1 /*
2 * Copyright 2006 The Android Open Source Project
3 *
4 * Use of this source code is governed by a BSD-style license that can be
5 * found in the LICENSE file.
6 */
7
8 #include "include/core/SkPaint.h"
9 #include "src/core/SkScalerContext.h"
10
11 #include "include/core/SkFontMetrics.h"
12 #include "include/core/SkMaskFilter.h"
13 #include "include/core/SkPathEffect.h"
14 #include "include/core/SkStrokeRec.h"
15 #include "include/private/SkColorData.h"
16 #include "include/private/SkTo.h"
17 #include "src/core/SkAutoMalloc.h"
18 #include "src/core/SkAutoPixmapStorage.h"
19 #include "src/core/SkDescriptor.h"
20 #include "src/core/SkDraw.h"
21 #include "src/core/SkFontPriv.h"
22 #include "src/core/SkGlyph.h"
23 #include "src/core/SkMaskGamma.h"
24 #include "src/core/SkMatrixProvider.h"
25 #include "src/core/SkPaintPriv.h"
26 #include "src/core/SkPathPriv.h"
27 #include "src/core/SkRasterClip.h"
28 #include "src/core/SkReadBuffer.h"
29 #include "src/core/SkRectPriv.h"
30 #include "src/core/SkStroke.h"
31 #include "src/core/SkSurfacePriv.h"
32 #include "src/core/SkTextFormatParams.h"
33 #include "src/core/SkWriteBuffer.h"
34 #include "src/utils/SkMatrix22.h"
35 #include <new>
36
37 ///////////////////////////////////////////////////////////////////////////////
38
39 #ifdef SK_DEBUG
40 #define DUMP_RECx
41 #endif
42
PreprocessRec(const SkTypeface & typeface,const SkScalerContextEffects & effects,const SkDescriptor & desc)43 SkScalerContextRec SkScalerContext::PreprocessRec(const SkTypeface& typeface,
44 const SkScalerContextEffects& effects,
45 const SkDescriptor& desc) {
46 SkScalerContextRec rec =
47 *static_cast<const SkScalerContextRec*>(desc.findEntry(kRec_SkDescriptorTag, nullptr));
48
49 // Allow the typeface to adjust the rec.
50 typeface.onFilterRec(&rec);
51
52 if (effects.fMaskFilter) {
53 // Pre-blend is not currently applied to filtered text.
54 // The primary filter is blur, for which contrast makes no sense,
55 // and for which the destination guess error is more visible.
56 // Also, all existing users of blur have calibrated for linear.
57 rec.ignorePreBlend();
58 }
59
60 SkColor lumColor = rec.getLuminanceColor();
61
62 if (rec.fMaskFormat == SkMask::kA8_Format) {
63 U8CPU lum = SkComputeLuminance(SkColorGetR(lumColor),
64 SkColorGetG(lumColor),
65 SkColorGetB(lumColor));
66 lumColor = SkColorSetRGB(lum, lum, lum);
67 }
68
69 // TODO: remove CanonicalColor when we to fix up Chrome layout tests.
70 rec.setLuminanceColor(lumColor);
71
72 return rec;
73 }
74
SkScalerContext(sk_sp<SkTypeface> typeface,const SkScalerContextEffects & effects,const SkDescriptor * desc)75 SkScalerContext::SkScalerContext(sk_sp<SkTypeface> typeface, const SkScalerContextEffects& effects,
76 const SkDescriptor* desc)
77 : fRec(PreprocessRec(*typeface, effects, *desc))
78 , fTypeface(std::move(typeface))
79 , fPathEffect(sk_ref_sp(effects.fPathEffect))
80 , fMaskFilter(sk_ref_sp(effects.fMaskFilter))
81 // Initialize based on our settings. Subclasses can also force this.
82 , fGenerateImageFromPath(fRec.fFrameWidth >= 0 || fPathEffect != nullptr)
83
84 , fPreBlend(fMaskFilter ? SkMaskGamma::PreBlend() : SkScalerContext::GetMaskPreBlend(fRec))
85 {
86 #ifdef DUMP_REC
87 SkDebugf("SkScalerContext checksum %x count %d length %d\n",
88 desc->getChecksum(), desc->getCount(), desc->getLength());
89 SkDebugf("%s", fRec.dump().c_str());
90 SkDebugf(" effects %x\n", desc->findEntry(kEffects_SkDescriptorTag, nullptr));
91 #endif
92 }
93
~SkScalerContext()94 SkScalerContext::~SkScalerContext() {}
95
96 /**
97 * In order to call cachedDeviceLuminance, cachedPaintLuminance, or
98 * cachedMaskGamma the caller must hold the mask_gamma_cache_mutex and continue
99 * to hold it until the returned pointer is refed or forgotten.
100 */
mask_gamma_cache_mutex()101 static SkMutex& mask_gamma_cache_mutex() {
102 static SkMutex& mutex = *(new SkMutex);
103 return mutex;
104 }
105
106 static SkMaskGamma* gLinearMaskGamma = nullptr;
107 static SkMaskGamma* gMaskGamma = nullptr;
108 static SkScalar gContrast = SK_ScalarMin;
109 static SkScalar gPaintGamma = SK_ScalarMin;
110 static SkScalar gDeviceGamma = SK_ScalarMin;
111
112 /**
113 * The caller must hold the mask_gamma_cache_mutex() and continue to hold it until
114 * the returned SkMaskGamma pointer is refed or forgotten.
115 */
cached_mask_gamma(SkScalar contrast,SkScalar paintGamma,SkScalar deviceGamma)116 static const SkMaskGamma& cached_mask_gamma(SkScalar contrast, SkScalar paintGamma,
117 SkScalar deviceGamma) {
118 mask_gamma_cache_mutex().assertHeld();
119 if (0 == contrast && SK_Scalar1 == paintGamma && SK_Scalar1 == deviceGamma) {
120 if (nullptr == gLinearMaskGamma) {
121 gLinearMaskGamma = new SkMaskGamma;
122 }
123 return *gLinearMaskGamma;
124 }
125 if (gContrast != contrast || gPaintGamma != paintGamma || gDeviceGamma != deviceGamma) {
126 SkSafeUnref(gMaskGamma);
127 gMaskGamma = new SkMaskGamma(contrast, paintGamma, deviceGamma);
128 gContrast = contrast;
129 gPaintGamma = paintGamma;
130 gDeviceGamma = deviceGamma;
131 }
132 return *gMaskGamma;
133 }
134
135 /**
136 * Expands fDeviceGamma, fPaintGamma, fContrast, and fLumBits into a mask pre-blend.
137 */
GetMaskPreBlend(const SkScalerContextRec & rec)138 SkMaskGamma::PreBlend SkScalerContext::GetMaskPreBlend(const SkScalerContextRec& rec) {
139 SkAutoMutexExclusive ama(mask_gamma_cache_mutex());
140
141 const SkMaskGamma& maskGamma = cached_mask_gamma(rec.getContrast(),
142 rec.getPaintGamma(),
143 rec.getDeviceGamma());
144
145 // TODO: remove CanonicalColor when we to fix up Chrome layout tests.
146 return maskGamma.preBlend(rec.getLuminanceColor());
147 }
148
GetGammaLUTSize(SkScalar contrast,SkScalar paintGamma,SkScalar deviceGamma,int * width,int * height)149 size_t SkScalerContext::GetGammaLUTSize(SkScalar contrast, SkScalar paintGamma,
150 SkScalar deviceGamma, int* width, int* height) {
151 SkAutoMutexExclusive ama(mask_gamma_cache_mutex());
152 const SkMaskGamma& maskGamma = cached_mask_gamma(contrast,
153 paintGamma,
154 deviceGamma);
155
156 maskGamma.getGammaTableDimensions(width, height);
157 size_t size = (*width)*(*height)*sizeof(uint8_t);
158
159 return size;
160 }
161
GetGammaLUTData(SkScalar contrast,SkScalar paintGamma,SkScalar deviceGamma,uint8_t * data)162 bool SkScalerContext::GetGammaLUTData(SkScalar contrast, SkScalar paintGamma, SkScalar deviceGamma,
163 uint8_t* data) {
164 SkAutoMutexExclusive ama(mask_gamma_cache_mutex());
165 const SkMaskGamma& maskGamma = cached_mask_gamma(contrast,
166 paintGamma,
167 deviceGamma);
168 const uint8_t* gammaTables = maskGamma.getGammaTables();
169 if (!gammaTables) {
170 return false;
171 }
172
173 int width, height;
174 maskGamma.getGammaTableDimensions(&width, &height);
175 size_t size = width*height * sizeof(uint8_t);
176 memcpy(data, gammaTables, size);
177 return true;
178 }
179
makeGlyph(SkPackedGlyphID packedID)180 SkGlyph SkScalerContext::makeGlyph(SkPackedGlyphID packedID) {
181 return internalMakeGlyph(packedID, fRec.fMaskFormat);
182 }
183
internalMakeGlyph(SkPackedGlyphID packedID,SkMask::Format format)184 SkGlyph SkScalerContext::internalMakeGlyph(SkPackedGlyphID packedID, SkMask::Format format) {
185 SkGlyph glyph{packedID};
186 glyph.fMaskFormat = format;
187 bool generatingImageFromPath = fGenerateImageFromPath;
188 if (!generatingImageFromPath) {
189 generateMetrics(&glyph);
190 } else {
191 SkPath devPath;
192 bool hairline;
193 generatingImageFromPath = this->internalGetPath(glyph.getPackedID(), &devPath, &hairline);
194 if (!generatingImageFromPath) {
195 generateMetrics(&glyph);
196 } else {
197 if (!generateAdvance(&glyph)) {
198 generateMetrics(&glyph);
199 }
200
201 // If we are going to create the mask, then we cannot keep the color
202 if (SkMask::kARGB32_Format == glyph.fMaskFormat) {
203 glyph.fMaskFormat = SkMask::kA8_Format;
204 }
205
206 const SkIRect ir = devPath.getBounds().roundOut();
207 if (ir.isEmpty() || !SkRectPriv::Is16Bit(ir)) {
208 goto SK_ERROR;
209 }
210 glyph.fLeft = ir.fLeft;
211 glyph.fTop = ir.fTop;
212 glyph.fWidth = SkToU16(ir.width());
213 glyph.fHeight = SkToU16(ir.height());
214
215 const bool a8FromLCD = fRec.fFlags & SkScalerContext::kGenA8FromLCD_Flag;
216 const bool fromLCD = (glyph.fMaskFormat == SkMask::kLCD16_Format) ||
217 (glyph.fMaskFormat == SkMask::kA8_Format && a8FromLCD);
218 const bool notEmptyAndFromLCD = 0 < glyph.fWidth && fromLCD;
219 const bool verticalLCD = fRec.fFlags & SkScalerContext::kLCD_Vertical_Flag;
220
221 const bool needExtraWidth = (notEmptyAndFromLCD && !verticalLCD) || hairline;
222 const bool needExtraHeight = (notEmptyAndFromLCD && verticalLCD) || hairline;
223 if (needExtraWidth) {
224 glyph.fWidth += 2;
225 glyph.fLeft -= 1;
226 }
227 if (needExtraHeight) {
228 glyph.fHeight += 2;
229 glyph.fTop -= 1;
230 }
231 }
232 }
233
234 // if either dimension is empty, zap the image bounds of the glyph
235 if (0 == glyph.fWidth || 0 == glyph.fHeight) {
236 glyph.fWidth = 0;
237 glyph.fHeight = 0;
238 glyph.fTop = 0;
239 glyph.fLeft = 0;
240 glyph.fMaskFormat = SkMask::kBW_Format;
241 return glyph;
242 }
243
244 if (fMaskFilter) {
245 SkMask src = glyph.mask(),
246 dst;
247 SkMatrix matrix;
248
249 fRec.getMatrixFrom2x2(&matrix);
250
251 src.fImage = nullptr; // only want the bounds from the filter
252 if (as_MFB(fMaskFilter)->filterMask(&dst, src, matrix, nullptr)) {
253 if (dst.fBounds.isEmpty() || !SkRectPriv::Is16Bit(dst.fBounds)) {
254 goto SK_ERROR;
255 }
256 SkASSERT(dst.fImage == nullptr);
257 glyph.fLeft = dst.fBounds.fLeft;
258 glyph.fTop = dst.fBounds.fTop;
259 glyph.fWidth = SkToU16(dst.fBounds.width());
260 glyph.fHeight = SkToU16(dst.fBounds.height());
261 glyph.fMaskFormat = dst.fFormat;
262 }
263 }
264 return glyph;
265
266 SK_ERROR:
267 // draw nothing 'cause we failed
268 glyph.fLeft = 0;
269 glyph.fTop = 0;
270 glyph.fWidth = 0;
271 glyph.fHeight = 0;
272 glyph.fMaskFormat = fRec.fMaskFormat;
273 return glyph;
274 }
275
276 #define SK_SHOW_TEXT_BLIT_COVERAGE 0
277
applyLUTToA8Mask(const SkMask & mask,const uint8_t * lut)278 static void applyLUTToA8Mask(const SkMask& mask, const uint8_t* lut) {
279 uint8_t* SK_RESTRICT dst = (uint8_t*)mask.fImage;
280 unsigned rowBytes = mask.fRowBytes;
281
282 for (int y = mask.fBounds.height() - 1; y >= 0; --y) {
283 for (int x = mask.fBounds.width() - 1; x >= 0; --x) {
284 dst[x] = lut[dst[x]];
285 }
286 dst += rowBytes;
287 }
288 }
289
pack4xHToMask(const SkPixmap & src,const SkMask & dst,const SkMaskGamma::PreBlend & maskPreBlend,const bool doBGR,const bool doVert)290 static void pack4xHToMask(const SkPixmap& src, const SkMask& dst,
291 const SkMaskGamma::PreBlend& maskPreBlend,
292 const bool doBGR, const bool doVert) {
293 #define SAMPLES_PER_PIXEL 4
294 #define LCD_PER_PIXEL 3
295 SkASSERT(kAlpha_8_SkColorType == src.colorType());
296
297 const bool toA8 = SkMask::kA8_Format == dst.fFormat;
298 SkASSERT(SkMask::kLCD16_Format == dst.fFormat || toA8);
299
300 // doVert in this function means swap x and y when writing to dst.
301 if (doVert) {
302 SkASSERT(src.width() == (dst.fBounds.height() - 2) * 4);
303 SkASSERT(src.height() == dst.fBounds.width());
304 } else {
305 SkASSERT(src.width() == (dst.fBounds.width() - 2) * 4);
306 SkASSERT(src.height() == dst.fBounds.height());
307 }
308
309 const int sample_width = src.width();
310 const int height = src.height();
311
312 uint8_t* dstImage = dst.fImage;
313 size_t dstRB = dst.fRowBytes;
314 // An N tap FIR is defined by
315 // out[n] = coeff[0]*x[n] + coeff[1]*x[n-1] + ... + coeff[N]*x[n-N]
316 // or
317 // out[n] = sum(i, 0, N, coeff[i]*x[n-i])
318
319 // The strategy is to use one FIR (different coefficients) for each of r, g, and b.
320 // This means using every 4th FIR output value of each FIR and discarding the rest.
321 // The FIRs are aligned, and the coefficients reach 5 samples to each side of their 'center'.
322 // (For r and b this is technically incorrect, but the coeffs outside round to zero anyway.)
323
324 // These are in some fixed point repesentation.
325 // Adding up to more than one simulates ink spread.
326 // For implementation reasons, these should never add up to more than two.
327
328 // Coefficients determined by a gausian where 5 samples = 3 std deviations (0x110 'contrast').
329 // Calculated using tools/generate_fir_coeff.py
330 // With this one almost no fringing is ever seen, but it is imperceptibly blurry.
331 // The lcd smoothed text is almost imperceptibly different from gray,
332 // but is still sharper on small stems and small rounded corners than gray.
333 // This also seems to be about as wide as one can get and only have a three pixel kernel.
334 // TODO: calculate these at runtime so parameters can be adjusted (esp contrast).
335 static const unsigned int coefficients[LCD_PER_PIXEL][SAMPLES_PER_PIXEL*3] = {
336 //The red subpixel is centered inside the first sample (at 1/6 pixel), and is shifted.
337 { 0x03, 0x0b, 0x1c, 0x33, 0x40, 0x39, 0x24, 0x10, 0x05, 0x01, 0x00, 0x00, },
338 //The green subpixel is centered between two samples (at 1/2 pixel), so is symetric
339 { 0x00, 0x02, 0x08, 0x16, 0x2b, 0x3d, 0x3d, 0x2b, 0x16, 0x08, 0x02, 0x00, },
340 //The blue subpixel is centered inside the last sample (at 5/6 pixel), and is shifted.
341 { 0x00, 0x00, 0x01, 0x05, 0x10, 0x24, 0x39, 0x40, 0x33, 0x1c, 0x0b, 0x03, },
342 };
343
344 size_t dstPB = toA8 ? sizeof(uint8_t) : sizeof(uint16_t);
345 for (int y = 0; y < height; ++y) {
346 uint8_t* dstP;
347 size_t dstPDelta;
348 if (doVert) {
349 dstP = SkTAddOffset<uint8_t>(dstImage, y * dstPB);
350 dstPDelta = dstRB;
351 } else {
352 dstP = SkTAddOffset<uint8_t>(dstImage, y * dstRB);
353 dstPDelta = dstPB;
354 }
355
356 const uint8_t* srcP = src.addr8(0, y);
357
358 // TODO: this fir filter implementation is straight forward, but slow.
359 // It should be possible to make it much faster.
360 for (int sample_x = -4; sample_x < sample_width + 4; sample_x += 4) {
361 int fir[LCD_PER_PIXEL] = { 0 };
362 for (int sample_index = std::max(0, sample_x - 4), coeff_index = sample_index - (sample_x - 4)
363 ; sample_index < std::min(sample_x + 8, sample_width)
364 ; ++sample_index, ++coeff_index)
365 {
366 int sample_value = srcP[sample_index];
367 for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) {
368 fir[subpxl_index] += coefficients[subpxl_index][coeff_index] * sample_value;
369 }
370 }
371 for (int subpxl_index = 0; subpxl_index < LCD_PER_PIXEL; ++subpxl_index) {
372 fir[subpxl_index] /= 0x100;
373 fir[subpxl_index] = std::min(fir[subpxl_index], 255);
374 }
375
376 U8CPU r, g, b;
377 if (doBGR) {
378 r = fir[2];
379 g = fir[1];
380 b = fir[0];
381 } else {
382 r = fir[0];
383 g = fir[1];
384 b = fir[2];
385 }
386 #if SK_SHOW_TEXT_BLIT_COVERAGE
387 r = std::max(r, 10); g = std::max(g, 10); b = std::max(b, 10);
388 #endif
389 if (toA8) {
390 U8CPU a = (r + g + b) / 3;
391 if (maskPreBlend.isApplicable()) {
392 a = maskPreBlend.fG[a];
393 }
394 *dstP = a;
395 } else {
396 if (maskPreBlend.isApplicable()) {
397 r = maskPreBlend.fR[r];
398 g = maskPreBlend.fG[g];
399 b = maskPreBlend.fB[b];
400 }
401 *(uint16_t*)dstP = SkPack888ToRGB16(r, g, b);
402 }
403 dstP = SkTAddOffset<uint8_t>(dstP, dstPDelta);
404 }
405 }
406 }
407
convert_8_to_1(unsigned byte)408 static inline int convert_8_to_1(unsigned byte) {
409 SkASSERT(byte <= 0xFF);
410 return byte >> 7;
411 }
412
pack_8_to_1(const uint8_t alpha[8])413 static uint8_t pack_8_to_1(const uint8_t alpha[8]) {
414 unsigned bits = 0;
415 for (int i = 0; i < 8; ++i) {
416 bits <<= 1;
417 bits |= convert_8_to_1(alpha[i]);
418 }
419 return SkToU8(bits);
420 }
421
packA8ToA1(const SkMask & mask,const uint8_t * src,size_t srcRB)422 static void packA8ToA1(const SkMask& mask, const uint8_t* src, size_t srcRB) {
423 const int height = mask.fBounds.height();
424 const int width = mask.fBounds.width();
425 const int octs = width >> 3;
426 const int leftOverBits = width & 7;
427
428 uint8_t* dst = mask.fImage;
429 const int dstPad = mask.fRowBytes - SkAlign8(width)/8;
430 SkASSERT(dstPad >= 0);
431
432 SkASSERT(width >= 0);
433 SkASSERT(srcRB >= (size_t)width);
434 const size_t srcPad = srcRB - width;
435
436 for (int y = 0; y < height; ++y) {
437 for (int i = 0; i < octs; ++i) {
438 *dst++ = pack_8_to_1(src);
439 src += 8;
440 }
441 if (leftOverBits > 0) {
442 unsigned bits = 0;
443 int shift = 7;
444 for (int i = 0; i < leftOverBits; ++i, --shift) {
445 bits |= convert_8_to_1(*src++) << shift;
446 }
447 *dst++ = bits;
448 }
449 src += srcPad;
450 dst += dstPad;
451 }
452 }
453
generateMask(const SkMask & mask,const SkPath & path,const SkMaskGamma::PreBlend & maskPreBlend,const bool doBGR,const bool doVert,const bool a8FromLCD,const bool hairline)454 static void generateMask(const SkMask& mask, const SkPath& path,
455 const SkMaskGamma::PreBlend& maskPreBlend,
456 const bool doBGR, const bool doVert, const bool a8FromLCD,
457 const bool hairline) {
458 SkASSERT(mask.fFormat == SkMask::kBW_Format ||
459 mask.fFormat == SkMask::kA8_Format ||
460 mask.fFormat == SkMask::kLCD16_Format);
461
462 SkPaint paint;
463 SkPath strokePath;
464 const SkPath* pathToUse = &path;
465
466 int srcW = mask.fBounds.width();
467 int srcH = mask.fBounds.height();
468 int dstW = srcW;
469 int dstH = srcH;
470
471 SkMatrix matrix;
472 matrix.setTranslate(-SkIntToScalar(mask.fBounds.fLeft),
473 -SkIntToScalar(mask.fBounds.fTop));
474
475 paint.setStroke(hairline);
476 paint.setAntiAlias(SkMask::kBW_Format != mask.fFormat);
477
478 const bool fromLCD = (mask.fFormat == SkMask::kLCD16_Format) ||
479 (mask.fFormat == SkMask::kA8_Format && a8FromLCD);
480 const bool intermediateDst = fromLCD || mask.fFormat == SkMask::kBW_Format;
481 if (fromLCD) {
482 if (doVert) {
483 dstW = 4*dstH - 8;
484 dstH = srcW;
485 matrix.setAll(0, 4, -SkIntToScalar(mask.fBounds.fTop + 1) * 4,
486 1, 0, -SkIntToScalar(mask.fBounds.fLeft),
487 0, 0, 1);
488 } else {
489 dstW = 4*dstW - 8;
490 matrix.setAll(4, 0, -SkIntToScalar(mask.fBounds.fLeft + 1) * 4,
491 0, 1, -SkIntToScalar(mask.fBounds.fTop),
492 0, 0, 1);
493 }
494
495 // LCD hairline doesn't line up with the pixels, so do it the expensive way.
496 SkStrokeRec rec(SkStrokeRec::kFill_InitStyle);
497 if (hairline) {
498 rec.setStrokeStyle(1.0f, false);
499 rec.setStrokeParams(SkPaint::kButt_Cap, SkPaint::kRound_Join, 0.0f);
500 }
501 if (rec.needToApply() && rec.applyToPath(&strokePath, path)) {
502 pathToUse = &strokePath;
503 paint.setStyle(SkPaint::kFill_Style);
504 }
505 }
506
507 SkRasterClip clip;
508 clip.setRect(SkIRect::MakeWH(dstW, dstH));
509
510 const SkImageInfo info = SkImageInfo::MakeA8(dstW, dstH);
511 SkAutoPixmapStorage dst;
512
513 if (intermediateDst) {
514 if (!dst.tryAlloc(info)) {
515 // can't allocate offscreen, so empty the mask and return
516 sk_bzero(mask.fImage, mask.computeImageSize());
517 return;
518 }
519 } else {
520 dst.reset(info, mask.fImage, mask.fRowBytes);
521 }
522 sk_bzero(dst.writable_addr(), dst.computeByteSize());
523
524 SkDraw draw;
525 SkSimpleMatrixProvider matrixProvider(matrix);
526 draw.fDst = dst;
527 draw.fRC = &clip;
528 draw.fMatrixProvider = &matrixProvider;
529 draw.drawPath(*pathToUse, paint);
530
531 switch (mask.fFormat) {
532 case SkMask::kBW_Format:
533 packA8ToA1(mask, dst.addr8(0, 0), dst.rowBytes());
534 break;
535 case SkMask::kA8_Format:
536 if (fromLCD) {
537 pack4xHToMask(dst, mask, maskPreBlend, doBGR, doVert);
538 } else if (maskPreBlend.isApplicable()) {
539 applyLUTToA8Mask(mask, maskPreBlend.fG);
540 }
541 break;
542 case SkMask::kLCD16_Format:
543 pack4xHToMask(dst, mask, maskPreBlend, doBGR, doVert);
544 break;
545 default:
546 break;
547 }
548 }
549
getImage(const SkGlyph & origGlyph)550 void SkScalerContext::getImage(const SkGlyph& origGlyph) {
551 const SkGlyph* unfilteredGlyph = &origGlyph;
552 // in case we need to call generateImage on a mask-format that is different
553 // (i.e. larger) than what our caller allocated by looking at origGlyph.
554 SkAutoMalloc tmpGlyphImageStorage;
555 SkGlyph tmpGlyph;
556 if (fMaskFilter) {
557 // need the original bounds, sans our maskfilter
558 sk_sp<SkMaskFilter> mf = std::move(fMaskFilter);
559 tmpGlyph = this->internalMakeGlyph(origGlyph.getPackedID(), fRec.fMaskFormat);
560 fMaskFilter = std::move(mf);
561
562 // Use the origGlyph storage for the temporary unfiltered mask if it will fit.
563 if (tmpGlyph.fMaskFormat == origGlyph.fMaskFormat &&
564 tmpGlyph.imageSize() <= origGlyph.imageSize())
565 {
566 tmpGlyph.fImage = origGlyph.fImage;
567 } else {
568 tmpGlyphImageStorage.reset(tmpGlyph.imageSize());
569 tmpGlyph.fImage = tmpGlyphImageStorage.get();
570 }
571 unfilteredGlyph = &tmpGlyph;
572 }
573
574 if (!fGenerateImageFromPath) {
575 generateImage(*unfilteredGlyph);
576 } else {
577 SkPath devPath;
578 SkMask mask = unfilteredGlyph->mask();
579 bool hairline;
580
581 if (!this->internalGetPath(unfilteredGlyph->getPackedID(), &devPath, &hairline)) {
582 generateImage(*unfilteredGlyph);
583 } else {
584 SkASSERT(SkMask::kARGB32_Format != origGlyph.fMaskFormat);
585 SkASSERT(SkMask::kARGB32_Format != mask.fFormat);
586 const bool doBGR = SkToBool(fRec.fFlags & SkScalerContext::kLCD_BGROrder_Flag);
587 const bool doVert = SkToBool(fRec.fFlags & SkScalerContext::kLCD_Vertical_Flag);
588 const bool a8LCD = SkToBool(fRec.fFlags & SkScalerContext::kGenA8FromLCD_Flag);
589 generateMask(mask, devPath, fPreBlend, doBGR, doVert, a8LCD, hairline);
590 }
591 }
592
593 if (fMaskFilter) {
594 // k3D_Format should not be mask filtered.
595 SkASSERT(SkMask::k3D_Format != unfilteredGlyph->fMaskFormat);
596
597 SkMask filteredMask;
598 SkMask srcMask;
599 SkMatrix m;
600 fRec.getMatrixFrom2x2(&m);
601
602 if (as_MFB(fMaskFilter)->filterMask(&filteredMask, unfilteredGlyph->mask(), m, nullptr)) {
603 // Filter succeeded; filteredMask.fImage was allocated.
604 srcMask = filteredMask;
605 } else if (unfilteredGlyph->fImage == tmpGlyphImageStorage.get()) {
606 // Filter did nothing; unfiltered mask is independent of origGlyph.fImage.
607 srcMask = unfilteredGlyph->mask();
608 } else if (origGlyph.iRect() == unfilteredGlyph->iRect()) {
609 // Filter did nothing; the unfiltered mask is in origGlyph.fImage and matches.
610 return;
611 } else {
612 // Filter did nothing; the unfiltered mask is in origGlyph.fImage and conflicts.
613 srcMask = unfilteredGlyph->mask();
614 size_t imageSize = unfilteredGlyph->imageSize();
615 tmpGlyphImageStorage.reset(imageSize);
616 srcMask.fImage = static_cast<uint8_t*>(tmpGlyphImageStorage.get());
617 memcpy(srcMask.fImage, unfilteredGlyph->fImage, imageSize);
618 }
619
620 SkASSERT_RELEASE(srcMask.fFormat == origGlyph.fMaskFormat);
621 SkMask dstMask = origGlyph.mask();
622 SkIRect origBounds = dstMask.fBounds;
623
624 // Find the intersection of src and dst while updating the fImages.
625 if (srcMask.fBounds.fTop < dstMask.fBounds.fTop) {
626 int32_t topDiff = dstMask.fBounds.fTop - srcMask.fBounds.fTop;
627 srcMask.fImage += srcMask.fRowBytes * topDiff;
628 srcMask.fBounds.fTop = dstMask.fBounds.fTop;
629 }
630 if (dstMask.fBounds.fTop < srcMask.fBounds.fTop) {
631 int32_t topDiff = srcMask.fBounds.fTop - dstMask.fBounds.fTop;
632 dstMask.fImage += dstMask.fRowBytes * topDiff;
633 dstMask.fBounds.fTop = srcMask.fBounds.fTop;
634 }
635
636 if (srcMask.fBounds.fLeft < dstMask.fBounds.fLeft) {
637 int32_t leftDiff = dstMask.fBounds.fLeft - srcMask.fBounds.fLeft;
638 srcMask.fImage += leftDiff;
639 srcMask.fBounds.fLeft = dstMask.fBounds.fLeft;
640 }
641 if (dstMask.fBounds.fLeft < srcMask.fBounds.fLeft) {
642 int32_t leftDiff = srcMask.fBounds.fLeft - dstMask.fBounds.fLeft;
643 dstMask.fImage += leftDiff;
644 dstMask.fBounds.fLeft = srcMask.fBounds.fLeft;
645 }
646
647 if (srcMask.fBounds.fBottom < dstMask.fBounds.fBottom) {
648 dstMask.fBounds.fBottom = srcMask.fBounds.fBottom;
649 }
650 if (dstMask.fBounds.fBottom < srcMask.fBounds.fBottom) {
651 srcMask.fBounds.fBottom = dstMask.fBounds.fBottom;
652 }
653
654 if (srcMask.fBounds.fRight < dstMask.fBounds.fRight) {
655 dstMask.fBounds.fRight = srcMask.fBounds.fRight;
656 }
657 if (dstMask.fBounds.fRight < srcMask.fBounds.fRight) {
658 srcMask.fBounds.fRight = dstMask.fBounds.fRight;
659 }
660
661 SkASSERT(srcMask.fBounds == dstMask.fBounds);
662 int width = srcMask.fBounds.width();
663 int height = srcMask.fBounds.height();
664 int dstRB = dstMask.fRowBytes;
665 int srcRB = srcMask.fRowBytes;
666
667 const uint8_t* src = srcMask.fImage;
668 uint8_t* dst = dstMask.fImage;
669
670 if (SkMask::k3D_Format == filteredMask.fFormat) {
671 // we have to copy 3 times as much
672 height *= 3;
673 }
674
675 // If not filling the full original glyph, clear it out first.
676 if (dstMask.fBounds != origBounds) {
677 sk_bzero(origGlyph.fImage, origGlyph.fHeight * origGlyph.rowBytes());
678 }
679
680 while (--height >= 0) {
681 memcpy(dst, src, width);
682 src += srcRB;
683 dst += dstRB;
684 }
685 SkMask::FreeImage(filteredMask.fImage);
686 }
687 }
688
getPath(SkPackedGlyphID glyphID,SkPath * path)689 bool SkScalerContext::getPath(SkPackedGlyphID glyphID, SkPath* path) {
690 // TODO: return hairline so user knows to stroke.
691 // Most users get the fill path without path effect and then draw that, so don't need this.
692 return this->internalGetPath(glyphID, path, nullptr);
693 }
694
getFontMetrics(SkFontMetrics * fm)695 void SkScalerContext::getFontMetrics(SkFontMetrics* fm) {
696 SkASSERT(fm);
697 this->generateFontMetrics(fm);
698 }
699
700 ///////////////////////////////////////////////////////////////////////////////
701
internalGetPath(SkPackedGlyphID glyphID,SkPath * devPath,bool * hairline)702 bool SkScalerContext::internalGetPath(SkPackedGlyphID glyphID, SkPath* devPath, bool* hairline) {
703 SkPath path;
704 if (!generatePath(glyphID.glyphID(), &path)) {
705 return false;
706 }
707
708 if (fRec.fFlags & SkScalerContext::kSubpixelPositioning_Flag) {
709 SkFixed dx = glyphID.getSubXFixed();
710 SkFixed dy = glyphID.getSubYFixed();
711 if (dx | dy) {
712 path.offset(SkFixedToScalar(dx), SkFixedToScalar(dy));
713 }
714 }
715
716 if (hairline) {
717 *hairline = false;
718 }
719
720 if (fRec.fFrameWidth >= 0 || fPathEffect != nullptr) {
721 // need the path in user-space, with only the point-size applied
722 // so that our stroking and effects will operate the same way they
723 // would if the user had extracted the path themself, and then
724 // called drawPath
725 SkPath localPath;
726 SkMatrix matrix, inverse;
727
728 fRec.getMatrixFrom2x2(&matrix);
729 if (!matrix.invert(&inverse)) {
730 // assume devPath is already empty.
731 return true;
732 }
733 path.transform(inverse, &localPath);
734 // now localPath is only affected by the paint settings, and not the canvas matrix
735
736 SkStrokeRec rec(SkStrokeRec::kFill_InitStyle);
737
738 if (fRec.fFrameWidth > 0) {
739 rec.setStrokeStyle(fRec.fFrameWidth,
740 SkToBool(fRec.fFlags & kFrameAndFill_Flag));
741 // glyphs are always closed contours, so cap type is ignored,
742 // so we just pass something.
743 rec.setStrokeParams((SkPaint::Cap)fRec.fStrokeCap,
744 (SkPaint::Join)fRec.fStrokeJoin,
745 fRec.fMiterLimit);
746 }
747
748 if (fPathEffect) {
749 SkPath effectPath;
750 if (fPathEffect->filterPath(&effectPath, localPath, &rec, nullptr, matrix)) {
751 localPath.swap(effectPath);
752 }
753 }
754
755 if (rec.needToApply()) {
756 SkPath strokePath;
757 if (rec.applyToPath(&strokePath, localPath)) {
758 localPath.swap(strokePath);
759 }
760 }
761
762 // The path effect may have modified 'rec', so wait to here to check hairline status.
763 if (hairline && rec.isHairlineStyle()) {
764 *hairline = true;
765 }
766
767 // now return stuff to the caller
768 if (devPath) {
769 localPath.transform(matrix, devPath);
770 }
771 } else { // nothing tricky to do
772 if (devPath) {
773 devPath->swap(path);
774 }
775 }
776
777 if (devPath) {
778 devPath->updateBoundsCache();
779 }
780 return true;
781 }
782
783
getMatrixFrom2x2(SkMatrix * dst) const784 void SkScalerContextRec::getMatrixFrom2x2(SkMatrix* dst) const {
785 dst->setAll(fPost2x2[0][0], fPost2x2[0][1], 0,
786 fPost2x2[1][0], fPost2x2[1][1], 0,
787 0, 0, 1);
788 }
789
getLocalMatrix(SkMatrix * m) const790 void SkScalerContextRec::getLocalMatrix(SkMatrix* m) const {
791 *m = SkFontPriv::MakeTextMatrix(fTextSize, fPreScaleX, fPreSkewX);
792 }
793
getSingleMatrix(SkMatrix * m) const794 void SkScalerContextRec::getSingleMatrix(SkMatrix* m) const {
795 this->getLocalMatrix(m);
796
797 // now concat the device matrix
798 SkMatrix deviceMatrix;
799 this->getMatrixFrom2x2(&deviceMatrix);
800 m->postConcat(deviceMatrix);
801 }
802
computeMatrices(PreMatrixScale preMatrixScale,SkVector * s,SkMatrix * sA,SkMatrix * GsA,SkMatrix * G_inv,SkMatrix * A_out)803 bool SkScalerContextRec::computeMatrices(PreMatrixScale preMatrixScale, SkVector* s, SkMatrix* sA,
804 SkMatrix* GsA, SkMatrix* G_inv, SkMatrix* A_out)
805 {
806 // A is the 'total' matrix.
807 SkMatrix A;
808 this->getSingleMatrix(&A);
809
810 // The caller may find the 'total' matrix useful when dealing directly with EM sizes.
811 if (A_out) {
812 *A_out = A;
813 }
814
815 // GA is the matrix A with rotation removed.
816 SkMatrix GA;
817 bool skewedOrFlipped = A.getSkewX() || A.getSkewY() || A.getScaleX() < 0 || A.getScaleY() < 0;
818 if (skewedOrFlipped) {
819 // QR by Givens rotations. G is Q^T and GA is R. G is rotational (no reflections).
820 // h is where A maps the horizontal baseline.
821 SkPoint h = SkPoint::Make(SK_Scalar1, 0);
822 A.mapPoints(&h, 1);
823
824 // G is the Givens Matrix for A (rotational matrix where GA[0][1] == 0).
825 SkMatrix G;
826 SkComputeGivensRotation(h, &G);
827
828 GA = G;
829 GA.preConcat(A);
830
831 // The 'remainingRotation' is G inverse, which is fairly simple since G is 2x2 rotational.
832 if (G_inv) {
833 G_inv->setAll(
834 G.get(SkMatrix::kMScaleX), -G.get(SkMatrix::kMSkewX), G.get(SkMatrix::kMTransX),
835 -G.get(SkMatrix::kMSkewY), G.get(SkMatrix::kMScaleY), G.get(SkMatrix::kMTransY),
836 G.get(SkMatrix::kMPersp0), G.get(SkMatrix::kMPersp1), G.get(SkMatrix::kMPersp2));
837 }
838 } else {
839 GA = A;
840 if (G_inv) {
841 G_inv->reset();
842 }
843 }
844
845 // If the 'total' matrix is singular, set the 'scale' to something finite and zero the matrices.
846 // All underlying ports have issues with zero text size, so use the matricies to zero.
847 // If one of the scale factors is less than 1/256 then an EM filling square will
848 // never affect any pixels.
849 // If there are any nonfinite numbers in the matrix, bail out and set the matrices to zero.
850 if (SkScalarAbs(GA.get(SkMatrix::kMScaleX)) <= SK_ScalarNearlyZero ||
851 SkScalarAbs(GA.get(SkMatrix::kMScaleY)) <= SK_ScalarNearlyZero ||
852 !GA.isFinite())
853 {
854 s->fX = SK_Scalar1;
855 s->fY = SK_Scalar1;
856 sA->setScale(0, 0);
857 if (GsA) {
858 GsA->setScale(0, 0);
859 }
860 if (G_inv) {
861 G_inv->reset();
862 }
863 return false;
864 }
865
866 // At this point, given GA, create s.
867 switch (preMatrixScale) {
868 case kFull_PreMatrixScale:
869 s->fX = SkScalarAbs(GA.get(SkMatrix::kMScaleX));
870 s->fY = SkScalarAbs(GA.get(SkMatrix::kMScaleY));
871 break;
872 case kVertical_PreMatrixScale: {
873 SkScalar yScale = SkScalarAbs(GA.get(SkMatrix::kMScaleY));
874 s->fX = yScale;
875 s->fY = yScale;
876 break;
877 }
878 case kVerticalInteger_PreMatrixScale: {
879 SkScalar realYScale = SkScalarAbs(GA.get(SkMatrix::kMScaleY));
880 SkScalar intYScale = SkScalarRoundToScalar(realYScale);
881 if (intYScale == 0) {
882 intYScale = SK_Scalar1;
883 }
884 s->fX = intYScale;
885 s->fY = intYScale;
886 break;
887 }
888 }
889
890 // The 'remaining' matrix sA is the total matrix A without the scale.
891 if (!skewedOrFlipped && (
892 (kFull_PreMatrixScale == preMatrixScale) ||
893 (kVertical_PreMatrixScale == preMatrixScale && A.getScaleX() == A.getScaleY())))
894 {
895 // If GA == A and kFull_PreMatrixScale, sA is identity.
896 // If GA == A and kVertical_PreMatrixScale and A.scaleX == A.scaleY, sA is identity.
897 sA->reset();
898 } else if (!skewedOrFlipped && kVertical_PreMatrixScale == preMatrixScale) {
899 // If GA == A and kVertical_PreMatrixScale, sA.scaleY is SK_Scalar1.
900 sA->reset();
901 sA->setScaleX(A.getScaleX() / s->fY);
902 } else {
903 // TODO: like kVertical_PreMatrixScale, kVerticalInteger_PreMatrixScale with int scales.
904 *sA = A;
905 sA->preScale(SkScalarInvert(s->fX), SkScalarInvert(s->fY));
906 }
907
908 // The 'remainingWithoutRotation' matrix GsA is the non-rotational part of A without the scale.
909 if (GsA) {
910 *GsA = GA;
911 // G is rotational so reorders with the scale.
912 GsA->preScale(SkScalarInvert(s->fX), SkScalarInvert(s->fY));
913 }
914
915 return true;
916 }
917
computeAxisAlignmentForHText() const918 SkAxisAlignment SkScalerContext::computeAxisAlignmentForHText() const {
919 return fRec.computeAxisAlignmentForHText();
920 }
921
computeAxisAlignmentForHText() const922 SkAxisAlignment SkScalerContextRec::computeAxisAlignmentForHText() const {
923 // Why fPost2x2 can be used here.
924 // getSingleMatrix multiplies in getLocalMatrix, which consists of
925 // * fTextSize (a scale, which has no effect)
926 // * fPreScaleX (a scale in x, which has no effect)
927 // * fPreSkewX (has no effect, but would on vertical text alignment).
928 // In other words, making the text bigger, stretching it along the
929 // horizontal axis, or fake italicizing it does not move the baseline.
930 if (!SkToBool(fFlags & SkScalerContext::kBaselineSnap_Flag)) {
931 return kNone_SkAxisAlignment;
932 }
933
934 if (0 == fPost2x2[1][0]) {
935 // The x axis is mapped onto the x axis.
936 return kX_SkAxisAlignment;
937 }
938 if (0 == fPost2x2[0][0]) {
939 // The x axis is mapped onto the y axis.
940 return kY_SkAxisAlignment;
941 }
942 return kNone_SkAxisAlignment;
943 }
944
setLuminanceColor(SkColor c)945 void SkScalerContextRec::setLuminanceColor(SkColor c) {
946 fLumBits = SkMaskGamma::CanonicalColor(
947 SkColorSetRGB(SkColorGetR(c), SkColorGetG(c), SkColorGetB(c)));
948 }
949
950 /*
951 * Return the scalar with only limited fractional precision. Used to consolidate matrices
952 * that vary only slightly when we create our key into the font cache, since the font scaler
953 * typically returns the same looking resuts for tiny changes in the matrix.
954 */
sk_relax(SkScalar x)955 static SkScalar sk_relax(SkScalar x) {
956 SkScalar n = SkScalarRoundToScalar(x * 1024);
957 return n / 1024.0f;
958 }
959
compute_mask_format(const SkFont & font)960 static SkMask::Format compute_mask_format(const SkFont& font) {
961 switch (font.getEdging()) {
962 case SkFont::Edging::kAlias:
963 return SkMask::kBW_Format;
964 case SkFont::Edging::kAntiAlias:
965 return SkMask::kA8_Format;
966 case SkFont::Edging::kSubpixelAntiAlias:
967 return SkMask::kLCD16_Format;
968 }
969 SkASSERT(false);
970 return SkMask::kA8_Format;
971 }
972
973 // Beyond this size, LCD doesn't appreciably improve quality, but it always
974 // cost more RAM and draws slower, so we set a cap.
975 #ifndef SK_MAX_SIZE_FOR_LCDTEXT
976 #define SK_MAX_SIZE_FOR_LCDTEXT 48
977 #endif
978
979 const SkScalar gMaxSize2ForLCDText = SK_MAX_SIZE_FOR_LCDTEXT * SK_MAX_SIZE_FOR_LCDTEXT;
980
too_big_for_lcd(const SkScalerContextRec & rec,bool checkPost2x2)981 static bool too_big_for_lcd(const SkScalerContextRec& rec, bool checkPost2x2) {
982 if (checkPost2x2) {
983 SkScalar area = rec.fPost2x2[0][0] * rec.fPost2x2[1][1] -
984 rec.fPost2x2[1][0] * rec.fPost2x2[0][1];
985 area *= rec.fTextSize * rec.fTextSize;
986 return area > gMaxSize2ForLCDText;
987 } else {
988 return rec.fTextSize > SK_MAX_SIZE_FOR_LCDTEXT;
989 }
990 }
991
992 // The only reason this is not file static is because it needs the context of SkScalerContext to
993 // access SkPaint::computeLuminanceColor.
MakeRecAndEffects(const SkFont & font,const SkPaint & paint,const SkSurfaceProps & surfaceProps,SkScalerContextFlags scalerContextFlags,const SkMatrix & deviceMatrix,SkScalerContextRec * rec,SkScalerContextEffects * effects)994 void SkScalerContext::MakeRecAndEffects(const SkFont& font, const SkPaint& paint,
995 const SkSurfaceProps& surfaceProps,
996 SkScalerContextFlags scalerContextFlags,
997 const SkMatrix& deviceMatrix,
998 SkScalerContextRec* rec,
999 SkScalerContextEffects* effects) {
1000 SkASSERT(!deviceMatrix.hasPerspective());
1001
1002 sk_bzero(rec, sizeof(SkScalerContextRec));
1003
1004 SkTypeface* typeface = font.getTypefaceOrDefault();
1005
1006 rec->fFontID = typeface->uniqueID();
1007 rec->fTextSize = font.getSize();
1008 rec->fPreScaleX = font.getScaleX();
1009 rec->fPreSkewX = font.getSkewX();
1010
1011 bool checkPost2x2 = false;
1012
1013 const SkMatrix::TypeMask mask = deviceMatrix.getType();
1014 if (mask & SkMatrix::kScale_Mask) {
1015 rec->fPost2x2[0][0] = sk_relax(deviceMatrix.getScaleX());
1016 rec->fPost2x2[1][1] = sk_relax(deviceMatrix.getScaleY());
1017 checkPost2x2 = true;
1018 } else {
1019 rec->fPost2x2[0][0] = rec->fPost2x2[1][1] = SK_Scalar1;
1020 }
1021 if (mask & SkMatrix::kAffine_Mask) {
1022 rec->fPost2x2[0][1] = sk_relax(deviceMatrix.getSkewX());
1023 rec->fPost2x2[1][0] = sk_relax(deviceMatrix.getSkewY());
1024 checkPost2x2 = true;
1025 } else {
1026 rec->fPost2x2[0][1] = rec->fPost2x2[1][0] = 0;
1027 }
1028
1029 SkPaint::Style style = paint.getStyle();
1030 SkScalar strokeWidth = paint.getStrokeWidth();
1031
1032 unsigned flags = 0;
1033
1034 if (font.isEmbolden()) {
1035 #ifdef SK_USE_FREETYPE_EMBOLDEN
1036 flags |= SkScalerContext::kEmbolden_Flag;
1037 #else
1038 SkScalar fakeBoldScale = SkScalarInterpFunc(font.getSize(),
1039 kStdFakeBoldInterpKeys,
1040 kStdFakeBoldInterpValues,
1041 kStdFakeBoldInterpLength);
1042 SkScalar extra = font.getSize() * fakeBoldScale;
1043
1044 if (style == SkPaint::kFill_Style) {
1045 style = SkPaint::kStrokeAndFill_Style;
1046 strokeWidth = extra; // ignore paint's strokeWidth if it was "fill"
1047 } else {
1048 strokeWidth += extra;
1049 }
1050 #endif
1051 }
1052
1053 if (style != SkPaint::kFill_Style && strokeWidth >= 0) {
1054 rec->fFrameWidth = strokeWidth;
1055 rec->fMiterLimit = paint.getStrokeMiter();
1056 rec->fStrokeJoin = SkToU8(paint.getStrokeJoin());
1057 rec->fStrokeCap = SkToU8(paint.getStrokeCap());
1058
1059 if (style == SkPaint::kStrokeAndFill_Style) {
1060 flags |= SkScalerContext::kFrameAndFill_Flag;
1061 }
1062 } else {
1063 rec->fFrameWidth = -1;
1064 rec->fMiterLimit = 0;
1065 rec->fStrokeJoin = 0;
1066 rec->fStrokeCap = 0;
1067 }
1068
1069 rec->fMaskFormat = compute_mask_format(font);
1070
1071 if (SkMask::kLCD16_Format == rec->fMaskFormat) {
1072 if (too_big_for_lcd(*rec, checkPost2x2)) {
1073 rec->fMaskFormat = SkMask::kA8_Format;
1074 flags |= SkScalerContext::kGenA8FromLCD_Flag;
1075 } else {
1076 SkPixelGeometry geometry = surfaceProps.pixelGeometry();
1077
1078 switch (geometry) {
1079 case kUnknown_SkPixelGeometry:
1080 // eeek, can't support LCD
1081 rec->fMaskFormat = SkMask::kA8_Format;
1082 flags |= SkScalerContext::kGenA8FromLCD_Flag;
1083 break;
1084 case kRGB_H_SkPixelGeometry:
1085 // our default, do nothing.
1086 break;
1087 case kBGR_H_SkPixelGeometry:
1088 flags |= SkScalerContext::kLCD_BGROrder_Flag;
1089 break;
1090 case kRGB_V_SkPixelGeometry:
1091 flags |= SkScalerContext::kLCD_Vertical_Flag;
1092 break;
1093 case kBGR_V_SkPixelGeometry:
1094 flags |= SkScalerContext::kLCD_Vertical_Flag;
1095 flags |= SkScalerContext::kLCD_BGROrder_Flag;
1096 break;
1097 }
1098 }
1099 }
1100
1101 if (font.isEmbeddedBitmaps()) {
1102 flags |= SkScalerContext::kEmbeddedBitmapText_Flag;
1103 }
1104 if (font.isSubpixel()) {
1105 flags |= SkScalerContext::kSubpixelPositioning_Flag;
1106 }
1107 if (font.isForceAutoHinting()) {
1108 flags |= SkScalerContext::kForceAutohinting_Flag;
1109 }
1110 if (font.isLinearMetrics()) {
1111 flags |= SkScalerContext::kLinearMetrics_Flag;
1112 }
1113 if (font.isBaselineSnap()) {
1114 flags |= SkScalerContext::kBaselineSnap_Flag;
1115 }
1116 if (typeface->glyphMaskNeedsCurrentColor()) {
1117 flags |= SkScalerContext::kNeedsForegroundColor_Flag;
1118 rec->fForegroundColor = paint.getColor();
1119 }
1120 rec->fFlags = SkToU16(flags);
1121
1122 // these modify fFlags, so do them after assigning fFlags
1123 rec->setHinting(font.getHinting());
1124 rec->setLuminanceColor(SkPaintPriv::ComputeLuminanceColor(paint));
1125
1126 // For now always set the paint gamma equal to the device gamma.
1127 // The math in SkMaskGamma can handle them being different,
1128 // but it requires superluminous masks when
1129 // Ex : deviceGamma(x) < paintGamma(x) and x is sufficiently large.
1130 rec->setDeviceGamma(SK_GAMMA_EXPONENT);
1131 rec->setPaintGamma(SK_GAMMA_EXPONENT);
1132
1133 #ifdef SK_GAMMA_CONTRAST
1134 rec->setContrast(SK_GAMMA_CONTRAST);
1135 #else
1136 // A value of 0.5 for SK_GAMMA_CONTRAST appears to be a good compromise.
1137 // With lower values small text appears washed out (though correctly so).
1138 // With higher values lcd fringing is worse and the smoothing effect of
1139 // partial coverage is diminished.
1140 rec->setContrast(0.5f);
1141 #endif
1142
1143 if (!SkToBool(scalerContextFlags & SkScalerContextFlags::kFakeGamma)) {
1144 rec->ignoreGamma();
1145 }
1146 if (!SkToBool(scalerContextFlags & SkScalerContextFlags::kBoostContrast)) {
1147 rec->setContrast(0);
1148 }
1149
1150 new (effects) SkScalerContextEffects{paint};
1151 }
1152
CreateDescriptorAndEffectsUsingPaint(const SkFont & font,const SkPaint & paint,const SkSurfaceProps & surfaceProps,SkScalerContextFlags scalerContextFlags,const SkMatrix & deviceMatrix,SkAutoDescriptor * ad,SkScalerContextEffects * effects)1153 SkDescriptor* SkScalerContext::CreateDescriptorAndEffectsUsingPaint(
1154 const SkFont& font, const SkPaint& paint, const SkSurfaceProps& surfaceProps,
1155 SkScalerContextFlags scalerContextFlags, const SkMatrix& deviceMatrix, SkAutoDescriptor* ad,
1156 SkScalerContextEffects* effects)
1157 {
1158 SkScalerContextRec rec;
1159 MakeRecAndEffects(font, paint, surfaceProps, scalerContextFlags, deviceMatrix, &rec, effects);
1160 return AutoDescriptorGivenRecAndEffects(rec, *effects, ad);
1161 }
1162
calculate_size_and_flatten(const SkScalerContextRec & rec,const SkScalerContextEffects & effects,SkBinaryWriteBuffer * effectBuffer)1163 static size_t calculate_size_and_flatten(const SkScalerContextRec& rec,
1164 const SkScalerContextEffects& effects,
1165 SkBinaryWriteBuffer* effectBuffer) {
1166 size_t descSize = sizeof(rec);
1167 int entryCount = 1;
1168
1169 if (effects.fPathEffect || effects.fMaskFilter) {
1170 if (effects.fPathEffect) { effectBuffer->writeFlattenable(effects.fPathEffect); }
1171 if (effects.fMaskFilter) { effectBuffer->writeFlattenable(effects.fMaskFilter); }
1172 entryCount += 1;
1173 descSize += effectBuffer->bytesWritten();
1174 }
1175
1176 descSize += SkDescriptor::ComputeOverhead(entryCount);
1177 return descSize;
1178 }
1179
generate_descriptor(const SkScalerContextRec & rec,const SkBinaryWriteBuffer & effectBuffer,SkDescriptor * desc)1180 static void generate_descriptor(const SkScalerContextRec& rec,
1181 const SkBinaryWriteBuffer& effectBuffer,
1182 SkDescriptor* desc) {
1183 desc->addEntry(kRec_SkDescriptorTag, sizeof(rec), &rec);
1184
1185 if (effectBuffer.bytesWritten() > 0) {
1186 effectBuffer.writeToMemory(desc->addEntry(kEffects_SkDescriptorTag,
1187 effectBuffer.bytesWritten(),
1188 nullptr));
1189 }
1190
1191 desc->computeChecksum();
1192 }
1193
AutoDescriptorGivenRecAndEffects(const SkScalerContextRec & rec,const SkScalerContextEffects & effects,SkAutoDescriptor * ad)1194 SkDescriptor* SkScalerContext::AutoDescriptorGivenRecAndEffects(
1195 const SkScalerContextRec& rec,
1196 const SkScalerContextEffects& effects,
1197 SkAutoDescriptor* ad)
1198 {
1199 SkBinaryWriteBuffer buf;
1200
1201 ad->reset(calculate_size_and_flatten(rec, effects, &buf));
1202 generate_descriptor(rec, buf, ad->getDesc());
1203
1204 return ad->getDesc();
1205 }
1206
DescriptorGivenRecAndEffects(const SkScalerContextRec & rec,const SkScalerContextEffects & effects)1207 std::unique_ptr<SkDescriptor> SkScalerContext::DescriptorGivenRecAndEffects(
1208 const SkScalerContextRec& rec,
1209 const SkScalerContextEffects& effects)
1210 {
1211 SkBinaryWriteBuffer buf;
1212
1213 auto desc = SkDescriptor::Alloc(calculate_size_and_flatten(rec, effects, &buf));
1214 generate_descriptor(rec, buf, desc.get());
1215
1216 return desc;
1217 }
1218
DescriptorBufferGiveRec(const SkScalerContextRec & rec,void * buffer)1219 void SkScalerContext::DescriptorBufferGiveRec(const SkScalerContextRec& rec, void* buffer) {
1220 generate_descriptor(rec, SkBinaryWriteBuffer{}, (SkDescriptor*)buffer);
1221 }
1222
CheckBufferSizeForRec(const SkScalerContextRec & rec,const SkScalerContextEffects & effects,size_t size)1223 bool SkScalerContext::CheckBufferSizeForRec(const SkScalerContextRec& rec,
1224 const SkScalerContextEffects& effects,
1225 size_t size) {
1226 SkBinaryWriteBuffer buf;
1227 return size >= calculate_size_and_flatten(rec, effects, &buf);
1228 }
1229
MakeEmpty(sk_sp<SkTypeface> typeface,const SkScalerContextEffects & effects,const SkDescriptor * desc)1230 std::unique_ptr<SkScalerContext> SkScalerContext::MakeEmpty(
1231 sk_sp<SkTypeface> typeface, const SkScalerContextEffects& effects,
1232 const SkDescriptor* desc) {
1233 class SkScalerContext_Empty : public SkScalerContext {
1234 public:
1235 SkScalerContext_Empty(sk_sp<SkTypeface> typeface, const SkScalerContextEffects& effects,
1236 const SkDescriptor* desc)
1237 : SkScalerContext(std::move(typeface), effects, desc) {}
1238
1239 protected:
1240 bool generateAdvance(SkGlyph* glyph) override {
1241 glyph->zeroMetrics();
1242 return true;
1243 }
1244 void generateMetrics(SkGlyph* glyph) override {
1245 glyph->fMaskFormat = fRec.fMaskFormat;
1246 glyph->zeroMetrics();
1247 }
1248 void generateImage(const SkGlyph& glyph) override {}
1249 bool generatePath(SkGlyphID glyph, SkPath* path) override {
1250 path->reset();
1251 return false;
1252 }
1253 void generateFontMetrics(SkFontMetrics* metrics) override {
1254 if (metrics) {
1255 sk_bzero(metrics, sizeof(*metrics));
1256 }
1257 }
1258 };
1259
1260 return std::make_unique<SkScalerContext_Empty>(std::move(typeface), effects, desc);
1261 }
1262
1263
1264
1265
1266