1 //===- MachineFunction.cpp ------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Collect native machine code information for a function. This allows
10 // target-specific information about the generated code to be stored with each
11 // function.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #include "llvm/CodeGen/MachineFunction.h"
16 #include "llvm/ADT/BitVector.h"
17 #include "llvm/ADT/DenseMap.h"
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/STLExtras.h"
20 #include "llvm/ADT/SmallString.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/StringRef.h"
23 #include "llvm/ADT/Twine.h"
24 #include "llvm/Analysis/ConstantFolding.h"
25 #include "llvm/Analysis/EHPersonalities.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineConstantPool.h"
28 #include "llvm/CodeGen/MachineFrameInfo.h"
29 #include "llvm/CodeGen/MachineInstr.h"
30 #include "llvm/CodeGen/MachineJumpTableInfo.h"
31 #include "llvm/CodeGen/MachineMemOperand.h"
32 #include "llvm/CodeGen/MachineModuleInfo.h"
33 #include "llvm/CodeGen/MachineRegisterInfo.h"
34 #include "llvm/CodeGen/PseudoSourceValue.h"
35 #include "llvm/CodeGen/TargetFrameLowering.h"
36 #include "llvm/CodeGen/TargetLowering.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/CodeGen/WasmEHFuncInfo.h"
40 #include "llvm/CodeGen/WinEHFuncInfo.h"
41 #include "llvm/Config/llvm-config.h"
42 #include "llvm/IR/Attributes.h"
43 #include "llvm/IR/BasicBlock.h"
44 #include "llvm/IR/Constant.h"
45 #include "llvm/IR/DataLayout.h"
46 #include "llvm/IR/DebugInfoMetadata.h"
47 #include "llvm/IR/DerivedTypes.h"
48 #include "llvm/IR/Function.h"
49 #include "llvm/IR/GlobalValue.h"
50 #include "llvm/IR/Instruction.h"
51 #include "llvm/IR/Instructions.h"
52 #include "llvm/IR/Metadata.h"
53 #include "llvm/IR/Module.h"
54 #include "llvm/IR/ModuleSlotTracker.h"
55 #include "llvm/IR/Value.h"
56 #include "llvm/MC/MCContext.h"
57 #include "llvm/MC/MCSymbol.h"
58 #include "llvm/MC/SectionKind.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CommandLine.h"
61 #include "llvm/Support/Compiler.h"
62 #include "llvm/Support/DOTGraphTraits.h"
63 #include "llvm/Support/Debug.h"
64 #include "llvm/Support/ErrorHandling.h"
65 #include "llvm/Support/GraphWriter.h"
66 #include "llvm/Support/raw_ostream.h"
67 #include "llvm/Target/TargetMachine.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstddef>
71 #include <cstdint>
72 #include <iterator>
73 #include <string>
74 #include <utility>
75 #include <vector>
76
77 using namespace llvm;
78
79 #define DEBUG_TYPE "codegen"
80
81 static cl::opt<unsigned> AlignAllFunctions(
82 "align-all-functions",
83 cl::desc("Force the alignment of all functions in log2 format (e.g. 4 "
84 "means align on 16B boundaries)."),
85 cl::init(0), cl::Hidden);
86
getPropertyName(MachineFunctionProperties::Property Prop)87 static const char *getPropertyName(MachineFunctionProperties::Property Prop) {
88 using P = MachineFunctionProperties::Property;
89
90 switch(Prop) {
91 case P::FailedISel: return "FailedISel";
92 case P::IsSSA: return "IsSSA";
93 case P::Legalized: return "Legalized";
94 case P::NoPHIs: return "NoPHIs";
95 case P::NoVRegs: return "NoVRegs";
96 case P::RegBankSelected: return "RegBankSelected";
97 case P::Selected: return "Selected";
98 case P::TracksLiveness: return "TracksLiveness";
99 }
100 llvm_unreachable("Invalid machine function property");
101 }
102
103 // Pin the vtable to this file.
anchor()104 void MachineFunction::Delegate::anchor() {}
105
print(raw_ostream & OS) const106 void MachineFunctionProperties::print(raw_ostream &OS) const {
107 const char *Separator = "";
108 for (BitVector::size_type I = 0; I < Properties.size(); ++I) {
109 if (!Properties[I])
110 continue;
111 OS << Separator << getPropertyName(static_cast<Property>(I));
112 Separator = ", ";
113 }
114 }
115
116 //===----------------------------------------------------------------------===//
117 // MachineFunction implementation
118 //===----------------------------------------------------------------------===//
119
120 // Out-of-line virtual method.
121 MachineFunctionInfo::~MachineFunctionInfo() = default;
122
deleteNode(MachineBasicBlock * MBB)123 void ilist_alloc_traits<MachineBasicBlock>::deleteNode(MachineBasicBlock *MBB) {
124 MBB->getParent()->DeleteMachineBasicBlock(MBB);
125 }
126
getFnStackAlignment(const TargetSubtargetInfo * STI,const Function & F)127 static inline unsigned getFnStackAlignment(const TargetSubtargetInfo *STI,
128 const Function &F) {
129 if (F.hasFnAttribute(Attribute::StackAlignment))
130 return F.getFnStackAlignment();
131 return STI->getFrameLowering()->getStackAlignment();
132 }
133
MachineFunction(const Function & F,const LLVMTargetMachine & Target,const TargetSubtargetInfo & STI,unsigned FunctionNum,MachineModuleInfo & mmi)134 MachineFunction::MachineFunction(const Function &F,
135 const LLVMTargetMachine &Target,
136 const TargetSubtargetInfo &STI,
137 unsigned FunctionNum, MachineModuleInfo &mmi)
138 : F(F), Target(Target), STI(&STI), Ctx(mmi.getContext()), MMI(mmi) {
139 FunctionNumber = FunctionNum;
140 init();
141 }
142
handleInsertion(MachineInstr & MI)143 void MachineFunction::handleInsertion(MachineInstr &MI) {
144 if (TheDelegate)
145 TheDelegate->MF_HandleInsertion(MI);
146 }
147
handleRemoval(MachineInstr & MI)148 void MachineFunction::handleRemoval(MachineInstr &MI) {
149 if (TheDelegate)
150 TheDelegate->MF_HandleRemoval(MI);
151 }
152
init()153 void MachineFunction::init() {
154 // Assume the function starts in SSA form with correct liveness.
155 Properties.set(MachineFunctionProperties::Property::IsSSA);
156 Properties.set(MachineFunctionProperties::Property::TracksLiveness);
157 if (STI->getRegisterInfo())
158 RegInfo = new (Allocator) MachineRegisterInfo(this);
159 else
160 RegInfo = nullptr;
161
162 MFInfo = nullptr;
163 // We can realign the stack if the target supports it and the user hasn't
164 // explicitly asked us not to.
165 bool CanRealignSP = STI->getFrameLowering()->isStackRealignable() &&
166 !F.hasFnAttribute("no-realign-stack");
167 FrameInfo = new (Allocator) MachineFrameInfo(
168 getFnStackAlignment(STI, F), /*StackRealignable=*/CanRealignSP,
169 /*ForcedRealign=*/CanRealignSP &&
170 F.hasFnAttribute(Attribute::StackAlignment));
171
172 if (F.hasFnAttribute(Attribute::StackAlignment))
173 FrameInfo->ensureMaxAlignment(F.getFnStackAlignment());
174
175 ConstantPool = new (Allocator) MachineConstantPool(getDataLayout());
176 Alignment = STI->getTargetLowering()->getMinFunctionAlignment();
177
178 // FIXME: Shouldn't use pref alignment if explicit alignment is set on F.
179 // FIXME: Use Function::hasOptSize().
180 if (!F.hasFnAttribute(Attribute::OptimizeForSize))
181 Alignment = std::max(Alignment,
182 STI->getTargetLowering()->getPrefFunctionAlignment());
183
184 if (AlignAllFunctions)
185 Alignment = Align(1ULL << AlignAllFunctions);
186
187 JumpTableInfo = nullptr;
188
189 if (isFuncletEHPersonality(classifyEHPersonality(
190 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
191 WinEHInfo = new (Allocator) WinEHFuncInfo();
192 }
193
194 if (isScopedEHPersonality(classifyEHPersonality(
195 F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr))) {
196 WasmEHInfo = new (Allocator) WasmEHFuncInfo();
197 }
198
199 assert(Target.isCompatibleDataLayout(getDataLayout()) &&
200 "Can't create a MachineFunction using a Module with a "
201 "Target-incompatible DataLayout attached\n");
202
203 PSVManager =
204 std::make_unique<PseudoSourceValueManager>(*(getSubtarget().
205 getInstrInfo()));
206 }
207
~MachineFunction()208 MachineFunction::~MachineFunction() {
209 clear();
210 }
211
clear()212 void MachineFunction::clear() {
213 Properties.reset();
214 // Don't call destructors on MachineInstr and MachineOperand. All of their
215 // memory comes from the BumpPtrAllocator which is about to be purged.
216 //
217 // Do call MachineBasicBlock destructors, it contains std::vectors.
218 for (iterator I = begin(), E = end(); I != E; I = BasicBlocks.erase(I))
219 I->Insts.clearAndLeakNodesUnsafely();
220 MBBNumbering.clear();
221
222 InstructionRecycler.clear(Allocator);
223 OperandRecycler.clear(Allocator);
224 BasicBlockRecycler.clear(Allocator);
225 CodeViewAnnotations.clear();
226 VariableDbgInfos.clear();
227 if (RegInfo) {
228 RegInfo->~MachineRegisterInfo();
229 Allocator.Deallocate(RegInfo);
230 }
231 if (MFInfo) {
232 MFInfo->~MachineFunctionInfo();
233 Allocator.Deallocate(MFInfo);
234 }
235
236 FrameInfo->~MachineFrameInfo();
237 Allocator.Deallocate(FrameInfo);
238
239 ConstantPool->~MachineConstantPool();
240 Allocator.Deallocate(ConstantPool);
241
242 if (JumpTableInfo) {
243 JumpTableInfo->~MachineJumpTableInfo();
244 Allocator.Deallocate(JumpTableInfo);
245 }
246
247 if (WinEHInfo) {
248 WinEHInfo->~WinEHFuncInfo();
249 Allocator.Deallocate(WinEHInfo);
250 }
251
252 if (WasmEHInfo) {
253 WasmEHInfo->~WasmEHFuncInfo();
254 Allocator.Deallocate(WasmEHInfo);
255 }
256 }
257
getDataLayout() const258 const DataLayout &MachineFunction::getDataLayout() const {
259 return F.getParent()->getDataLayout();
260 }
261
262 /// Get the JumpTableInfo for this function.
263 /// If it does not already exist, allocate one.
264 MachineJumpTableInfo *MachineFunction::
getOrCreateJumpTableInfo(unsigned EntryKind)265 getOrCreateJumpTableInfo(unsigned EntryKind) {
266 if (JumpTableInfo) return JumpTableInfo;
267
268 JumpTableInfo = new (Allocator)
269 MachineJumpTableInfo((MachineJumpTableInfo::JTEntryKind)EntryKind);
270 return JumpTableInfo;
271 }
272
getDenormalMode(const fltSemantics & FPType) const273 DenormalMode MachineFunction::getDenormalMode(const fltSemantics &FPType) const {
274 // TODO: Should probably avoid the connection to the IR and store directly
275 // in the MachineFunction.
276 Attribute Attr = F.getFnAttribute("denormal-fp-math");
277
278 // FIXME: This should assume IEEE behavior on an unspecified
279 // attribute. However, the one current user incorrectly assumes a non-IEEE
280 // target by default.
281 StringRef Val = Attr.getValueAsString();
282 if (Val.empty())
283 return DenormalMode::Invalid;
284
285 return parseDenormalFPAttribute(Val);
286 }
287
288 /// Should we be emitting segmented stack stuff for the function
shouldSplitStack() const289 bool MachineFunction::shouldSplitStack() const {
290 return getFunction().hasFnAttribute("split-stack");
291 }
292
293 LLVM_NODISCARD unsigned
addFrameInst(const MCCFIInstruction & Inst)294 MachineFunction::addFrameInst(const MCCFIInstruction &Inst) {
295 FrameInstructions.push_back(Inst);
296 return FrameInstructions.size() - 1;
297 }
298
299 /// This discards all of the MachineBasicBlock numbers and recomputes them.
300 /// This guarantees that the MBB numbers are sequential, dense, and match the
301 /// ordering of the blocks within the function. If a specific MachineBasicBlock
302 /// is specified, only that block and those after it are renumbered.
RenumberBlocks(MachineBasicBlock * MBB)303 void MachineFunction::RenumberBlocks(MachineBasicBlock *MBB) {
304 if (empty()) { MBBNumbering.clear(); return; }
305 MachineFunction::iterator MBBI, E = end();
306 if (MBB == nullptr)
307 MBBI = begin();
308 else
309 MBBI = MBB->getIterator();
310
311 // Figure out the block number this should have.
312 unsigned BlockNo = 0;
313 if (MBBI != begin())
314 BlockNo = std::prev(MBBI)->getNumber() + 1;
315
316 for (; MBBI != E; ++MBBI, ++BlockNo) {
317 if (MBBI->getNumber() != (int)BlockNo) {
318 // Remove use of the old number.
319 if (MBBI->getNumber() != -1) {
320 assert(MBBNumbering[MBBI->getNumber()] == &*MBBI &&
321 "MBB number mismatch!");
322 MBBNumbering[MBBI->getNumber()] = nullptr;
323 }
324
325 // If BlockNo is already taken, set that block's number to -1.
326 if (MBBNumbering[BlockNo])
327 MBBNumbering[BlockNo]->setNumber(-1);
328
329 MBBNumbering[BlockNo] = &*MBBI;
330 MBBI->setNumber(BlockNo);
331 }
332 }
333
334 // Okay, all the blocks are renumbered. If we have compactified the block
335 // numbering, shrink MBBNumbering now.
336 assert(BlockNo <= MBBNumbering.size() && "Mismatch!");
337 MBBNumbering.resize(BlockNo);
338 }
339
340 /// Allocate a new MachineInstr. Use this instead of `new MachineInstr'.
CreateMachineInstr(const MCInstrDesc & MCID,const DebugLoc & DL,bool NoImp)341 MachineInstr *MachineFunction::CreateMachineInstr(const MCInstrDesc &MCID,
342 const DebugLoc &DL,
343 bool NoImp) {
344 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
345 MachineInstr(*this, MCID, DL, NoImp);
346 }
347
348 /// Create a new MachineInstr which is a copy of the 'Orig' instruction,
349 /// identical in all ways except the instruction has no parent, prev, or next.
350 MachineInstr *
CloneMachineInstr(const MachineInstr * Orig)351 MachineFunction::CloneMachineInstr(const MachineInstr *Orig) {
352 return new (InstructionRecycler.Allocate<MachineInstr>(Allocator))
353 MachineInstr(*this, *Orig);
354 }
355
CloneMachineInstrBundle(MachineBasicBlock & MBB,MachineBasicBlock::iterator InsertBefore,const MachineInstr & Orig)356 MachineInstr &MachineFunction::CloneMachineInstrBundle(MachineBasicBlock &MBB,
357 MachineBasicBlock::iterator InsertBefore, const MachineInstr &Orig) {
358 MachineInstr *FirstClone = nullptr;
359 MachineBasicBlock::const_instr_iterator I = Orig.getIterator();
360 while (true) {
361 MachineInstr *Cloned = CloneMachineInstr(&*I);
362 MBB.insert(InsertBefore, Cloned);
363 if (FirstClone == nullptr) {
364 FirstClone = Cloned;
365 } else {
366 Cloned->bundleWithPred();
367 }
368
369 if (!I->isBundledWithSucc())
370 break;
371 ++I;
372 }
373 return *FirstClone;
374 }
375
376 /// Delete the given MachineInstr.
377 ///
378 /// This function also serves as the MachineInstr destructor - the real
379 /// ~MachineInstr() destructor must be empty.
380 void
DeleteMachineInstr(MachineInstr * MI)381 MachineFunction::DeleteMachineInstr(MachineInstr *MI) {
382 // Verify that a call site info is at valid state. This assertion should
383 // be triggered during the implementation of support for the
384 // call site info of a new architecture. If the assertion is triggered,
385 // back trace will tell where to insert a call to updateCallSiteInfo().
386 assert((!MI->isCall(MachineInstr::IgnoreBundle) ||
387 CallSitesInfo.find(MI) == CallSitesInfo.end()) &&
388 "Call site info was not updated!");
389 // Strip it for parts. The operand array and the MI object itself are
390 // independently recyclable.
391 if (MI->Operands)
392 deallocateOperandArray(MI->CapOperands, MI->Operands);
393 // Don't call ~MachineInstr() which must be trivial anyway because
394 // ~MachineFunction drops whole lists of MachineInstrs wihout calling their
395 // destructors.
396 InstructionRecycler.Deallocate(Allocator, MI);
397 }
398
399 /// Allocate a new MachineBasicBlock. Use this instead of
400 /// `new MachineBasicBlock'.
401 MachineBasicBlock *
CreateMachineBasicBlock(const BasicBlock * bb)402 MachineFunction::CreateMachineBasicBlock(const BasicBlock *bb) {
403 return new (BasicBlockRecycler.Allocate<MachineBasicBlock>(Allocator))
404 MachineBasicBlock(*this, bb);
405 }
406
407 /// Delete the given MachineBasicBlock.
408 void
DeleteMachineBasicBlock(MachineBasicBlock * MBB)409 MachineFunction::DeleteMachineBasicBlock(MachineBasicBlock *MBB) {
410 assert(MBB->getParent() == this && "MBB parent mismatch!");
411 MBB->~MachineBasicBlock();
412 BasicBlockRecycler.Deallocate(Allocator, MBB);
413 }
414
getMachineMemOperand(MachinePointerInfo PtrInfo,MachineMemOperand::Flags f,uint64_t s,unsigned base_alignment,const AAMDNodes & AAInfo,const MDNode * Ranges,SyncScope::ID SSID,AtomicOrdering Ordering,AtomicOrdering FailureOrdering)415 MachineMemOperand *MachineFunction::getMachineMemOperand(
416 MachinePointerInfo PtrInfo, MachineMemOperand::Flags f, uint64_t s,
417 unsigned base_alignment, const AAMDNodes &AAInfo, const MDNode *Ranges,
418 SyncScope::ID SSID, AtomicOrdering Ordering,
419 AtomicOrdering FailureOrdering) {
420 return new (Allocator)
421 MachineMemOperand(PtrInfo, f, s, base_alignment, AAInfo, Ranges,
422 SSID, Ordering, FailureOrdering);
423 }
424
425 MachineMemOperand *
getMachineMemOperand(const MachineMemOperand * MMO,int64_t Offset,uint64_t Size)426 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
427 int64_t Offset, uint64_t Size) {
428 const MachinePointerInfo &PtrInfo = MMO->getPointerInfo();
429
430 // If there is no pointer value, the offset isn't tracked so we need to adjust
431 // the base alignment.
432 unsigned Align = PtrInfo.V.isNull()
433 ? MinAlign(MMO->getBaseAlignment(), Offset)
434 : MMO->getBaseAlignment();
435
436 return new (Allocator)
437 MachineMemOperand(PtrInfo.getWithOffset(Offset), MMO->getFlags(), Size,
438 Align, AAMDNodes(), nullptr, MMO->getSyncScopeID(),
439 MMO->getOrdering(), MMO->getFailureOrdering());
440 }
441
442 MachineMemOperand *
getMachineMemOperand(const MachineMemOperand * MMO,const AAMDNodes & AAInfo)443 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
444 const AAMDNodes &AAInfo) {
445 MachinePointerInfo MPI = MMO->getValue() ?
446 MachinePointerInfo(MMO->getValue(), MMO->getOffset()) :
447 MachinePointerInfo(MMO->getPseudoValue(), MMO->getOffset());
448
449 return new (Allocator)
450 MachineMemOperand(MPI, MMO->getFlags(), MMO->getSize(),
451 MMO->getBaseAlignment(), AAInfo,
452 MMO->getRanges(), MMO->getSyncScopeID(),
453 MMO->getOrdering(), MMO->getFailureOrdering());
454 }
455
456 MachineMemOperand *
getMachineMemOperand(const MachineMemOperand * MMO,MachineMemOperand::Flags Flags)457 MachineFunction::getMachineMemOperand(const MachineMemOperand *MMO,
458 MachineMemOperand::Flags Flags) {
459 return new (Allocator) MachineMemOperand(
460 MMO->getPointerInfo(), Flags, MMO->getSize(), MMO->getBaseAlignment(),
461 MMO->getAAInfo(), MMO->getRanges(), MMO->getSyncScopeID(),
462 MMO->getOrdering(), MMO->getFailureOrdering());
463 }
464
createMIExtraInfo(ArrayRef<MachineMemOperand * > MMOs,MCSymbol * PreInstrSymbol,MCSymbol * PostInstrSymbol,MDNode * HeapAllocMarker)465 MachineInstr::ExtraInfo *MachineFunction::createMIExtraInfo(
466 ArrayRef<MachineMemOperand *> MMOs, MCSymbol *PreInstrSymbol,
467 MCSymbol *PostInstrSymbol, MDNode *HeapAllocMarker) {
468 return MachineInstr::ExtraInfo::create(Allocator, MMOs, PreInstrSymbol,
469 PostInstrSymbol, HeapAllocMarker);
470 }
471
createExternalSymbolName(StringRef Name)472 const char *MachineFunction::createExternalSymbolName(StringRef Name) {
473 char *Dest = Allocator.Allocate<char>(Name.size() + 1);
474 llvm::copy(Name, Dest);
475 Dest[Name.size()] = 0;
476 return Dest;
477 }
478
allocateRegMask()479 uint32_t *MachineFunction::allocateRegMask() {
480 unsigned NumRegs = getSubtarget().getRegisterInfo()->getNumRegs();
481 unsigned Size = MachineOperand::getRegMaskSize(NumRegs);
482 uint32_t *Mask = Allocator.Allocate<uint32_t>(Size);
483 memset(Mask, 0, Size * sizeof(Mask[0]));
484 return Mask;
485 }
486
allocateShuffleMask(ArrayRef<int> Mask)487 ArrayRef<int> MachineFunction::allocateShuffleMask(ArrayRef<int> Mask) {
488 int* AllocMask = Allocator.Allocate<int>(Mask.size());
489 copy(Mask, AllocMask);
490 return {AllocMask, Mask.size()};
491 }
492
493 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const494 LLVM_DUMP_METHOD void MachineFunction::dump() const {
495 print(dbgs());
496 }
497 #endif
498
getName() const499 StringRef MachineFunction::getName() const {
500 return getFunction().getName();
501 }
502
print(raw_ostream & OS,const SlotIndexes * Indexes) const503 void MachineFunction::print(raw_ostream &OS, const SlotIndexes *Indexes) const {
504 OS << "# Machine code for function " << getName() << ": ";
505 getProperties().print(OS);
506 OS << '\n';
507
508 // Print Frame Information
509 FrameInfo->print(*this, OS);
510
511 // Print JumpTable Information
512 if (JumpTableInfo)
513 JumpTableInfo->print(OS);
514
515 // Print Constant Pool
516 ConstantPool->print(OS);
517
518 const TargetRegisterInfo *TRI = getSubtarget().getRegisterInfo();
519
520 if (RegInfo && !RegInfo->livein_empty()) {
521 OS << "Function Live Ins: ";
522 for (MachineRegisterInfo::livein_iterator
523 I = RegInfo->livein_begin(), E = RegInfo->livein_end(); I != E; ++I) {
524 OS << printReg(I->first, TRI);
525 if (I->second)
526 OS << " in " << printReg(I->second, TRI);
527 if (std::next(I) != E)
528 OS << ", ";
529 }
530 OS << '\n';
531 }
532
533 ModuleSlotTracker MST(getFunction().getParent());
534 MST.incorporateFunction(getFunction());
535 for (const auto &BB : *this) {
536 OS << '\n';
537 // If we print the whole function, print it at its most verbose level.
538 BB.print(OS, MST, Indexes, /*IsStandalone=*/true);
539 }
540
541 OS << "\n# End machine code for function " << getName() << ".\n\n";
542 }
543
544 /// True if this function needs frame moves for debug or exceptions.
needsFrameMoves() const545 bool MachineFunction::needsFrameMoves() const {
546 return getMMI().hasDebugInfo() ||
547 getTarget().Options.ForceDwarfFrameSection ||
548 F.needsUnwindTableEntry();
549 }
550
551 namespace llvm {
552
553 template<>
554 struct DOTGraphTraits<const MachineFunction*> : public DefaultDOTGraphTraits {
DOTGraphTraitsllvm::DOTGraphTraits555 DOTGraphTraits(bool isSimple = false) : DefaultDOTGraphTraits(isSimple) {}
556
getGraphNamellvm::DOTGraphTraits557 static std::string getGraphName(const MachineFunction *F) {
558 return ("CFG for '" + F->getName() + "' function").str();
559 }
560
getNodeLabelllvm::DOTGraphTraits561 std::string getNodeLabel(const MachineBasicBlock *Node,
562 const MachineFunction *Graph) {
563 std::string OutStr;
564 {
565 raw_string_ostream OSS(OutStr);
566
567 if (isSimple()) {
568 OSS << printMBBReference(*Node);
569 if (const BasicBlock *BB = Node->getBasicBlock())
570 OSS << ": " << BB->getName();
571 } else
572 Node->print(OSS);
573 }
574
575 if (OutStr[0] == '\n') OutStr.erase(OutStr.begin());
576
577 // Process string output to make it nicer...
578 for (unsigned i = 0; i != OutStr.length(); ++i)
579 if (OutStr[i] == '\n') { // Left justify
580 OutStr[i] = '\\';
581 OutStr.insert(OutStr.begin()+i+1, 'l');
582 }
583 return OutStr;
584 }
585 };
586
587 } // end namespace llvm
588
viewCFG() const589 void MachineFunction::viewCFG() const
590 {
591 #ifndef NDEBUG
592 ViewGraph(this, "mf" + getName());
593 #else
594 errs() << "MachineFunction::viewCFG is only available in debug builds on "
595 << "systems with Graphviz or gv!\n";
596 #endif // NDEBUG
597 }
598
viewCFGOnly() const599 void MachineFunction::viewCFGOnly() const
600 {
601 #ifndef NDEBUG
602 ViewGraph(this, "mf" + getName(), true);
603 #else
604 errs() << "MachineFunction::viewCFGOnly is only available in debug builds on "
605 << "systems with Graphviz or gv!\n";
606 #endif // NDEBUG
607 }
608
609 /// Add the specified physical register as a live-in value and
610 /// create a corresponding virtual register for it.
addLiveIn(unsigned PReg,const TargetRegisterClass * RC)611 unsigned MachineFunction::addLiveIn(unsigned PReg,
612 const TargetRegisterClass *RC) {
613 MachineRegisterInfo &MRI = getRegInfo();
614 unsigned VReg = MRI.getLiveInVirtReg(PReg);
615 if (VReg) {
616 const TargetRegisterClass *VRegRC = MRI.getRegClass(VReg);
617 (void)VRegRC;
618 // A physical register can be added several times.
619 // Between two calls, the register class of the related virtual register
620 // may have been constrained to match some operation constraints.
621 // In that case, check that the current register class includes the
622 // physical register and is a sub class of the specified RC.
623 assert((VRegRC == RC || (VRegRC->contains(PReg) &&
624 RC->hasSubClassEq(VRegRC))) &&
625 "Register class mismatch!");
626 return VReg;
627 }
628 VReg = MRI.createVirtualRegister(RC);
629 MRI.addLiveIn(PReg, VReg);
630 return VReg;
631 }
632
633 /// Return the MCSymbol for the specified non-empty jump table.
634 /// If isLinkerPrivate is specified, an 'l' label is returned, otherwise a
635 /// normal 'L' label is returned.
getJTISymbol(unsigned JTI,MCContext & Ctx,bool isLinkerPrivate) const636 MCSymbol *MachineFunction::getJTISymbol(unsigned JTI, MCContext &Ctx,
637 bool isLinkerPrivate) const {
638 const DataLayout &DL = getDataLayout();
639 assert(JumpTableInfo && "No jump tables");
640 assert(JTI < JumpTableInfo->getJumpTables().size() && "Invalid JTI!");
641
642 StringRef Prefix = isLinkerPrivate ? DL.getLinkerPrivateGlobalPrefix()
643 : DL.getPrivateGlobalPrefix();
644 SmallString<60> Name;
645 raw_svector_ostream(Name)
646 << Prefix << "JTI" << getFunctionNumber() << '_' << JTI;
647 return Ctx.getOrCreateSymbol(Name);
648 }
649
650 /// Return a function-local symbol to represent the PIC base.
getPICBaseSymbol() const651 MCSymbol *MachineFunction::getPICBaseSymbol() const {
652 const DataLayout &DL = getDataLayout();
653 return Ctx.getOrCreateSymbol(Twine(DL.getPrivateGlobalPrefix()) +
654 Twine(getFunctionNumber()) + "$pb");
655 }
656
657 /// \name Exception Handling
658 /// \{
659
660 LandingPadInfo &
getOrCreateLandingPadInfo(MachineBasicBlock * LandingPad)661 MachineFunction::getOrCreateLandingPadInfo(MachineBasicBlock *LandingPad) {
662 unsigned N = LandingPads.size();
663 for (unsigned i = 0; i < N; ++i) {
664 LandingPadInfo &LP = LandingPads[i];
665 if (LP.LandingPadBlock == LandingPad)
666 return LP;
667 }
668
669 LandingPads.push_back(LandingPadInfo(LandingPad));
670 return LandingPads[N];
671 }
672
addInvoke(MachineBasicBlock * LandingPad,MCSymbol * BeginLabel,MCSymbol * EndLabel)673 void MachineFunction::addInvoke(MachineBasicBlock *LandingPad,
674 MCSymbol *BeginLabel, MCSymbol *EndLabel) {
675 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
676 LP.BeginLabels.push_back(BeginLabel);
677 LP.EndLabels.push_back(EndLabel);
678 }
679
addLandingPad(MachineBasicBlock * LandingPad)680 MCSymbol *MachineFunction::addLandingPad(MachineBasicBlock *LandingPad) {
681 MCSymbol *LandingPadLabel = Ctx.createTempSymbol();
682 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
683 LP.LandingPadLabel = LandingPadLabel;
684
685 const Instruction *FirstI = LandingPad->getBasicBlock()->getFirstNonPHI();
686 if (const auto *LPI = dyn_cast<LandingPadInst>(FirstI)) {
687 if (const auto *PF =
688 dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts()))
689 getMMI().addPersonality(PF);
690
691 if (LPI->isCleanup())
692 addCleanup(LandingPad);
693
694 // FIXME: New EH - Add the clauses in reverse order. This isn't 100%
695 // correct, but we need to do it this way because of how the DWARF EH
696 // emitter processes the clauses.
697 for (unsigned I = LPI->getNumClauses(); I != 0; --I) {
698 Value *Val = LPI->getClause(I - 1);
699 if (LPI->isCatch(I - 1)) {
700 addCatchTypeInfo(LandingPad,
701 dyn_cast<GlobalValue>(Val->stripPointerCasts()));
702 } else {
703 // Add filters in a list.
704 auto *CVal = cast<Constant>(Val);
705 SmallVector<const GlobalValue *, 4> FilterList;
706 for (User::op_iterator II = CVal->op_begin(), IE = CVal->op_end();
707 II != IE; ++II)
708 FilterList.push_back(cast<GlobalValue>((*II)->stripPointerCasts()));
709
710 addFilterTypeInfo(LandingPad, FilterList);
711 }
712 }
713
714 } else if (const auto *CPI = dyn_cast<CatchPadInst>(FirstI)) {
715 for (unsigned I = CPI->getNumArgOperands(); I != 0; --I) {
716 Value *TypeInfo = CPI->getArgOperand(I - 1)->stripPointerCasts();
717 addCatchTypeInfo(LandingPad, dyn_cast<GlobalValue>(TypeInfo));
718 }
719
720 } else {
721 assert(isa<CleanupPadInst>(FirstI) && "Invalid landingpad!");
722 }
723
724 return LandingPadLabel;
725 }
726
addCatchTypeInfo(MachineBasicBlock * LandingPad,ArrayRef<const GlobalValue * > TyInfo)727 void MachineFunction::addCatchTypeInfo(MachineBasicBlock *LandingPad,
728 ArrayRef<const GlobalValue *> TyInfo) {
729 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
730 for (unsigned N = TyInfo.size(); N; --N)
731 LP.TypeIds.push_back(getTypeIDFor(TyInfo[N - 1]));
732 }
733
addFilterTypeInfo(MachineBasicBlock * LandingPad,ArrayRef<const GlobalValue * > TyInfo)734 void MachineFunction::addFilterTypeInfo(MachineBasicBlock *LandingPad,
735 ArrayRef<const GlobalValue *> TyInfo) {
736 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
737 std::vector<unsigned> IdsInFilter(TyInfo.size());
738 for (unsigned I = 0, E = TyInfo.size(); I != E; ++I)
739 IdsInFilter[I] = getTypeIDFor(TyInfo[I]);
740 LP.TypeIds.push_back(getFilterIDFor(IdsInFilter));
741 }
742
tidyLandingPads(DenseMap<MCSymbol *,uintptr_t> * LPMap,bool TidyIfNoBeginLabels)743 void MachineFunction::tidyLandingPads(DenseMap<MCSymbol *, uintptr_t> *LPMap,
744 bool TidyIfNoBeginLabels) {
745 for (unsigned i = 0; i != LandingPads.size(); ) {
746 LandingPadInfo &LandingPad = LandingPads[i];
747 if (LandingPad.LandingPadLabel &&
748 !LandingPad.LandingPadLabel->isDefined() &&
749 (!LPMap || (*LPMap)[LandingPad.LandingPadLabel] == 0))
750 LandingPad.LandingPadLabel = nullptr;
751
752 // Special case: we *should* emit LPs with null LP MBB. This indicates
753 // "nounwind" case.
754 if (!LandingPad.LandingPadLabel && LandingPad.LandingPadBlock) {
755 LandingPads.erase(LandingPads.begin() + i);
756 continue;
757 }
758
759 if (TidyIfNoBeginLabels) {
760 for (unsigned j = 0, e = LandingPads[i].BeginLabels.size(); j != e; ++j) {
761 MCSymbol *BeginLabel = LandingPad.BeginLabels[j];
762 MCSymbol *EndLabel = LandingPad.EndLabels[j];
763 if ((BeginLabel->isDefined() || (LPMap && (*LPMap)[BeginLabel] != 0)) &&
764 (EndLabel->isDefined() || (LPMap && (*LPMap)[EndLabel] != 0)))
765 continue;
766
767 LandingPad.BeginLabels.erase(LandingPad.BeginLabels.begin() + j);
768 LandingPad.EndLabels.erase(LandingPad.EndLabels.begin() + j);
769 --j;
770 --e;
771 }
772
773 // Remove landing pads with no try-ranges.
774 if (LandingPads[i].BeginLabels.empty()) {
775 LandingPads.erase(LandingPads.begin() + i);
776 continue;
777 }
778 }
779
780 // If there is no landing pad, ensure that the list of typeids is empty.
781 // If the only typeid is a cleanup, this is the same as having no typeids.
782 if (!LandingPad.LandingPadBlock ||
783 (LandingPad.TypeIds.size() == 1 && !LandingPad.TypeIds[0]))
784 LandingPad.TypeIds.clear();
785 ++i;
786 }
787 }
788
addCleanup(MachineBasicBlock * LandingPad)789 void MachineFunction::addCleanup(MachineBasicBlock *LandingPad) {
790 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
791 LP.TypeIds.push_back(0);
792 }
793
addSEHCatchHandler(MachineBasicBlock * LandingPad,const Function * Filter,const BlockAddress * RecoverBA)794 void MachineFunction::addSEHCatchHandler(MachineBasicBlock *LandingPad,
795 const Function *Filter,
796 const BlockAddress *RecoverBA) {
797 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
798 SEHHandler Handler;
799 Handler.FilterOrFinally = Filter;
800 Handler.RecoverBA = RecoverBA;
801 LP.SEHHandlers.push_back(Handler);
802 }
803
addSEHCleanupHandler(MachineBasicBlock * LandingPad,const Function * Cleanup)804 void MachineFunction::addSEHCleanupHandler(MachineBasicBlock *LandingPad,
805 const Function *Cleanup) {
806 LandingPadInfo &LP = getOrCreateLandingPadInfo(LandingPad);
807 SEHHandler Handler;
808 Handler.FilterOrFinally = Cleanup;
809 Handler.RecoverBA = nullptr;
810 LP.SEHHandlers.push_back(Handler);
811 }
812
setCallSiteLandingPad(MCSymbol * Sym,ArrayRef<unsigned> Sites)813 void MachineFunction::setCallSiteLandingPad(MCSymbol *Sym,
814 ArrayRef<unsigned> Sites) {
815 LPadToCallSiteMap[Sym].append(Sites.begin(), Sites.end());
816 }
817
getTypeIDFor(const GlobalValue * TI)818 unsigned MachineFunction::getTypeIDFor(const GlobalValue *TI) {
819 for (unsigned i = 0, N = TypeInfos.size(); i != N; ++i)
820 if (TypeInfos[i] == TI) return i + 1;
821
822 TypeInfos.push_back(TI);
823 return TypeInfos.size();
824 }
825
getFilterIDFor(std::vector<unsigned> & TyIds)826 int MachineFunction::getFilterIDFor(std::vector<unsigned> &TyIds) {
827 // If the new filter coincides with the tail of an existing filter, then
828 // re-use the existing filter. Folding filters more than this requires
829 // re-ordering filters and/or their elements - probably not worth it.
830 for (std::vector<unsigned>::iterator I = FilterEnds.begin(),
831 E = FilterEnds.end(); I != E; ++I) {
832 unsigned i = *I, j = TyIds.size();
833
834 while (i && j)
835 if (FilterIds[--i] != TyIds[--j])
836 goto try_next;
837
838 if (!j)
839 // The new filter coincides with range [i, end) of the existing filter.
840 return -(1 + i);
841
842 try_next:;
843 }
844
845 // Add the new filter.
846 int FilterID = -(1 + FilterIds.size());
847 FilterIds.reserve(FilterIds.size() + TyIds.size() + 1);
848 FilterIds.insert(FilterIds.end(), TyIds.begin(), TyIds.end());
849 FilterEnds.push_back(FilterIds.size());
850 FilterIds.push_back(0); // terminator
851 return FilterID;
852 }
853
854 MachineFunction::CallSiteInfoMap::iterator
getCallSiteInfo(const MachineInstr * MI)855 MachineFunction::getCallSiteInfo(const MachineInstr *MI) {
856 assert(MI->isCall() && "Call site info refers only to call instructions!");
857
858 if (!Target.Options.EnableDebugEntryValues)
859 return CallSitesInfo.end();
860 return CallSitesInfo.find(MI);
861 }
862
moveCallSiteInfo(const MachineInstr * Old,const MachineInstr * New)863 void MachineFunction::moveCallSiteInfo(const MachineInstr *Old,
864 const MachineInstr *New) {
865 assert(New->isCall() && "Call site info refers only to call instructions!");
866
867 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(Old);
868 if (CSIt == CallSitesInfo.end())
869 return;
870
871 CallSiteInfo CSInfo = std::move(CSIt->second);
872 CallSitesInfo.erase(CSIt);
873 CallSitesInfo[New] = CSInfo;
874 }
875
eraseCallSiteInfo(const MachineInstr * MI)876 void MachineFunction::eraseCallSiteInfo(const MachineInstr *MI) {
877 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(MI);
878 if (CSIt == CallSitesInfo.end())
879 return;
880 CallSitesInfo.erase(CSIt);
881 }
882
copyCallSiteInfo(const MachineInstr * Old,const MachineInstr * New)883 void MachineFunction::copyCallSiteInfo(const MachineInstr *Old,
884 const MachineInstr *New) {
885 assert(New->isCall() && "Call site info refers only to call instructions!");
886
887 CallSiteInfoMap::iterator CSIt = getCallSiteInfo(Old);
888 if (CSIt == CallSitesInfo.end())
889 return;
890
891 CallSiteInfo CSInfo = CSIt->second;
892 CallSitesInfo[New] = CSInfo;
893 }
894
895 /// \}
896
897 //===----------------------------------------------------------------------===//
898 // MachineJumpTableInfo implementation
899 //===----------------------------------------------------------------------===//
900
901 /// Return the size of each entry in the jump table.
getEntrySize(const DataLayout & TD) const902 unsigned MachineJumpTableInfo::getEntrySize(const DataLayout &TD) const {
903 // The size of a jump table entry is 4 bytes unless the entry is just the
904 // address of a block, in which case it is the pointer size.
905 switch (getEntryKind()) {
906 case MachineJumpTableInfo::EK_BlockAddress:
907 return TD.getPointerSize();
908 case MachineJumpTableInfo::EK_GPRel64BlockAddress:
909 return 8;
910 case MachineJumpTableInfo::EK_GPRel32BlockAddress:
911 case MachineJumpTableInfo::EK_LabelDifference32:
912 case MachineJumpTableInfo::EK_Custom32:
913 return 4;
914 case MachineJumpTableInfo::EK_Inline:
915 return 0;
916 }
917 llvm_unreachable("Unknown jump table encoding!");
918 }
919
920 /// Return the alignment of each entry in the jump table.
getEntryAlignment(const DataLayout & TD) const921 unsigned MachineJumpTableInfo::getEntryAlignment(const DataLayout &TD) const {
922 // The alignment of a jump table entry is the alignment of int32 unless the
923 // entry is just the address of a block, in which case it is the pointer
924 // alignment.
925 switch (getEntryKind()) {
926 case MachineJumpTableInfo::EK_BlockAddress:
927 return TD.getPointerABIAlignment(0).value();
928 case MachineJumpTableInfo::EK_GPRel64BlockAddress:
929 return TD.getABIIntegerTypeAlignment(64).value();
930 case MachineJumpTableInfo::EK_GPRel32BlockAddress:
931 case MachineJumpTableInfo::EK_LabelDifference32:
932 case MachineJumpTableInfo::EK_Custom32:
933 return TD.getABIIntegerTypeAlignment(32).value();
934 case MachineJumpTableInfo::EK_Inline:
935 return 1;
936 }
937 llvm_unreachable("Unknown jump table encoding!");
938 }
939
940 /// Create a new jump table entry in the jump table info.
createJumpTableIndex(const std::vector<MachineBasicBlock * > & DestBBs)941 unsigned MachineJumpTableInfo::createJumpTableIndex(
942 const std::vector<MachineBasicBlock*> &DestBBs) {
943 assert(!DestBBs.empty() && "Cannot create an empty jump table!");
944 JumpTables.push_back(MachineJumpTableEntry(DestBBs));
945 return JumpTables.size()-1;
946 }
947
948 /// If Old is the target of any jump tables, update the jump tables to branch
949 /// to New instead.
ReplaceMBBInJumpTables(MachineBasicBlock * Old,MachineBasicBlock * New)950 bool MachineJumpTableInfo::ReplaceMBBInJumpTables(MachineBasicBlock *Old,
951 MachineBasicBlock *New) {
952 assert(Old != New && "Not making a change?");
953 bool MadeChange = false;
954 for (size_t i = 0, e = JumpTables.size(); i != e; ++i)
955 ReplaceMBBInJumpTable(i, Old, New);
956 return MadeChange;
957 }
958
959 /// If Old is a target of the jump tables, update the jump table to branch to
960 /// New instead.
ReplaceMBBInJumpTable(unsigned Idx,MachineBasicBlock * Old,MachineBasicBlock * New)961 bool MachineJumpTableInfo::ReplaceMBBInJumpTable(unsigned Idx,
962 MachineBasicBlock *Old,
963 MachineBasicBlock *New) {
964 assert(Old != New && "Not making a change?");
965 bool MadeChange = false;
966 MachineJumpTableEntry &JTE = JumpTables[Idx];
967 for (size_t j = 0, e = JTE.MBBs.size(); j != e; ++j)
968 if (JTE.MBBs[j] == Old) {
969 JTE.MBBs[j] = New;
970 MadeChange = true;
971 }
972 return MadeChange;
973 }
974
print(raw_ostream & OS) const975 void MachineJumpTableInfo::print(raw_ostream &OS) const {
976 if (JumpTables.empty()) return;
977
978 OS << "Jump Tables:\n";
979
980 for (unsigned i = 0, e = JumpTables.size(); i != e; ++i) {
981 OS << printJumpTableEntryReference(i) << ':';
982 for (unsigned j = 0, f = JumpTables[i].MBBs.size(); j != f; ++j)
983 OS << ' ' << printMBBReference(*JumpTables[i].MBBs[j]);
984 if (i != e)
985 OS << '\n';
986 }
987
988 OS << '\n';
989 }
990
991 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const992 LLVM_DUMP_METHOD void MachineJumpTableInfo::dump() const { print(dbgs()); }
993 #endif
994
printJumpTableEntryReference(unsigned Idx)995 Printable llvm::printJumpTableEntryReference(unsigned Idx) {
996 return Printable([Idx](raw_ostream &OS) { OS << "%jump-table." << Idx; });
997 }
998
999 //===----------------------------------------------------------------------===//
1000 // MachineConstantPool implementation
1001 //===----------------------------------------------------------------------===//
1002
anchor()1003 void MachineConstantPoolValue::anchor() {}
1004
getType() const1005 Type *MachineConstantPoolEntry::getType() const {
1006 if (isMachineConstantPoolEntry())
1007 return Val.MachineCPVal->getType();
1008 return Val.ConstVal->getType();
1009 }
1010
needsRelocation() const1011 bool MachineConstantPoolEntry::needsRelocation() const {
1012 if (isMachineConstantPoolEntry())
1013 return true;
1014 return Val.ConstVal->needsRelocation();
1015 }
1016
1017 SectionKind
getSectionKind(const DataLayout * DL) const1018 MachineConstantPoolEntry::getSectionKind(const DataLayout *DL) const {
1019 if (needsRelocation())
1020 return SectionKind::getReadOnlyWithRel();
1021 switch (DL->getTypeAllocSize(getType())) {
1022 case 4:
1023 return SectionKind::getMergeableConst4();
1024 case 8:
1025 return SectionKind::getMergeableConst8();
1026 case 16:
1027 return SectionKind::getMergeableConst16();
1028 case 32:
1029 return SectionKind::getMergeableConst32();
1030 default:
1031 return SectionKind::getReadOnly();
1032 }
1033 }
1034
~MachineConstantPool()1035 MachineConstantPool::~MachineConstantPool() {
1036 // A constant may be a member of both Constants and MachineCPVsSharingEntries,
1037 // so keep track of which we've deleted to avoid double deletions.
1038 DenseSet<MachineConstantPoolValue*> Deleted;
1039 for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1040 if (Constants[i].isMachineConstantPoolEntry()) {
1041 Deleted.insert(Constants[i].Val.MachineCPVal);
1042 delete Constants[i].Val.MachineCPVal;
1043 }
1044 for (DenseSet<MachineConstantPoolValue*>::iterator I =
1045 MachineCPVsSharingEntries.begin(), E = MachineCPVsSharingEntries.end();
1046 I != E; ++I) {
1047 if (Deleted.count(*I) == 0)
1048 delete *I;
1049 }
1050 }
1051
1052 /// Test whether the given two constants can be allocated the same constant pool
1053 /// entry.
CanShareConstantPoolEntry(const Constant * A,const Constant * B,const DataLayout & DL)1054 static bool CanShareConstantPoolEntry(const Constant *A, const Constant *B,
1055 const DataLayout &DL) {
1056 // Handle the trivial case quickly.
1057 if (A == B) return true;
1058
1059 // If they have the same type but weren't the same constant, quickly
1060 // reject them.
1061 if (A->getType() == B->getType()) return false;
1062
1063 // We can't handle structs or arrays.
1064 if (isa<StructType>(A->getType()) || isa<ArrayType>(A->getType()) ||
1065 isa<StructType>(B->getType()) || isa<ArrayType>(B->getType()))
1066 return false;
1067
1068 // For now, only support constants with the same size.
1069 uint64_t StoreSize = DL.getTypeStoreSize(A->getType());
1070 if (StoreSize != DL.getTypeStoreSize(B->getType()) || StoreSize > 128)
1071 return false;
1072
1073 Type *IntTy = IntegerType::get(A->getContext(), StoreSize*8);
1074
1075 // Try constant folding a bitcast of both instructions to an integer. If we
1076 // get two identical ConstantInt's, then we are good to share them. We use
1077 // the constant folding APIs to do this so that we get the benefit of
1078 // DataLayout.
1079 if (isa<PointerType>(A->getType()))
1080 A = ConstantFoldCastOperand(Instruction::PtrToInt,
1081 const_cast<Constant *>(A), IntTy, DL);
1082 else if (A->getType() != IntTy)
1083 A = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(A),
1084 IntTy, DL);
1085 if (isa<PointerType>(B->getType()))
1086 B = ConstantFoldCastOperand(Instruction::PtrToInt,
1087 const_cast<Constant *>(B), IntTy, DL);
1088 else if (B->getType() != IntTy)
1089 B = ConstantFoldCastOperand(Instruction::BitCast, const_cast<Constant *>(B),
1090 IntTy, DL);
1091
1092 return A == B;
1093 }
1094
1095 /// Create a new entry in the constant pool or return an existing one.
1096 /// User must specify the log2 of the minimum required alignment for the object.
getConstantPoolIndex(const Constant * C,unsigned Alignment)1097 unsigned MachineConstantPool::getConstantPoolIndex(const Constant *C,
1098 unsigned Alignment) {
1099 assert(Alignment && "Alignment must be specified!");
1100 if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1101
1102 // Check to see if we already have this constant.
1103 //
1104 // FIXME, this could be made much more efficient for large constant pools.
1105 for (unsigned i = 0, e = Constants.size(); i != e; ++i)
1106 if (!Constants[i].isMachineConstantPoolEntry() &&
1107 CanShareConstantPoolEntry(Constants[i].Val.ConstVal, C, DL)) {
1108 if ((unsigned)Constants[i].getAlignment() < Alignment)
1109 Constants[i].Alignment = Alignment;
1110 return i;
1111 }
1112
1113 Constants.push_back(MachineConstantPoolEntry(C, Alignment));
1114 return Constants.size()-1;
1115 }
1116
getConstantPoolIndex(MachineConstantPoolValue * V,unsigned Alignment)1117 unsigned MachineConstantPool::getConstantPoolIndex(MachineConstantPoolValue *V,
1118 unsigned Alignment) {
1119 assert(Alignment && "Alignment must be specified!");
1120 if (Alignment > PoolAlignment) PoolAlignment = Alignment;
1121
1122 // Check to see if we already have this constant.
1123 //
1124 // FIXME, this could be made much more efficient for large constant pools.
1125 int Idx = V->getExistingMachineCPValue(this, Alignment);
1126 if (Idx != -1) {
1127 MachineCPVsSharingEntries.insert(V);
1128 return (unsigned)Idx;
1129 }
1130
1131 Constants.push_back(MachineConstantPoolEntry(V, Alignment));
1132 return Constants.size()-1;
1133 }
1134
print(raw_ostream & OS) const1135 void MachineConstantPool::print(raw_ostream &OS) const {
1136 if (Constants.empty()) return;
1137
1138 OS << "Constant Pool:\n";
1139 for (unsigned i = 0, e = Constants.size(); i != e; ++i) {
1140 OS << " cp#" << i << ": ";
1141 if (Constants[i].isMachineConstantPoolEntry())
1142 Constants[i].Val.MachineCPVal->print(OS);
1143 else
1144 Constants[i].Val.ConstVal->printAsOperand(OS, /*PrintType=*/false);
1145 OS << ", align=" << Constants[i].getAlignment();
1146 OS << "\n";
1147 }
1148 }
1149
1150 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const1151 LLVM_DUMP_METHOD void MachineConstantPool::dump() const { print(dbgs()); }
1152 #endif
1153