1 // Protocol Buffers - Google's data interchange format
2 // Copyright 2008 Google Inc. All rights reserved.
3 // https://developers.google.com/protocol-buffers/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are
7 // met:
8 //
9 // * Redistributions of source code must retain the above copyright
10 // notice, this list of conditions and the following disclaimer.
11 // * Redistributions in binary form must reproduce the above
12 // copyright notice, this list of conditions and the following disclaimer
13 // in the documentation and/or other materials provided with the
14 // distribution.
15 // * Neither the name of Google Inc. nor the names of its
16 // contributors may be used to endorse or promote products derived from
17 // this software without specific prior written permission.
18 //
19 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
20 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
21 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
22 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
23 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
24 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
25 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
26 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
27 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
28 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
29 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30
31 #include <google/protobuf/util/time_util.h>
32
33 #include <google/protobuf/stubs/stringprintf.h>
34 #include <google/protobuf/stubs/strutil.h>
35 #include <google/protobuf/duration.pb.h>
36 #include <google/protobuf/timestamp.pb.h>
37 #include <google/protobuf/stubs/int128.h>
38 #include <google/protobuf/stubs/time.h>
39
40 // Must go after other includes.
41 #include <google/protobuf/port_def.inc>
42
43 namespace google {
44 namespace protobuf {
45 namespace util {
46
47 using google::protobuf::Duration;
48 using google::protobuf::Timestamp;
49
50 namespace {
51 static const int kNanosPerSecond = 1000000000;
52 static const int kMicrosPerSecond = 1000000;
53 static const int kMillisPerSecond = 1000;
54 static const int kNanosPerMillisecond = 1000000;
55 static const int kNanosPerMicrosecond = 1000;
56 static const int kSecondsPerMinute = 60; // Note that we ignore leap seconds.
57 static const int kSecondsPerHour = 3600;
58
59 template <typename T>
60 T CreateNormalized(int64 seconds, int64 nanos);
61
62 template <>
CreateNormalized(int64 seconds,int64 nanos)63 Timestamp CreateNormalized(int64 seconds, int64 nanos) {
64 // Make sure nanos is in the range.
65 if (nanos <= -kNanosPerSecond || nanos >= kNanosPerSecond) {
66 seconds += nanos / kNanosPerSecond;
67 nanos = nanos % kNanosPerSecond;
68 }
69 // For Timestamp nanos should be in the range [0, 999999999]
70 if (nanos < 0) {
71 seconds -= 1;
72 nanos += kNanosPerSecond;
73 }
74 GOOGLE_DCHECK(seconds >= TimeUtil::kTimestampMinSeconds &&
75 seconds <= TimeUtil::kTimestampMaxSeconds);
76 Timestamp result;
77 result.set_seconds(seconds);
78 result.set_nanos(static_cast<int32>(nanos));
79 return result;
80 }
81
82 template <>
CreateNormalized(int64 seconds,int64 nanos)83 Duration CreateNormalized(int64 seconds, int64 nanos) {
84 // Make sure nanos is in the range.
85 if (nanos <= -kNanosPerSecond || nanos >= kNanosPerSecond) {
86 seconds += nanos / kNanosPerSecond;
87 nanos = nanos % kNanosPerSecond;
88 }
89 // nanos should have the same sign as seconds.
90 if (seconds < 0 && nanos > 0) {
91 seconds += 1;
92 nanos -= kNanosPerSecond;
93 } else if (seconds > 0 && nanos < 0) {
94 seconds -= 1;
95 nanos += kNanosPerSecond;
96 }
97 GOOGLE_DCHECK(seconds >= TimeUtil::kDurationMinSeconds &&
98 seconds <= TimeUtil::kDurationMaxSeconds);
99 Duration result;
100 result.set_seconds(seconds);
101 result.set_nanos(static_cast<int32>(nanos));
102 return result;
103 }
104
105 // Format nanoseconds with either 3, 6, or 9 digits depending on the required
106 // precision to represent the exact value.
FormatNanos(int32 nanos)107 std::string FormatNanos(int32 nanos) {
108 if (nanos % kNanosPerMillisecond == 0) {
109 return StringPrintf("%03d", nanos / kNanosPerMillisecond);
110 } else if (nanos % kNanosPerMicrosecond == 0) {
111 return StringPrintf("%06d", nanos / kNanosPerMicrosecond);
112 } else {
113 return StringPrintf("%09d", nanos);
114 }
115 }
116
FormatTime(int64 seconds,int32 nanos)117 std::string FormatTime(int64 seconds, int32 nanos) {
118 return ::google::protobuf::internal::FormatTime(seconds, nanos);
119 }
120
ParseTime(const std::string & value,int64 * seconds,int32 * nanos)121 bool ParseTime(const std::string& value, int64* seconds, int32* nanos) {
122 return ::google::protobuf::internal::ParseTime(value, seconds, nanos);
123 }
124
CurrentTime(int64 * seconds,int32 * nanos)125 void CurrentTime(int64* seconds, int32* nanos) {
126 return ::google::protobuf::internal::GetCurrentTime(seconds, nanos);
127 }
128
129 // Truncates the remainder part after division.
RoundTowardZero(int64 value,int64 divider)130 int64 RoundTowardZero(int64 value, int64 divider) {
131 int64 result = value / divider;
132 int64 remainder = value % divider;
133 // Before C++11, the sign of the remainder is implementation dependent if
134 // any of the operands is negative. Here we try to enforce C++11's "rounded
135 // toward zero" semantics. For example, for (-5) / 2 an implementation may
136 // give -3 as the result with the remainder being 1. This function ensures
137 // we always return -2 (closer to zero) regardless of the implementation.
138 if (result < 0 && remainder > 0) {
139 return result + 1;
140 } else {
141 return result;
142 }
143 }
144 } // namespace
145
146 // Actually define these static const integers. Required by C++ standard (but
147 // some compilers don't like it).
148 #ifndef _MSC_VER
149 const int64 TimeUtil::kTimestampMinSeconds;
150 const int64 TimeUtil::kTimestampMaxSeconds;
151 const int64 TimeUtil::kDurationMaxSeconds;
152 const int64 TimeUtil::kDurationMinSeconds;
153 #endif // !_MSC_VER
154
ToString(const Timestamp & timestamp)155 std::string TimeUtil::ToString(const Timestamp& timestamp) {
156 return FormatTime(timestamp.seconds(), timestamp.nanos());
157 }
158
FromString(const std::string & value,Timestamp * timestamp)159 bool TimeUtil::FromString(const std::string& value, Timestamp* timestamp) {
160 int64 seconds;
161 int32 nanos;
162 if (!ParseTime(value, &seconds, &nanos)) {
163 return false;
164 }
165 *timestamp = CreateNormalized<Timestamp>(seconds, nanos);
166 return true;
167 }
168
GetCurrentTime()169 Timestamp TimeUtil::GetCurrentTime() {
170 int64 seconds;
171 int32 nanos;
172 CurrentTime(&seconds, &nanos);
173 return CreateNormalized<Timestamp>(seconds, nanos);
174 }
175
GetEpoch()176 Timestamp TimeUtil::GetEpoch() { return Timestamp(); }
177
ToString(const Duration & duration)178 std::string TimeUtil::ToString(const Duration& duration) {
179 std::string result;
180 int64 seconds = duration.seconds();
181 int32 nanos = duration.nanos();
182 if (seconds < 0 || nanos < 0) {
183 result += "-";
184 seconds = -seconds;
185 nanos = -nanos;
186 }
187 result += StrCat(seconds);
188 if (nanos != 0) {
189 result += "." + FormatNanos(nanos);
190 }
191 result += "s";
192 return result;
193 }
194
Pow(int64 x,int y)195 static int64 Pow(int64 x, int y) {
196 int64 result = 1;
197 for (int i = 0; i < y; ++i) {
198 result *= x;
199 }
200 return result;
201 }
202
FromString(const std::string & value,Duration * duration)203 bool TimeUtil::FromString(const std::string& value, Duration* duration) {
204 if (value.length() <= 1 || value[value.length() - 1] != 's') {
205 return false;
206 }
207 bool negative = (value[0] == '-');
208 int sign_length = (negative ? 1 : 0);
209 // Parse the duration value as two integers rather than a float value
210 // to avoid precision loss.
211 std::string seconds_part, nanos_part;
212 size_t pos = value.find_last_of(".");
213 if (pos == std::string::npos) {
214 seconds_part = value.substr(sign_length, value.length() - 1 - sign_length);
215 nanos_part = "0";
216 } else {
217 seconds_part = value.substr(sign_length, pos - sign_length);
218 nanos_part = value.substr(pos + 1, value.length() - pos - 2);
219 }
220 char* end;
221 int64 seconds = strto64(seconds_part.c_str(), &end, 10);
222 if (end != seconds_part.c_str() + seconds_part.length()) {
223 return false;
224 }
225 int64 nanos = strto64(nanos_part.c_str(), &end, 10);
226 if (end != nanos_part.c_str() + nanos_part.length()) {
227 return false;
228 }
229 nanos = nanos * Pow(10, 9 - nanos_part.length());
230 if (negative) {
231 // If a Duration is negative, both seconds and nanos should be negative.
232 seconds = -seconds;
233 nanos = -nanos;
234 }
235 duration->set_seconds(seconds);
236 duration->set_nanos(static_cast<int32>(nanos));
237 return true;
238 }
239
NanosecondsToDuration(int64 nanos)240 Duration TimeUtil::NanosecondsToDuration(int64 nanos) {
241 return CreateNormalized<Duration>(nanos / kNanosPerSecond,
242 nanos % kNanosPerSecond);
243 }
244
MicrosecondsToDuration(int64 micros)245 Duration TimeUtil::MicrosecondsToDuration(int64 micros) {
246 return CreateNormalized<Duration>(
247 micros / kMicrosPerSecond,
248 (micros % kMicrosPerSecond) * kNanosPerMicrosecond);
249 }
250
MillisecondsToDuration(int64 millis)251 Duration TimeUtil::MillisecondsToDuration(int64 millis) {
252 return CreateNormalized<Duration>(
253 millis / kMillisPerSecond,
254 (millis % kMillisPerSecond) * kNanosPerMillisecond);
255 }
256
SecondsToDuration(int64 seconds)257 Duration TimeUtil::SecondsToDuration(int64 seconds) {
258 return CreateNormalized<Duration>(seconds, 0);
259 }
260
MinutesToDuration(int64 minutes)261 Duration TimeUtil::MinutesToDuration(int64 minutes) {
262 return CreateNormalized<Duration>(minutes * kSecondsPerMinute, 0);
263 }
264
HoursToDuration(int64 hours)265 Duration TimeUtil::HoursToDuration(int64 hours) {
266 return CreateNormalized<Duration>(hours * kSecondsPerHour, 0);
267 }
268
DurationToNanoseconds(const Duration & duration)269 int64 TimeUtil::DurationToNanoseconds(const Duration& duration) {
270 return duration.seconds() * kNanosPerSecond + duration.nanos();
271 }
272
DurationToMicroseconds(const Duration & duration)273 int64 TimeUtil::DurationToMicroseconds(const Duration& duration) {
274 return duration.seconds() * kMicrosPerSecond +
275 RoundTowardZero(duration.nanos(), kNanosPerMicrosecond);
276 }
277
DurationToMilliseconds(const Duration & duration)278 int64 TimeUtil::DurationToMilliseconds(const Duration& duration) {
279 return duration.seconds() * kMillisPerSecond +
280 RoundTowardZero(duration.nanos(), kNanosPerMillisecond);
281 }
282
DurationToSeconds(const Duration & duration)283 int64 TimeUtil::DurationToSeconds(const Duration& duration) {
284 return duration.seconds();
285 }
286
DurationToMinutes(const Duration & duration)287 int64 TimeUtil::DurationToMinutes(const Duration& duration) {
288 return RoundTowardZero(duration.seconds(), kSecondsPerMinute);
289 }
290
DurationToHours(const Duration & duration)291 int64 TimeUtil::DurationToHours(const Duration& duration) {
292 return RoundTowardZero(duration.seconds(), kSecondsPerHour);
293 }
294
NanosecondsToTimestamp(int64 nanos)295 Timestamp TimeUtil::NanosecondsToTimestamp(int64 nanos) {
296 return CreateNormalized<Timestamp>(nanos / kNanosPerSecond,
297 nanos % kNanosPerSecond);
298 }
299
MicrosecondsToTimestamp(int64 micros)300 Timestamp TimeUtil::MicrosecondsToTimestamp(int64 micros) {
301 return CreateNormalized<Timestamp>(
302 micros / kMicrosPerSecond,
303 micros % kMicrosPerSecond * kNanosPerMicrosecond);
304 }
305
MillisecondsToTimestamp(int64 millis)306 Timestamp TimeUtil::MillisecondsToTimestamp(int64 millis) {
307 return CreateNormalized<Timestamp>(
308 millis / kMillisPerSecond,
309 millis % kMillisPerSecond * kNanosPerMillisecond);
310 }
311
SecondsToTimestamp(int64 seconds)312 Timestamp TimeUtil::SecondsToTimestamp(int64 seconds) {
313 return CreateNormalized<Timestamp>(seconds, 0);
314 }
315
TimestampToNanoseconds(const Timestamp & timestamp)316 int64 TimeUtil::TimestampToNanoseconds(const Timestamp& timestamp) {
317 return timestamp.seconds() * kNanosPerSecond + timestamp.nanos();
318 }
319
TimestampToMicroseconds(const Timestamp & timestamp)320 int64 TimeUtil::TimestampToMicroseconds(const Timestamp& timestamp) {
321 return timestamp.seconds() * kMicrosPerSecond +
322 RoundTowardZero(timestamp.nanos(), kNanosPerMicrosecond);
323 }
324
TimestampToMilliseconds(const Timestamp & timestamp)325 int64 TimeUtil::TimestampToMilliseconds(const Timestamp& timestamp) {
326 return timestamp.seconds() * kMillisPerSecond +
327 RoundTowardZero(timestamp.nanos(), kNanosPerMillisecond);
328 }
329
TimestampToSeconds(const Timestamp & timestamp)330 int64 TimeUtil::TimestampToSeconds(const Timestamp& timestamp) {
331 return timestamp.seconds();
332 }
333
TimeTToTimestamp(time_t value)334 Timestamp TimeUtil::TimeTToTimestamp(time_t value) {
335 return CreateNormalized<Timestamp>(static_cast<int64>(value), 0);
336 }
337
TimestampToTimeT(const Timestamp & value)338 time_t TimeUtil::TimestampToTimeT(const Timestamp& value) {
339 return static_cast<time_t>(value.seconds());
340 }
341
TimevalToTimestamp(const timeval & value)342 Timestamp TimeUtil::TimevalToTimestamp(const timeval& value) {
343 return CreateNormalized<Timestamp>(value.tv_sec,
344 value.tv_usec * kNanosPerMicrosecond);
345 }
346
TimestampToTimeval(const Timestamp & value)347 timeval TimeUtil::TimestampToTimeval(const Timestamp& value) {
348 timeval result;
349 result.tv_sec = value.seconds();
350 result.tv_usec = RoundTowardZero(value.nanos(), kNanosPerMicrosecond);
351 return result;
352 }
353
TimevalToDuration(const timeval & value)354 Duration TimeUtil::TimevalToDuration(const timeval& value) {
355 return CreateNormalized<Duration>(value.tv_sec,
356 value.tv_usec * kNanosPerMicrosecond);
357 }
358
DurationToTimeval(const Duration & value)359 timeval TimeUtil::DurationToTimeval(const Duration& value) {
360 timeval result;
361 result.tv_sec = value.seconds();
362 result.tv_usec = RoundTowardZero(value.nanos(), kNanosPerMicrosecond);
363 // timeval.tv_usec's range is [0, 1000000)
364 if (result.tv_usec < 0) {
365 result.tv_sec -= 1;
366 result.tv_usec += kMicrosPerSecond;
367 }
368 return result;
369 }
370
371 } // namespace util
372 } // namespace protobuf
373 } // namespace google
374
375 namespace google {
376 namespace protobuf {
377 namespace {
378 using ::PROTOBUF_NAMESPACE_ID::util::CreateNormalized;
379 using ::PROTOBUF_NAMESPACE_ID::util::kNanosPerSecond;
380
381 // Convert a Duration to uint128.
ToUint128(const Duration & value,uint128 * result,bool * negative)382 void ToUint128(const Duration& value, uint128* result, bool* negative) {
383 if (value.seconds() < 0 || value.nanos() < 0) {
384 *negative = true;
385 *result = static_cast<uint64>(-value.seconds());
386 *result = *result * kNanosPerSecond + static_cast<uint32>(-value.nanos());
387 } else {
388 *negative = false;
389 *result = static_cast<uint64>(value.seconds());
390 *result = *result * kNanosPerSecond + static_cast<uint32>(value.nanos());
391 }
392 }
393
ToDuration(const uint128 & value,bool negative,Duration * duration)394 void ToDuration(const uint128& value, bool negative, Duration* duration) {
395 int64 seconds =
396 static_cast<int64>(Uint128Low64(value / kNanosPerSecond));
397 int32 nanos = static_cast<int32>(Uint128Low64(value % kNanosPerSecond));
398 if (negative) {
399 seconds = -seconds;
400 nanos = -nanos;
401 }
402 duration->set_seconds(seconds);
403 duration->set_nanos(nanos);
404 }
405 } // namespace
406
operator +=(Duration & d1,const Duration & d2)407 Duration& operator+=(Duration& d1, const Duration& d2) {
408 d1 = CreateNormalized<Duration>(d1.seconds() + d2.seconds(),
409 d1.nanos() + d2.nanos());
410 return d1;
411 }
412
operator -=(Duration & d1,const Duration & d2)413 Duration& operator-=(Duration& d1, const Duration& d2) { // NOLINT
414 d1 = CreateNormalized<Duration>(d1.seconds() - d2.seconds(),
415 d1.nanos() - d2.nanos());
416 return d1;
417 }
418
operator *=(Duration & d,int64 r)419 Duration& operator*=(Duration& d, int64 r) { // NOLINT
420 bool negative;
421 uint128 value;
422 ToUint128(d, &value, &negative);
423 if (r > 0) {
424 value *= static_cast<uint64>(r);
425 } else {
426 negative = !negative;
427 value *= static_cast<uint64>(-r);
428 }
429 ToDuration(value, negative, &d);
430 return d;
431 }
432
operator *=(Duration & d,double r)433 Duration& operator*=(Duration& d, double r) { // NOLINT
434 double result = (d.seconds() * 1.0 + 1.0 * d.nanos() / kNanosPerSecond) * r;
435 int64 seconds = static_cast<int64>(result);
436 int32 nanos = static_cast<int32>((result - seconds) * kNanosPerSecond);
437 // Note that we normalize here not just because nanos can have a different
438 // sign from seconds but also that nanos can be any arbitrary value when
439 // overflow happens (i.e., the result is a much larger value than what
440 // int64 can represent).
441 d = CreateNormalized<Duration>(seconds, nanos);
442 return d;
443 }
444
operator /=(Duration & d,int64 r)445 Duration& operator/=(Duration& d, int64 r) { // NOLINT
446 bool negative;
447 uint128 value;
448 ToUint128(d, &value, &negative);
449 if (r > 0) {
450 value /= static_cast<uint64>(r);
451 } else {
452 negative = !negative;
453 value /= static_cast<uint64>(-r);
454 }
455 ToDuration(value, negative, &d);
456 return d;
457 }
458
operator /=(Duration & d,double r)459 Duration& operator/=(Duration& d, double r) { // NOLINT
460 return d *= 1.0 / r;
461 }
462
operator %=(Duration & d1,const Duration & d2)463 Duration& operator%=(Duration& d1, const Duration& d2) { // NOLINT
464 bool negative1, negative2;
465 uint128 value1, value2;
466 ToUint128(d1, &value1, &negative1);
467 ToUint128(d2, &value2, &negative2);
468 uint128 result = value1 % value2;
469 // When negative values are involved in division, we round the division
470 // result towards zero. With this semantics, sign of the remainder is the
471 // same as the dividend. For example:
472 // -5 / 10 = 0, -5 % 10 = -5
473 // -5 / (-10) = 0, -5 % (-10) = -5
474 // 5 / (-10) = 0, 5 % (-10) = 5
475 ToDuration(result, negative1, &d1);
476 return d1;
477 }
478
operator /(const Duration & d1,const Duration & d2)479 int64 operator/(const Duration& d1, const Duration& d2) {
480 bool negative1, negative2;
481 uint128 value1, value2;
482 ToUint128(d1, &value1, &negative1);
483 ToUint128(d2, &value2, &negative2);
484 int64 result = Uint128Low64(value1 / value2);
485 if (negative1 != negative2) {
486 result = -result;
487 }
488 return result;
489 }
490
operator +=(Timestamp & t,const Duration & d)491 Timestamp& operator+=(Timestamp& t, const Duration& d) { // NOLINT
492 t = CreateNormalized<Timestamp>(t.seconds() + d.seconds(),
493 t.nanos() + d.nanos());
494 return t;
495 }
496
operator -=(Timestamp & t,const Duration & d)497 Timestamp& operator-=(Timestamp& t, const Duration& d) { // NOLINT
498 t = CreateNormalized<Timestamp>(t.seconds() - d.seconds(),
499 t.nanos() - d.nanos());
500 return t;
501 }
502
operator -(const Timestamp & t1,const Timestamp & t2)503 Duration operator-(const Timestamp& t1, const Timestamp& t2) {
504 return CreateNormalized<Duration>(t1.seconds() - t2.seconds(),
505 t1.nanos() - t2.nanos());
506 }
507 } // namespace protobuf
508 } // namespace google
509