GVSym = Asm->getSymbol(GV);
3046 OS.AddComment("Symbol subsection for " +
3047 Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
3048 switchToDebugSectionForSymbol(GVSym);
3049 MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
3050 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3051 emitDebugInfoForGlobal(CVGV);
3052 endCVSubsection(EndLabel);
3053 }
3054 }
3055
emitDebugInfoForRetainedTypes()3056 void CodeViewDebug::emitDebugInfoForRetainedTypes() {
3057 NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
3058 for (const MDNode *Node : CUs->operands()) {
3059 for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
3060 if (DIType *RT = dyn_cast<DIType>(Ty)) {
3061 getTypeIndex(RT);
3062 // FIXME: Add to global/local DTU list.
3063 }
3064 }
3065 }
3066 }
3067
3068 // Emit each global variable in the specified array.
emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals)3069 void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) {
3070 for (const CVGlobalVariable &CVGV : Globals) {
3071 // FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
3072 emitDebugInfoForGlobal(CVGV);
3073 }
3074 }
3075
emitDebugInfoForGlobal(const CVGlobalVariable & CVGV)3076 void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) {
3077 const DIGlobalVariable *DIGV = CVGV.DIGV;
3078 if (const GlobalVariable *GV =
3079 CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) {
3080 // DataSym record, see SymbolRecord.h for more info. Thread local data
3081 // happens to have the same format as global data.
3082 MCSymbol *GVSym = Asm->getSymbol(GV);
3083 SymbolKind DataSym = GV->isThreadLocal()
3084 ? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32
3085 : SymbolKind::S_GTHREAD32)
3086 : (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32
3087 : SymbolKind::S_GDATA32);
3088 MCSymbol *DataEnd = beginSymbolRecord(DataSym);
3089 OS.AddComment("Type");
3090 OS.EmitIntValue(getCompleteTypeIndex(DIGV->getType()).getIndex(), 4);
3091 OS.AddComment("DataOffset");
3092 OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
3093 OS.AddComment("Segment");
3094 OS.EmitCOFFSectionIndex(GVSym);
3095 OS.AddComment("Name");
3096 const unsigned LengthOfDataRecord = 12;
3097 emitNullTerminatedSymbolName(OS, DIGV->getName(), LengthOfDataRecord);
3098 endSymbolRecord(DataEnd);
3099 } else {
3100 // FIXME: Currently this only emits the global variables in the IR metadata.
3101 // This should also emit enums and static data members.
3102 const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>();
3103 assert(DIE->isConstant() &&
3104 "Global constant variables must contain a constant expression.");
3105 uint64_t Val = DIE->getElement(1);
3106
3107 MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT);
3108 OS.AddComment("Type");
3109 OS.EmitIntValue(getTypeIndex(DIGV->getType()).getIndex(), 4);
3110 OS.AddComment("Value");
3111
3112 // Encoded integers shouldn't need more than 10 bytes.
3113 uint8_t data[10];
3114 BinaryStreamWriter Writer(data, llvm::support::endianness::little);
3115 CodeViewRecordIO IO(Writer);
3116 cantFail(IO.mapEncodedInteger(Val));
3117 StringRef SRef((char *)data, Writer.getOffset());
3118 OS.EmitBinaryData(SRef);
3119
3120 OS.AddComment("Name");
3121 const DIScope *Scope = DIGV->getScope();
3122 // For static data members, get the scope from the declaration.
3123 if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>(
3124 DIGV->getRawStaticDataMemberDeclaration()))
3125 Scope = MemberDecl->getScope();
3126 emitNullTerminatedSymbolName(OS,
3127 getFullyQualifiedName(Scope, DIGV->getName()));
3128 endSymbolRecord(SConstantEnd);
3129 }
3130 }
3131