• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "src/execution/isolate.h"
6 
7 #include <stdlib.h>
8 
9 #include <atomic>
10 #include <cstdint>
11 #include <fstream>
12 #include <memory>
13 #include <sstream>
14 #include <string>
15 #include <unordered_map>
16 #include <utility>
17 
18 #include "include/v8-template.h"
19 #include "src/api/api-inl.h"
20 #include "src/ast/ast-value-factory.h"
21 #include "src/ast/scopes.h"
22 #include "src/base/hashmap.h"
23 #include "src/base/logging.h"
24 #include "src/base/platform/mutex.h"
25 #include "src/base/platform/platform.h"
26 #include "src/base/sys-info.h"
27 #include "src/base/utils/random-number-generator.h"
28 #include "src/baseline/baseline-batch-compiler.h"
29 #include "src/bigint/bigint.h"
30 #include "src/builtins/builtins-promise.h"
31 #include "src/builtins/constants-table-builder.h"
32 #include "src/codegen/assembler-inl.h"
33 #include "src/codegen/compilation-cache.h"
34 #include "src/codegen/flush-instruction-cache.h"
35 #include "src/common/assert-scope.h"
36 #include "src/common/ptr-compr-inl.h"
37 #include "src/compiler-dispatcher/lazy-compile-dispatcher.h"
38 #include "src/compiler-dispatcher/optimizing-compile-dispatcher.h"
39 #include "src/date/date.h"
40 #include "src/debug/debug-frames.h"
41 #if V8_ENABLE_WEBASSEMBLY
42 #include "src/debug/debug-wasm-objects.h"
43 #endif  // V8_ENABLE_WEBASSEMBLY
44 #include "src/debug/debug.h"
45 #include "src/deoptimizer/deoptimizer.h"
46 #include "src/deoptimizer/materialized-object-store.h"
47 #include "src/diagnostics/basic-block-profiler.h"
48 #include "src/diagnostics/compilation-statistics.h"
49 #include "src/execution/frames-inl.h"
50 #include "src/execution/frames.h"
51 #include "src/execution/isolate-inl.h"
52 #include "src/execution/local-isolate.h"
53 #include "src/execution/messages.h"
54 #include "src/execution/microtask-queue.h"
55 #include "src/execution/protectors-inl.h"
56 #include "src/execution/simulator.h"
57 #include "src/execution/tiering-manager.h"
58 #include "src/execution/v8threads.h"
59 #include "src/execution/vm-state-inl.h"
60 #include "src/handles/global-handles-inl.h"
61 #include "src/handles/persistent-handles.h"
62 #include "src/heap/heap-inl.h"
63 #include "src/heap/heap.h"
64 #include "src/heap/local-heap.h"
65 #include "src/heap/parked-scope.h"
66 #include "src/heap/read-only-heap.h"
67 #include "src/heap/safepoint.h"
68 #include "src/ic/stub-cache.h"
69 #include "src/init/bootstrapper.h"
70 #include "src/init/setup-isolate.h"
71 #include "src/init/v8.h"
72 #include "src/interpreter/interpreter.h"
73 #include "src/libsampler/sampler.h"
74 #include "src/logging/counters.h"
75 #include "src/logging/log.h"
76 #include "src/logging/metrics.h"
77 #include "src/logging/runtime-call-stats-scope.h"
78 #include "src/numbers/hash-seed-inl.h"
79 #include "src/objects/backing-store.h"
80 #include "src/objects/call-site-info-inl.h"
81 #include "src/objects/elements.h"
82 #include "src/objects/feedback-vector.h"
83 #include "src/objects/hash-table-inl.h"
84 #include "src/objects/js-array-buffer-inl.h"
85 #include "src/objects/js-array-inl.h"
86 #include "src/objects/js-generator-inl.h"
87 #include "src/objects/js-weak-refs-inl.h"
88 #include "src/objects/managed-inl.h"
89 #include "src/objects/module-inl.h"
90 #include "src/objects/promise-inl.h"
91 #include "src/objects/prototype.h"
92 #include "src/objects/slots.h"
93 #include "src/objects/smi.h"
94 #include "src/objects/source-text-module-inl.h"
95 #include "src/objects/visitors.h"
96 #include "src/profiler/heap-profiler.h"
97 #include "src/profiler/tracing-cpu-profiler.h"
98 #include "src/regexp/regexp-stack.h"
99 #include "src/snapshot/embedded/embedded-data-inl.h"
100 #include "src/snapshot/embedded/embedded-file-writer-interface.h"
101 #include "src/snapshot/read-only-deserializer.h"
102 #include "src/snapshot/shared-heap-deserializer.h"
103 #include "src/snapshot/startup-deserializer.h"
104 #include "src/strings/string-builder-inl.h"
105 #include "src/strings/string-stream.h"
106 #include "src/tasks/cancelable-task.h"
107 #include "src/tracing/tracing-category-observer.h"
108 #include "src/utils/address-map.h"
109 #include "src/utils/ostreams.h"
110 #include "src/utils/version.h"
111 #include "src/zone/accounting-allocator.h"
112 #include "src/zone/type-stats.h"
113 #ifdef V8_INTL_SUPPORT
114 #include "src/objects/intl-objects.h"
115 #include "unicode/locid.h"
116 #include "unicode/uobject.h"
117 #endif  // V8_INTL_SUPPORT
118 
119 #if V8_ENABLE_MAGLEV
120 #include "src/maglev/maglev-concurrent-dispatcher.h"
121 #endif  // V8_ENABLE_MAGLEV
122 
123 #if V8_ENABLE_WEBASSEMBLY
124 #include "src/trap-handler/trap-handler.h"
125 #include "src/wasm/wasm-code-manager.h"
126 #include "src/wasm/wasm-engine.h"
127 #include "src/wasm/wasm-module.h"
128 #include "src/wasm/wasm-objects.h"
129 #endif  // V8_ENABLE_WEBASSEMBLY
130 
131 #if defined(V8_OS_WIN64)
132 #include "src/diagnostics/unwinding-info-win64.h"
133 #endif  // V8_OS_WIN64
134 
135 #ifdef V8_ENABLE_CONSERVATIVE_STACK_SCANNING
136 #include "src/base/platform/wrappers.h"
137 #include "src/heap/conservative-stack-visitor.h"
138 #endif
139 
140 #if USE_SIMULATOR
141 #include "src/execution/simulator-base.h"
142 #endif
143 
144 extern "C" const uint8_t* v8_Default_embedded_blob_code_;
145 extern "C" uint32_t v8_Default_embedded_blob_code_size_;
146 extern "C" const uint8_t* v8_Default_embedded_blob_data_;
147 extern "C" uint32_t v8_Default_embedded_blob_data_size_;
148 
149 namespace v8 {
150 namespace internal {
151 
152 #ifdef DEBUG
153 #define TRACE_ISOLATE(tag)                                                  \
154   do {                                                                      \
155     if (FLAG_trace_isolates) {                                              \
156       PrintF("Isolate %p (id %d)" #tag "\n", reinterpret_cast<void*>(this), \
157              id());                                                         \
158     }                                                                       \
159   } while (false)
160 #else
161 #define TRACE_ISOLATE(tag)
162 #endif
163 
DefaultEmbeddedBlobCode()164 const uint8_t* DefaultEmbeddedBlobCode() {
165   return v8_Default_embedded_blob_code_;
166 }
DefaultEmbeddedBlobCodeSize()167 uint32_t DefaultEmbeddedBlobCodeSize() {
168   return v8_Default_embedded_blob_code_size_;
169 }
DefaultEmbeddedBlobData()170 const uint8_t* DefaultEmbeddedBlobData() {
171   return v8_Default_embedded_blob_data_;
172 }
DefaultEmbeddedBlobDataSize()173 uint32_t DefaultEmbeddedBlobDataSize() {
174   return v8_Default_embedded_blob_data_size_;
175 }
176 
177 namespace {
178 // These variables provide access to the current embedded blob without requiring
179 // an isolate instance. This is needed e.g. by Code::InstructionStart, which may
180 // not have access to an isolate but still needs to access the embedded blob.
181 // The variables are initialized by each isolate in Init(). Writes and reads are
182 // relaxed since we can guarantee that the current thread has initialized these
183 // variables before accessing them. Different threads may race, but this is fine
184 // since they all attempt to set the same values of the blob pointer and size.
185 
186 std::atomic<const uint8_t*> current_embedded_blob_code_(nullptr);
187 std::atomic<uint32_t> current_embedded_blob_code_size_(0);
188 std::atomic<const uint8_t*> current_embedded_blob_data_(nullptr);
189 std::atomic<uint32_t> current_embedded_blob_data_size_(0);
190 
191 // The various workflows around embedded snapshots are fairly complex. We need
192 // to support plain old snapshot builds, nosnap builds, and the requirements of
193 // subtly different serialization tests. There's two related knobs to twiddle:
194 //
195 // - The default embedded blob may be overridden by setting the sticky embedded
196 // blob. This is set automatically whenever we create a new embedded blob.
197 //
198 // - Lifecycle management can be either manual or set to refcounting.
199 //
200 // A few situations to demonstrate their use:
201 //
202 // - A plain old snapshot build neither overrides the default blob nor
203 // refcounts.
204 //
205 // - mksnapshot sets the sticky blob and manually frees the embedded
206 // blob once done.
207 //
208 // - Most serializer tests do the same.
209 //
210 // - Nosnapshot builds set the sticky blob and enable refcounting.
211 
212 // This mutex protects access to the following variables:
213 // - sticky_embedded_blob_code_
214 // - sticky_embedded_blob_code_size_
215 // - sticky_embedded_blob_data_
216 // - sticky_embedded_blob_data_size_
217 // - enable_embedded_blob_refcounting_
218 // - current_embedded_blob_refs_
219 base::LazyMutex current_embedded_blob_refcount_mutex_ = LAZY_MUTEX_INITIALIZER;
220 
221 const uint8_t* sticky_embedded_blob_code_ = nullptr;
222 uint32_t sticky_embedded_blob_code_size_ = 0;
223 const uint8_t* sticky_embedded_blob_data_ = nullptr;
224 uint32_t sticky_embedded_blob_data_size_ = 0;
225 
226 bool enable_embedded_blob_refcounting_ = true;
227 int current_embedded_blob_refs_ = 0;
228 
StickyEmbeddedBlobCode()229 const uint8_t* StickyEmbeddedBlobCode() { return sticky_embedded_blob_code_; }
StickyEmbeddedBlobCodeSize()230 uint32_t StickyEmbeddedBlobCodeSize() {
231   return sticky_embedded_blob_code_size_;
232 }
StickyEmbeddedBlobData()233 const uint8_t* StickyEmbeddedBlobData() { return sticky_embedded_blob_data_; }
StickyEmbeddedBlobDataSize()234 uint32_t StickyEmbeddedBlobDataSize() {
235   return sticky_embedded_blob_data_size_;
236 }
237 
SetStickyEmbeddedBlob(const uint8_t * code,uint32_t code_size,const uint8_t * data,uint32_t data_size)238 void SetStickyEmbeddedBlob(const uint8_t* code, uint32_t code_size,
239                            const uint8_t* data, uint32_t data_size) {
240   sticky_embedded_blob_code_ = code;
241   sticky_embedded_blob_code_size_ = code_size;
242   sticky_embedded_blob_data_ = data;
243   sticky_embedded_blob_data_size_ = data_size;
244 }
245 
246 }  // namespace
247 
DisableEmbeddedBlobRefcounting()248 void DisableEmbeddedBlobRefcounting() {
249   base::MutexGuard guard(current_embedded_blob_refcount_mutex_.Pointer());
250   enable_embedded_blob_refcounting_ = false;
251 }
252 
FreeCurrentEmbeddedBlob()253 void FreeCurrentEmbeddedBlob() {
254   CHECK(!enable_embedded_blob_refcounting_);
255   base::MutexGuard guard(current_embedded_blob_refcount_mutex_.Pointer());
256 
257   if (StickyEmbeddedBlobCode() == nullptr) return;
258 
259   CHECK_EQ(StickyEmbeddedBlobCode(), Isolate::CurrentEmbeddedBlobCode());
260   CHECK_EQ(StickyEmbeddedBlobData(), Isolate::CurrentEmbeddedBlobData());
261 
262   OffHeapInstructionStream::FreeOffHeapOffHeapInstructionStream(
263       const_cast<uint8_t*>(Isolate::CurrentEmbeddedBlobCode()),
264       Isolate::CurrentEmbeddedBlobCodeSize(),
265       const_cast<uint8_t*>(Isolate::CurrentEmbeddedBlobData()),
266       Isolate::CurrentEmbeddedBlobDataSize());
267 
268   current_embedded_blob_code_.store(nullptr, std::memory_order_relaxed);
269   current_embedded_blob_code_size_.store(0, std::memory_order_relaxed);
270   current_embedded_blob_data_.store(nullptr, std::memory_order_relaxed);
271   current_embedded_blob_data_size_.store(0, std::memory_order_relaxed);
272   sticky_embedded_blob_code_ = nullptr;
273   sticky_embedded_blob_code_size_ = 0;
274   sticky_embedded_blob_data_ = nullptr;
275   sticky_embedded_blob_data_size_ = 0;
276 }
277 
278 // static
CurrentEmbeddedBlobIsBinaryEmbedded()279 bool Isolate::CurrentEmbeddedBlobIsBinaryEmbedded() {
280   // In some situations, we must be able to rely on the embedded blob being
281   // immortal immovable. This is the case if the blob is binary-embedded.
282   // See blob lifecycle controls above for descriptions of when the current
283   // embedded blob may change (e.g. in tests or mksnapshot). If the blob is
284   // binary-embedded, it is immortal immovable.
285   const uint8_t* code =
286       current_embedded_blob_code_.load(std::memory_order_relaxed);
287   if (code == nullptr) return false;
288   return code == DefaultEmbeddedBlobCode();
289 }
290 
SetEmbeddedBlob(const uint8_t * code,uint32_t code_size,const uint8_t * data,uint32_t data_size)291 void Isolate::SetEmbeddedBlob(const uint8_t* code, uint32_t code_size,
292                               const uint8_t* data, uint32_t data_size) {
293   CHECK_NOT_NULL(code);
294   CHECK_NOT_NULL(data);
295 
296   embedded_blob_code_ = code;
297   embedded_blob_code_size_ = code_size;
298   embedded_blob_data_ = data;
299   embedded_blob_data_size_ = data_size;
300   current_embedded_blob_code_.store(code, std::memory_order_relaxed);
301   current_embedded_blob_code_size_.store(code_size, std::memory_order_relaxed);
302   current_embedded_blob_data_.store(data, std::memory_order_relaxed);
303   current_embedded_blob_data_size_.store(data_size, std::memory_order_relaxed);
304 
305 #ifdef DEBUG
306   // Verify that the contents of the embedded blob are unchanged from
307   // serialization-time, just to ensure the compiler isn't messing with us.
308   EmbeddedData d = EmbeddedData::FromBlob();
309   if (d.EmbeddedBlobDataHash() != d.CreateEmbeddedBlobDataHash()) {
310     FATAL(
311         "Embedded blob data section checksum verification failed. This "
312         "indicates that the embedded blob has been modified since compilation "
313         "time.");
314   }
315   if (FLAG_text_is_readable) {
316     if (d.EmbeddedBlobCodeHash() != d.CreateEmbeddedBlobCodeHash()) {
317       FATAL(
318           "Embedded blob code section checksum verification failed. This "
319           "indicates that the embedded blob has been modified since "
320           "compilation time. A common cause is a debugging breakpoint set "
321           "within builtin code.");
322     }
323   }
324 #endif  // DEBUG
325 }
326 
ClearEmbeddedBlob()327 void Isolate::ClearEmbeddedBlob() {
328   CHECK(enable_embedded_blob_refcounting_);
329   CHECK_EQ(embedded_blob_code_, CurrentEmbeddedBlobCode());
330   CHECK_EQ(embedded_blob_code_, StickyEmbeddedBlobCode());
331   CHECK_EQ(embedded_blob_data_, CurrentEmbeddedBlobData());
332   CHECK_EQ(embedded_blob_data_, StickyEmbeddedBlobData());
333 
334   embedded_blob_code_ = nullptr;
335   embedded_blob_code_size_ = 0;
336   embedded_blob_data_ = nullptr;
337   embedded_blob_data_size_ = 0;
338   current_embedded_blob_code_.store(nullptr, std::memory_order_relaxed);
339   current_embedded_blob_code_size_.store(0, std::memory_order_relaxed);
340   current_embedded_blob_data_.store(nullptr, std::memory_order_relaxed);
341   current_embedded_blob_data_size_.store(0, std::memory_order_relaxed);
342   sticky_embedded_blob_code_ = nullptr;
343   sticky_embedded_blob_code_size_ = 0;
344   sticky_embedded_blob_data_ = nullptr;
345   sticky_embedded_blob_data_size_ = 0;
346 }
347 
embedded_blob_code() const348 const uint8_t* Isolate::embedded_blob_code() const {
349   return embedded_blob_code_;
350 }
embedded_blob_code_size() const351 uint32_t Isolate::embedded_blob_code_size() const {
352   return embedded_blob_code_size_;
353 }
embedded_blob_data() const354 const uint8_t* Isolate::embedded_blob_data() const {
355   return embedded_blob_data_;
356 }
embedded_blob_data_size() const357 uint32_t Isolate::embedded_blob_data_size() const {
358   return embedded_blob_data_size_;
359 }
360 
361 // static
CurrentEmbeddedBlobCode()362 const uint8_t* Isolate::CurrentEmbeddedBlobCode() {
363   return current_embedded_blob_code_.load(std::memory_order_relaxed);
364 }
365 
366 // static
CurrentEmbeddedBlobCodeSize()367 uint32_t Isolate::CurrentEmbeddedBlobCodeSize() {
368   return current_embedded_blob_code_size_.load(std::memory_order_relaxed);
369 }
370 
371 // static
CurrentEmbeddedBlobData()372 const uint8_t* Isolate::CurrentEmbeddedBlobData() {
373   return current_embedded_blob_data_.load(std::memory_order_relaxed);
374 }
375 
376 // static
CurrentEmbeddedBlobDataSize()377 uint32_t Isolate::CurrentEmbeddedBlobDataSize() {
378   return current_embedded_blob_data_size_.load(std::memory_order_relaxed);
379 }
380 
381 // static
GetShortBuiltinsCallRegion()382 base::AddressRegion Isolate::GetShortBuiltinsCallRegion() {
383   // Update calculations below if the assert fails.
384   STATIC_ASSERT(kMaxPCRelativeCodeRangeInMB <= 4096);
385   if (kMaxPCRelativeCodeRangeInMB == 0) {
386     // Return empty region if pc-relative calls/jumps are not supported.
387     return base::AddressRegion(kNullAddress, 0);
388   }
389   constexpr size_t max_size = std::numeric_limits<size_t>::max();
390   if (uint64_t{kMaxPCRelativeCodeRangeInMB} * MB > max_size) {
391     // The whole addressable space is reachable with pc-relative calls/jumps.
392     return base::AddressRegion(kNullAddress, max_size);
393   }
394   constexpr size_t radius = kMaxPCRelativeCodeRangeInMB * MB;
395 
396   DCHECK_LT(CurrentEmbeddedBlobCodeSize(), radius);
397   Address embedded_blob_code_start =
398       reinterpret_cast<Address>(CurrentEmbeddedBlobCode());
399   if (embedded_blob_code_start == kNullAddress) {
400     // Return empty region if there's no embedded blob.
401     return base::AddressRegion(kNullAddress, 0);
402   }
403   Address embedded_blob_code_end =
404       embedded_blob_code_start + CurrentEmbeddedBlobCodeSize();
405   Address region_start =
406       (embedded_blob_code_end > radius) ? (embedded_blob_code_end - radius) : 0;
407   Address region_end = embedded_blob_code_start + radius;
408   if (region_end < embedded_blob_code_start) {
409     region_end = static_cast<Address>(-1);
410   }
411   return base::AddressRegion(region_start, region_end - region_start);
412 }
413 
HashIsolateForEmbeddedBlob()414 size_t Isolate::HashIsolateForEmbeddedBlob() {
415   DCHECK(builtins_.is_initialized());
416   DCHECK(Builtins::AllBuiltinsAreIsolateIndependent());
417 
418   DisallowGarbageCollection no_gc;
419 
420   static constexpr size_t kSeed = 0;
421   size_t hash = kSeed;
422 
423   // Hash data sections of builtin code objects.
424   for (Builtin builtin = Builtins::kFirst; builtin <= Builtins::kLast;
425        ++builtin) {
426     Code code = FromCodeT(builtins()->code(builtin));
427 
428     DCHECK(Internals::HasHeapObjectTag(code.ptr()));
429     uint8_t* const code_ptr =
430         reinterpret_cast<uint8_t*>(code.ptr() - kHeapObjectTag);
431 
432     // These static asserts ensure we don't miss relevant fields. We don't hash
433     // pointer compression base, instruction/metadata size value and flags since
434     // they change when creating the off-heap trampolines. Other data fields
435     // must remain the same.
436 #ifdef V8_EXTERNAL_CODE_SPACE
437     STATIC_ASSERT(Code::kMainCageBaseUpper32BitsOffset == Code::kDataStart);
438     STATIC_ASSERT(Code::kInstructionSizeOffset ==
439                   Code::kMainCageBaseUpper32BitsOffsetEnd + 1);
440 #else
441     STATIC_ASSERT(Code::kInstructionSizeOffset == Code::kDataStart);
442 #endif  // V8_EXTERNAL_CODE_SPACE
443     STATIC_ASSERT(Code::kMetadataSizeOffset ==
444                   Code::kInstructionSizeOffsetEnd + 1);
445     STATIC_ASSERT(Code::kFlagsOffset == Code::kMetadataSizeOffsetEnd + 1);
446     STATIC_ASSERT(Code::kBuiltinIndexOffset == Code::kFlagsOffsetEnd + 1);
447     static constexpr int kStartOffset = Code::kBuiltinIndexOffset;
448 
449     for (int j = kStartOffset; j < Code::kUnalignedHeaderSize; j++) {
450       hash = base::hash_combine(hash, size_t{code_ptr[j]});
451     }
452   }
453 
454   // The builtins constants table is also tightly tied to embedded builtins.
455   hash = base::hash_combine(
456       hash, static_cast<size_t>(heap_.builtins_constants_table().length()));
457 
458   return hash;
459 }
460 
461 base::Thread::LocalStorageKey Isolate::isolate_key_;
462 base::Thread::LocalStorageKey Isolate::per_isolate_thread_data_key_;
463 std::atomic<bool> Isolate::isolate_key_created_{false};
464 
465 namespace {
466 // A global counter for all generated Isolates, might overflow.
467 std::atomic<int> isolate_counter{0};
468 }  // namespace
469 
470 Isolate::PerIsolateThreadData*
FindOrAllocatePerThreadDataForThisThread()471 Isolate::FindOrAllocatePerThreadDataForThisThread() {
472   ThreadId thread_id = ThreadId::Current();
473   PerIsolateThreadData* per_thread = nullptr;
474   {
475     base::MutexGuard lock_guard(&thread_data_table_mutex_);
476     per_thread = thread_data_table_.Lookup(thread_id);
477     if (per_thread == nullptr) {
478       if (FLAG_adjust_os_scheduling_parameters) {
479         base::OS::AdjustSchedulingParams();
480       }
481       per_thread = new PerIsolateThreadData(this, thread_id);
482       thread_data_table_.Insert(per_thread);
483     }
484     DCHECK(thread_data_table_.Lookup(thread_id) == per_thread);
485   }
486   return per_thread;
487 }
488 
DiscardPerThreadDataForThisThread()489 void Isolate::DiscardPerThreadDataForThisThread() {
490   ThreadId thread_id = ThreadId::TryGetCurrent();
491   if (thread_id.IsValid()) {
492     DCHECK_NE(thread_manager_->mutex_owner_.load(std::memory_order_relaxed),
493               thread_id);
494     base::MutexGuard lock_guard(&thread_data_table_mutex_);
495     PerIsolateThreadData* per_thread = thread_data_table_.Lookup(thread_id);
496     if (per_thread) {
497       DCHECK(!per_thread->thread_state_);
498       thread_data_table_.Remove(per_thread);
499     }
500   }
501 }
502 
FindPerThreadDataForThisThread()503 Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThisThread() {
504   ThreadId thread_id = ThreadId::Current();
505   return FindPerThreadDataForThread(thread_id);
506 }
507 
FindPerThreadDataForThread(ThreadId thread_id)508 Isolate::PerIsolateThreadData* Isolate::FindPerThreadDataForThread(
509     ThreadId thread_id) {
510   PerIsolateThreadData* per_thread = nullptr;
511   {
512     base::MutexGuard lock_guard(&thread_data_table_mutex_);
513     per_thread = thread_data_table_.Lookup(thread_id);
514   }
515   return per_thread;
516 }
517 
InitializeOncePerProcess()518 void Isolate::InitializeOncePerProcess() {
519   isolate_key_ = base::Thread::CreateThreadLocalKey();
520   bool expected = false;
521   CHECK(isolate_key_created_.compare_exchange_strong(
522       expected, true, std::memory_order_relaxed));
523   per_isolate_thread_data_key_ = base::Thread::CreateThreadLocalKey();
524 
525   Heap::InitializeOncePerProcess();
526 }
527 
DisposeOncePerProcess()528 void Isolate::DisposeOncePerProcess() {
529   base::Thread::DeleteThreadLocalKey(isolate_key_);
530   bool expected = true;
531   CHECK(isolate_key_created_.compare_exchange_strong(
532       expected, false, std::memory_order_relaxed));
533   base::Thread::DeleteThreadLocalKey(per_isolate_thread_data_key_);
534 }
535 
get_address_from_id(IsolateAddressId id)536 Address Isolate::get_address_from_id(IsolateAddressId id) {
537   return isolate_addresses_[id];
538 }
539 
Iterate(RootVisitor * v,char * thread_storage)540 char* Isolate::Iterate(RootVisitor* v, char* thread_storage) {
541   ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(thread_storage);
542   Iterate(v, thread);
543   return thread_storage + sizeof(ThreadLocalTop);
544 }
545 
IterateThread(ThreadVisitor * v,char * t)546 void Isolate::IterateThread(ThreadVisitor* v, char* t) {
547   ThreadLocalTop* thread = reinterpret_cast<ThreadLocalTop*>(t);
548   v->VisitThread(this, thread);
549 }
550 
Iterate(RootVisitor * v,ThreadLocalTop * thread)551 void Isolate::Iterate(RootVisitor* v, ThreadLocalTop* thread) {
552   // Visit the roots from the top for a given thread.
553   v->VisitRootPointer(Root::kStackRoots, nullptr,
554                       FullObjectSlot(&thread->pending_exception_));
555   v->VisitRootPointer(Root::kStackRoots, nullptr,
556                       FullObjectSlot(&thread->pending_message_));
557   v->VisitRootPointer(Root::kStackRoots, nullptr,
558                       FullObjectSlot(&thread->context_));
559   v->VisitRootPointer(Root::kStackRoots, nullptr,
560                       FullObjectSlot(&thread->scheduled_exception_));
561 
562   for (v8::TryCatch* block = thread->try_catch_handler_; block != nullptr;
563        block = block->next_) {
564     // TODO(3770): Make TryCatch::exception_ an Address (and message_obj_ too).
565     v->VisitRootPointer(
566         Root::kStackRoots, nullptr,
567         FullObjectSlot(reinterpret_cast<Address>(&(block->exception_))));
568     v->VisitRootPointer(
569         Root::kStackRoots, nullptr,
570         FullObjectSlot(reinterpret_cast<Address>(&(block->message_obj_))));
571   }
572 
573 #ifdef V8_ENABLE_CONSERVATIVE_STACK_SCANNING
574   ConservativeStackVisitor stack_visitor(this, v);
575   thread_local_top()->stack_.IteratePointers(&stack_visitor);
576 #endif
577 
578   // Iterate over pointers on native execution stack.
579 #if V8_ENABLE_WEBASSEMBLY
580   wasm::WasmCodeRefScope wasm_code_ref_scope;
581   if (FLAG_experimental_wasm_stack_switching) {
582     wasm::StackMemory* current = wasm_stacks_;
583     DCHECK_NOT_NULL(current);
584     do {
585       if (current->IsActive()) {
586         // The active stack's jump buffer does not match the current state, use
587         // the thread info below instead.
588         current = current->next();
589         continue;
590       }
591       for (StackFrameIterator it(this, current); !it.done(); it.Advance()) {
592         it.frame()->Iterate(v);
593       }
594       current = current->next();
595     } while (current != wasm_stacks_);
596   }
597 #endif  // V8_ENABLE_WEBASSEMBLY
598   for (StackFrameIterator it(this, thread); !it.done(); it.Advance()) {
599     it.frame()->Iterate(v);
600   }
601 }
602 
Iterate(RootVisitor * v)603 void Isolate::Iterate(RootVisitor* v) {
604   ThreadLocalTop* current_t = thread_local_top();
605   Iterate(v, current_t);
606 }
607 
RegisterTryCatchHandler(v8::TryCatch * that)608 void Isolate::RegisterTryCatchHandler(v8::TryCatch* that) {
609   thread_local_top()->try_catch_handler_ = that;
610 }
611 
UnregisterTryCatchHandler(v8::TryCatch * that)612 void Isolate::UnregisterTryCatchHandler(v8::TryCatch* that) {
613   DCHECK(thread_local_top()->try_catch_handler_ == that);
614   thread_local_top()->try_catch_handler_ = that->next_;
615 }
616 
StackTraceString()617 Handle<String> Isolate::StackTraceString() {
618   if (stack_trace_nesting_level_ == 0) {
619     stack_trace_nesting_level_++;
620     HeapStringAllocator allocator;
621     StringStream::ClearMentionedObjectCache(this);
622     StringStream accumulator(&allocator);
623     incomplete_message_ = &accumulator;
624     PrintStack(&accumulator);
625     Handle<String> stack_trace = accumulator.ToString(this);
626     incomplete_message_ = nullptr;
627     stack_trace_nesting_level_ = 0;
628     return stack_trace;
629   } else if (stack_trace_nesting_level_ == 1) {
630     stack_trace_nesting_level_++;
631     base::OS::PrintError(
632         "\n\nAttempt to print stack while printing stack (double fault)\n");
633     base::OS::PrintError(
634         "If you are lucky you may find a partial stack dump on stdout.\n\n");
635     incomplete_message_->OutputToStdOut();
636     return factory()->empty_string();
637   } else {
638     base::OS::Abort();
639   }
640 }
641 
PushStackTraceAndDie(void * ptr1,void * ptr2,void * ptr3,void * ptr4)642 void Isolate::PushStackTraceAndDie(void* ptr1, void* ptr2, void* ptr3,
643                                    void* ptr4) {
644   StackTraceFailureMessage message(this,
645                                    StackTraceFailureMessage::kIncludeStackTrace,
646                                    ptr1, ptr2, ptr3, ptr4);
647   message.Print();
648   base::OS::Abort();
649 }
650 
PushParamsAndDie(void * ptr1,void * ptr2,void * ptr3,void * ptr4,void * ptr5,void * ptr6)651 void Isolate::PushParamsAndDie(void* ptr1, void* ptr2, void* ptr3, void* ptr4,
652                                void* ptr5, void* ptr6) {
653   StackTraceFailureMessage message(
654       this, StackTraceFailureMessage::kDontIncludeStackTrace, ptr1, ptr2, ptr3,
655       ptr4, ptr5, ptr6);
656   message.Print();
657   base::OS::Abort();
658 }
659 
Print()660 void StackTraceFailureMessage::Print() volatile {
661   // Print the details of this failure message object, including its own address
662   // to force stack allocation.
663   base::OS::PrintError(
664       "Stacktrace:\n    ptr1=%p\n    ptr2=%p\n    ptr3=%p\n    ptr4=%p\n    "
665       "ptr5=%p\n    ptr6=%p\n    failure_message_object=%p\n%s",
666       ptr1_, ptr2_, ptr3_, ptr4_, ptr5_, ptr6_, this, &js_stack_trace_[0]);
667 }
668 
StackTraceFailureMessage(Isolate * isolate,StackTraceFailureMessage::StackTraceMode mode,void * ptr1,void * ptr2,void * ptr3,void * ptr4,void * ptr5,void * ptr6)669 StackTraceFailureMessage::StackTraceFailureMessage(
670     Isolate* isolate, StackTraceFailureMessage::StackTraceMode mode, void* ptr1,
671     void* ptr2, void* ptr3, void* ptr4, void* ptr5, void* ptr6) {
672   isolate_ = isolate;
673   ptr1_ = ptr1;
674   ptr2_ = ptr2;
675   ptr3_ = ptr3;
676   ptr4_ = ptr4;
677   ptr5_ = ptr5;
678   ptr6_ = ptr6;
679   // Write a stracktrace into the {js_stack_trace_} buffer.
680   const size_t buffer_length = arraysize(js_stack_trace_);
681   memset(&js_stack_trace_, 0, buffer_length);
682   memset(&code_objects_, 0, sizeof(code_objects_));
683   if (mode == kIncludeStackTrace) {
684     FixedStringAllocator fixed(&js_stack_trace_[0], buffer_length - 1);
685     StringStream accumulator(&fixed, StringStream::kPrintObjectConcise);
686     isolate->PrintStack(&accumulator, Isolate::kPrintStackVerbose);
687     // Keeping a reference to the last code objects to increase likelyhood that
688     // they get included in the minidump.
689     const size_t code_objects_length = arraysize(code_objects_);
690     size_t i = 0;
691     StackFrameIterator it(isolate);
692     for (; !it.done() && i < code_objects_length; it.Advance()) {
693       code_objects_[i++] =
694           reinterpret_cast<void*>(it.frame()->unchecked_code().ptr());
695     }
696   }
697 }
698 
NoExtension(const v8::FunctionCallbackInfo<v8::Value> &)699 bool NoExtension(const v8::FunctionCallbackInfo<v8::Value>&) { return false; }
700 
701 namespace {
702 
703 class CallSiteBuilder {
704  public:
CallSiteBuilder(Isolate * isolate,FrameSkipMode mode,int limit,Handle<Object> caller)705   CallSiteBuilder(Isolate* isolate, FrameSkipMode mode, int limit,
706                   Handle<Object> caller)
707       : isolate_(isolate),
708         mode_(mode),
709         limit_(limit),
710         caller_(caller),
711         skip_next_frame_(mode != SKIP_NONE) {
712     DCHECK_IMPLIES(mode_ == SKIP_UNTIL_SEEN, caller_->IsJSFunction());
713     // Modern web applications are usually built with multiple layers of
714     // framework and library code, and stack depth tends to be more than
715     // a dozen frames, so we over-allocate a bit here to avoid growing
716     // the elements array in the common case.
717     elements_ = isolate->factory()->NewFixedArray(std::min(64, limit));
718   }
719 
Visit(FrameSummary const & summary)720   bool Visit(FrameSummary const& summary) {
721     if (Full()) return false;
722 #if V8_ENABLE_WEBASSEMBLY
723     if (summary.IsWasm()) {
724       AppendWasmFrame(summary.AsWasm());
725       return true;
726     }
727 #endif  // V8_ENABLE_WEBASSEMBLY
728     AppendJavaScriptFrame(summary.AsJavaScript());
729     return true;
730   }
731 
AppendAsyncFrame(Handle<JSGeneratorObject> generator_object)732   void AppendAsyncFrame(Handle<JSGeneratorObject> generator_object) {
733     Handle<JSFunction> function(generator_object->function(), isolate_);
734     if (!IsVisibleInStackTrace(function)) return;
735     int flags = CallSiteInfo::kIsAsync;
736     if (IsStrictFrame(function)) flags |= CallSiteInfo::kIsStrict;
737 
738     Handle<Object> receiver(generator_object->receiver(), isolate_);
739     Handle<BytecodeArray> code(function->shared().GetBytecodeArray(isolate_),
740                                isolate_);
741     // The stored bytecode offset is relative to a different base than what
742     // is used in the source position table, hence the subtraction.
743     int offset = Smi::ToInt(generator_object->input_or_debug_pos()) -
744                  (BytecodeArray::kHeaderSize - kHeapObjectTag);
745 
746     Handle<FixedArray> parameters = isolate_->factory()->empty_fixed_array();
747     if (V8_UNLIKELY(FLAG_detailed_error_stack_trace)) {
748       parameters = isolate_->factory()->CopyFixedArrayUpTo(
749           handle(generator_object->parameters_and_registers(), isolate_),
750           function->shared()
751               .internal_formal_parameter_count_without_receiver());
752     }
753 
754     AppendFrame(receiver, function, code, offset, flags, parameters);
755   }
756 
AppendPromiseCombinatorFrame(Handle<JSFunction> element_function,Handle<JSFunction> combinator)757   void AppendPromiseCombinatorFrame(Handle<JSFunction> element_function,
758                                     Handle<JSFunction> combinator) {
759     if (!IsVisibleInStackTrace(combinator)) return;
760     int flags =
761         CallSiteInfo::kIsAsync | CallSiteInfo::kIsSourcePositionComputed;
762 
763     Handle<Object> receiver(combinator->native_context().promise_function(),
764                             isolate_);
765     // TODO(v8:11880): avoid roundtrips between cdc and code.
766     Handle<Code> code(FromCodeT(combinator->code()), isolate_);
767 
768     // TODO(mmarchini) save Promises list from the Promise combinator
769     Handle<FixedArray> parameters = isolate_->factory()->empty_fixed_array();
770 
771     // We store the offset of the promise into the element function's
772     // hash field for element callbacks.
773     int promise_index =
774         Smi::ToInt(Smi::cast(element_function->GetIdentityHash())) - 1;
775 
776     AppendFrame(receiver, combinator, code, promise_index, flags, parameters);
777   }
778 
AppendJavaScriptFrame(FrameSummary::JavaScriptFrameSummary const & summary)779   void AppendJavaScriptFrame(
780       FrameSummary::JavaScriptFrameSummary const& summary) {
781     // Filter out internal frames that we do not want to show.
782     if (!IsVisibleInStackTrace(summary.function())) return;
783 
784     int flags = 0;
785     Handle<JSFunction> function = summary.function();
786     if (IsStrictFrame(function)) flags |= CallSiteInfo::kIsStrict;
787     if (summary.is_constructor()) flags |= CallSiteInfo::kIsConstructor;
788 
789     AppendFrame(summary.receiver(), function, summary.abstract_code(),
790                 summary.code_offset(), flags, summary.parameters());
791   }
792 
793 #if V8_ENABLE_WEBASSEMBLY
AppendWasmFrame(FrameSummary::WasmFrameSummary const & summary)794   void AppendWasmFrame(FrameSummary::WasmFrameSummary const& summary) {
795     if (summary.code()->kind() != wasm::WasmCode::kWasmFunction) return;
796     Handle<WasmInstanceObject> instance = summary.wasm_instance();
797     int flags = CallSiteInfo::kIsWasm;
798     if (instance->module_object().is_asm_js()) {
799       flags |= CallSiteInfo::kIsAsmJsWasm;
800       if (summary.at_to_number_conversion()) {
801         flags |= CallSiteInfo::kIsAsmJsAtNumberConversion;
802       }
803     }
804 
805     auto code = Managed<wasm::GlobalWasmCodeRef>::Allocate(
806         isolate_, 0, summary.code(),
807         instance->module_object().shared_native_module());
808     AppendFrame(instance,
809                 handle(Smi::FromInt(summary.function_index()), isolate_), code,
810                 summary.code_offset(), flags,
811                 isolate_->factory()->empty_fixed_array());
812   }
813 #endif  // V8_ENABLE_WEBASSEMBLY
814 
Full()815   bool Full() { return index_ >= limit_; }
816 
Build()817   Handle<FixedArray> Build() {
818     return FixedArray::ShrinkOrEmpty(isolate_, elements_, index_);
819   }
820 
821  private:
822   // Poison stack frames below the first strict mode frame.
823   // The stack trace API should not expose receivers and function
824   // objects on frames deeper than the top-most one with a strict mode
825   // function.
IsStrictFrame(Handle<JSFunction> function)826   bool IsStrictFrame(Handle<JSFunction> function) {
827     if (!encountered_strict_function_) {
828       encountered_strict_function_ =
829           is_strict(function->shared().language_mode());
830     }
831     return encountered_strict_function_;
832   }
833 
834   // Determines whether the given stack frame should be displayed in a stack
835   // trace.
IsVisibleInStackTrace(Handle<JSFunction> function)836   bool IsVisibleInStackTrace(Handle<JSFunction> function) {
837     return ShouldIncludeFrame(function) && IsNotHidden(function);
838   }
839 
840   // This mechanism excludes a number of uninteresting frames from the stack
841   // trace. This can be be the first frame (which will be a builtin-exit frame
842   // for the error constructor builtin) or every frame until encountering a
843   // user-specified function.
ShouldIncludeFrame(Handle<JSFunction> function)844   bool ShouldIncludeFrame(Handle<JSFunction> function) {
845     switch (mode_) {
846       case SKIP_NONE:
847         return true;
848       case SKIP_FIRST:
849         if (!skip_next_frame_) return true;
850         skip_next_frame_ = false;
851         return false;
852       case SKIP_UNTIL_SEEN:
853         if (skip_next_frame_ && (*function == *caller_)) {
854           skip_next_frame_ = false;
855           return false;
856         }
857         return !skip_next_frame_;
858     }
859     UNREACHABLE();
860   }
861 
IsNotHidden(Handle<JSFunction> function)862   bool IsNotHidden(Handle<JSFunction> function) {
863     // TODO(szuend): Remove this check once the flag is enabled
864     //               by default.
865     if (!FLAG_experimental_stack_trace_frames &&
866         function->shared().IsApiFunction()) {
867       return false;
868     }
869     // Functions defined not in user scripts are not visible unless directly
870     // exposed, in which case the native flag is set.
871     // The --builtins-in-stack-traces command line flag allows including
872     // internal call sites in the stack trace for debugging purposes.
873     if (!FLAG_builtins_in_stack_traces &&
874         !function->shared().IsUserJavaScript()) {
875       return function->shared().native() || function->shared().IsApiFunction();
876     }
877     return true;
878   }
879 
AppendFrame(Handle<Object> receiver_or_instance,Handle<Object> function,Handle<HeapObject> code,int offset,int flags,Handle<FixedArray> parameters)880   void AppendFrame(Handle<Object> receiver_or_instance, Handle<Object> function,
881                    Handle<HeapObject> code, int offset, int flags,
882                    Handle<FixedArray> parameters) {
883     if (receiver_or_instance->IsTheHole(isolate_)) {
884       // TODO(jgruber): Fix all cases in which frames give us a hole value
885       // (e.g. the receiver in RegExp constructor frames).
886       receiver_or_instance = isolate_->factory()->undefined_value();
887     }
888     auto info = isolate_->factory()->NewCallSiteInfo(
889         receiver_or_instance, function, code, offset, flags, parameters);
890     elements_ = FixedArray::SetAndGrow(isolate_, elements_, index_++, info);
891   }
892 
893   Isolate* isolate_;
894   const FrameSkipMode mode_;
895   int index_ = 0;
896   const int limit_;
897   const Handle<Object> caller_;
898   bool skip_next_frame_;
899   bool encountered_strict_function_ = false;
900   Handle<FixedArray> elements_;
901 };
902 
GetStackTraceLimit(Isolate * isolate,int * result)903 bool GetStackTraceLimit(Isolate* isolate, int* result) {
904   if (FLAG_correctness_fuzzer_suppressions) return false;
905   Handle<JSObject> error = isolate->error_function();
906 
907   Handle<String> key = isolate->factory()->stackTraceLimit_string();
908   Handle<Object> stack_trace_limit =
909       JSReceiver::GetDataProperty(isolate, error, key);
910   if (!stack_trace_limit->IsNumber()) return false;
911 
912   // Ensure that limit is not negative.
913   *result = std::max(FastD2IChecked(stack_trace_limit->Number()), 0);
914 
915   if (*result != FLAG_stack_trace_limit) {
916     isolate->CountUsage(v8::Isolate::kErrorStackTraceLimit);
917   }
918 
919   return true;
920 }
921 
IsBuiltinFunction(Isolate * isolate,HeapObject object,Builtin builtin)922 bool IsBuiltinFunction(Isolate* isolate, HeapObject object, Builtin builtin) {
923   if (!object.IsJSFunction()) return false;
924   JSFunction const function = JSFunction::cast(object);
925   return function.code() == isolate->builtins()->code(builtin);
926 }
927 
CaptureAsyncStackTrace(Isolate * isolate,Handle<JSPromise> promise,CallSiteBuilder * builder)928 void CaptureAsyncStackTrace(Isolate* isolate, Handle<JSPromise> promise,
929                             CallSiteBuilder* builder) {
930   while (!builder->Full()) {
931     // Check that the {promise} is not settled.
932     if (promise->status() != Promise::kPending) return;
933 
934     // Check that we have exactly one PromiseReaction on the {promise}.
935     if (!promise->reactions().IsPromiseReaction()) return;
936     Handle<PromiseReaction> reaction(
937         PromiseReaction::cast(promise->reactions()), isolate);
938     if (!reaction->next().IsSmi()) return;
939 
940     // Check if the {reaction} has one of the known async function or
941     // async generator continuations as its fulfill handler.
942     if (IsBuiltinFunction(isolate, reaction->fulfill_handler(),
943                           Builtin::kAsyncFunctionAwaitResolveClosure) ||
944         IsBuiltinFunction(isolate, reaction->fulfill_handler(),
945                           Builtin::kAsyncGeneratorAwaitResolveClosure) ||
946         IsBuiltinFunction(isolate, reaction->fulfill_handler(),
947                           Builtin::kAsyncGeneratorYieldResolveClosure)) {
948       // Now peek into the handlers' AwaitContext to get to
949       // the JSGeneratorObject for the async function.
950       Handle<Context> context(
951           JSFunction::cast(reaction->fulfill_handler()).context(), isolate);
952       Handle<JSGeneratorObject> generator_object(
953           JSGeneratorObject::cast(context->extension()), isolate);
954       CHECK(generator_object->is_suspended());
955 
956       // Append async frame corresponding to the {generator_object}.
957       builder->AppendAsyncFrame(generator_object);
958 
959       // Try to continue from here.
960       if (generator_object->IsJSAsyncFunctionObject()) {
961         Handle<JSAsyncFunctionObject> async_function_object =
962             Handle<JSAsyncFunctionObject>::cast(generator_object);
963         promise = handle(async_function_object->promise(), isolate);
964       } else {
965         Handle<JSAsyncGeneratorObject> async_generator_object =
966             Handle<JSAsyncGeneratorObject>::cast(generator_object);
967         if (async_generator_object->queue().IsUndefined(isolate)) return;
968         Handle<AsyncGeneratorRequest> async_generator_request(
969             AsyncGeneratorRequest::cast(async_generator_object->queue()),
970             isolate);
971         promise = handle(JSPromise::cast(async_generator_request->promise()),
972                          isolate);
973       }
974     } else if (IsBuiltinFunction(isolate, reaction->fulfill_handler(),
975                                  Builtin::kPromiseAllResolveElementClosure)) {
976       Handle<JSFunction> function(JSFunction::cast(reaction->fulfill_handler()),
977                                   isolate);
978       Handle<Context> context(function->context(), isolate);
979       Handle<JSFunction> combinator(context->native_context().promise_all(),
980                                     isolate);
981       builder->AppendPromiseCombinatorFrame(function, combinator);
982 
983       // Now peak into the Promise.all() resolve element context to
984       // find the promise capability that's being resolved when all
985       // the concurrent promises resolve.
986       int const index =
987           PromiseBuiltins::kPromiseAllResolveElementCapabilitySlot;
988       Handle<PromiseCapability> capability(
989           PromiseCapability::cast(context->get(index)), isolate);
990       if (!capability->promise().IsJSPromise()) return;
991       promise = handle(JSPromise::cast(capability->promise()), isolate);
992     } else if (IsBuiltinFunction(
993                    isolate, reaction->fulfill_handler(),
994                    Builtin::kPromiseAllSettledResolveElementClosure)) {
995       Handle<JSFunction> function(JSFunction::cast(reaction->fulfill_handler()),
996                                   isolate);
997       Handle<Context> context(function->context(), isolate);
998       Handle<JSFunction> combinator(
999           context->native_context().promise_all_settled(), isolate);
1000       builder->AppendPromiseCombinatorFrame(function, combinator);
1001 
1002       // Now peak into the Promise.allSettled() resolve element context to
1003       // find the promise capability that's being resolved when all
1004       // the concurrent promises resolve.
1005       int const index =
1006           PromiseBuiltins::kPromiseAllResolveElementCapabilitySlot;
1007       Handle<PromiseCapability> capability(
1008           PromiseCapability::cast(context->get(index)), isolate);
1009       if (!capability->promise().IsJSPromise()) return;
1010       promise = handle(JSPromise::cast(capability->promise()), isolate);
1011     } else if (IsBuiltinFunction(isolate, reaction->reject_handler(),
1012                                  Builtin::kPromiseAnyRejectElementClosure)) {
1013       Handle<JSFunction> function(JSFunction::cast(reaction->reject_handler()),
1014                                   isolate);
1015       Handle<Context> context(function->context(), isolate);
1016       Handle<JSFunction> combinator(context->native_context().promise_any(),
1017                                     isolate);
1018       builder->AppendPromiseCombinatorFrame(function, combinator);
1019 
1020       // Now peak into the Promise.any() reject element context to
1021       // find the promise capability that's being resolved when any of
1022       // the concurrent promises resolve.
1023       int const index = PromiseBuiltins::kPromiseAnyRejectElementCapabilitySlot;
1024       Handle<PromiseCapability> capability(
1025           PromiseCapability::cast(context->get(index)), isolate);
1026       if (!capability->promise().IsJSPromise()) return;
1027       promise = handle(JSPromise::cast(capability->promise()), isolate);
1028     } else if (IsBuiltinFunction(isolate, reaction->fulfill_handler(),
1029                                  Builtin::kPromiseCapabilityDefaultResolve)) {
1030       Handle<JSFunction> function(JSFunction::cast(reaction->fulfill_handler()),
1031                                   isolate);
1032       Handle<Context> context(function->context(), isolate);
1033       promise =
1034           handle(JSPromise::cast(context->get(PromiseBuiltins::kPromiseSlot)),
1035                  isolate);
1036     } else {
1037       // We have some generic promise chain here, so try to
1038       // continue with the chained promise on the reaction
1039       // (only works for native promise chains).
1040       Handle<HeapObject> promise_or_capability(
1041           reaction->promise_or_capability(), isolate);
1042       if (promise_or_capability->IsJSPromise()) {
1043         promise = Handle<JSPromise>::cast(promise_or_capability);
1044       } else if (promise_or_capability->IsPromiseCapability()) {
1045         Handle<PromiseCapability> capability =
1046             Handle<PromiseCapability>::cast(promise_or_capability);
1047         if (!capability->promise().IsJSPromise()) return;
1048         promise = handle(JSPromise::cast(capability->promise()), isolate);
1049       } else {
1050         // Otherwise the {promise_or_capability} must be undefined here.
1051         CHECK(promise_or_capability->IsUndefined(isolate));
1052         return;
1053       }
1054     }
1055   }
1056 }
1057 
CaptureAsyncStackTrace(Isolate * isolate,CallSiteBuilder * builder)1058 void CaptureAsyncStackTrace(Isolate* isolate, CallSiteBuilder* builder) {
1059   Handle<Object> current_microtask = isolate->factory()->current_microtask();
1060   if (current_microtask->IsPromiseReactionJobTask()) {
1061     Handle<PromiseReactionJobTask> promise_reaction_job_task =
1062         Handle<PromiseReactionJobTask>::cast(current_microtask);
1063     // Check if the {reaction} has one of the known async function or
1064     // async generator continuations as its fulfill handler.
1065     if (IsBuiltinFunction(isolate, promise_reaction_job_task->handler(),
1066                           Builtin::kAsyncFunctionAwaitResolveClosure) ||
1067         IsBuiltinFunction(isolate, promise_reaction_job_task->handler(),
1068                           Builtin::kAsyncGeneratorAwaitResolveClosure) ||
1069         IsBuiltinFunction(isolate, promise_reaction_job_task->handler(),
1070                           Builtin::kAsyncGeneratorYieldResolveClosure) ||
1071         IsBuiltinFunction(isolate, promise_reaction_job_task->handler(),
1072                           Builtin::kAsyncFunctionAwaitRejectClosure) ||
1073         IsBuiltinFunction(isolate, promise_reaction_job_task->handler(),
1074                           Builtin::kAsyncGeneratorAwaitRejectClosure)) {
1075       // Now peek into the handlers' AwaitContext to get to
1076       // the JSGeneratorObject for the async function.
1077       Handle<Context> context(
1078           JSFunction::cast(promise_reaction_job_task->handler()).context(),
1079           isolate);
1080       Handle<JSGeneratorObject> generator_object(
1081           JSGeneratorObject::cast(context->extension()), isolate);
1082       if (generator_object->is_executing()) {
1083         if (generator_object->IsJSAsyncFunctionObject()) {
1084           Handle<JSAsyncFunctionObject> async_function_object =
1085               Handle<JSAsyncFunctionObject>::cast(generator_object);
1086           Handle<JSPromise> promise(async_function_object->promise(), isolate);
1087           CaptureAsyncStackTrace(isolate, promise, builder);
1088         } else {
1089           Handle<JSAsyncGeneratorObject> async_generator_object =
1090               Handle<JSAsyncGeneratorObject>::cast(generator_object);
1091           Handle<Object> queue(async_generator_object->queue(), isolate);
1092           if (!queue->IsUndefined(isolate)) {
1093             Handle<AsyncGeneratorRequest> async_generator_request =
1094                 Handle<AsyncGeneratorRequest>::cast(queue);
1095             Handle<JSPromise> promise(
1096                 JSPromise::cast(async_generator_request->promise()), isolate);
1097             CaptureAsyncStackTrace(isolate, promise, builder);
1098           }
1099         }
1100       }
1101     } else {
1102       // The {promise_reaction_job_task} doesn't belong to an await (or
1103       // yield inside an async generator), but we might still be able to
1104       // find an async frame if we follow along the chain of promises on
1105       // the {promise_reaction_job_task}.
1106       Handle<HeapObject> promise_or_capability(
1107           promise_reaction_job_task->promise_or_capability(), isolate);
1108       if (promise_or_capability->IsJSPromise()) {
1109         Handle<JSPromise> promise =
1110             Handle<JSPromise>::cast(promise_or_capability);
1111         CaptureAsyncStackTrace(isolate, promise, builder);
1112       }
1113     }
1114   }
1115 }
1116 
1117 template <typename Visitor>
VisitStack(Isolate * isolate,Visitor * visitor,StackTrace::StackTraceOptions options=StackTrace::kDetailed)1118 void VisitStack(Isolate* isolate, Visitor* visitor,
1119                 StackTrace::StackTraceOptions options = StackTrace::kDetailed) {
1120   DisallowJavascriptExecution no_js(isolate);
1121   for (StackFrameIterator it(isolate); !it.done(); it.Advance()) {
1122     StackFrame* frame = it.frame();
1123     switch (frame->type()) {
1124       case StackFrame::BUILTIN_EXIT:
1125       case StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION:
1126       case StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH:
1127       case StackFrame::OPTIMIZED:
1128       case StackFrame::INTERPRETED:
1129       case StackFrame::BASELINE:
1130       case StackFrame::BUILTIN:
1131 #if V8_ENABLE_WEBASSEMBLY
1132       case StackFrame::WASM:
1133 #endif  // V8_ENABLE_WEBASSEMBLY
1134       {
1135         // A standard frame may include many summarized frames (due to
1136         // inlining).
1137         std::vector<FrameSummary> summaries;
1138         CommonFrame::cast(frame)->Summarize(&summaries);
1139         for (auto rit = summaries.rbegin(); rit != summaries.rend(); ++rit) {
1140           FrameSummary& summary = *rit;
1141           // Skip frames from other origins when asked to do so.
1142           if (!(options & StackTrace::kExposeFramesAcrossSecurityOrigins) &&
1143               !summary.native_context()->HasSameSecurityTokenAs(
1144                   isolate->context())) {
1145             continue;
1146           }
1147           if (!visitor->Visit(summary)) return;
1148         }
1149         break;
1150       }
1151 
1152       default:
1153         break;
1154     }
1155   }
1156 }
1157 
CaptureSimpleStackTrace(Isolate * isolate,int limit,FrameSkipMode mode,Handle<Object> caller)1158 Handle<FixedArray> CaptureSimpleStackTrace(Isolate* isolate, int limit,
1159                                            FrameSkipMode mode,
1160                                            Handle<Object> caller) {
1161   TRACE_EVENT_BEGIN1(TRACE_DISABLED_BY_DEFAULT("v8.stack_trace"), __func__,
1162                      "maxFrameCount", limit);
1163 
1164 #if V8_ENABLE_WEBASSEMBLY
1165   wasm::WasmCodeRefScope code_ref_scope;
1166 #endif  // V8_ENABLE_WEBASSEMBLY
1167 
1168   CallSiteBuilder builder(isolate, mode, limit, caller);
1169   VisitStack(isolate, &builder);
1170 
1171   // If --async-stack-traces are enabled and the "current microtask" is a
1172   // PromiseReactionJobTask, we try to enrich the stack trace with async
1173   // frames.
1174   if (FLAG_async_stack_traces) {
1175     CaptureAsyncStackTrace(isolate, &builder);
1176   }
1177 
1178   Handle<FixedArray> stack_trace = builder.Build();
1179   TRACE_EVENT_END1(TRACE_DISABLED_BY_DEFAULT("v8.stack_trace"), __func__,
1180                    "frameCount", stack_trace->length());
1181   return stack_trace;
1182 }
1183 
1184 }  // namespace
1185 
CaptureAndSetErrorStack(Handle<JSObject> error_object,FrameSkipMode mode,Handle<Object> caller)1186 MaybeHandle<JSObject> Isolate::CaptureAndSetErrorStack(
1187     Handle<JSObject> error_object, FrameSkipMode mode, Handle<Object> caller) {
1188   TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.stack_trace"), __func__);
1189   Handle<Object> error_stack = factory()->undefined_value();
1190 
1191   // Capture the "simple stack trace" for the error.stack property,
1192   // which can be disabled by setting Error.stackTraceLimit to a non
1193   // number value or simply deleting the property. If the inspector
1194   // is active, and requests more stack frames than the JavaScript
1195   // program itself, we collect up to the maximum.
1196   int stack_trace_limit = 0;
1197   if (GetStackTraceLimit(this, &stack_trace_limit)) {
1198     int limit = stack_trace_limit;
1199     if (capture_stack_trace_for_uncaught_exceptions_ &&
1200         !(stack_trace_for_uncaught_exceptions_options_ &
1201           StackTrace::kExposeFramesAcrossSecurityOrigins)) {
1202       // Collect up to the maximum of what the JavaScript program and
1203       // the inspector want. There's a special case here where the API
1204       // can ask the stack traces to also include cross-origin frames,
1205       // in which case we collect a separate trace below. Note that
1206       // the inspector doesn't use this option, so we could as well
1207       // just deprecate this in the future.
1208       if (limit < stack_trace_for_uncaught_exceptions_frame_limit_) {
1209         limit = stack_trace_for_uncaught_exceptions_frame_limit_;
1210       }
1211     }
1212     error_stack = CaptureSimpleStackTrace(this, limit, mode, caller);
1213   }
1214 
1215   // Next is the inspector part: Depending on whether we got a "simple
1216   // stack trace" above and whether that's usable (meaning the API
1217   // didn't request to include cross-origin frames), we remember the
1218   // cap for the stack trace (either a positive limit indicating that
1219   // the Error.stackTraceLimit value was below what was requested via
1220   // the API, or a negative limit to indicate the opposite), or we
1221   // collect a "detailed stack trace" eagerly and stash that away.
1222   if (capture_stack_trace_for_uncaught_exceptions_) {
1223     Handle<Object> limit_or_stack_frame_infos;
1224     if (error_stack->IsUndefined(this) ||
1225         (stack_trace_for_uncaught_exceptions_options_ &
1226          StackTrace::kExposeFramesAcrossSecurityOrigins)) {
1227       limit_or_stack_frame_infos = CaptureDetailedStackTrace(
1228           stack_trace_for_uncaught_exceptions_frame_limit_,
1229           stack_trace_for_uncaught_exceptions_options_);
1230     } else {
1231       int limit =
1232           stack_trace_limit > stack_trace_for_uncaught_exceptions_frame_limit_
1233               ? -stack_trace_for_uncaught_exceptions_frame_limit_
1234               : stack_trace_limit;
1235       limit_or_stack_frame_infos = handle(Smi::FromInt(limit), this);
1236     }
1237     error_stack =
1238         factory()->NewErrorStackData(error_stack, limit_or_stack_frame_infos);
1239   }
1240 
1241   RETURN_ON_EXCEPTION(
1242       this,
1243       JSObject::SetProperty(this, error_object, factory()->error_stack_symbol(),
1244                             error_stack, StoreOrigin::kMaybeKeyed,
1245                             Just(ShouldThrow::kThrowOnError)),
1246       JSObject);
1247   return error_object;
1248 }
1249 
GetDetailedStackTrace(Handle<JSReceiver> error_object)1250 Handle<FixedArray> Isolate::GetDetailedStackTrace(
1251     Handle<JSReceiver> error_object) {
1252   Handle<Object> error_stack = JSReceiver::GetDataProperty(
1253       this, error_object, factory()->error_stack_symbol());
1254   if (!error_stack->IsErrorStackData()) {
1255     return Handle<FixedArray>();
1256   }
1257   Handle<ErrorStackData> error_stack_data =
1258       Handle<ErrorStackData>::cast(error_stack);
1259   ErrorStackData::EnsureStackFrameInfos(this, error_stack_data);
1260   if (!error_stack_data->limit_or_stack_frame_infos().IsFixedArray()) {
1261     return Handle<FixedArray>();
1262   }
1263   return handle(
1264       FixedArray::cast(error_stack_data->limit_or_stack_frame_infos()), this);
1265 }
1266 
GetSimpleStackTrace(Handle<JSReceiver> error_object)1267 Handle<FixedArray> Isolate::GetSimpleStackTrace(
1268     Handle<JSReceiver> error_object) {
1269   Handle<Object> error_stack = JSReceiver::GetDataProperty(
1270       this, error_object, factory()->error_stack_symbol());
1271   if (error_stack->IsFixedArray()) {
1272     return Handle<FixedArray>::cast(error_stack);
1273   }
1274   if (!error_stack->IsErrorStackData()) {
1275     return factory()->empty_fixed_array();
1276   }
1277   Handle<ErrorStackData> error_stack_data =
1278       Handle<ErrorStackData>::cast(error_stack);
1279   if (!error_stack_data->HasCallSiteInfos()) {
1280     return factory()->empty_fixed_array();
1281   }
1282   return handle(error_stack_data->call_site_infos(), this);
1283 }
1284 
GetAbstractPC(int * line,int * column)1285 Address Isolate::GetAbstractPC(int* line, int* column) {
1286   JavaScriptFrameIterator it(this);
1287 
1288   if (it.done()) {
1289     *line = -1;
1290     *column = -1;
1291     return kNullAddress;
1292   }
1293   JavaScriptFrame* frame = it.frame();
1294   DCHECK(!frame->is_builtin());
1295 
1296   Handle<SharedFunctionInfo> shared = handle(frame->function().shared(), this);
1297   SharedFunctionInfo::EnsureSourcePositionsAvailable(this, shared);
1298   int position = frame->position();
1299 
1300   Object maybe_script = frame->function().shared().script();
1301   if (maybe_script.IsScript()) {
1302     Handle<Script> script(Script::cast(maybe_script), this);
1303     Script::PositionInfo info;
1304     Script::GetPositionInfo(script, position, &info, Script::WITH_OFFSET);
1305     *line = info.line + 1;
1306     *column = info.column + 1;
1307   } else {
1308     *line = position;
1309     *column = -1;
1310   }
1311 
1312   if (frame->is_unoptimized()) {
1313     UnoptimizedFrame* iframe = static_cast<UnoptimizedFrame*>(frame);
1314     Address bytecode_start =
1315         iframe->GetBytecodeArray().GetFirstBytecodeAddress();
1316     return bytecode_start + iframe->GetBytecodeOffset();
1317   }
1318 
1319   return frame->pc();
1320 }
1321 
1322 namespace {
1323 
1324 class StackFrameBuilder {
1325  public:
StackFrameBuilder(Isolate * isolate,int limit)1326   StackFrameBuilder(Isolate* isolate, int limit)
1327       : isolate_(isolate),
1328         frames_(isolate_->factory()->empty_fixed_array()),
1329         index_(0),
1330         limit_(limit) {}
1331 
Visit(FrameSummary & summary)1332   bool Visit(FrameSummary& summary) {
1333     // Check if we have enough capacity left.
1334     if (index_ >= limit_) return false;
1335     // Skip frames that aren't subject to debugging.
1336     if (!summary.is_subject_to_debugging()) return true;
1337     Handle<StackFrameInfo> frame = summary.CreateStackFrameInfo();
1338     frames_ = FixedArray::SetAndGrow(isolate_, frames_, index_++, frame);
1339     return true;
1340   }
1341 
Build()1342   Handle<FixedArray> Build() {
1343     return FixedArray::ShrinkOrEmpty(isolate_, frames_, index_);
1344   }
1345 
1346  private:
1347   Isolate* isolate_;
1348   Handle<FixedArray> frames_;
1349   int index_;
1350   int limit_;
1351 };
1352 
1353 }  // namespace
1354 
CaptureDetailedStackTrace(int limit,StackTrace::StackTraceOptions options)1355 Handle<FixedArray> Isolate::CaptureDetailedStackTrace(
1356     int limit, StackTrace::StackTraceOptions options) {
1357   TRACE_EVENT_BEGIN1(TRACE_DISABLED_BY_DEFAULT("v8.stack_trace"), __func__,
1358                      "maxFrameCount", limit);
1359   StackFrameBuilder builder(this, limit);
1360   VisitStack(this, &builder, options);
1361   Handle<FixedArray> stack_trace = builder.Build();
1362   TRACE_EVENT_END1(TRACE_DISABLED_BY_DEFAULT("v8.stack_trace"), __func__,
1363                    "frameCount", stack_trace->length());
1364   return stack_trace;
1365 }
1366 
1367 namespace {
1368 
1369 class CurrentScriptNameStackVisitor {
1370  public:
CurrentScriptNameStackVisitor(Isolate * isolate)1371   explicit CurrentScriptNameStackVisitor(Isolate* isolate)
1372       : isolate_(isolate) {}
1373 
Visit(FrameSummary & summary)1374   bool Visit(FrameSummary& summary) {
1375     // Skip frames that aren't subject to debugging. Keep this in sync with
1376     // StackFrameBuilder::Visit so both visitors visit the same frames.
1377     if (!summary.is_subject_to_debugging()) return true;
1378 
1379     // Frames that are subject to debugging always have a valid script object.
1380     Handle<Script> script = Handle<Script>::cast(summary.script());
1381     Handle<Object> name_or_url_obj =
1382         handle(script->GetNameOrSourceURL(), isolate_);
1383     if (!name_or_url_obj->IsString()) return true;
1384 
1385     Handle<String> name_or_url = Handle<String>::cast(name_or_url_obj);
1386     if (!name_or_url->length()) return true;
1387 
1388     name_or_url_ = name_or_url;
1389     return false;
1390   }
1391 
CurrentScriptNameOrSourceURL() const1392   Handle<String> CurrentScriptNameOrSourceURL() const { return name_or_url_; }
1393 
1394  private:
1395   Isolate* const isolate_;
1396   Handle<String> name_or_url_;
1397 };
1398 
1399 }  // namespace
1400 
CurrentScriptNameOrSourceURL()1401 Handle<String> Isolate::CurrentScriptNameOrSourceURL() {
1402   TRACE_EVENT0(TRACE_DISABLED_BY_DEFAULT("v8.stack_trace"), __func__);
1403   CurrentScriptNameStackVisitor visitor(this);
1404   VisitStack(this, &visitor);
1405   return visitor.CurrentScriptNameOrSourceURL();
1406 }
1407 
PrintStack(FILE * out,PrintStackMode mode)1408 void Isolate::PrintStack(FILE* out, PrintStackMode mode) {
1409   if (stack_trace_nesting_level_ == 0) {
1410     stack_trace_nesting_level_++;
1411     StringStream::ClearMentionedObjectCache(this);
1412     HeapStringAllocator allocator;
1413     StringStream accumulator(&allocator);
1414     incomplete_message_ = &accumulator;
1415     PrintStack(&accumulator, mode);
1416     accumulator.OutputToFile(out);
1417     InitializeLoggingAndCounters();
1418     accumulator.Log(this);
1419     incomplete_message_ = nullptr;
1420     stack_trace_nesting_level_ = 0;
1421   } else if (stack_trace_nesting_level_ == 1) {
1422     stack_trace_nesting_level_++;
1423     base::OS::PrintError(
1424         "\n\nAttempt to print stack while printing stack (double fault)\n");
1425     base::OS::PrintError(
1426         "If you are lucky you may find a partial stack dump on stdout.\n\n");
1427     incomplete_message_->OutputToFile(out);
1428   }
1429 }
1430 
PrintFrames(Isolate * isolate,StringStream * accumulator,StackFrame::PrintMode mode)1431 static void PrintFrames(Isolate* isolate, StringStream* accumulator,
1432                         StackFrame::PrintMode mode) {
1433   StackFrameIterator it(isolate);
1434   for (int i = 0; !it.done(); it.Advance()) {
1435     it.frame()->Print(accumulator, mode, i++);
1436   }
1437 }
1438 
PrintStack(StringStream * accumulator,PrintStackMode mode)1439 void Isolate::PrintStack(StringStream* accumulator, PrintStackMode mode) {
1440   HandleScope scope(this);
1441   DCHECK(accumulator->IsMentionedObjectCacheClear(this));
1442 
1443   // Avoid printing anything if there are no frames.
1444   if (c_entry_fp(thread_local_top()) == 0) return;
1445 
1446   accumulator->Add(
1447       "\n==== JS stack trace =========================================\n\n");
1448   PrintFrames(this, accumulator, StackFrame::OVERVIEW);
1449   if (mode == kPrintStackVerbose) {
1450     accumulator->Add(
1451         "\n==== Details ================================================\n\n");
1452     PrintFrames(this, accumulator, StackFrame::DETAILS);
1453     accumulator->PrintMentionedObjectCache(this);
1454   }
1455   accumulator->Add("=====================\n\n");
1456 }
1457 
SetFailedAccessCheckCallback(v8::FailedAccessCheckCallback callback)1458 void Isolate::SetFailedAccessCheckCallback(
1459     v8::FailedAccessCheckCallback callback) {
1460   thread_local_top()->failed_access_check_callback_ = callback;
1461 }
1462 
ReportFailedAccessCheck(Handle<JSObject> receiver)1463 void Isolate::ReportFailedAccessCheck(Handle<JSObject> receiver) {
1464   if (!thread_local_top()->failed_access_check_callback_) {
1465     return ScheduleThrow(*factory()->NewTypeError(MessageTemplate::kNoAccess));
1466   }
1467 
1468   DCHECK(receiver->IsAccessCheckNeeded());
1469   DCHECK(!context().is_null());
1470 
1471   // Get the data object from access check info.
1472   HandleScope scope(this);
1473   Handle<Object> data;
1474   {
1475     DisallowGarbageCollection no_gc;
1476     AccessCheckInfo access_check_info = AccessCheckInfo::Get(this, receiver);
1477     if (access_check_info.is_null()) {
1478       no_gc.Release();
1479       return ScheduleThrow(
1480           *factory()->NewTypeError(MessageTemplate::kNoAccess));
1481     }
1482     data = handle(access_check_info.data(), this);
1483   }
1484 
1485   // Leaving JavaScript.
1486   VMState<EXTERNAL> state(this);
1487   thread_local_top()->failed_access_check_callback_(
1488       v8::Utils::ToLocal(receiver), v8::ACCESS_HAS, v8::Utils::ToLocal(data));
1489 }
1490 
MayAccess(Handle<Context> accessing_context,Handle<JSObject> receiver)1491 bool Isolate::MayAccess(Handle<Context> accessing_context,
1492                         Handle<JSObject> receiver) {
1493   DCHECK(receiver->IsJSGlobalProxy() || receiver->IsAccessCheckNeeded());
1494 
1495   // Check for compatibility between the security tokens in the
1496   // current lexical context and the accessed object.
1497 
1498   // During bootstrapping, callback functions are not enabled yet.
1499   if (bootstrapper()->IsActive()) return true;
1500   {
1501     DisallowGarbageCollection no_gc;
1502 
1503     if (receiver->IsJSGlobalProxy()) {
1504       Object receiver_context = JSGlobalProxy::cast(*receiver).native_context();
1505       if (!receiver_context.IsContext()) return false;
1506 
1507       // Get the native context of current top context.
1508       // avoid using Isolate::native_context() because it uses Handle.
1509       Context native_context =
1510           accessing_context->global_object().native_context();
1511       if (receiver_context == native_context) return true;
1512 
1513       if (Context::cast(receiver_context).security_token() ==
1514           native_context.security_token())
1515         return true;
1516     }
1517   }
1518 
1519   HandleScope scope(this);
1520   Handle<Object> data;
1521   v8::AccessCheckCallback callback = nullptr;
1522   {
1523     DisallowGarbageCollection no_gc;
1524     AccessCheckInfo access_check_info = AccessCheckInfo::Get(this, receiver);
1525     if (access_check_info.is_null()) return false;
1526     Object fun_obj = access_check_info.callback();
1527     callback = v8::ToCData<v8::AccessCheckCallback>(fun_obj);
1528     data = handle(access_check_info.data(), this);
1529   }
1530 
1531   {
1532     // Leaving JavaScript.
1533     VMState<EXTERNAL> state(this);
1534     return callback(v8::Utils::ToLocal(accessing_context),
1535                     v8::Utils::ToLocal(receiver), v8::Utils::ToLocal(data));
1536   }
1537 }
1538 
StackOverflow()1539 Object Isolate::StackOverflow() {
1540   // Whoever calls this method should not have overflown the stack limit by too
1541   // much. Otherwise we risk actually running out of stack space.
1542   // We allow for up to 8kB overflow, because we typically allow up to 4KB
1543   // overflow per frame in generated code, but might call through more smaller
1544   // frames until we reach this method.
1545   // If this DCHECK fails, one of the frames on the stack should be augmented by
1546   // an additional stack check.
1547 #if defined(V8_USE_ADDRESS_SANITIZER) || defined(MEMORY_SANITIZER)
1548   // Allow for a bit more overflow in sanitizer builds, because C++ frames take
1549   // significantly more space there.
1550   DCHECK_GE(GetCurrentStackPosition(), stack_guard()->real_climit() - 32 * KB);
1551 #else
1552   DCHECK_GE(GetCurrentStackPosition(), stack_guard()->real_climit() - 8 * KB);
1553 #endif
1554 
1555   if (FLAG_correctness_fuzzer_suppressions) {
1556     FATAL("Aborting on stack overflow");
1557   }
1558 
1559   DisallowJavascriptExecution no_js(this);
1560   HandleScope scope(this);
1561 
1562   Handle<JSFunction> fun = range_error_function();
1563   Handle<Object> msg = factory()->NewStringFromAsciiChecked(
1564       MessageFormatter::TemplateString(MessageTemplate::kStackOverflow));
1565   Handle<Object> options = factory()->undefined_value();
1566   Handle<Object> no_caller;
1567   Handle<JSObject> exception;
1568   ASSIGN_RETURN_FAILURE_ON_EXCEPTION(
1569       this, exception,
1570       ErrorUtils::Construct(this, fun, fun, msg, options, SKIP_NONE, no_caller,
1571                             ErrorUtils::StackTraceCollection::kEnabled));
1572   JSObject::AddProperty(this, exception, factory()->wasm_uncatchable_symbol(),
1573                         factory()->true_value(), NONE);
1574 
1575   Throw(*exception);
1576 
1577 #ifdef VERIFY_HEAP
1578   if (FLAG_verify_heap && FLAG_stress_compaction) {
1579     heap()->CollectAllGarbage(Heap::kNoGCFlags,
1580                               GarbageCollectionReason::kTesting);
1581   }
1582 #endif  // VERIFY_HEAP
1583 
1584   return ReadOnlyRoots(heap()).exception();
1585 }
1586 
ThrowAt(Handle<JSObject> exception,MessageLocation * location)1587 Object Isolate::ThrowAt(Handle<JSObject> exception, MessageLocation* location) {
1588   Handle<Name> key_start_pos = factory()->error_start_pos_symbol();
1589   Object::SetProperty(this, exception, key_start_pos,
1590                       handle(Smi::FromInt(location->start_pos()), this),
1591                       StoreOrigin::kMaybeKeyed,
1592                       Just(ShouldThrow::kThrowOnError))
1593       .Check();
1594 
1595   Handle<Name> key_end_pos = factory()->error_end_pos_symbol();
1596   Object::SetProperty(this, exception, key_end_pos,
1597                       handle(Smi::FromInt(location->end_pos()), this),
1598                       StoreOrigin::kMaybeKeyed,
1599                       Just(ShouldThrow::kThrowOnError))
1600       .Check();
1601 
1602   Handle<Name> key_script = factory()->error_script_symbol();
1603   Object::SetProperty(this, exception, key_script, location->script(),
1604                       StoreOrigin::kMaybeKeyed,
1605                       Just(ShouldThrow::kThrowOnError))
1606       .Check();
1607 
1608   return ThrowInternal(*exception, location);
1609 }
1610 
TerminateExecution()1611 Object Isolate::TerminateExecution() {
1612   return Throw(ReadOnlyRoots(this).termination_exception());
1613 }
1614 
CancelTerminateExecution()1615 void Isolate::CancelTerminateExecution() {
1616   if (try_catch_handler()) {
1617     try_catch_handler()->has_terminated_ = false;
1618   }
1619   if (has_pending_exception() &&
1620       pending_exception() == ReadOnlyRoots(this).termination_exception()) {
1621     thread_local_top()->external_caught_exception_ = false;
1622     clear_pending_exception();
1623   }
1624   if (has_scheduled_exception() &&
1625       scheduled_exception() == ReadOnlyRoots(this).termination_exception()) {
1626     thread_local_top()->external_caught_exception_ = false;
1627     clear_scheduled_exception();
1628   }
1629 }
1630 
RequestInterrupt(InterruptCallback callback,void * data)1631 void Isolate::RequestInterrupt(InterruptCallback callback, void* data) {
1632   ExecutionAccess access(this);
1633   api_interrupts_queue_.push(InterruptEntry(callback, data));
1634   stack_guard()->RequestApiInterrupt();
1635 }
1636 
InvokeApiInterruptCallbacks()1637 void Isolate::InvokeApiInterruptCallbacks() {
1638   RCS_SCOPE(this, RuntimeCallCounterId::kInvokeApiInterruptCallbacks);
1639   // Note: callback below should be called outside of execution access lock.
1640   while (true) {
1641     InterruptEntry entry;
1642     {
1643       ExecutionAccess access(this);
1644       if (api_interrupts_queue_.empty()) return;
1645       entry = api_interrupts_queue_.front();
1646       api_interrupts_queue_.pop();
1647     }
1648     VMState<EXTERNAL> state(this);
1649     HandleScope handle_scope(this);
1650     entry.first(reinterpret_cast<v8::Isolate*>(this), entry.second);
1651   }
1652 }
1653 
1654 namespace {
1655 
ReportBootstrappingException(Handle<Object> exception,MessageLocation * location)1656 void ReportBootstrappingException(Handle<Object> exception,
1657                                   MessageLocation* location) {
1658   base::OS::PrintError("Exception thrown during bootstrapping\n");
1659   if (location == nullptr || location->script().is_null()) return;
1660   // We are bootstrapping and caught an error where the location is set
1661   // and we have a script for the location.
1662   // In this case we could have an extension (or an internal error
1663   // somewhere) and we print out the line number at which the error occurred
1664   // to the console for easier debugging.
1665   int line_number =
1666       location->script()->GetLineNumber(location->start_pos()) + 1;
1667   if (exception->IsString() && location->script()->name().IsString()) {
1668     base::OS::PrintError(
1669         "Extension or internal compilation error: %s in %s at line %d.\n",
1670         String::cast(*exception).ToCString().get(),
1671         String::cast(location->script()->name()).ToCString().get(),
1672         line_number);
1673   } else if (location->script()->name().IsString()) {
1674     base::OS::PrintError(
1675         "Extension or internal compilation error in %s at line %d.\n",
1676         String::cast(location->script()->name()).ToCString().get(),
1677         line_number);
1678   } else if (exception->IsString()) {
1679     base::OS::PrintError("Extension or internal compilation error: %s.\n",
1680                          String::cast(*exception).ToCString().get());
1681   } else {
1682     base::OS::PrintError("Extension or internal compilation error.\n");
1683   }
1684 #ifdef OBJECT_PRINT
1685   // Since comments and empty lines have been stripped from the source of
1686   // builtins, print the actual source here so that line numbers match.
1687   if (location->script()->source().IsString()) {
1688     Handle<String> src(String::cast(location->script()->source()),
1689                        location->script()->GetIsolate());
1690     PrintF("Failing script:");
1691     int len = src->length();
1692     if (len == 0) {
1693       PrintF(" <not available>\n");
1694     } else {
1695       PrintF("\n");
1696       line_number = 1;
1697       PrintF("%5d: ", line_number);
1698       for (int i = 0; i < len; i++) {
1699         uint16_t character = src->Get(i);
1700         PrintF("%c", character);
1701         if (character == '\n' && i < len - 2) {
1702           PrintF("%5d: ", ++line_number);
1703         }
1704       }
1705       PrintF("\n");
1706     }
1707   }
1708 #endif
1709 }
1710 
1711 }  // anonymous namespace
1712 
CreateMessageOrAbort(Handle<Object> exception,MessageLocation * location)1713 Handle<JSMessageObject> Isolate::CreateMessageOrAbort(
1714     Handle<Object> exception, MessageLocation* location) {
1715   Handle<JSMessageObject> message_obj = CreateMessage(exception, location);
1716 
1717   // If the abort-on-uncaught-exception flag is specified, and if the
1718   // embedder didn't specify a custom uncaught exception callback,
1719   // or if the custom callback determined that V8 should abort, then
1720   // abort.
1721   if (FLAG_abort_on_uncaught_exception) {
1722     CatchType prediction = PredictExceptionCatcher();
1723     if ((prediction == NOT_CAUGHT || prediction == CAUGHT_BY_EXTERNAL) &&
1724         (!abort_on_uncaught_exception_callback_ ||
1725          abort_on_uncaught_exception_callback_(
1726              reinterpret_cast<v8::Isolate*>(this)))) {
1727       // Prevent endless recursion.
1728       FLAG_abort_on_uncaught_exception = false;
1729       // This flag is intended for use by JavaScript developers, so
1730       // print a user-friendly stack trace (not an internal one).
1731       PrintF(stderr, "%s\n\nFROM\n",
1732              MessageHandler::GetLocalizedMessage(this, message_obj).get());
1733       std::ostringstream stack_trace_stream;
1734       PrintCurrentStackTrace(stack_trace_stream);
1735       PrintF(stderr, "%s", stack_trace_stream.str().c_str());
1736       base::OS::Abort();
1737     }
1738   }
1739 
1740   return message_obj;
1741 }
1742 
ThrowInternal(Object raw_exception,MessageLocation * location)1743 Object Isolate::ThrowInternal(Object raw_exception, MessageLocation* location) {
1744   DCHECK(!has_pending_exception());
1745   IF_WASM(DCHECK_IMPLIES, trap_handler::IsTrapHandlerEnabled(),
1746           !trap_handler::IsThreadInWasm());
1747 
1748   HandleScope scope(this);
1749   Handle<Object> exception(raw_exception, this);
1750 
1751   if (FLAG_print_all_exceptions) {
1752     PrintF("=========================================================\n");
1753     PrintF("Exception thrown:\n");
1754     if (location) {
1755       Handle<Script> script = location->script();
1756       Handle<Object> name(script->GetNameOrSourceURL(), this);
1757       PrintF("at ");
1758       if (name->IsString() && String::cast(*name).length() > 0)
1759         String::cast(*name).PrintOn(stdout);
1760       else
1761         PrintF("<anonymous>");
1762 // Script::GetLineNumber and Script::GetColumnNumber can allocate on the heap to
1763 // initialize the line_ends array, so be careful when calling them.
1764 #ifdef DEBUG
1765       if (AllowGarbageCollection::IsAllowed()) {
1766 #else
1767       if ((false)) {
1768 #endif
1769         PrintF(", %d:%d - %d:%d\n",
1770                Script::GetLineNumber(script, location->start_pos()) + 1,
1771                Script::GetColumnNumber(script, location->start_pos()),
1772                Script::GetLineNumber(script, location->end_pos()) + 1,
1773                Script::GetColumnNumber(script, location->end_pos()));
1774         // Make sure to update the raw exception pointer in case it moved.
1775         raw_exception = *exception;
1776       } else {
1777         PrintF(", line %d\n", script->GetLineNumber(location->start_pos()) + 1);
1778       }
1779     }
1780     raw_exception.Print();
1781     PrintF("Stack Trace:\n");
1782     PrintStack(stdout);
1783     PrintF("=========================================================\n");
1784   }
1785 
1786   // Determine whether a message needs to be created for the given exception
1787   // depending on the following criteria:
1788   // 1) External v8::TryCatch missing: Always create a message because any
1789   //    JavaScript handler for a finally-block might re-throw to top-level.
1790   // 2) External v8::TryCatch exists: Only create a message if the handler
1791   //    captures messages or is verbose (which reports despite the catch).
1792   // 3) ReThrow from v8::TryCatch: The message from a previous throw still
1793   //    exists and we preserve it instead of creating a new message.
1794   bool requires_message = try_catch_handler() == nullptr ||
1795                           try_catch_handler()->is_verbose_ ||
1796                           try_catch_handler()->capture_message_;
1797   bool rethrowing_message = thread_local_top()->rethrowing_message_;
1798 
1799   thread_local_top()->rethrowing_message_ = false;
1800 
1801   // Notify debugger of exception.
1802   if (is_catchable_by_javascript(raw_exception)) {
1803     base::Optional<Object> maybe_exception = debug()->OnThrow(exception);
1804     if (maybe_exception.has_value()) {
1805       return *maybe_exception;
1806     }
1807   }
1808 
1809   // Generate the message if required.
1810   if (requires_message && !rethrowing_message) {
1811     MessageLocation computed_location;
1812     // If no location was specified we try to use a computed one instead.
1813     if (location == nullptr && ComputeLocation(&computed_location)) {
1814       location = &computed_location;
1815     }
1816     if (bootstrapper()->IsActive()) {
1817       // It's not safe to try to make message objects or collect stack traces
1818       // while the bootstrapper is active since the infrastructure may not have
1819       // been properly initialized.
1820       ReportBootstrappingException(exception, location);
1821     } else {
1822       Handle<Object> message_obj = CreateMessageOrAbort(exception, location);
1823       set_pending_message(*message_obj);
1824     }
1825   }
1826 
1827   // Set the exception being thrown.
1828   set_pending_exception(*exception);
1829   return ReadOnlyRoots(heap()).exception();
1830 }
1831 
1832 Object Isolate::ReThrow(Object exception) {
1833   DCHECK(!has_pending_exception());
1834 
1835   // Set the exception being re-thrown.
1836   set_pending_exception(exception);
1837   return ReadOnlyRoots(heap()).exception();
1838 }
1839 
1840 Object Isolate::ReThrow(Object exception, Object message) {
1841   DCHECK(!has_pending_exception());
1842   DCHECK(!has_pending_message());
1843 
1844   set_pending_message(message);
1845   return ReThrow(exception);
1846 }
1847 
1848 namespace {
1849 #if V8_ENABLE_WEBASSEMBLY
1850 // This scope will set the thread-in-wasm flag after the execution of all
1851 // destructors. The thread-in-wasm flag is only set when the scope gets enabled.
1852 class SetThreadInWasmFlagScope {
1853  public:
1854   SetThreadInWasmFlagScope() {
1855     DCHECK_IMPLIES(trap_handler::IsTrapHandlerEnabled(),
1856                    !trap_handler::IsThreadInWasm());
1857   }
1858 
1859   ~SetThreadInWasmFlagScope() {
1860     if (enabled_) trap_handler::SetThreadInWasm();
1861   }
1862 
1863   void Enable() { enabled_ = true; }
1864 
1865  private:
1866   bool enabled_ = false;
1867 };
1868 #endif  // V8_ENABLE_WEBASSEMBLY
1869 }  // namespace
1870 
1871 Object Isolate::UnwindAndFindHandler() {
1872   // TODO(v8:12676): Fix gcmole failures in this function.
1873   DisableGCMole no_gcmole;
1874 #if V8_ENABLE_WEBASSEMBLY
1875   // Create the {SetThreadInWasmFlagScope} first in this function so that its
1876   // destructor gets called after all the other destructors. It is important
1877   // that the destructor sets the thread-in-wasm flag after all other
1878   // destructors. The other destructors may cause exceptions, e.g. ASan on
1879   // Windows, which would invalidate the thread-in-wasm flag when the wasm trap
1880   // handler handles such non-wasm exceptions.
1881   SetThreadInWasmFlagScope set_thread_in_wasm_flag_scope;
1882 #endif  // V8_ENABLE_WEBASSEMBLY
1883   Object exception = pending_exception();
1884 
1885   auto FoundHandler = [&](Context context, Address instruction_start,
1886                           intptr_t handler_offset,
1887                           Address constant_pool_address, Address handler_sp,
1888                           Address handler_fp, int num_frames_above_handler) {
1889     // Store information to be consumed by the CEntry.
1890     thread_local_top()->pending_handler_context_ = context;
1891     thread_local_top()->pending_handler_entrypoint_ =
1892         instruction_start + handler_offset;
1893     thread_local_top()->pending_handler_constant_pool_ = constant_pool_address;
1894     thread_local_top()->pending_handler_fp_ = handler_fp;
1895     thread_local_top()->pending_handler_sp_ = handler_sp;
1896     thread_local_top()->num_frames_above_pending_handler_ =
1897         num_frames_above_handler;
1898 
1899     // Return and clear pending exception. The contract is that:
1900     // (1) the pending exception is stored in one place (no duplication), and
1901     // (2) within generated-code land, that one place is the return register.
1902     // If/when we unwind back into C++ (returning to the JSEntry stub,
1903     // or to Execution::CallWasm), the returned exception will be sent
1904     // back to isolate->set_pending_exception(...).
1905     clear_pending_exception();
1906     return exception;
1907   };
1908 
1909   // Special handling of termination exceptions, uncatchable by JavaScript and
1910   // Wasm code, we unwind the handlers until the top ENTRY handler is found.
1911   bool catchable_by_js = is_catchable_by_javascript(exception);
1912   if (!catchable_by_js && !context().is_null()) {
1913     // Because the array join stack will not pop the elements when throwing the
1914     // uncatchable terminate exception, we need to clear the array join stack to
1915     // avoid leaving the stack in an invalid state.
1916     // See also CycleProtectedArrayJoin.
1917     raw_native_context().set_array_join_stack(
1918         ReadOnlyRoots(this).undefined_value());
1919   }
1920 
1921   int visited_frames = 0;
1922 
1923   // Compute handler and stack unwinding information by performing a full walk
1924   // over the stack and dispatching according to the frame type.
1925   for (StackFrameIterator iter(this);; iter.Advance(), visited_frames++) {
1926     // Handler must exist.
1927     DCHECK(!iter.done());
1928 
1929     StackFrame* frame = iter.frame();
1930 
1931     switch (frame->type()) {
1932       case StackFrame::ENTRY:
1933       case StackFrame::CONSTRUCT_ENTRY: {
1934         // For JSEntry frames we always have a handler.
1935         StackHandler* handler = frame->top_handler();
1936 
1937         // Restore the next handler.
1938         thread_local_top()->handler_ = handler->next_address();
1939 
1940         // Gather information from the handler.
1941         Code code = frame->LookupCode();
1942         HandlerTable table(code);
1943         return FoundHandler(Context(), code.InstructionStart(this, frame->pc()),
1944                             table.LookupReturn(0), code.constant_pool(),
1945                             handler->address() + StackHandlerConstants::kSize,
1946                             0, visited_frames);
1947       }
1948 
1949 #if V8_ENABLE_WEBASSEMBLY
1950       case StackFrame::C_WASM_ENTRY: {
1951         StackHandler* handler = frame->top_handler();
1952         thread_local_top()->handler_ = handler->next_address();
1953         Code code = frame->LookupCode();
1954         HandlerTable table(code);
1955         Address instruction_start = code.InstructionStart(this, frame->pc());
1956         int return_offset = static_cast<int>(frame->pc() - instruction_start);
1957         int handler_offset = table.LookupReturn(return_offset);
1958         DCHECK_NE(-1, handler_offset);
1959         // Compute the stack pointer from the frame pointer. This ensures that
1960         // argument slots on the stack are dropped as returning would.
1961         Address return_sp = frame->fp() +
1962                             StandardFrameConstants::kFixedFrameSizeAboveFp -
1963                             code.stack_slots() * kSystemPointerSize;
1964         return FoundHandler(Context(), instruction_start, handler_offset,
1965                             code.constant_pool(), return_sp, frame->fp(),
1966                             visited_frames);
1967       }
1968 
1969       case StackFrame::WASM: {
1970         if (!is_catchable_by_wasm(exception)) break;
1971 
1972         // For WebAssembly frames we perform a lookup in the handler table.
1973         // This code ref scope is here to avoid a check failure when looking up
1974         // the code. It's not actually necessary to keep the code alive as it's
1975         // currently being executed.
1976         wasm::WasmCodeRefScope code_ref_scope;
1977         WasmFrame* wasm_frame = static_cast<WasmFrame*>(frame);
1978         wasm::WasmCode* wasm_code =
1979             wasm::GetWasmCodeManager()->LookupCode(frame->pc());
1980         int offset = wasm_frame->LookupExceptionHandlerInTable();
1981         if (offset < 0) break;
1982         wasm::GetWasmEngine()->SampleCatchEvent(this);
1983         // Compute the stack pointer from the frame pointer. This ensures that
1984         // argument slots on the stack are dropped as returning would.
1985         Address return_sp = frame->fp() +
1986                             StandardFrameConstants::kFixedFrameSizeAboveFp -
1987                             wasm_code->stack_slots() * kSystemPointerSize;
1988 
1989         // This is going to be handled by WebAssembly, so we need to set the TLS
1990         // flag. The {SetThreadInWasmFlagScope} will set the flag after all
1991         // destructors have been executed.
1992         set_thread_in_wasm_flag_scope.Enable();
1993         return FoundHandler(Context(), wasm_code->instruction_start(), offset,
1994                             wasm_code->constant_pool(), return_sp, frame->fp(),
1995                             visited_frames);
1996       }
1997 
1998       case StackFrame::WASM_COMPILE_LAZY: {
1999         // Can only fail directly on invocation. This happens if an invalid
2000         // function was validated lazily.
2001         DCHECK(FLAG_wasm_lazy_validation);
2002         break;
2003       }
2004 #endif  // V8_ENABLE_WEBASSEMBLY
2005 
2006       case StackFrame::OPTIMIZED: {
2007         // For optimized frames we perform a lookup in the handler table.
2008         if (!catchable_by_js) break;
2009         OptimizedFrame* js_frame = static_cast<OptimizedFrame*>(frame);
2010         Code code = frame->LookupCode();
2011         int offset = js_frame->LookupExceptionHandlerInTable(nullptr, nullptr);
2012         if (offset < 0) break;
2013         // Compute the stack pointer from the frame pointer. This ensures
2014         // that argument slots on the stack are dropped as returning would.
2015         Address return_sp = frame->fp() +
2016                             StandardFrameConstants::kFixedFrameSizeAboveFp -
2017                             code.stack_slots() * kSystemPointerSize;
2018 
2019         // TODO(bmeurer): Turbofanned BUILTIN frames appear as OPTIMIZED,
2020         // but do not have a code kind of TURBOFAN.
2021         if (CodeKindCanDeoptimize(code.kind()) &&
2022             code.marked_for_deoptimization()) {
2023           // If the target code is lazy deoptimized, we jump to the original
2024           // return address, but we make a note that we are throwing, so
2025           // that the deoptimizer can do the right thing.
2026           offset = static_cast<int>(frame->pc() - code.entry());
2027           set_deoptimizer_lazy_throw(true);
2028         }
2029 
2030         return FoundHandler(Context(), code.InstructionStart(this, frame->pc()),
2031                             offset, code.constant_pool(), return_sp,
2032                             frame->fp(), visited_frames);
2033       }
2034 
2035       case StackFrame::STUB: {
2036         // Some stubs are able to handle exceptions.
2037         if (!catchable_by_js) break;
2038         StubFrame* stub_frame = static_cast<StubFrame*>(frame);
2039 #if defined(DEBUG) && V8_ENABLE_WEBASSEMBLY
2040         wasm::WasmCodeRefScope code_ref_scope;
2041         DCHECK_NULL(wasm::GetWasmCodeManager()->LookupCode(frame->pc()));
2042 #endif  // defined(DEBUG) && V8_ENABLE_WEBASSEMBLY
2043         Code code = stub_frame->LookupCode();
2044         if (!code.IsCode() || code.kind() != CodeKind::BUILTIN ||
2045             !code.has_handler_table() || !code.is_turbofanned()) {
2046           break;
2047         }
2048 
2049         int offset = stub_frame->LookupExceptionHandlerInTable();
2050         if (offset < 0) break;
2051 
2052         // Compute the stack pointer from the frame pointer. This ensures
2053         // that argument slots on the stack are dropped as returning would.
2054         Address return_sp = frame->fp() +
2055                             StandardFrameConstants::kFixedFrameSizeAboveFp -
2056                             code.stack_slots() * kSystemPointerSize;
2057 
2058         return FoundHandler(Context(), code.InstructionStart(this, frame->pc()),
2059                             offset, code.constant_pool(), return_sp,
2060                             frame->fp(), visited_frames);
2061       }
2062 
2063       case StackFrame::INTERPRETED:
2064       case StackFrame::BASELINE: {
2065         // For interpreted frame we perform a range lookup in the handler table.
2066         if (!catchable_by_js) break;
2067         UnoptimizedFrame* js_frame = UnoptimizedFrame::cast(frame);
2068         int register_slots = UnoptimizedFrameConstants::RegisterStackSlotCount(
2069             js_frame->GetBytecodeArray().register_count());
2070         int context_reg = 0;  // Will contain register index holding context.
2071         int offset =
2072             js_frame->LookupExceptionHandlerInTable(&context_reg, nullptr);
2073         if (offset < 0) break;
2074         // Compute the stack pointer from the frame pointer. This ensures that
2075         // argument slots on the stack are dropped as returning would.
2076         // Note: This is only needed for interpreted frames that have been
2077         //       materialized by the deoptimizer. If there is a handler frame
2078         //       in between then {frame->sp()} would already be correct.
2079         Address return_sp = frame->fp() -
2080                             InterpreterFrameConstants::kFixedFrameSizeFromFp -
2081                             register_slots * kSystemPointerSize;
2082 
2083         // Patch the bytecode offset in the interpreted frame to reflect the
2084         // position of the exception handler. The special builtin below will
2085         // take care of continuing to dispatch at that position. Also restore
2086         // the correct context for the handler from the interpreter register.
2087         Context context =
2088             Context::cast(js_frame->ReadInterpreterRegister(context_reg));
2089         DCHECK(context.IsContext());
2090 
2091         if (frame->is_baseline()) {
2092           BaselineFrame* sp_frame = BaselineFrame::cast(js_frame);
2093           Code code = sp_frame->LookupCode();
2094           intptr_t pc_offset = sp_frame->GetPCForBytecodeOffset(offset);
2095           // Patch the context register directly on the frame, so that we don't
2096           // need to have a context read + write in the baseline code.
2097           sp_frame->PatchContext(context);
2098           return FoundHandler(
2099               Context(), code.InstructionStart(this, sp_frame->sp()), pc_offset,
2100               code.constant_pool(), return_sp, sp_frame->fp(), visited_frames);
2101         } else {
2102           InterpretedFrame::cast(js_frame)->PatchBytecodeOffset(
2103               static_cast<int>(offset));
2104 
2105           Code code =
2106               FromCodeT(builtins()->code(Builtin::kInterpreterEnterAtBytecode));
2107           // We subtract a frame from visited_frames because otherwise the
2108           // shadow stack will drop the underlying interpreter entry trampoline
2109           // in which the handler runs.
2110           //
2111           // An interpreted frame cannot be the first frame we look at
2112           // because at a minimum, an exit frame into C++ has to separate
2113           // it and the context in which this C++ code runs.
2114           CHECK_GE(visited_frames, 1);
2115           return FoundHandler(context, code.InstructionStart(), 0,
2116                               code.constant_pool(), return_sp, frame->fp(),
2117                               visited_frames - 1);
2118         }
2119       }
2120 
2121       case StackFrame::BUILTIN:
2122         // For builtin frames we are guaranteed not to find a handler.
2123         if (catchable_by_js) {
2124           CHECK_EQ(-1, BuiltinFrame::cast(frame)->LookupExceptionHandlerInTable(
2125                            nullptr, nullptr));
2126         }
2127         break;
2128 
2129       case StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH: {
2130         // Builtin continuation frames with catch can handle exceptions.
2131         if (!catchable_by_js) break;
2132         JavaScriptBuiltinContinuationWithCatchFrame* js_frame =
2133             JavaScriptBuiltinContinuationWithCatchFrame::cast(frame);
2134         js_frame->SetException(exception);
2135 
2136         // Reconstruct the stack pointer from the frame pointer.
2137         Address return_sp = js_frame->fp() - js_frame->GetSPToFPDelta();
2138         Code code = js_frame->LookupCode();
2139         return FoundHandler(Context(), code.InstructionStart(), 0,
2140                             code.constant_pool(), return_sp, frame->fp(),
2141                             visited_frames);
2142       }
2143 
2144       default:
2145         // All other types can not handle exception.
2146         break;
2147     }
2148 
2149     if (frame->is_optimized()) {
2150       // Remove per-frame stored materialized objects.
2151       bool removed = materialized_object_store_->Remove(frame->fp());
2152       USE(removed);
2153       // If there were any materialized objects, the code should be
2154       // marked for deopt.
2155       DCHECK_IMPLIES(removed, frame->LookupCode().marked_for_deoptimization());
2156     }
2157   }
2158 
2159   UNREACHABLE();
2160 }
2161 
2162 namespace {
2163 HandlerTable::CatchPrediction PredictException(JavaScriptFrame* frame) {
2164   HandlerTable::CatchPrediction prediction;
2165   if (frame->is_optimized()) {
2166     if (frame->LookupExceptionHandlerInTable(nullptr, nullptr) > 0) {
2167       // This optimized frame will catch. It's handler table does not include
2168       // exception prediction, and we need to use the corresponding handler
2169       // tables on the unoptimized code objects.
2170       std::vector<FrameSummary> summaries;
2171       frame->Summarize(&summaries);
2172       for (size_t i = summaries.size(); i != 0; i--) {
2173         const FrameSummary& summary = summaries[i - 1];
2174         Handle<AbstractCode> code = summary.AsJavaScript().abstract_code();
2175         if (code->IsCode() && code->kind() == CodeKind::BUILTIN) {
2176           prediction = code->GetCode().GetBuiltinCatchPrediction();
2177           if (prediction == HandlerTable::UNCAUGHT) continue;
2178           return prediction;
2179         }
2180 
2181         // Must have been constructed from a bytecode array.
2182         CHECK_EQ(CodeKind::INTERPRETED_FUNCTION, code->kind());
2183         int code_offset = summary.code_offset();
2184         HandlerTable table(code->GetBytecodeArray());
2185         int index = table.LookupRange(code_offset, nullptr, &prediction);
2186         if (index <= 0) continue;
2187         if (prediction == HandlerTable::UNCAUGHT) continue;
2188         return prediction;
2189       }
2190     }
2191   } else if (frame->LookupExceptionHandlerInTable(nullptr, &prediction) > 0) {
2192     return prediction;
2193   }
2194   return HandlerTable::UNCAUGHT;
2195 }
2196 
2197 Isolate::CatchType ToCatchType(HandlerTable::CatchPrediction prediction) {
2198   switch (prediction) {
2199     case HandlerTable::UNCAUGHT:
2200       return Isolate::NOT_CAUGHT;
2201     case HandlerTable::CAUGHT:
2202       return Isolate::CAUGHT_BY_JAVASCRIPT;
2203     case HandlerTable::PROMISE:
2204       return Isolate::CAUGHT_BY_PROMISE;
2205     case HandlerTable::UNCAUGHT_ASYNC_AWAIT:
2206     case HandlerTable::ASYNC_AWAIT:
2207       return Isolate::CAUGHT_BY_ASYNC_AWAIT;
2208     default:
2209       UNREACHABLE();
2210   }
2211 }
2212 }  // anonymous namespace
2213 
2214 Isolate::CatchType Isolate::PredictExceptionCatcher() {
2215   Address external_handler = thread_local_top()->try_catch_handler_address();
2216   if (TopExceptionHandlerType(Object()) ==
2217       ExceptionHandlerType::kExternalTryCatch) {
2218     return CAUGHT_BY_EXTERNAL;
2219   }
2220 
2221   // Search for an exception handler by performing a full walk over the stack.
2222   for (StackFrameIterator iter(this); !iter.done(); iter.Advance()) {
2223     StackFrame* frame = iter.frame();
2224 
2225     switch (frame->type()) {
2226       case StackFrame::ENTRY:
2227       case StackFrame::CONSTRUCT_ENTRY: {
2228         Address entry_handler = frame->top_handler()->next_address();
2229         // The exception has been externally caught if and only if there is an
2230         // external handler which is on top of the top-most JS_ENTRY handler.
2231         if (external_handler != kNullAddress &&
2232             !try_catch_handler()->is_verbose_) {
2233           if (entry_handler == kNullAddress ||
2234               entry_handler > external_handler) {
2235             return CAUGHT_BY_EXTERNAL;
2236           }
2237         }
2238       } break;
2239 
2240       // For JavaScript frames we perform a lookup in the handler table.
2241       case StackFrame::OPTIMIZED:
2242       case StackFrame::INTERPRETED:
2243       case StackFrame::BASELINE:
2244       case StackFrame::BUILTIN: {
2245         JavaScriptFrame* js_frame = JavaScriptFrame::cast(frame);
2246         Isolate::CatchType prediction = ToCatchType(PredictException(js_frame));
2247         if (prediction == NOT_CAUGHT) break;
2248         return prediction;
2249       }
2250 
2251       case StackFrame::STUB: {
2252         Handle<Code> code(frame->LookupCode(), this);
2253         if (!code->IsCode() || code->kind() != CodeKind::BUILTIN ||
2254             !code->has_handler_table() || !code->is_turbofanned()) {
2255           break;
2256         }
2257 
2258         CatchType prediction = ToCatchType(code->GetBuiltinCatchPrediction());
2259         if (prediction != NOT_CAUGHT) return prediction;
2260       } break;
2261 
2262       case StackFrame::JAVA_SCRIPT_BUILTIN_CONTINUATION_WITH_CATCH: {
2263         Handle<Code> code(frame->LookupCode(), this);
2264         CatchType prediction = ToCatchType(code->GetBuiltinCatchPrediction());
2265         if (prediction != NOT_CAUGHT) return prediction;
2266       } break;
2267 
2268       default:
2269         // All other types can not handle exception.
2270         break;
2271     }
2272   }
2273 
2274   // Handler not found.
2275   return NOT_CAUGHT;
2276 }
2277 
2278 Object Isolate::ThrowIllegalOperation() {
2279   if (FLAG_stack_trace_on_illegal) PrintStack(stdout);
2280   return Throw(ReadOnlyRoots(heap()).illegal_access_string());
2281 }
2282 
2283 void Isolate::ScheduleThrow(Object exception) {
2284   // When scheduling a throw we first throw the exception to get the
2285   // error reporting if it is uncaught before rescheduling it.
2286   Throw(exception);
2287   PropagatePendingExceptionToExternalTryCatch(
2288       TopExceptionHandlerType(pending_exception()));
2289   if (has_pending_exception()) {
2290     set_scheduled_exception(pending_exception());
2291     thread_local_top()->external_caught_exception_ = false;
2292     clear_pending_exception();
2293   }
2294 }
2295 
2296 void Isolate::RestorePendingMessageFromTryCatch(v8::TryCatch* handler) {
2297   DCHECK(handler == try_catch_handler());
2298   DCHECK(handler->HasCaught());
2299   DCHECK(handler->rethrow_);
2300   DCHECK(handler->capture_message_);
2301   Object message(reinterpret_cast<Address>(handler->message_obj_));
2302   DCHECK(message.IsJSMessageObject() || message.IsTheHole(this));
2303   set_pending_message(message);
2304 }
2305 
2306 void Isolate::CancelScheduledExceptionFromTryCatch(v8::TryCatch* handler) {
2307   DCHECK(has_scheduled_exception());
2308   if (reinterpret_cast<void*>(scheduled_exception().ptr()) ==
2309       handler->exception_) {
2310     DCHECK_NE(scheduled_exception(),
2311               ReadOnlyRoots(heap()).termination_exception());
2312     clear_scheduled_exception();
2313   } else {
2314     DCHECK_EQ(scheduled_exception(),
2315               ReadOnlyRoots(heap()).termination_exception());
2316     // Clear termination once we returned from all V8 frames.
2317     if (thread_local_top()->CallDepthIsZero()) {
2318       thread_local_top()->external_caught_exception_ = false;
2319       clear_scheduled_exception();
2320     }
2321   }
2322   if (reinterpret_cast<void*>(thread_local_top()->pending_message_.ptr()) ==
2323       handler->message_obj_) {
2324     clear_pending_message();
2325   }
2326 }
2327 
2328 Object Isolate::PromoteScheduledException() {
2329   Object thrown = scheduled_exception();
2330   clear_scheduled_exception();
2331   // Re-throw the exception to avoid getting repeated error reporting.
2332   return ReThrow(thrown);
2333 }
2334 
2335 void Isolate::PrintCurrentStackTrace(std::ostream& out) {
2336   Handle<FixedArray> frames = CaptureSimpleStackTrace(
2337       this, FixedArray::kMaxLength, SKIP_NONE, factory()->undefined_value());
2338 
2339   IncrementalStringBuilder builder(this);
2340   for (int i = 0; i < frames->length(); ++i) {
2341     Handle<CallSiteInfo> frame(CallSiteInfo::cast(frames->get(i)), this);
2342     SerializeCallSiteInfo(this, frame, &builder);
2343   }
2344 
2345   Handle<String> stack_trace = builder.Finish().ToHandleChecked();
2346   stack_trace->PrintOn(out);
2347 }
2348 
2349 bool Isolate::ComputeLocation(MessageLocation* target) {
2350   StackTraceFrameIterator it(this);
2351   if (it.done()) return false;
2352   // Compute the location from the function and the relocation info of the
2353   // baseline code. For optimized code this will use the deoptimization
2354   // information to get canonical location information.
2355 #if V8_ENABLE_WEBASSEMBLY
2356   wasm::WasmCodeRefScope code_ref_scope;
2357 #endif  // V8_ENABLE_WEBASSEMBLY
2358   FrameSummary summary = it.GetTopValidFrame();
2359   Handle<SharedFunctionInfo> shared;
2360   Handle<Object> script = summary.script();
2361   if (!script->IsScript() || Script::cast(*script).source().IsUndefined(this)) {
2362     return false;
2363   }
2364 
2365   if (summary.IsJavaScript()) {
2366     shared = handle(summary.AsJavaScript().function()->shared(), this);
2367   }
2368   if (summary.AreSourcePositionsAvailable()) {
2369     int pos = summary.SourcePosition();
2370     *target =
2371         MessageLocation(Handle<Script>::cast(script), pos, pos + 1, shared);
2372   } else {
2373     *target = MessageLocation(Handle<Script>::cast(script), shared,
2374                               summary.code_offset());
2375   }
2376   return true;
2377 }
2378 
2379 bool Isolate::ComputeLocationFromException(MessageLocation* target,
2380                                            Handle<Object> exception) {
2381   if (!exception->IsJSObject()) return false;
2382 
2383   Handle<Name> start_pos_symbol = factory()->error_start_pos_symbol();
2384   Handle<Object> start_pos = JSReceiver::GetDataProperty(
2385       this, Handle<JSObject>::cast(exception), start_pos_symbol);
2386   if (!start_pos->IsSmi()) return false;
2387   int start_pos_value = Handle<Smi>::cast(start_pos)->value();
2388 
2389   Handle<Name> end_pos_symbol = factory()->error_end_pos_symbol();
2390   Handle<Object> end_pos = JSReceiver::GetDataProperty(
2391       this, Handle<JSObject>::cast(exception), end_pos_symbol);
2392   if (!end_pos->IsSmi()) return false;
2393   int end_pos_value = Handle<Smi>::cast(end_pos)->value();
2394 
2395   Handle<Name> script_symbol = factory()->error_script_symbol();
2396   Handle<Object> script = JSReceiver::GetDataProperty(
2397       this, Handle<JSObject>::cast(exception), script_symbol);
2398   if (!script->IsScript()) return false;
2399 
2400   Handle<Script> cast_script(Script::cast(*script), this);
2401   *target = MessageLocation(cast_script, start_pos_value, end_pos_value);
2402   return true;
2403 }
2404 
2405 bool Isolate::ComputeLocationFromSimpleStackTrace(MessageLocation* target,
2406                                                   Handle<Object> exception) {
2407   if (!exception->IsJSReceiver()) {
2408     return false;
2409   }
2410   Handle<FixedArray> call_site_infos =
2411       GetSimpleStackTrace(Handle<JSReceiver>::cast(exception));
2412   for (int i = 0; i < call_site_infos->length(); ++i) {
2413     Handle<CallSiteInfo> call_site_info(
2414         CallSiteInfo::cast(call_site_infos->get(i)), this);
2415     if (CallSiteInfo::ComputeLocation(call_site_info, target)) {
2416       return true;
2417     }
2418   }
2419   return false;
2420 }
2421 
2422 bool Isolate::ComputeLocationFromDetailedStackTrace(MessageLocation* target,
2423                                                     Handle<Object> exception) {
2424   if (!exception->IsJSReceiver()) return false;
2425 
2426   Handle<FixedArray> stack_frame_infos =
2427       GetDetailedStackTrace(Handle<JSReceiver>::cast(exception));
2428   if (stack_frame_infos.is_null() || stack_frame_infos->length() == 0) {
2429     return false;
2430   }
2431 
2432   Handle<StackFrameInfo> info(StackFrameInfo::cast(stack_frame_infos->get(0)),
2433                               this);
2434   const int pos = StackFrameInfo::GetSourcePosition(info);
2435   *target = MessageLocation(handle(info->script(), this), pos, pos + 1);
2436   return true;
2437 }
2438 
2439 Handle<JSMessageObject> Isolate::CreateMessage(Handle<Object> exception,
2440                                                MessageLocation* location) {
2441   Handle<FixedArray> stack_trace_object;
2442   if (capture_stack_trace_for_uncaught_exceptions_) {
2443     if (exception->IsJSError()) {
2444       // We fetch the stack trace that corresponds to this error object.
2445       // If the lookup fails, the exception is probably not a valid Error
2446       // object. In that case, we fall through and capture the stack trace
2447       // at this throw site.
2448       stack_trace_object =
2449           GetDetailedStackTrace(Handle<JSObject>::cast(exception));
2450     }
2451     if (stack_trace_object.is_null()) {
2452       // Not an error object, we capture stack and location at throw site.
2453       stack_trace_object = CaptureDetailedStackTrace(
2454           stack_trace_for_uncaught_exceptions_frame_limit_,
2455           stack_trace_for_uncaught_exceptions_options_);
2456     }
2457   }
2458   MessageLocation computed_location;
2459   if (location == nullptr &&
2460       (ComputeLocationFromException(&computed_location, exception) ||
2461        ComputeLocationFromSimpleStackTrace(&computed_location, exception) ||
2462        ComputeLocation(&computed_location))) {
2463     location = &computed_location;
2464   }
2465 
2466   return MessageHandler::MakeMessageObject(
2467       this, MessageTemplate::kUncaughtException, location, exception,
2468       stack_trace_object);
2469 }
2470 
2471 Handle<JSMessageObject> Isolate::CreateMessageFromException(
2472     Handle<Object> exception) {
2473   Handle<FixedArray> stack_trace_object;
2474   if (exception->IsJSError()) {
2475     stack_trace_object =
2476         GetDetailedStackTrace(Handle<JSObject>::cast(exception));
2477   }
2478 
2479   MessageLocation* location = nullptr;
2480   MessageLocation computed_location;
2481   if (ComputeLocationFromException(&computed_location, exception) ||
2482       ComputeLocationFromDetailedStackTrace(&computed_location, exception)) {
2483     location = &computed_location;
2484   }
2485 
2486   return MessageHandler::MakeMessageObject(
2487       this, MessageTemplate::kPlaceholderOnly, location, exception,
2488       stack_trace_object);
2489 }
2490 
2491 Isolate::ExceptionHandlerType Isolate::TopExceptionHandlerType(
2492     Object exception) {
2493   DCHECK_NE(ReadOnlyRoots(heap()).the_hole_value(), exception);
2494 
2495   Address js_handler = Isolate::handler(thread_local_top());
2496   Address external_handler = thread_local_top()->try_catch_handler_address();
2497 
2498   // A handler cannot be on top if it doesn't exist. For uncatchable exceptions,
2499   // the JavaScript handler cannot be on top.
2500   if (js_handler == kNullAddress || !is_catchable_by_javascript(exception)) {
2501     if (external_handler == kNullAddress) {
2502       return ExceptionHandlerType::kNone;
2503     }
2504     return ExceptionHandlerType::kExternalTryCatch;
2505   }
2506 
2507   if (external_handler == kNullAddress) {
2508     return ExceptionHandlerType::kJavaScriptHandler;
2509   }
2510 
2511   // The exception has been externally caught if and only if there is an
2512   // external handler which is on top of the top-most JS_ENTRY handler.
2513   //
2514   // Note, that finally clauses would re-throw an exception unless it's aborted
2515   // by jumps in control flow (like return, break, etc.) and we'll have another
2516   // chance to set proper v8::TryCatch later.
2517   DCHECK_NE(kNullAddress, external_handler);
2518   DCHECK_NE(kNullAddress, js_handler);
2519   if (external_handler < js_handler) {
2520     return ExceptionHandlerType::kExternalTryCatch;
2521   }
2522   return ExceptionHandlerType::kJavaScriptHandler;
2523 }
2524 
2525 std::vector<MemoryRange>* Isolate::GetCodePages() const {
2526   return code_pages_.load(std::memory_order_acquire);
2527 }
2528 
2529 void Isolate::SetCodePages(std::vector<MemoryRange>* new_code_pages) {
2530   code_pages_.store(new_code_pages, std::memory_order_release);
2531 }
2532 
2533 void Isolate::ReportPendingMessages() {
2534   DCHECK(AllowExceptions::IsAllowed(this));
2535 
2536   // The embedder might run script in response to an exception.
2537   AllowJavascriptExecutionDebugOnly allow_script(this);
2538 
2539   Object exception_obj = pending_exception();
2540   ExceptionHandlerType top_handler = TopExceptionHandlerType(exception_obj);
2541 
2542   // Try to propagate the exception to an external v8::TryCatch handler. If
2543   // propagation was unsuccessful, then we will get another chance at reporting
2544   // the pending message if the exception is re-thrown.
2545   bool has_been_propagated =
2546       PropagatePendingExceptionToExternalTryCatch(top_handler);
2547   if (!has_been_propagated) return;
2548 
2549   // Clear the pending message object early to avoid endless recursion.
2550   Object message_obj = pending_message();
2551   clear_pending_message();
2552 
2553   // For uncatchable exceptions we do nothing. If needed, the exception and the
2554   // message have already been propagated to v8::TryCatch.
2555   if (!is_catchable_by_javascript(exception_obj)) return;
2556 
2557   // Determine whether the message needs to be reported to all message handlers
2558   // depending on whether the topmost external v8::TryCatch is verbose. We know
2559   // there's no JavaScript handler on top; if there was, we would've returned
2560   // early.
2561   DCHECK_NE(ExceptionHandlerType::kJavaScriptHandler, top_handler);
2562 
2563   bool should_report_exception;
2564   if (top_handler == ExceptionHandlerType::kExternalTryCatch) {
2565     should_report_exception = try_catch_handler()->is_verbose_;
2566   } else {
2567     should_report_exception = true;
2568   }
2569 
2570   // Actually report the pending message to all message handlers.
2571   if (!message_obj.IsTheHole(this) && should_report_exception) {
2572     HandleScope scope(this);
2573     Handle<JSMessageObject> message(JSMessageObject::cast(message_obj), this);
2574     Handle<Object> exception(exception_obj, this);
2575     Handle<Script> script(message->script(), this);
2576     // Clear the exception and restore it afterwards, otherwise
2577     // CollectSourcePositions will abort.
2578     clear_pending_exception();
2579     JSMessageObject::EnsureSourcePositionsAvailable(this, message);
2580     set_pending_exception(*exception);
2581     int start_pos = message->GetStartPosition();
2582     int end_pos = message->GetEndPosition();
2583     MessageLocation location(script, start_pos, end_pos);
2584     MessageHandler::ReportMessage(this, &location, message);
2585   }
2586 }
2587 
2588 bool Isolate::OptionalRescheduleException(bool clear_exception) {
2589   DCHECK(has_pending_exception());
2590   PropagatePendingExceptionToExternalTryCatch(
2591       TopExceptionHandlerType(pending_exception()));
2592 
2593   bool is_termination_exception =
2594       pending_exception() == ReadOnlyRoots(this).termination_exception();
2595 
2596   if (is_termination_exception) {
2597     if (clear_exception) {
2598       thread_local_top()->external_caught_exception_ = false;
2599       clear_pending_exception();
2600       return false;
2601     }
2602   } else if (thread_local_top()->external_caught_exception_) {
2603     // If the exception is externally caught, clear it if there are no
2604     // JavaScript frames on the way to the C++ frame that has the
2605     // external handler.
2606     DCHECK_NE(thread_local_top()->try_catch_handler_address(), kNullAddress);
2607     Address external_handler_address =
2608         thread_local_top()->try_catch_handler_address();
2609     JavaScriptFrameIterator it(this);
2610     if (it.done() || (it.frame()->sp() > external_handler_address)) {
2611       clear_exception = true;
2612     }
2613   }
2614 
2615   // Clear the exception if needed.
2616   if (clear_exception) {
2617     thread_local_top()->external_caught_exception_ = false;
2618     clear_pending_exception();
2619     return false;
2620   }
2621 
2622   // Reschedule the exception.
2623   set_scheduled_exception(pending_exception());
2624   clear_pending_exception();
2625   return true;
2626 }
2627 
2628 void Isolate::PushPromise(Handle<JSObject> promise) {
2629   Handle<Object> promise_on_stack(debug()->thread_local_.promise_stack_, this);
2630   promise_on_stack = factory()->NewPromiseOnStack(promise_on_stack, promise);
2631   debug()->thread_local_.promise_stack_ = *promise_on_stack;
2632 }
2633 
2634 void Isolate::PopPromise() {
2635   if (!IsPromiseStackEmpty()) {
2636     debug()->thread_local_.promise_stack_ =
2637         PromiseOnStack::cast(debug()->thread_local_.promise_stack_).prev();
2638   }
2639 }
2640 
2641 bool Isolate::IsPromiseStackEmpty() const {
2642   DCHECK_IMPLIES(!debug()->thread_local_.promise_stack_.IsSmi(),
2643                  debug()->thread_local_.promise_stack_.IsPromiseOnStack());
2644   return debug()->thread_local_.promise_stack_.IsSmi();
2645 }
2646 
2647 namespace {
2648 bool PromiseIsRejectHandler(Isolate* isolate, Handle<JSReceiver> handler) {
2649   // Recurse to the forwarding Promise (e.g. return false) due to
2650   //  - await reaction forwarding to the throwaway Promise, which has
2651   //    a dependency edge to the outer Promise.
2652   //  - PromiseIdResolveHandler forwarding to the output of .then
2653   //  - Promise.all/Promise.race forwarding to a throwaway Promise, which
2654   //    has a dependency edge to the generated outer Promise.
2655   // Otherwise, this is a real reject handler for the Promise.
2656   Handle<Symbol> key = isolate->factory()->promise_forwarding_handler_symbol();
2657   Handle<Object> forwarding_handler =
2658       JSReceiver::GetDataProperty(isolate, handler, key);
2659   return forwarding_handler->IsUndefined(isolate);
2660 }
2661 
2662 bool PromiseHasUserDefinedRejectHandlerInternal(Isolate* isolate,
2663                                                 Handle<JSPromise> promise) {
2664   Handle<Object> current(promise->reactions(), isolate);
2665   while (!current->IsSmi()) {
2666     Handle<PromiseReaction> reaction = Handle<PromiseReaction>::cast(current);
2667     Handle<HeapObject> promise_or_capability(reaction->promise_or_capability(),
2668                                              isolate);
2669     if (!promise_or_capability->IsUndefined(isolate)) {
2670       if (!promise_or_capability->IsJSPromise()) {
2671         promise_or_capability = handle(
2672             Handle<PromiseCapability>::cast(promise_or_capability)->promise(),
2673             isolate);
2674       }
2675       promise = Handle<JSPromise>::cast(promise_or_capability);
2676       if (!reaction->reject_handler().IsUndefined(isolate)) {
2677         Handle<JSReceiver> reject_handler(
2678             JSReceiver::cast(reaction->reject_handler()), isolate);
2679         if (PromiseIsRejectHandler(isolate, reject_handler)) return true;
2680       }
2681       if (isolate->PromiseHasUserDefinedRejectHandler(promise)) return true;
2682     }
2683     current = handle(reaction->next(), isolate);
2684   }
2685   return false;
2686 }
2687 
2688 }  // namespace
2689 
2690 bool Isolate::PromiseHasUserDefinedRejectHandler(Handle<JSPromise> promise) {
2691   Handle<Symbol> key = factory()->promise_handled_by_symbol();
2692   std::stack<Handle<JSPromise>> promises;
2693   // First descend into the outermost promise and collect the stack of
2694   // Promises for reverse processing.
2695   while (true) {
2696     // If this promise was marked as being handled by a catch block
2697     // in an async function, then it has a user-defined reject handler.
2698     if (promise->handled_hint()) return true;
2699     if (promise->status() == Promise::kPending) {
2700       promises.push(promise);
2701     }
2702     Handle<Object> outer_promise_obj =
2703         JSObject::GetDataProperty(this, promise, key);
2704     if (!outer_promise_obj->IsJSPromise()) break;
2705     promise = Handle<JSPromise>::cast(outer_promise_obj);
2706   }
2707 
2708   while (!promises.empty()) {
2709     promise = promises.top();
2710     if (PromiseHasUserDefinedRejectHandlerInternal(this, promise)) return true;
2711     promises.pop();
2712   }
2713   return false;
2714 }
2715 
2716 Handle<Object> Isolate::GetPromiseOnStackOnThrow() {
2717   Handle<Object> undefined = factory()->undefined_value();
2718   if (IsPromiseStackEmpty()) return undefined;
2719   // Find the top-most try-catch or try-finally handler.
2720   CatchType prediction = PredictExceptionCatcher();
2721   if (prediction == NOT_CAUGHT || prediction == CAUGHT_BY_EXTERNAL) {
2722     return undefined;
2723   }
2724   Handle<Object> retval = undefined;
2725   Handle<Object> promise_stack(debug()->thread_local_.promise_stack_, this);
2726   for (StackFrameIterator it(this); !it.done(); it.Advance()) {
2727     StackFrame* frame = it.frame();
2728     HandlerTable::CatchPrediction catch_prediction;
2729     if (frame->is_java_script()) {
2730       catch_prediction = PredictException(JavaScriptFrame::cast(frame));
2731     } else if (frame->type() == StackFrame::STUB) {
2732       Code code = frame->LookupCode();
2733       if (!code.IsCode() || code.kind() != CodeKind::BUILTIN ||
2734           !code.has_handler_table() || !code.is_turbofanned()) {
2735         continue;
2736       }
2737       catch_prediction = code.GetBuiltinCatchPrediction();
2738     } else {
2739       continue;
2740     }
2741 
2742     switch (catch_prediction) {
2743       case HandlerTable::UNCAUGHT:
2744         continue;
2745       case HandlerTable::CAUGHT:
2746         if (retval->IsJSPromise()) {
2747           // Caught the result of an inner async/await invocation.
2748           // Mark the inner promise as caught in the "synchronous case" so
2749           // that Debug::OnException will see. In the synchronous case,
2750           // namely in the code in an async function before the first
2751           // await, the function which has this exception event has not yet
2752           // returned, so the generated Promise has not yet been marked
2753           // by AsyncFunctionAwaitCaught with promiseHandledHintSymbol.
2754           Handle<JSPromise>::cast(retval)->set_handled_hint(true);
2755         }
2756         return retval;
2757       case HandlerTable::PROMISE: {
2758         Handle<JSObject> promise;
2759         if (promise_stack->IsPromiseOnStack() &&
2760             PromiseOnStack::GetPromise(
2761                 Handle<PromiseOnStack>::cast(promise_stack))
2762                 .ToHandle(&promise)) {
2763           return promise;
2764         }
2765         return undefined;
2766       }
2767       case HandlerTable::UNCAUGHT_ASYNC_AWAIT:
2768       case HandlerTable::ASYNC_AWAIT: {
2769         // If in the initial portion of async/await, continue the loop to pop up
2770         // successive async/await stack frames until an asynchronous one with
2771         // dependents is found, or a non-async stack frame is encountered, in
2772         // order to handle the synchronous async/await catch prediction case:
2773         // assume that async function calls are awaited.
2774         if (!promise_stack->IsPromiseOnStack()) {
2775           return retval;
2776         }
2777         Handle<PromiseOnStack> promise_on_stack =
2778             Handle<PromiseOnStack>::cast(promise_stack);
2779         if (!PromiseOnStack::GetPromise(promise_on_stack).ToHandle(&retval)) {
2780           return retval;
2781         }
2782         if (retval->IsJSPromise()) {
2783           if (PromiseHasUserDefinedRejectHandler(
2784                   Handle<JSPromise>::cast(retval))) {
2785             return retval;
2786           }
2787         }
2788         promise_stack = handle(promise_on_stack->prev(), this);
2789         continue;
2790       }
2791     }
2792   }
2793   return retval;
2794 }
2795 
2796 void Isolate::SetCaptureStackTraceForUncaughtExceptions(
2797     bool capture, int frame_limit, StackTrace::StackTraceOptions options) {
2798   capture_stack_trace_for_uncaught_exceptions_ = capture;
2799   stack_trace_for_uncaught_exceptions_frame_limit_ = frame_limit;
2800   stack_trace_for_uncaught_exceptions_options_ = options;
2801 }
2802 
2803 bool Isolate::get_capture_stack_trace_for_uncaught_exceptions() const {
2804   return capture_stack_trace_for_uncaught_exceptions_;
2805 }
2806 
2807 void Isolate::SetAbortOnUncaughtExceptionCallback(
2808     v8::Isolate::AbortOnUncaughtExceptionCallback callback) {
2809   abort_on_uncaught_exception_callback_ = callback;
2810 }
2811 
2812 void Isolate::InstallConditionalFeatures(Handle<Context> context) {
2813   Handle<JSGlobalObject> global = handle(context->global_object(), this);
2814   Handle<String> sab_name = factory()->SharedArrayBuffer_string();
2815   if (IsSharedArrayBufferConstructorEnabled(context)) {
2816     if (!JSObject::HasRealNamedProperty(this, global, sab_name)
2817              .FromMaybe(true)) {
2818       JSObject::AddProperty(this, global, factory()->SharedArrayBuffer_string(),
2819                             shared_array_buffer_fun(), DONT_ENUM);
2820     }
2821   }
2822 }
2823 
2824 bool Isolate::IsSharedArrayBufferConstructorEnabled(Handle<Context> context) {
2825   if (!FLAG_harmony_sharedarraybuffer) return false;
2826 
2827   if (!FLAG_enable_sharedarraybuffer_per_context) return true;
2828 
2829   if (sharedarraybuffer_constructor_enabled_callback()) {
2830     v8::Local<v8::Context> api_context = v8::Utils::ToLocal(context);
2831     return sharedarraybuffer_constructor_enabled_callback()(api_context);
2832   }
2833   return false;
2834 }
2835 
2836 bool Isolate::IsWasmSimdEnabled(Handle<Context> context) {
2837 #if V8_ENABLE_WEBASSEMBLY
2838   if (wasm_simd_enabled_callback()) {
2839     v8::Local<v8::Context> api_context = v8::Utils::ToLocal(context);
2840     return wasm_simd_enabled_callback()(api_context);
2841   }
2842   return FLAG_experimental_wasm_simd;
2843 #else
2844   return false;
2845 #endif  // V8_ENABLE_WEBASSEMBLY
2846 }
2847 
2848 bool Isolate::AreWasmExceptionsEnabled(Handle<Context> context) {
2849 #if V8_ENABLE_WEBASSEMBLY
2850   if (wasm_exceptions_enabled_callback()) {
2851     v8::Local<v8::Context> api_context = v8::Utils::ToLocal(context);
2852     return wasm_exceptions_enabled_callback()(api_context);
2853   }
2854   return FLAG_experimental_wasm_eh;
2855 #else
2856   return false;
2857 #endif  // V8_ENABLE_WEBASSEMBLY
2858 }
2859 
2860 bool Isolate::IsWasmDynamicTieringEnabled() {
2861 #if V8_ENABLE_WEBASSEMBLY
2862   if (FLAG_wasm_dynamic_tiering) return true;
2863   if (wasm_dynamic_tiering_enabled_callback()) {
2864     HandleScope handle_scope(this);
2865     v8::Local<v8::Context> api_context =
2866         v8::Utils::ToLocal(handle(context(), this));
2867     return wasm_dynamic_tiering_enabled_callback()(api_context);
2868   }
2869 #endif  // V8_ENABLE_WEBASSEMBLY
2870   return false;
2871 }
2872 
2873 Handle<Context> Isolate::GetIncumbentContext() {
2874   JavaScriptFrameIterator it(this);
2875 
2876   // 1st candidate: most-recently-entered author function's context
2877   // if it's newer than the last Context::BackupIncumbentScope entry.
2878   //
2879   // NOTE: This code assumes that the stack grows downward.
2880   Address top_backup_incumbent =
2881       top_backup_incumbent_scope()
2882           ? top_backup_incumbent_scope()->JSStackComparableAddressPrivate()
2883           : 0;
2884   if (!it.done() &&
2885       (!top_backup_incumbent || it.frame()->sp() < top_backup_incumbent)) {
2886     Context context = Context::cast(it.frame()->context());
2887     return Handle<Context>(context.native_context(), this);
2888   }
2889 
2890   // 2nd candidate: the last Context::Scope's incumbent context if any.
2891   if (top_backup_incumbent_scope()) {
2892     return Utils::OpenHandle(
2893         *top_backup_incumbent_scope()->backup_incumbent_context_);
2894   }
2895 
2896   // Last candidate: the entered context or microtask context.
2897   // Given that there is no other author function is running, there must be
2898   // no cross-context function running, then the incumbent realm must match
2899   // the entry realm.
2900   v8::Local<v8::Context> entered_context =
2901       reinterpret_cast<v8::Isolate*>(this)->GetEnteredOrMicrotaskContext();
2902   return Utils::OpenHandle(*entered_context);
2903 }
2904 
2905 char* Isolate::ArchiveThread(char* to) {
2906   MemCopy(to, reinterpret_cast<char*>(thread_local_top()),
2907           sizeof(ThreadLocalTop));
2908   return to + sizeof(ThreadLocalTop);
2909 }
2910 
2911 char* Isolate::RestoreThread(char* from) {
2912   MemCopy(reinterpret_cast<char*>(thread_local_top()), from,
2913           sizeof(ThreadLocalTop));
2914   DCHECK(context().is_null() || context().IsContext());
2915   return from + sizeof(ThreadLocalTop);
2916 }
2917 
2918 void Isolate::ReleaseSharedPtrs() {
2919   base::MutexGuard lock(&managed_ptr_destructors_mutex_);
2920   while (managed_ptr_destructors_head_) {
2921     ManagedPtrDestructor* l = managed_ptr_destructors_head_;
2922     ManagedPtrDestructor* n = nullptr;
2923     managed_ptr_destructors_head_ = nullptr;
2924     for (; l != nullptr; l = n) {
2925       l->destructor_(l->shared_ptr_ptr_);
2926       n = l->next_;
2927       delete l;
2928     }
2929   }
2930 }
2931 
2932 bool Isolate::IsBuiltinTableHandleLocation(Address* handle_location) {
2933   FullObjectSlot location(handle_location);
2934   FullObjectSlot first_root(builtin_table());
2935   FullObjectSlot last_root(first_root + Builtins::kBuiltinCount);
2936   if (location >= last_root) return false;
2937   if (location < first_root) return false;
2938   return true;
2939 }
2940 
2941 void Isolate::RegisterManagedPtrDestructor(ManagedPtrDestructor* destructor) {
2942   base::MutexGuard lock(&managed_ptr_destructors_mutex_);
2943   DCHECK_NULL(destructor->prev_);
2944   DCHECK_NULL(destructor->next_);
2945   if (managed_ptr_destructors_head_) {
2946     managed_ptr_destructors_head_->prev_ = destructor;
2947   }
2948   destructor->next_ = managed_ptr_destructors_head_;
2949   managed_ptr_destructors_head_ = destructor;
2950 }
2951 
2952 void Isolate::UnregisterManagedPtrDestructor(ManagedPtrDestructor* destructor) {
2953   base::MutexGuard lock(&managed_ptr_destructors_mutex_);
2954   if (destructor->prev_) {
2955     destructor->prev_->next_ = destructor->next_;
2956   } else {
2957     DCHECK_EQ(destructor, managed_ptr_destructors_head_);
2958     managed_ptr_destructors_head_ = destructor->next_;
2959   }
2960   if (destructor->next_) destructor->next_->prev_ = destructor->prev_;
2961   destructor->prev_ = nullptr;
2962   destructor->next_ = nullptr;
2963 }
2964 
2965 #if V8_ENABLE_WEBASSEMBLY
2966 void Isolate::AddSharedWasmMemory(Handle<WasmMemoryObject> memory_object) {
2967   HandleScope scope(this);
2968   Handle<WeakArrayList> shared_wasm_memories =
2969       factory()->shared_wasm_memories();
2970   shared_wasm_memories = WeakArrayList::AddToEnd(
2971       this, shared_wasm_memories, MaybeObjectHandle::Weak(memory_object));
2972   heap()->set_shared_wasm_memories(*shared_wasm_memories);
2973 }
2974 #endif  // V8_ENABLE_WEBASSEMBLY
2975 
2976 Isolate::PerIsolateThreadData::~PerIsolateThreadData() {
2977 #if defined(USE_SIMULATOR)
2978   delete simulator_;
2979 #endif
2980 }
2981 
2982 Isolate::PerIsolateThreadData* Isolate::ThreadDataTable::Lookup(
2983     ThreadId thread_id) {
2984   auto t = table_.find(thread_id);
2985   if (t == table_.end()) return nullptr;
2986   return t->second;
2987 }
2988 
2989 void Isolate::ThreadDataTable::Insert(Isolate::PerIsolateThreadData* data) {
2990   bool inserted = table_.insert(std::make_pair(data->thread_id_, data)).second;
2991   CHECK(inserted);
2992 }
2993 
2994 void Isolate::ThreadDataTable::Remove(PerIsolateThreadData* data) {
2995   table_.erase(data->thread_id_);
2996   delete data;
2997 }
2998 
2999 void Isolate::ThreadDataTable::RemoveAllThreads() {
3000   for (auto& x : table_) {
3001     delete x.second;
3002   }
3003   table_.clear();
3004 }
3005 
3006 class TracingAccountingAllocator : public AccountingAllocator {
3007  public:
3008   explicit TracingAccountingAllocator(Isolate* isolate) : isolate_(isolate) {}
3009   ~TracingAccountingAllocator() = default;
3010 
3011  protected:
3012   void TraceAllocateSegmentImpl(v8::internal::Segment* segment) override {
3013     base::MutexGuard lock(&mutex_);
3014     UpdateMemoryTrafficAndReportMemoryUsage(segment->total_size());
3015   }
3016 
3017   void TraceZoneCreationImpl(const Zone* zone) override {
3018     base::MutexGuard lock(&mutex_);
3019     active_zones_.insert(zone);
3020     nesting_depth_++;
3021   }
3022 
3023   void TraceZoneDestructionImpl(const Zone* zone) override {
3024     base::MutexGuard lock(&mutex_);
3025 #ifdef V8_ENABLE_PRECISE_ZONE_STATS
3026     if (FLAG_trace_zone_type_stats) {
3027       type_stats_.MergeWith(zone->type_stats());
3028     }
3029 #endif
3030     UpdateMemoryTrafficAndReportMemoryUsage(zone->segment_bytes_allocated());
3031     active_zones_.erase(zone);
3032     nesting_depth_--;
3033 
3034 #ifdef V8_ENABLE_PRECISE_ZONE_STATS
3035     if (FLAG_trace_zone_type_stats && active_zones_.empty()) {
3036       type_stats_.Dump();
3037     }
3038 #endif
3039   }
3040 
3041  private:
3042   void UpdateMemoryTrafficAndReportMemoryUsage(size_t memory_traffic_delta) {
3043     if (!FLAG_trace_zone_stats &&
3044         !(TracingFlags::zone_stats.load(std::memory_order_relaxed) &
3045           v8::tracing::TracingCategoryObserver::ENABLED_BY_TRACING)) {
3046       // Don't print anything if the zone tracing was enabled only because of
3047       // FLAG_trace_zone_type_stats.
3048       return;
3049     }
3050 
3051     memory_traffic_since_last_report_ += memory_traffic_delta;
3052     if (memory_traffic_since_last_report_ < FLAG_zone_stats_tolerance) return;
3053     memory_traffic_since_last_report_ = 0;
3054 
3055     Dump(buffer_, true);
3056 
3057     {
3058       std::string trace_str = buffer_.str();
3059 
3060       if (FLAG_trace_zone_stats) {
3061         PrintF(
3062             "{"
3063             "\"type\": \"v8-zone-trace\", "
3064             "\"stats\": %s"
3065             "}\n",
3066             trace_str.c_str());
3067       }
3068       if (V8_UNLIKELY(
3069               TracingFlags::zone_stats.load(std::memory_order_relaxed) &
3070               v8::tracing::TracingCategoryObserver::ENABLED_BY_TRACING)) {
3071         TRACE_EVENT_INSTANT1(TRACE_DISABLED_BY_DEFAULT("v8.zone_stats"),
3072                              "V8.Zone_Stats", TRACE_EVENT_SCOPE_THREAD, "stats",
3073                              TRACE_STR_COPY(trace_str.c_str()));
3074       }
3075     }
3076 
3077     // Clear the buffer.
3078     buffer_.str(std::string());
3079   }
3080 
3081   void Dump(std::ostringstream& out, bool dump_details) {
3082     // Note: Neither isolate nor zones are locked, so be careful with accesses
3083     // as the allocator is potentially used on a concurrent thread.
3084     double time = isolate_->time_millis_since_init();
3085     out << "{"
3086         << "\"isolate\": \"" << reinterpret_cast<void*>(isolate_) << "\", "
3087         << "\"time\": " << time << ", ";
3088     size_t total_segment_bytes_allocated = 0;
3089     size_t total_zone_allocation_size = 0;
3090     size_t total_zone_freed_size = 0;
3091 
3092     if (dump_details) {
3093       // Print detailed zone stats if memory usage changes direction.
3094       out << "\"zones\": [";
3095       bool first = true;
3096       for (const Zone* zone : active_zones_) {
3097         size_t zone_segment_bytes_allocated = zone->segment_bytes_allocated();
3098         size_t zone_allocation_size = zone->allocation_size_for_tracing();
3099         size_t freed_size = zone->freed_size_for_tracing();
3100         if (first) {
3101           first = false;
3102         } else {
3103           out << ", ";
3104         }
3105         out << "{"
3106             << "\"name\": \"" << zone->name() << "\", "
3107             << "\"allocated\": " << zone_segment_bytes_allocated << ", "
3108             << "\"used\": " << zone_allocation_size << ", "
3109             << "\"freed\": " << freed_size << "}";
3110         total_segment_bytes_allocated += zone_segment_bytes_allocated;
3111         total_zone_allocation_size += zone_allocation_size;
3112         total_zone_freed_size += freed_size;
3113       }
3114       out << "], ";
3115     } else {
3116       // Just calculate total allocated/used memory values.
3117       for (const Zone* zone : active_zones_) {
3118         total_segment_bytes_allocated += zone->segment_bytes_allocated();
3119         total_zone_allocation_size += zone->allocation_size_for_tracing();
3120         total_zone_freed_size += zone->freed_size_for_tracing();
3121       }
3122     }
3123     out << "\"allocated\": " << total_segment_bytes_allocated << ", "
3124         << "\"used\": " << total_zone_allocation_size << ", "
3125         << "\"freed\": " << total_zone_freed_size << "}";
3126   }
3127 
3128   Isolate* const isolate_;
3129   std::atomic<size_t> nesting_depth_{0};
3130 
3131   base::Mutex mutex_;
3132   std::unordered_set<const Zone*> active_zones_;
3133 #ifdef V8_ENABLE_PRECISE_ZONE_STATS
3134   TypeStats type_stats_;
3135 #endif
3136   std::ostringstream buffer_;
3137   // This value is increased on both allocations and deallocations.
3138   size_t memory_traffic_since_last_report_ = 0;
3139 };
3140 
3141 #ifdef DEBUG
3142 std::atomic<size_t> Isolate::non_disposed_isolates_;
3143 #endif  // DEBUG
3144 
3145 // static
3146 Isolate* Isolate::New() { return Isolate::Allocate(false); }
3147 
3148 // static
3149 Isolate* Isolate::NewShared(const v8::Isolate::CreateParams& params) {
3150   DCHECK(ReadOnlyHeap::IsReadOnlySpaceShared());
3151   Isolate* isolate = Isolate::Allocate(true);
3152   v8::Isolate::Initialize(reinterpret_cast<v8::Isolate*>(isolate), params);
3153   return isolate;
3154 }
3155 
3156 // static
3157 Isolate* Isolate::Allocate(bool is_shared) {
3158   // v8::V8::Initialize() must be called before creating any isolates.
3159   DCHECK_NOT_NULL(V8::GetCurrentPlatform());
3160   // IsolateAllocator allocates the memory for the Isolate object according to
3161   // the given allocation mode.
3162   std::unique_ptr<IsolateAllocator> isolate_allocator =
3163       std::make_unique<IsolateAllocator>();
3164   // Construct Isolate object in the allocated memory.
3165   void* isolate_ptr = isolate_allocator->isolate_memory();
3166   Isolate* isolate =
3167       new (isolate_ptr) Isolate(std::move(isolate_allocator), is_shared);
3168 #ifdef V8_COMPRESS_POINTERS_IN_ISOLATE_CAGE
3169   DCHECK(IsAligned(isolate->isolate_root(), kPtrComprCageBaseAlignment));
3170   DCHECK_EQ(isolate->isolate_root(), isolate->cage_base());
3171 #endif
3172 
3173 #ifdef DEBUG
3174   non_disposed_isolates_++;
3175 #endif  // DEBUG
3176 
3177   return isolate;
3178 }
3179 
3180 // static
3181 void Isolate::Delete(Isolate* isolate) {
3182   DCHECK_NOT_NULL(isolate);
3183   // v8::V8::Dispose() must only be called after deleting all isolates.
3184   DCHECK_NOT_NULL(V8::GetCurrentPlatform());
3185   // Temporarily set this isolate as current so that various parts of
3186   // the isolate can access it in their destructors without having a
3187   // direct pointer. We don't use Enter/Exit here to avoid
3188   // initializing the thread data.
3189   PerIsolateThreadData* saved_data = isolate->CurrentPerIsolateThreadData();
3190   DCHECK_EQ(true, isolate_key_created_.load(std::memory_order_relaxed));
3191   Isolate* saved_isolate = reinterpret_cast<Isolate*>(
3192       base::Thread::GetThreadLocal(isolate->isolate_key_));
3193   SetIsolateThreadLocals(isolate, nullptr);
3194   isolate->set_thread_id(ThreadId::Current());
3195 
3196   isolate->Deinit();
3197 
3198 #ifdef DEBUG
3199   non_disposed_isolates_--;
3200 #endif  // DEBUG
3201 
3202   // Take ownership of the IsolateAllocator to ensure the Isolate memory will
3203   // be available during Isolate descructor call.
3204   std::unique_ptr<IsolateAllocator> isolate_allocator =
3205       std::move(isolate->isolate_allocator_);
3206   isolate->~Isolate();
3207   // Now free the memory owned by the allocator.
3208   isolate_allocator.reset();
3209 
3210   // Restore the previous current isolate.
3211   SetIsolateThreadLocals(saved_isolate, saved_data);
3212 }
3213 
3214 void Isolate::SetUpFromReadOnlyArtifacts(
3215     std::shared_ptr<ReadOnlyArtifacts> artifacts, ReadOnlyHeap* ro_heap) {
3216   if (ReadOnlyHeap::IsReadOnlySpaceShared()) {
3217     DCHECK_NOT_NULL(artifacts);
3218     artifacts_ = artifacts;
3219   } else {
3220     DCHECK_NULL(artifacts);
3221   }
3222   DCHECK_NOT_NULL(ro_heap);
3223   DCHECK_IMPLIES(read_only_heap_ != nullptr, read_only_heap_ == ro_heap);
3224   read_only_heap_ = ro_heap;
3225   heap_.SetUpFromReadOnlyHeap(read_only_heap_);
3226 }
3227 
3228 v8::PageAllocator* Isolate::page_allocator() const {
3229   return isolate_allocator_->page_allocator();
3230 }
3231 
3232 Isolate::Isolate(std::unique_ptr<i::IsolateAllocator> isolate_allocator,
3233                  bool is_shared)
3234     : isolate_data_(this, isolate_allocator->GetPtrComprCageBase()),
3235       is_shared_(is_shared),
3236       isolate_allocator_(std::move(isolate_allocator)),
3237       id_(isolate_counter.fetch_add(1, std::memory_order_relaxed)),
3238       allocator_(new TracingAccountingAllocator(this)),
3239       builtins_(this),
3240 #if defined(DEBUG) || defined(VERIFY_HEAP)
3241       num_active_deserializers_(0),
3242 #endif
3243       rail_mode_(PERFORMANCE_ANIMATION),
3244       code_event_dispatcher_(new CodeEventDispatcher()),
3245       detailed_source_positions_for_profiling_(FLAG_detailed_line_info),
3246       persistent_handles_list_(new PersistentHandlesList()),
3247       jitless_(FLAG_jitless),
3248 #if V8_SFI_HAS_UNIQUE_ID
3249       next_unique_sfi_id_(0),
3250 #endif
3251       next_module_async_evaluating_ordinal_(
3252           SourceTextModule::kFirstAsyncEvaluatingOrdinal),
3253       cancelable_task_manager_(new CancelableTaskManager()) {
3254   TRACE_ISOLATE(constructor);
3255   CheckIsolateLayout();
3256 
3257   // ThreadManager is initialized early to support locking an isolate
3258   // before it is entered.
3259   thread_manager_ = new ThreadManager(this);
3260 
3261   handle_scope_data_.Initialize();
3262 
3263   // A shared Isolate is used to support JavaScript shared memory features
3264   // across Isolates. These features require all of the following to hold in the
3265   // build configuration:
3266   //
3267   // 1. The RO space is shared, so e.g. immortal RO maps can be shared across
3268   //   Isolates.
3269   // 2. HeapObjects are shareable across Isolates, which requires either
3270   //   pointers to be uncompressed (!COMPRESS_POINTER_BOOL), or that there is a
3271   //   single virtual memory reservation shared by all Isolates in the process
3272   //   for compressing pointers (COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL).
3273   CHECK_IMPLIES(is_shared_, V8_SHARED_RO_HEAP_BOOL &&
3274                                 (!COMPRESS_POINTERS_BOOL ||
3275                                  COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL));
3276 
3277 #define ISOLATE_INIT_EXECUTE(type, name, initial_value) \
3278   name##_ = (initial_value);
3279   ISOLATE_INIT_LIST(ISOLATE_INIT_EXECUTE)
3280 #undef ISOLATE_INIT_EXECUTE
3281 
3282 #define ISOLATE_INIT_ARRAY_EXECUTE(type, name, length) \
3283   memset(name##_, 0, sizeof(type) * length);
3284   ISOLATE_INIT_ARRAY_LIST(ISOLATE_INIT_ARRAY_EXECUTE)
3285 #undef ISOLATE_INIT_ARRAY_EXECUTE
3286 
3287   InitializeLoggingAndCounters();
3288   debug_ = new Debug(this);
3289 
3290   InitializeDefaultEmbeddedBlob();
3291 
3292   MicrotaskQueue::SetUpDefaultMicrotaskQueue(this);
3293 
3294   if (is_shared_) {
3295     global_safepoint_ = std::make_unique<GlobalSafepoint>(this);
3296   }
3297 }
3298 
3299 void Isolate::CheckIsolateLayout() {
3300   CHECK_EQ(OFFSET_OF(Isolate, isolate_data_), 0);
3301   CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, isolate_data_.embedder_data_)),
3302            Internals::kIsolateEmbedderDataOffset);
3303   CHECK_EQ(static_cast<int>(
3304                OFFSET_OF(Isolate, isolate_data_.fast_c_call_caller_fp_)),
3305            Internals::kIsolateFastCCallCallerFpOffset);
3306   CHECK_EQ(static_cast<int>(
3307                OFFSET_OF(Isolate, isolate_data_.fast_c_call_caller_pc_)),
3308            Internals::kIsolateFastCCallCallerPcOffset);
3309   CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, isolate_data_.cage_base_)),
3310            Internals::kIsolateCageBaseOffset);
3311   CHECK_EQ(static_cast<int>(
3312                OFFSET_OF(Isolate, isolate_data_.long_task_stats_counter_)),
3313            Internals::kIsolateLongTaskStatsCounterOffset);
3314   CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, isolate_data_.stack_guard_)),
3315            Internals::kIsolateStackGuardOffset);
3316   CHECK_EQ(static_cast<int>(OFFSET_OF(Isolate, isolate_data_.roots_table_)),
3317            Internals::kIsolateRootsOffset);
3318 
3319   STATIC_ASSERT(Internals::kStackGuardSize == sizeof(StackGuard));
3320   STATIC_ASSERT(Internals::kBuiltinTier0TableSize ==
3321                 Builtins::kBuiltinTier0Count * kSystemPointerSize);
3322   STATIC_ASSERT(Internals::kBuiltinTier0EntryTableSize ==
3323                 Builtins::kBuiltinTier0Count * kSystemPointerSize);
3324 
3325 #ifdef V8_SANDBOXED_EXTERNAL_POINTERS
3326   CHECK_EQ(static_cast<int>(OFFSET_OF(ExternalPointerTable, buffer_)),
3327            Internals::kExternalPointerTableBufferOffset);
3328   CHECK_EQ(static_cast<int>(OFFSET_OF(ExternalPointerTable, capacity_)),
3329            Internals::kExternalPointerTableCapacityOffset);
3330   CHECK_EQ(static_cast<int>(OFFSET_OF(ExternalPointerTable, freelist_head_)),
3331            Internals::kExternalPointerTableFreelistHeadOffset);
3332 #endif
3333 }
3334 
3335 void Isolate::ClearSerializerData() {
3336   delete external_reference_map_;
3337   external_reference_map_ = nullptr;
3338 }
3339 
3340 bool Isolate::LogObjectRelocation() {
3341   return FLAG_verify_predictable || logger()->is_logging() || is_profiling() ||
3342          heap()->isolate()->logger()->is_listening_to_code_events() ||
3343          (heap_profiler() != nullptr &&
3344           heap_profiler()->is_tracking_object_moves()) ||
3345          heap()->has_heap_object_allocation_tracker();
3346 }
3347 
3348 void Isolate::Deinit() {
3349   TRACE_ISOLATE(deinit);
3350   DisallowHeapAllocation no_allocation;
3351 
3352   tracing_cpu_profiler_.reset();
3353   if (FLAG_stress_sampling_allocation_profiler > 0) {
3354     heap_profiler()->StopSamplingHeapProfiler();
3355   }
3356 
3357   metrics_recorder_->NotifyIsolateDisposal();
3358   recorder_context_id_map_.clear();
3359 
3360 #if defined(V8_OS_WIN64)
3361   if (win64_unwindinfo::CanRegisterUnwindInfoForNonABICompliantCodeRange() &&
3362       heap()->memory_allocator() && RequiresCodeRange() &&
3363       heap()->code_range()->AtomicDecrementUnwindInfoUseCount() == 1) {
3364     const base::AddressRegion& code_region = heap()->code_region();
3365     void* start = reinterpret_cast<void*>(code_region.begin());
3366     win64_unwindinfo::UnregisterNonABICompliantCodeRange(start);
3367   }
3368 #endif  // V8_OS_WIN64
3369 
3370   FutexEmulation::IsolateDeinit(this);
3371 
3372   debug()->Unload();
3373 
3374 #if V8_ENABLE_WEBASSEMBLY
3375   wasm::GetWasmEngine()->DeleteCompileJobsOnIsolate(this);
3376 
3377   BackingStore::RemoveSharedWasmMemoryObjects(this);
3378 #endif  // V8_ENABLE_WEBASSEMBLY
3379 
3380   if (concurrent_recompilation_enabled()) {
3381     optimizing_compile_dispatcher_->Stop();
3382     delete optimizing_compile_dispatcher_;
3383     optimizing_compile_dispatcher_ = nullptr;
3384   }
3385 
3386   // All client isolates should already be detached.
3387   if (is_shared()) global_safepoint()->AssertNoClients();
3388 
3389   if (FLAG_print_deopt_stress) {
3390     PrintF(stdout, "=== Stress deopt counter: %u\n", stress_deopt_count_);
3391   }
3392 
3393   // We must stop the logger before we tear down other components.
3394   sampler::Sampler* sampler = logger_->sampler();
3395   if (sampler && sampler->IsActive()) sampler->Stop();
3396 
3397   FreeThreadResources();
3398   logger_->StopProfilerThread();
3399 
3400   // We start with the heap tear down so that releasing managed objects does
3401   // not cause a GC.
3402   heap_.StartTearDown();
3403 
3404   // This stops cancelable tasks (i.e. concurrent marking tasks).
3405   // Stop concurrent tasks before destroying resources since they might still
3406   // use those.
3407   {
3408     IgnoreLocalGCRequests ignore_gc_requests(heap());
3409     ParkedScope parked_scope(main_thread_local_heap());
3410     cancelable_task_manager()->CancelAndWait();
3411   }
3412 
3413   // Cancel all compiler tasks.
3414   delete baseline_batch_compiler_;
3415   baseline_batch_compiler_ = nullptr;
3416 
3417 #ifdef V8_ENABLE_MAGLEV
3418   delete maglev_concurrent_dispatcher_;
3419   maglev_concurrent_dispatcher_ = nullptr;
3420 #endif  // V8_ENABLE_MAGLEV
3421 
3422   if (lazy_compile_dispatcher_) {
3423     lazy_compile_dispatcher_->AbortAll();
3424     lazy_compile_dispatcher_.reset();
3425   }
3426 
3427   // At this point there are no more background threads left in this isolate.
3428   heap_.safepoint()->AssertMainThreadIsOnlyThread();
3429 
3430   {
3431     // This isolate might have to park for a shared GC initiated by another
3432     // client isolate before it can actually detach from the shared isolate.
3433     AllowGarbageCollection allow_shared_gc;
3434     DetachFromSharedIsolate();
3435   }
3436 
3437   ReleaseSharedPtrs();
3438 
3439   builtins_.TearDown();
3440   bootstrapper_->TearDown();
3441 
3442   if (tiering_manager_ != nullptr) {
3443     delete tiering_manager_;
3444     tiering_manager_ = nullptr;
3445   }
3446 
3447   delete heap_profiler_;
3448   heap_profiler_ = nullptr;
3449 
3450   string_table_.reset();
3451 
3452 #if USE_SIMULATOR
3453   delete simulator_data_;
3454   simulator_data_ = nullptr;
3455 #endif
3456 
3457   // After all concurrent tasks are stopped, we know for sure that stats aren't
3458   // updated anymore.
3459   DumpAndResetStats();
3460 
3461   heap_.TearDown();
3462 
3463   main_thread_local_isolate_.reset();
3464 
3465   FILE* logfile = logger_->TearDownAndGetLogFile();
3466   if (logfile != nullptr) base::Fclose(logfile);
3467 
3468 #if V8_ENABLE_WEBASSEMBLY
3469   wasm::GetWasmEngine()->RemoveIsolate(this);
3470 #endif  // V8_ENABLE_WEBASSEMBLY
3471 
3472   TearDownEmbeddedBlob();
3473 
3474   delete interpreter_;
3475   interpreter_ = nullptr;
3476 
3477   delete ast_string_constants_;
3478   ast_string_constants_ = nullptr;
3479 
3480   code_event_dispatcher_.reset();
3481 
3482   delete root_index_map_;
3483   root_index_map_ = nullptr;
3484 
3485   delete compiler_zone_;
3486   compiler_zone_ = nullptr;
3487   compiler_cache_ = nullptr;
3488 
3489   SetCodePages(nullptr);
3490 
3491   ClearSerializerData();
3492 
3493 #ifdef V8_SANDBOXED_EXTERNAL_POINTERS
3494   external_pointer_table().TearDown();
3495 #endif  // V8_SANDBOXED_EXTERNAL_POINTERS
3496 
3497   {
3498     base::MutexGuard lock_guard(&thread_data_table_mutex_);
3499     thread_data_table_.RemoveAllThreads();
3500   }
3501 }
3502 
3503 void Isolate::SetIsolateThreadLocals(Isolate* isolate,
3504                                      PerIsolateThreadData* data) {
3505   base::Thread::SetThreadLocal(isolate_key_, isolate);
3506   base::Thread::SetThreadLocal(per_isolate_thread_data_key_, data);
3507 }
3508 
3509 Isolate::~Isolate() {
3510   TRACE_ISOLATE(destructor);
3511 
3512   // The entry stack must be empty when we get here.
3513   DCHECK(entry_stack_ == nullptr || entry_stack_->previous_item == nullptr);
3514 
3515   delete entry_stack_;
3516   entry_stack_ = nullptr;
3517 
3518   delete date_cache_;
3519   date_cache_ = nullptr;
3520 
3521   delete regexp_stack_;
3522   regexp_stack_ = nullptr;
3523 
3524   delete descriptor_lookup_cache_;
3525   descriptor_lookup_cache_ = nullptr;
3526 
3527   delete load_stub_cache_;
3528   load_stub_cache_ = nullptr;
3529   delete store_stub_cache_;
3530   store_stub_cache_ = nullptr;
3531 
3532   delete materialized_object_store_;
3533   materialized_object_store_ = nullptr;
3534 
3535   delete logger_;
3536   logger_ = nullptr;
3537 
3538   delete handle_scope_implementer_;
3539   handle_scope_implementer_ = nullptr;
3540 
3541   delete code_tracer();
3542   set_code_tracer(nullptr);
3543 
3544   delete compilation_cache_;
3545   compilation_cache_ = nullptr;
3546   delete bootstrapper_;
3547   bootstrapper_ = nullptr;
3548   delete inner_pointer_to_code_cache_;
3549   inner_pointer_to_code_cache_ = nullptr;
3550 
3551   delete thread_manager_;
3552   thread_manager_ = nullptr;
3553 
3554   bigint_processor_->Destroy();
3555 
3556   delete global_handles_;
3557   global_handles_ = nullptr;
3558   delete eternal_handles_;
3559   eternal_handles_ = nullptr;
3560 
3561   delete string_stream_debug_object_cache_;
3562   string_stream_debug_object_cache_ = nullptr;
3563 
3564   delete random_number_generator_;
3565   random_number_generator_ = nullptr;
3566 
3567   delete fuzzer_rng_;
3568   fuzzer_rng_ = nullptr;
3569 
3570   delete debug_;
3571   debug_ = nullptr;
3572 
3573   delete cancelable_task_manager_;
3574   cancelable_task_manager_ = nullptr;
3575 
3576   delete allocator_;
3577   allocator_ = nullptr;
3578 
3579   // Assert that |default_microtask_queue_| is the last MicrotaskQueue instance.
3580   DCHECK_IMPLIES(default_microtask_queue_,
3581                  default_microtask_queue_ == default_microtask_queue_->next());
3582   delete default_microtask_queue_;
3583   default_microtask_queue_ = nullptr;
3584 
3585   // The ReadOnlyHeap should not be destroyed when sharing without pointer
3586   // compression as the object itself is shared.
3587   if (read_only_heap_->IsOwnedByIsolate()) {
3588     delete read_only_heap_;
3589     read_only_heap_ = nullptr;
3590   }
3591 }
3592 
3593 void Isolate::InitializeThreadLocal() {
3594   thread_local_top()->Initialize(this);
3595   clear_pending_exception();
3596   clear_pending_message();
3597   clear_scheduled_exception();
3598 }
3599 
3600 void Isolate::SetTerminationOnExternalTryCatch() {
3601   if (try_catch_handler() == nullptr) return;
3602   try_catch_handler()->can_continue_ = false;
3603   try_catch_handler()->has_terminated_ = true;
3604   try_catch_handler()->exception_ =
3605       reinterpret_cast<void*>(ReadOnlyRoots(heap()).null_value().ptr());
3606 }
3607 
3608 bool Isolate::PropagatePendingExceptionToExternalTryCatch(
3609     ExceptionHandlerType top_handler) {
3610   Object exception = pending_exception();
3611 
3612   if (top_handler == ExceptionHandlerType::kJavaScriptHandler) {
3613     thread_local_top()->external_caught_exception_ = false;
3614     return false;
3615   }
3616 
3617   if (top_handler == ExceptionHandlerType::kNone) {
3618     thread_local_top()->external_caught_exception_ = false;
3619     return true;
3620   }
3621 
3622   DCHECK_EQ(ExceptionHandlerType::kExternalTryCatch, top_handler);
3623   thread_local_top()->external_caught_exception_ = true;
3624   if (!is_catchable_by_javascript(exception)) {
3625     SetTerminationOnExternalTryCatch();
3626   } else {
3627     v8::TryCatch* handler = try_catch_handler();
3628     DCHECK(pending_message().IsJSMessageObject() ||
3629            pending_message().IsTheHole(this));
3630     handler->can_continue_ = true;
3631     handler->has_terminated_ = false;
3632     handler->exception_ = reinterpret_cast<void*>(exception.ptr());
3633     // Propagate to the external try-catch only if we got an actual message.
3634     if (!has_pending_message()) return true;
3635     handler->message_obj_ = reinterpret_cast<void*>(pending_message().ptr());
3636   }
3637   return true;
3638 }
3639 
3640 bool Isolate::InitializeCounters() {
3641   if (async_counters_) return false;
3642   async_counters_ = std::make_shared<Counters>(this);
3643   return true;
3644 }
3645 
3646 void Isolate::InitializeLoggingAndCounters() {
3647   if (logger_ == nullptr) {
3648     logger_ = new Logger(this);
3649   }
3650   InitializeCounters();
3651 }
3652 
3653 namespace {
3654 
3655 void CreateOffHeapTrampolines(Isolate* isolate) {
3656   DCHECK_NOT_NULL(isolate->embedded_blob_code());
3657   DCHECK_NE(0, isolate->embedded_blob_code_size());
3658   DCHECK_NOT_NULL(isolate->embedded_blob_data());
3659   DCHECK_NE(0, isolate->embedded_blob_data_size());
3660 
3661   HandleScope scope(isolate);
3662   Builtins* builtins = isolate->builtins();
3663 
3664   EmbeddedData d = EmbeddedData::FromBlob(isolate);
3665 
3666   STATIC_ASSERT(Builtins::kAllBuiltinsAreIsolateIndependent);
3667   for (Builtin builtin = Builtins::kFirst; builtin <= Builtins::kLast;
3668        ++builtin) {
3669     Address instruction_start = d.InstructionStartOfBuiltin(builtin);
3670     // TODO(v8:11880): avoid roundtrips between cdc and code.
3671     Handle<Code> trampoline = isolate->factory()->NewOffHeapTrampolineFor(
3672         FromCodeT(builtins->code_handle(builtin), isolate), instruction_start);
3673 
3674     // From this point onwards, the old builtin code object is unreachable and
3675     // will be collected by the next GC.
3676     builtins->set_code(builtin, ToCodeT(*trampoline));
3677   }
3678 }
3679 
3680 #ifdef DEBUG
3681 bool IsolateIsCompatibleWithEmbeddedBlob(Isolate* isolate) {
3682   EmbeddedData d = EmbeddedData::FromBlob(isolate);
3683   return (d.IsolateHash() == isolate->HashIsolateForEmbeddedBlob());
3684 }
3685 #endif  // DEBUG
3686 
3687 }  // namespace
3688 
3689 void Isolate::InitializeDefaultEmbeddedBlob() {
3690   const uint8_t* code = DefaultEmbeddedBlobCode();
3691   uint32_t code_size = DefaultEmbeddedBlobCodeSize();
3692   const uint8_t* data = DefaultEmbeddedBlobData();
3693   uint32_t data_size = DefaultEmbeddedBlobDataSize();
3694 
3695   if (StickyEmbeddedBlobCode() != nullptr) {
3696     base::MutexGuard guard(current_embedded_blob_refcount_mutex_.Pointer());
3697     // Check again now that we hold the lock.
3698     if (StickyEmbeddedBlobCode() != nullptr) {
3699       code = StickyEmbeddedBlobCode();
3700       code_size = StickyEmbeddedBlobCodeSize();
3701       data = StickyEmbeddedBlobData();
3702       data_size = StickyEmbeddedBlobDataSize();
3703       current_embedded_blob_refs_++;
3704     }
3705   }
3706 
3707   if (code == nullptr) {
3708     CHECK_EQ(0, code_size);
3709   } else {
3710     SetEmbeddedBlob(code, code_size, data, data_size);
3711   }
3712 }
3713 
3714 void Isolate::CreateAndSetEmbeddedBlob() {
3715   base::MutexGuard guard(current_embedded_blob_refcount_mutex_.Pointer());
3716 
3717   PrepareBuiltinSourcePositionMap();
3718 
3719   PrepareBuiltinLabelInfoMap();
3720 
3721   // If a sticky blob has been set, we reuse it.
3722   if (StickyEmbeddedBlobCode() != nullptr) {
3723     CHECK_EQ(embedded_blob_code(), StickyEmbeddedBlobCode());
3724     CHECK_EQ(embedded_blob_data(), StickyEmbeddedBlobData());
3725     CHECK_EQ(CurrentEmbeddedBlobCode(), StickyEmbeddedBlobCode());
3726     CHECK_EQ(CurrentEmbeddedBlobData(), StickyEmbeddedBlobData());
3727   } else {
3728     // Create and set a new embedded blob.
3729     uint8_t* code;
3730     uint32_t code_size;
3731     uint8_t* data;
3732     uint32_t data_size;
3733     OffHeapInstructionStream::CreateOffHeapOffHeapInstructionStream(
3734         this, &code, &code_size, &data, &data_size);
3735 
3736     CHECK_EQ(0, current_embedded_blob_refs_);
3737     const uint8_t* const_code = const_cast<const uint8_t*>(code);
3738     const uint8_t* const_data = const_cast<const uint8_t*>(data);
3739     SetEmbeddedBlob(const_code, code_size, const_data, data_size);
3740     current_embedded_blob_refs_++;
3741 
3742     SetStickyEmbeddedBlob(code, code_size, data, data_size);
3743   }
3744 
3745   MaybeRemapEmbeddedBuiltinsIntoCodeRange();
3746 
3747   CreateOffHeapTrampolines(this);
3748 }
3749 
3750 void Isolate::MaybeRemapEmbeddedBuiltinsIntoCodeRange() {
3751   if (!is_short_builtin_calls_enabled() || !RequiresCodeRange()) {
3752     return;
3753   }
3754   if (V8_ENABLE_NEAR_CODE_RANGE_BOOL &&
3755       GetShortBuiltinsCallRegion().contains(heap_.code_region())) {
3756     // The embedded builtins are within the pc-relative reach from the code
3757     // range, so there's no need to remap embedded builtins.
3758     return;
3759   }
3760 
3761   CHECK_NOT_NULL(embedded_blob_code_);
3762   CHECK_NE(embedded_blob_code_size_, 0);
3763 
3764   DCHECK_NOT_NULL(heap_.code_range_);
3765   embedded_blob_code_ = heap_.code_range_->RemapEmbeddedBuiltins(
3766       this, embedded_blob_code_, embedded_blob_code_size_);
3767   CHECK_NOT_NULL(embedded_blob_code_);
3768   // The un-embedded code blob is already a part of the registered code range
3769   // so it's not necessary to register it again.
3770 }
3771 
3772 void Isolate::TearDownEmbeddedBlob() {
3773   // Nothing to do in case the blob is embedded into the binary or unset.
3774   if (StickyEmbeddedBlobCode() == nullptr) return;
3775 
3776   if (!is_short_builtin_calls_enabled()) {
3777     CHECK_EQ(embedded_blob_code(), StickyEmbeddedBlobCode());
3778     CHECK_EQ(embedded_blob_data(), StickyEmbeddedBlobData());
3779   }
3780   CHECK_EQ(CurrentEmbeddedBlobCode(), StickyEmbeddedBlobCode());
3781   CHECK_EQ(CurrentEmbeddedBlobData(), StickyEmbeddedBlobData());
3782 
3783   base::MutexGuard guard(current_embedded_blob_refcount_mutex_.Pointer());
3784   current_embedded_blob_refs_--;
3785   if (current_embedded_blob_refs_ == 0 && enable_embedded_blob_refcounting_) {
3786     // We own the embedded blob and are the last holder. Free it.
3787     OffHeapInstructionStream::FreeOffHeapOffHeapInstructionStream(
3788         const_cast<uint8_t*>(CurrentEmbeddedBlobCode()),
3789         embedded_blob_code_size(),
3790         const_cast<uint8_t*>(CurrentEmbeddedBlobData()),
3791         embedded_blob_data_size());
3792     ClearEmbeddedBlob();
3793   }
3794 }
3795 
3796 bool Isolate::InitWithoutSnapshot() {
3797   return Init(nullptr, nullptr, nullptr, false);
3798 }
3799 
3800 bool Isolate::InitWithSnapshot(SnapshotData* startup_snapshot_data,
3801                                SnapshotData* read_only_snapshot_data,
3802                                SnapshotData* shared_heap_snapshot_data,
3803                                bool can_rehash) {
3804   DCHECK_NOT_NULL(startup_snapshot_data);
3805   DCHECK_NOT_NULL(read_only_snapshot_data);
3806   DCHECK_NOT_NULL(shared_heap_snapshot_data);
3807   return Init(startup_snapshot_data, read_only_snapshot_data,
3808               shared_heap_snapshot_data, can_rehash);
3809 }
3810 
3811 static std::string AddressToString(uintptr_t address) {
3812   std::stringstream stream_address;
3813   stream_address << "0x" << std::hex << address;
3814   return stream_address.str();
3815 }
3816 
3817 void Isolate::AddCrashKeysForIsolateAndHeapPointers() {
3818   DCHECK_NOT_NULL(add_crash_key_callback_);
3819 
3820   const uintptr_t isolate_address = reinterpret_cast<uintptr_t>(this);
3821   add_crash_key_callback_(v8::CrashKeyId::kIsolateAddress,
3822                           AddressToString(isolate_address));
3823 
3824   const uintptr_t ro_space_firstpage_address =
3825       heap()->read_only_space()->FirstPageAddress();
3826   add_crash_key_callback_(v8::CrashKeyId::kReadonlySpaceFirstPageAddress,
3827                           AddressToString(ro_space_firstpage_address));
3828 
3829   if (heap()->map_space()) {
3830     const uintptr_t map_space_firstpage_address =
3831         heap()->map_space()->FirstPageAddress();
3832     add_crash_key_callback_(v8::CrashKeyId::kMapSpaceFirstPageAddress,
3833                             AddressToString(map_space_firstpage_address));
3834   }
3835 
3836   const uintptr_t code_space_firstpage_address =
3837       heap()->code_space()->FirstPageAddress();
3838   add_crash_key_callback_(v8::CrashKeyId::kCodeSpaceFirstPageAddress,
3839                           AddressToString(code_space_firstpage_address));
3840 }
3841 
3842 void Isolate::InitializeCodeRanges() {
3843   DCHECK_NULL(GetCodePages());
3844   MemoryRange embedded_range{
3845       reinterpret_cast<const void*>(embedded_blob_code()),
3846       embedded_blob_code_size()};
3847   code_pages_buffer1_.push_back(embedded_range);
3848   SetCodePages(&code_pages_buffer1_);
3849 }
3850 
3851 namespace {
3852 
3853 // This global counter contains number of stack loads/stores per optimized/wasm
3854 // function.
3855 using MapOfLoadsAndStoresPerFunction =
3856     std::map<std::string /* function_name */,
3857              std::pair<uint64_t /* loads */, uint64_t /* stores */>>;
3858 MapOfLoadsAndStoresPerFunction* stack_access_count_map = nullptr;
3859 
3860 class BigIntPlatform : public bigint::Platform {
3861  public:
3862   explicit BigIntPlatform(Isolate* isolate) : isolate_(isolate) {}
3863   ~BigIntPlatform() override = default;
3864 
3865   bool InterruptRequested() override {
3866     StackLimitCheck interrupt_check(isolate_);
3867     return (interrupt_check.InterruptRequested() &&
3868             isolate_->stack_guard()->HasTerminationRequest());
3869   }
3870 
3871  private:
3872   Isolate* isolate_;
3873 };
3874 }  // namespace
3875 
3876 VirtualMemoryCage* Isolate::GetPtrComprCodeCageForTesting() {
3877   return V8_EXTERNAL_CODE_SPACE_BOOL ? heap_.code_range() : GetPtrComprCage();
3878 }
3879 
3880 bool Isolate::Init(SnapshotData* startup_snapshot_data,
3881                    SnapshotData* read_only_snapshot_data,
3882                    SnapshotData* shared_heap_snapshot_data, bool can_rehash) {
3883   TRACE_ISOLATE(init);
3884   const bool create_heap_objects = (read_only_snapshot_data == nullptr);
3885   // We either have all or none.
3886   DCHECK_EQ(create_heap_objects, startup_snapshot_data == nullptr);
3887   DCHECK_EQ(create_heap_objects, shared_heap_snapshot_data == nullptr);
3888 
3889   base::ElapsedTimer timer;
3890   if (create_heap_objects && FLAG_profile_deserialization) timer.Start();
3891 
3892   time_millis_at_init_ = heap_.MonotonicallyIncreasingTimeInMs();
3893 
3894   stress_deopt_count_ = FLAG_deopt_every_n_times;
3895   force_slow_path_ = FLAG_force_slow_path;
3896 
3897   has_fatal_error_ = false;
3898 
3899   // The initialization process does not handle memory exhaustion.
3900   AlwaysAllocateScope always_allocate(heap());
3901 
3902 #define ASSIGN_ELEMENT(CamelName, hacker_name)                  \
3903   isolate_addresses_[IsolateAddressId::k##CamelName##Address] = \
3904       reinterpret_cast<Address>(hacker_name##_address());
3905   FOR_EACH_ISOLATE_ADDRESS_NAME(ASSIGN_ELEMENT)
3906 #undef ASSIGN_ELEMENT
3907 
3908   // We need to initialize code_pages_ before any on-heap code is allocated to
3909   // make sure we record all code allocations.
3910   InitializeCodeRanges();
3911 
3912   compilation_cache_ = new CompilationCache(this);
3913   descriptor_lookup_cache_ = new DescriptorLookupCache();
3914   inner_pointer_to_code_cache_ = new InnerPointerToCodeCache(this);
3915   global_handles_ = new GlobalHandles(this);
3916   eternal_handles_ = new EternalHandles();
3917   bootstrapper_ = new Bootstrapper(this);
3918   handle_scope_implementer_ = new HandleScopeImplementer(this);
3919   load_stub_cache_ = new StubCache(this);
3920   store_stub_cache_ = new StubCache(this);
3921   materialized_object_store_ = new MaterializedObjectStore(this);
3922   regexp_stack_ = new RegExpStack();
3923   date_cache_ = new DateCache();
3924   heap_profiler_ = new HeapProfiler(heap());
3925   interpreter_ = new interpreter::Interpreter(this);
3926   bigint_processor_ = bigint::Processor::New(new BigIntPlatform(this));
3927 
3928   if (FLAG_lazy_compile_dispatcher) {
3929     lazy_compile_dispatcher_ = std::make_unique<LazyCompileDispatcher>(
3930         this, V8::GetCurrentPlatform(), FLAG_stack_size);
3931   }
3932   baseline_batch_compiler_ = new baseline::BaselineBatchCompiler(this);
3933 #ifdef V8_ENABLE_MAGLEV
3934   maglev_concurrent_dispatcher_ = new maglev::MaglevConcurrentDispatcher(this);
3935 #endif  // V8_ENABLE_MAGLEV
3936 
3937 #if USE_SIMULATOR
3938   simulator_data_ = new SimulatorData;
3939 #endif
3940 
3941   // Enable logging before setting up the heap
3942   logger_->SetUp(this);
3943 
3944   metrics_recorder_ = std::make_shared<metrics::Recorder>();
3945 
3946   {
3947     // Ensure that the thread has a valid stack guard.  The v8::Locker object
3948     // will ensure this too, but we don't have to use lockers if we are only
3949     // using one thread.
3950     ExecutionAccess lock(this);
3951     stack_guard()->InitThread(lock);
3952   }
3953 
3954   // Create LocalIsolate/LocalHeap for the main thread and set state to Running.
3955   main_thread_local_isolate_.reset(new LocalIsolate(this, ThreadKind::kMain));
3956 
3957   {
3958     IgnoreLocalGCRequests ignore_gc_requests(heap());
3959     main_thread_local_heap()->Unpark();
3960   }
3961 
3962   // Lock clients_mutex_ in order to prevent shared GCs from other clients
3963   // during deserialization.
3964   base::Optional<base::MutexGuard> clients_guard;
3965 
3966   if (shared_isolate_) {
3967     clients_guard.emplace(&shared_isolate_->global_safepoint()->clients_mutex_);
3968   }
3969 
3970   // The main thread LocalHeap needs to be set up when attaching to the shared
3971   // isolate. Otherwise a global safepoint would find an isolate without
3972   // LocalHeaps and not wait until this thread is ready for a GC.
3973   AttachToSharedIsolate();
3974 
3975   // SetUp the object heap.
3976   DCHECK(!heap_.HasBeenSetUp());
3977   heap_.SetUp(main_thread_local_heap());
3978   ReadOnlyHeap::SetUp(this, read_only_snapshot_data, can_rehash);
3979   heap_.SetUpSpaces(&isolate_data_.new_allocation_info_,
3980                     &isolate_data_.old_allocation_info_);
3981 
3982   if (OwnsStringTable()) {
3983     string_table_ = std::make_shared<StringTable>(this);
3984   } else {
3985     // Only refer to shared string table after attaching to the shared isolate.
3986     DCHECK_NOT_NULL(shared_isolate());
3987     string_table_ = shared_isolate()->string_table_;
3988   }
3989 
3990   if (V8_SHORT_BUILTIN_CALLS_BOOL && FLAG_short_builtin_calls) {
3991     // Check if the system has more than 4GB of physical memory by comparing the
3992     // old space size with respective threshold value.
3993     //
3994     // Additionally, enable if there is already a process-wide CodeRange that
3995     // has re-embedded builtins.
3996     is_short_builtin_calls_enabled_ = (heap_.MaxOldGenerationSize() >=
3997                                        kShortBuiltinCallsOldSpaceSizeThreshold);
3998     if (COMPRESS_POINTERS_IN_SHARED_CAGE_BOOL) {
3999       std::shared_ptr<CodeRange> code_range =
4000           CodeRange::GetProcessWideCodeRange();
4001       if (code_range && code_range->embedded_blob_code_copy() != nullptr) {
4002         is_short_builtin_calls_enabled_ = true;
4003       }
4004     }
4005     if (V8_ENABLE_NEAR_CODE_RANGE_BOOL) {
4006       // The short builtin calls could still be enabled if allocated code range
4007       // is close enough to embedded builtins so that the latter could be
4008       // reached using pc-relative (short) calls/jumps.
4009       is_short_builtin_calls_enabled_ |=
4010           GetShortBuiltinsCallRegion().contains(heap_.code_region());
4011     }
4012   }
4013 #ifdef V8_EXTERNAL_CODE_SPACE
4014   if (heap_.code_range()) {
4015     code_cage_base_ = GetPtrComprCageBaseAddress(heap_.code_range()->base());
4016   } else {
4017     code_cage_base_ = cage_base();
4018   }
4019 #endif  // V8_EXTERNAL_CODE_SPACE
4020 
4021   isolate_data_.external_reference_table()->Init(this);
4022 
4023 #ifdef V8_SANDBOXED_EXTERNAL_POINTERS
4024   external_pointer_table().Init(this);
4025 #endif  // V8_SANDBOXED_EXTERNAL_POINTERS
4026 
4027 #if V8_ENABLE_WEBASSEMBLY
4028   wasm::GetWasmEngine()->AddIsolate(this);
4029 #endif  // V8_ENABLE_WEBASSEMBLY
4030 
4031   if (setup_delegate_ == nullptr) {
4032     setup_delegate_ = new SetupIsolateDelegate(create_heap_objects);
4033   }
4034 
4035   if (!FLAG_inline_new) heap_.DisableInlineAllocation();
4036 
4037   if (!setup_delegate_->SetupHeap(&heap_)) {
4038     V8::FatalProcessOutOfMemory(this, "heap object creation");
4039   }
4040 
4041   if (create_heap_objects) {
4042     // Terminate the startup and shared heap object caches so we can iterate.
4043     startup_object_cache_.push_back(ReadOnlyRoots(this).undefined_value());
4044     shared_heap_object_cache_.push_back(ReadOnlyRoots(this).undefined_value());
4045   }
4046 
4047   InitializeThreadLocal();
4048 
4049   // Profiler has to be created after ThreadLocal is initialized
4050   // because it makes use of interrupts.
4051   tracing_cpu_profiler_.reset(new TracingCpuProfilerImpl(this));
4052 
4053   bootstrapper_->Initialize(create_heap_objects);
4054 
4055   if (create_heap_objects) {
4056     builtins_constants_table_builder_ = new BuiltinsConstantsTableBuilder(this);
4057 
4058     setup_delegate_->SetupBuiltins(this);
4059 
4060 #ifndef V8_TARGET_ARCH_ARM
4061     // Store the interpreter entry trampoline on the root list. It is used as a
4062     // template for further copies that may later be created to help profile
4063     // interpreted code.
4064     // We currently cannot do this on arm due to RELATIVE_CODE_TARGETs
4065     // assuming that all possible Code targets may be addressed with an int24
4066     // offset, effectively limiting code space size to 32MB. We can guarantee
4067     // this at mksnapshot-time, but not at runtime.
4068     // See also: https://crbug.com/v8/8713.
4069     heap_.SetInterpreterEntryTrampolineForProfiling(
4070         FromCodeT(builtins()->code(Builtin::kInterpreterEntryTrampoline)));
4071 #endif
4072 
4073     builtins_constants_table_builder_->Finalize();
4074     delete builtins_constants_table_builder_;
4075     builtins_constants_table_builder_ = nullptr;
4076 
4077     CreateAndSetEmbeddedBlob();
4078   } else {
4079     setup_delegate_->SetupBuiltins(this);
4080     MaybeRemapEmbeddedBuiltinsIntoCodeRange();
4081   }
4082 
4083   // Initialize custom memcopy and memmove functions (must happen after
4084   // embedded blob setup).
4085   init_memcopy_functions();
4086 
4087   if (FLAG_log_internal_timer_events) {
4088     set_event_logger(Logger::DefaultEventLoggerSentinel);
4089   }
4090 
4091   if (FLAG_trace_turbo || FLAG_trace_turbo_graph || FLAG_turbo_profiling) {
4092     PrintF("Concurrent recompilation has been disabled for tracing.\n");
4093   } else if (OptimizingCompileDispatcher::Enabled()) {
4094     optimizing_compile_dispatcher_ = new OptimizingCompileDispatcher(this);
4095   }
4096 
4097   // Initialize before deserialization since collections may occur,
4098   // clearing/updating ICs (and thus affecting tiering decisions).
4099   tiering_manager_ = new TieringManager(this);
4100 
4101   // If we are deserializing, read the state into the now-empty heap.
4102   {
4103     CodePageCollectionMemoryModificationScope modification_scope(heap());
4104 
4105     if (create_heap_objects) {
4106       heap_.read_only_space()->ClearStringPaddingIfNeeded();
4107       read_only_heap_->OnCreateHeapObjectsComplete(this);
4108     } else {
4109       SharedHeapDeserializer shared_heap_deserializer(
4110           this, shared_heap_snapshot_data, can_rehash);
4111       shared_heap_deserializer.DeserializeIntoIsolate();
4112 
4113       StartupDeserializer startup_deserializer(this, startup_snapshot_data,
4114                                                can_rehash);
4115       startup_deserializer.DeserializeIntoIsolate();
4116     }
4117     load_stub_cache_->Initialize();
4118     store_stub_cache_->Initialize();
4119     interpreter_->Initialize();
4120     heap_.NotifyDeserializationComplete();
4121   }
4122 
4123 #ifdef VERIFY_HEAP
4124   if (FLAG_verify_heap) {
4125     heap_.VerifyReadOnlyHeap();
4126   }
4127 #endif
4128 
4129   delete setup_delegate_;
4130   setup_delegate_ = nullptr;
4131 
4132   Builtins::InitializeIsolateDataTables(this);
4133 
4134   // Extra steps in the logger after the heap has been set up.
4135   logger_->LateSetup(this);
4136 
4137 #ifdef DEBUG
4138   // Verify that the current heap state (usually deserialized from the snapshot)
4139   // is compatible with the embedded blob. If this DCHECK fails, we've likely
4140   // loaded a snapshot generated by a different V8 version or build-time
4141   // configuration.
4142   if (!IsolateIsCompatibleWithEmbeddedBlob(this)) {
4143     FATAL(
4144         "The Isolate is incompatible with the embedded blob. This is usually "
4145         "caused by incorrect usage of mksnapshot. When generating custom "
4146         "snapshots, embedders must ensure they pass the same flags as during "
4147         "the V8 build process (e.g.: --turbo-instruction-scheduling).");
4148   }
4149 #endif  // DEBUG
4150 
4151 #ifndef V8_TARGET_ARCH_ARM
4152   // The IET for profiling should always be a full on-heap Code object.
4153   DCHECK(!Code::cast(heap_.interpreter_entry_trampoline_for_profiling())
4154               .is_off_heap_trampoline());
4155 #endif  // V8_TARGET_ARCH_ARM
4156 
4157   if (FLAG_print_builtin_code) builtins()->PrintBuiltinCode();
4158   if (FLAG_print_builtin_size) builtins()->PrintBuiltinSize();
4159 
4160   // Finish initialization of ThreadLocal after deserialization is done.
4161   clear_pending_exception();
4162   clear_pending_message();
4163   clear_scheduled_exception();
4164 
4165   // Quiet the heap NaN if needed on target platform.
4166   if (!create_heap_objects)
4167     Assembler::QuietNaN(ReadOnlyRoots(this).nan_value());
4168 
4169   if (FLAG_trace_turbo) {
4170     // Create an empty file.
4171     std::ofstream(GetTurboCfgFileName(this).c_str(), std::ios_base::trunc);
4172   }
4173 
4174   {
4175     HandleScope scope(this);
4176     ast_string_constants_ = new AstStringConstants(this, HashSeed(this));
4177   }
4178 
4179   initialized_from_snapshot_ = !create_heap_objects;
4180 
4181   if (FLAG_stress_sampling_allocation_profiler > 0) {
4182     uint64_t sample_interval = FLAG_stress_sampling_allocation_profiler;
4183     int stack_depth = 128;
4184     v8::HeapProfiler::SamplingFlags sampling_flags =
4185         v8::HeapProfiler::SamplingFlags::kSamplingForceGC;
4186     heap_profiler()->StartSamplingHeapProfiler(sample_interval, stack_depth,
4187                                                sampling_flags);
4188   }
4189 
4190 #if defined(V8_OS_WIN64)
4191   if (win64_unwindinfo::CanRegisterUnwindInfoForNonABICompliantCodeRange() &&
4192       heap()->code_range()->AtomicIncrementUnwindInfoUseCount() == 0) {
4193     const base::AddressRegion& code_region = heap()->code_region();
4194     void* start = reinterpret_cast<void*>(code_region.begin());
4195     size_t size_in_bytes = code_region.size();
4196     win64_unwindinfo::RegisterNonABICompliantCodeRange(start, size_in_bytes);
4197   }
4198 #endif  // V8_OS_WIN64
4199 
4200   if (create_heap_objects && FLAG_profile_deserialization) {
4201     double ms = timer.Elapsed().InMillisecondsF();
4202     PrintF("[Initializing isolate from scratch took %0.3f ms]\n", ms);
4203   }
4204 
4205 #ifdef V8_ENABLE_WEBASSEMBLY
4206   if (FLAG_experimental_wasm_stack_switching) {
4207     std::unique_ptr<wasm::StackMemory> stack(
4208         wasm::StackMemory::GetCurrentStackView(this));
4209     this->wasm_stacks() = stack.get();
4210     if (FLAG_trace_wasm_stack_switching) {
4211       PrintF("Set up native stack object (limit: %p, base: %p)\n",
4212              stack->jslimit(), reinterpret_cast<void*>(stack->base()));
4213     }
4214     HandleScope scope(this);
4215     Handle<WasmContinuationObject> continuation =
4216         WasmContinuationObject::New(this, std::move(stack));
4217     heap()
4218         ->roots_table()
4219         .slot(RootIndex::kActiveContinuation)
4220         .store(*continuation);
4221   }
4222 #endif
4223 
4224   initialized_ = true;
4225 
4226   return true;
4227 }
4228 
4229 void Isolate::Enter() {
4230   Isolate* current_isolate = nullptr;
4231   PerIsolateThreadData* current_data = CurrentPerIsolateThreadData();
4232   if (current_data != nullptr) {
4233     current_isolate = current_data->isolate_;
4234     DCHECK_NOT_NULL(current_isolate);
4235     if (current_isolate == this) {
4236       DCHECK(Current() == this);
4237       DCHECK_NOT_NULL(entry_stack_);
4238       DCHECK(entry_stack_->previous_thread_data == nullptr ||
4239              entry_stack_->previous_thread_data->thread_id() ==
4240                  ThreadId::Current());
4241       // Same thread re-enters the isolate, no need to re-init anything.
4242       entry_stack_->entry_count++;
4243       return;
4244     }
4245   }
4246 
4247   PerIsolateThreadData* data = FindOrAllocatePerThreadDataForThisThread();
4248   DCHECK_NOT_NULL(data);
4249   DCHECK(data->isolate_ == this);
4250 
4251   EntryStackItem* item =
4252       new EntryStackItem(current_data, current_isolate, entry_stack_);
4253   entry_stack_ = item;
4254 
4255   SetIsolateThreadLocals(this, data);
4256 
4257   // In case it's the first time some thread enters the isolate.
4258   set_thread_id(data->thread_id());
4259 }
4260 
4261 void Isolate::Exit() {
4262   DCHECK_NOT_NULL(entry_stack_);
4263   DCHECK(entry_stack_->previous_thread_data == nullptr ||
4264          entry_stack_->previous_thread_data->thread_id() ==
4265              ThreadId::Current());
4266 
4267   if (--entry_stack_->entry_count > 0) return;
4268 
4269   DCHECK_NOT_NULL(CurrentPerIsolateThreadData());
4270   DCHECK(CurrentPerIsolateThreadData()->isolate_ == this);
4271 
4272   // Pop the stack.
4273   EntryStackItem* item = entry_stack_;
4274   entry_stack_ = item->previous_item;
4275 
4276   PerIsolateThreadData* previous_thread_data = item->previous_thread_data;
4277   Isolate* previous_isolate = item->previous_isolate;
4278 
4279   delete item;
4280 
4281   // Reinit the current thread for the isolate it was running before this one.
4282   SetIsolateThreadLocals(previous_isolate, previous_thread_data);
4283 }
4284 
4285 std::unique_ptr<PersistentHandles> Isolate::NewPersistentHandles() {
4286   return std::make_unique<PersistentHandles>(this);
4287 }
4288 
4289 void Isolate::DumpAndResetStats() {
4290   if (FLAG_trace_turbo_stack_accesses) {
4291     StdoutStream os;
4292     uint64_t total_loads = 0;
4293     uint64_t total_stores = 0;
4294     os << "=== Stack access counters === " << std::endl;
4295     if (!stack_access_count_map) {
4296       os << "No stack accesses in optimized/wasm functions found.";
4297     } else {
4298       DCHECK_NOT_NULL(stack_access_count_map);
4299       os << "Number of optimized/wasm stack-access functions: "
4300          << stack_access_count_map->size() << std::endl;
4301       for (auto it = stack_access_count_map->cbegin();
4302            it != stack_access_count_map->cend(); it++) {
4303         std::string function_name((*it).first);
4304         std::pair<uint64_t, uint64_t> per_func_count = (*it).second;
4305         os << "Name: " << function_name << ", Loads: " << per_func_count.first
4306            << ", Stores: " << per_func_count.second << std::endl;
4307         total_loads += per_func_count.first;
4308         total_stores += per_func_count.second;
4309       }
4310       os << "Total Loads: " << total_loads << ", Total Stores: " << total_stores
4311          << std::endl;
4312       stack_access_count_map = nullptr;
4313     }
4314   }
4315   if (turbo_statistics() != nullptr) {
4316     DCHECK(FLAG_turbo_stats || FLAG_turbo_stats_nvp);
4317     StdoutStream os;
4318     if (FLAG_turbo_stats) {
4319       AsPrintableStatistics ps = {*turbo_statistics(), false};
4320       os << ps << std::endl;
4321     }
4322     if (FLAG_turbo_stats_nvp) {
4323       AsPrintableStatistics ps = {*turbo_statistics(), true};
4324       os << ps << std::endl;
4325     }
4326     delete turbo_statistics_;
4327     turbo_statistics_ = nullptr;
4328   }
4329 #if V8_ENABLE_WEBASSEMBLY
4330   // TODO(7424): There is no public API for the {WasmEngine} yet. So for now we
4331   // just dump and reset the engines statistics together with the Isolate.
4332   if (FLAG_turbo_stats_wasm) {
4333     wasm::GetWasmEngine()->DumpAndResetTurboStatistics();
4334   }
4335 #endif  // V8_ENABLE_WEBASSEMBLY
4336 #if V8_RUNTIME_CALL_STATS
4337   if (V8_UNLIKELY(TracingFlags::runtime_stats.load(std::memory_order_relaxed) ==
4338                   v8::tracing::TracingCategoryObserver::ENABLED_BY_NATIVE)) {
4339     counters()->worker_thread_runtime_call_stats()->AddToMainTable(
4340         counters()->runtime_call_stats());
4341     counters()->runtime_call_stats()->Print();
4342     counters()->runtime_call_stats()->Reset();
4343   }
4344 #endif  // V8_RUNTIME_CALL_STATS
4345   if (BasicBlockProfiler::Get()->HasData(this)) {
4346     StdoutStream out;
4347     BasicBlockProfiler::Get()->Print(out, this);
4348     BasicBlockProfiler::Get()->ResetCounts(this);
4349   }
4350 }
4351 
4352 void Isolate::AbortConcurrentOptimization(BlockingBehavior behavior) {
4353   if (concurrent_recompilation_enabled()) {
4354     DisallowGarbageCollection no_recursive_gc;
4355     optimizing_compile_dispatcher()->Flush(behavior);
4356   }
4357 }
4358 
4359 CompilationStatistics* Isolate::GetTurboStatistics() {
4360   if (turbo_statistics() == nullptr)
4361     set_turbo_statistics(new CompilationStatistics());
4362   return turbo_statistics();
4363 }
4364 
4365 CodeTracer* Isolate::GetCodeTracer() {
4366   if (code_tracer() == nullptr) set_code_tracer(new CodeTracer(id()));
4367   return code_tracer();
4368 }
4369 
4370 bool Isolate::use_optimizer() {
4371   // TODO(v8:7700): Update this predicate for a world with multiple tiers.
4372   return (FLAG_opt || FLAG_maglev) && !serializer_enabled_ &&
4373          CpuFeatures::SupportsOptimizer() && !is_precise_count_code_coverage();
4374 }
4375 
4376 void Isolate::IncreaseTotalRegexpCodeGenerated(Handle<HeapObject> code) {
4377   PtrComprCageBase cage_base(this);
4378   DCHECK(code->IsCode(cage_base) || code->IsByteArray(cage_base));
4379   total_regexp_code_generated_ += code->Size(cage_base);
4380 }
4381 
4382 bool Isolate::NeedsDetailedOptimizedCodeLineInfo() const {
4383   return NeedsSourcePositionsForProfiling() ||
4384          detailed_source_positions_for_profiling();
4385 }
4386 
4387 bool Isolate::NeedsSourcePositionsForProfiling() const {
4388   return
4389       // Static conditions.
4390       FLAG_trace_deopt || FLAG_trace_turbo || FLAG_trace_turbo_graph ||
4391       FLAG_turbo_profiling || FLAG_perf_prof || FLAG_log_maps || FLAG_log_ic ||
4392       // Dynamic conditions; changing any of these conditions triggers source
4393       // position collection for the entire heap
4394       // (CollectSourcePositionsForAllBytecodeArrays).
4395       is_profiling() || debug_->is_active() || logger_->is_logging();
4396 }
4397 
4398 void Isolate::SetFeedbackVectorsForProfilingTools(Object value) {
4399   DCHECK(value.IsUndefined(this) || value.IsArrayList());
4400   heap()->set_feedback_vectors_for_profiling_tools(value);
4401 }
4402 
4403 void Isolate::MaybeInitializeVectorListFromHeap() {
4404   if (!heap()->feedback_vectors_for_profiling_tools().IsUndefined(this)) {
4405     // Already initialized, return early.
4406     DCHECK(heap()->feedback_vectors_for_profiling_tools().IsArrayList());
4407     return;
4408   }
4409 
4410   // Collect existing feedback vectors.
4411   std::vector<Handle<FeedbackVector>> vectors;
4412 
4413   {
4414     HeapObjectIterator heap_iterator(heap());
4415     for (HeapObject current_obj = heap_iterator.Next(); !current_obj.is_null();
4416          current_obj = heap_iterator.Next()) {
4417       if (!current_obj.IsFeedbackVector()) continue;
4418 
4419       FeedbackVector vector = FeedbackVector::cast(current_obj);
4420       SharedFunctionInfo shared = vector.shared_function_info();
4421 
4422       // No need to preserve the feedback vector for non-user-visible functions.
4423       if (!shared.IsSubjectToDebugging()) continue;
4424 
4425       vectors.emplace_back(vector, this);
4426     }
4427   }
4428 
4429   // Add collected feedback vectors to the root list lest we lose them to GC.
4430   Handle<ArrayList> list =
4431       ArrayList::New(this, static_cast<int>(vectors.size()));
4432   for (const auto& vector : vectors) list = ArrayList::Add(this, list, vector);
4433   SetFeedbackVectorsForProfilingTools(*list);
4434 }
4435 
4436 void Isolate::set_date_cache(DateCache* date_cache) {
4437   if (date_cache != date_cache_) {
4438     delete date_cache_;
4439   }
4440   date_cache_ = date_cache;
4441 }
4442 
4443 Isolate::KnownPrototype Isolate::IsArrayOrObjectOrStringPrototype(
4444     Object object) {
4445   Object context = heap()->native_contexts_list();
4446   while (!context.IsUndefined(this)) {
4447     Context current_context = Context::cast(context);
4448     if (current_context.initial_object_prototype() == object) {
4449       return KnownPrototype::kObject;
4450     } else if (current_context.initial_array_prototype() == object) {
4451       return KnownPrototype::kArray;
4452     } else if (current_context.initial_string_prototype() == object) {
4453       return KnownPrototype::kString;
4454     }
4455     context = current_context.next_context_link();
4456   }
4457   return KnownPrototype::kNone;
4458 }
4459 
4460 bool Isolate::IsInAnyContext(Object object, uint32_t index) {
4461   DisallowGarbageCollection no_gc;
4462   Object context = heap()->native_contexts_list();
4463   while (!context.IsUndefined(this)) {
4464     Context current_context = Context::cast(context);
4465     if (current_context.get(index) == object) {
4466       return true;
4467     }
4468     context = current_context.next_context_link();
4469   }
4470   return false;
4471 }
4472 
4473 void Isolate::UpdateNoElementsProtectorOnSetElement(Handle<JSObject> object) {
4474   DisallowGarbageCollection no_gc;
4475   if (!object->map().is_prototype_map()) return;
4476   if (!Protectors::IsNoElementsIntact(this)) return;
4477   KnownPrototype obj_type = IsArrayOrObjectOrStringPrototype(*object);
4478   if (obj_type == KnownPrototype::kNone) return;
4479   if (obj_type == KnownPrototype::kObject) {
4480     this->CountUsage(v8::Isolate::kObjectPrototypeHasElements);
4481   } else if (obj_type == KnownPrototype::kArray) {
4482     this->CountUsage(v8::Isolate::kArrayPrototypeHasElements);
4483   }
4484   Protectors::InvalidateNoElements(this);
4485 }
4486 
4487 static base::RandomNumberGenerator* ensure_rng_exists(
4488     base::RandomNumberGenerator** rng, int seed) {
4489   if (*rng == nullptr) {
4490     if (seed != 0) {
4491       *rng = new base::RandomNumberGenerator(seed);
4492     } else {
4493       *rng = new base::RandomNumberGenerator();
4494     }
4495   }
4496   return *rng;
4497 }
4498 
4499 base::RandomNumberGenerator* Isolate::random_number_generator() {
4500   // TODO(bmeurer) Initialized lazily because it depends on flags; can
4501   // be fixed once the default isolate cleanup is done.
4502   return ensure_rng_exists(&random_number_generator_, FLAG_random_seed);
4503 }
4504 
4505 base::RandomNumberGenerator* Isolate::fuzzer_rng() {
4506   if (fuzzer_rng_ == nullptr) {
4507     int64_t seed = FLAG_fuzzer_random_seed;
4508     if (seed == 0) {
4509       seed = random_number_generator()->initial_seed();
4510     }
4511 
4512     fuzzer_rng_ = new base::RandomNumberGenerator(seed);
4513   }
4514 
4515   return fuzzer_rng_;
4516 }
4517 
4518 int Isolate::GenerateIdentityHash(uint32_t mask) {
4519   int hash;
4520   int attempts = 0;
4521   do {
4522     hash = random_number_generator()->NextInt() & mask;
4523   } while (hash == 0 && attempts++ < 30);
4524   return hash != 0 ? hash : 1;
4525 }
4526 
4527 Code Isolate::FindCodeObject(Address a) {
4528   return heap()->GcSafeFindCodeForInnerPointer(a);
4529 }
4530 
4531 #ifdef DEBUG
4532 #define ISOLATE_FIELD_OFFSET(type, name, ignored) \
4533   const intptr_t Isolate::name##_debug_offset_ = OFFSET_OF(Isolate, name##_);
4534 ISOLATE_INIT_LIST(ISOLATE_FIELD_OFFSET)
4535 ISOLATE_INIT_ARRAY_LIST(ISOLATE_FIELD_OFFSET)
4536 #undef ISOLATE_FIELD_OFFSET
4537 #endif
4538 
4539 Handle<Symbol> Isolate::SymbolFor(RootIndex dictionary_index,
4540                                   Handle<String> name, bool private_symbol) {
4541   Handle<String> key = factory()->InternalizeString(name);
4542   Handle<RegisteredSymbolTable> dictionary =
4543       Handle<RegisteredSymbolTable>::cast(root_handle(dictionary_index));
4544   InternalIndex entry = dictionary->FindEntry(this, key);
4545   Handle<Symbol> symbol;
4546   if (entry.is_not_found()) {
4547     symbol =
4548         private_symbol ? factory()->NewPrivateSymbol() : factory()->NewSymbol();
4549     symbol->set_description(*key);
4550     dictionary = RegisteredSymbolTable::Add(this, dictionary, key, symbol);
4551 
4552     switch (dictionary_index) {
4553       case RootIndex::kPublicSymbolTable:
4554         symbol->set_is_in_public_symbol_table(true);
4555         heap()->set_public_symbol_table(*dictionary);
4556         break;
4557       case RootIndex::kApiSymbolTable:
4558         heap()->set_api_symbol_table(*dictionary);
4559         break;
4560       case RootIndex::kApiPrivateSymbolTable:
4561         heap()->set_api_private_symbol_table(*dictionary);
4562         break;
4563       default:
4564         UNREACHABLE();
4565     }
4566   } else {
4567     symbol = Handle<Symbol>(Symbol::cast(dictionary->ValueAt(entry)), this);
4568   }
4569   return symbol;
4570 }
4571 
4572 void Isolate::AddBeforeCallEnteredCallback(BeforeCallEnteredCallback callback) {
4573   auto pos = std::find(before_call_entered_callbacks_.begin(),
4574                        before_call_entered_callbacks_.end(), callback);
4575   if (pos != before_call_entered_callbacks_.end()) return;
4576   before_call_entered_callbacks_.push_back(callback);
4577 }
4578 
4579 void Isolate::RemoveBeforeCallEnteredCallback(
4580     BeforeCallEnteredCallback callback) {
4581   auto pos = std::find(before_call_entered_callbacks_.begin(),
4582                        before_call_entered_callbacks_.end(), callback);
4583   if (pos == before_call_entered_callbacks_.end()) return;
4584   before_call_entered_callbacks_.erase(pos);
4585 }
4586 
4587 void Isolate::AddCallCompletedCallback(CallCompletedCallback callback) {
4588   auto pos = std::find(call_completed_callbacks_.begin(),
4589                        call_completed_callbacks_.end(), callback);
4590   if (pos != call_completed_callbacks_.end()) return;
4591   call_completed_callbacks_.push_back(callback);
4592 }
4593 
4594 void Isolate::RemoveCallCompletedCallback(CallCompletedCallback callback) {
4595   auto pos = std::find(call_completed_callbacks_.begin(),
4596                        call_completed_callbacks_.end(), callback);
4597   if (pos == call_completed_callbacks_.end()) return;
4598   call_completed_callbacks_.erase(pos);
4599 }
4600 
4601 void Isolate::FireCallCompletedCallbackInternal(
4602     MicrotaskQueue* microtask_queue) {
4603   DCHECK(thread_local_top()->CallDepthIsZero());
4604 
4605   bool perform_checkpoint =
4606       microtask_queue &&
4607       microtask_queue->microtasks_policy() == v8::MicrotasksPolicy::kAuto;
4608 
4609   v8::Isolate* isolate = reinterpret_cast<v8::Isolate*>(this);
4610   if (perform_checkpoint) microtask_queue->PerformCheckpoint(isolate);
4611 
4612   if (call_completed_callbacks_.empty()) return;
4613   // Fire callbacks.  Increase call depth to prevent recursive callbacks.
4614   v8::Isolate::SuppressMicrotaskExecutionScope suppress(isolate);
4615   std::vector<CallCompletedCallback> callbacks(call_completed_callbacks_);
4616   for (auto& callback : callbacks) {
4617     callback(reinterpret_cast<v8::Isolate*>(this));
4618   }
4619 }
4620 
4621 void Isolate::UpdatePromiseHookProtector() {
4622   if (Protectors::IsPromiseHookIntact(this)) {
4623     HandleScope scope(this);
4624     Protectors::InvalidatePromiseHook(this);
4625   }
4626 }
4627 
4628 void Isolate::PromiseHookStateUpdated() {
4629   promise_hook_flags_ =
4630     (promise_hook_flags_ & PromiseHookFields::HasContextPromiseHook::kMask) |
4631     PromiseHookFields::HasIsolatePromiseHook::encode(promise_hook_) |
4632     PromiseHookFields::HasAsyncEventDelegate::encode(async_event_delegate_) |
4633     PromiseHookFields::IsDebugActive::encode(debug()->is_active());
4634 
4635   if (promise_hook_flags_ != 0) {
4636     UpdatePromiseHookProtector();
4637   }
4638 }
4639 
4640 namespace {
4641 
4642 MaybeHandle<JSPromise> NewRejectedPromise(Isolate* isolate,
4643                                           v8::Local<v8::Context> api_context,
4644                                           Handle<Object> exception) {
4645   v8::Local<v8::Promise::Resolver> resolver;
4646   ASSIGN_RETURN_ON_SCHEDULED_EXCEPTION_VALUE(
4647       isolate, resolver, v8::Promise::Resolver::New(api_context),
4648       MaybeHandle<JSPromise>());
4649 
4650   RETURN_ON_SCHEDULED_EXCEPTION_VALUE(
4651       isolate, resolver->Reject(api_context, v8::Utils::ToLocal(exception)),
4652       MaybeHandle<JSPromise>());
4653 
4654   v8::Local<v8::Promise> promise = resolver->GetPromise();
4655   return v8::Utils::OpenHandle(*promise);
4656 }
4657 
4658 }  // namespace
4659 
4660 MaybeHandle<JSPromise> Isolate::RunHostImportModuleDynamicallyCallback(
4661     Handle<Script> referrer, Handle<Object> specifier,
4662     MaybeHandle<Object> maybe_import_assertions_argument) {
4663   v8::Local<v8::Context> api_context =
4664       v8::Utils::ToLocal(Handle<Context>::cast(native_context()));
4665   if (host_import_module_dynamically_with_import_assertions_callback_ ==
4666           nullptr &&
4667       host_import_module_dynamically_callback_ == nullptr) {
4668     Handle<Object> exception =
4669         factory()->NewError(error_function(), MessageTemplate::kUnsupported);
4670     return NewRejectedPromise(this, api_context, exception);
4671   }
4672 
4673   Handle<String> specifier_str;
4674   MaybeHandle<String> maybe_specifier = Object::ToString(this, specifier);
4675   if (!maybe_specifier.ToHandle(&specifier_str)) {
4676     Handle<Object> exception(pending_exception(), this);
4677     clear_pending_exception();
4678     return NewRejectedPromise(this, api_context, exception);
4679   }
4680   DCHECK(!has_pending_exception());
4681 
4682   v8::Local<v8::Promise> promise;
4683   Handle<FixedArray> import_assertions_array;
4684   if (!GetImportAssertionsFromArgument(maybe_import_assertions_argument)
4685            .ToHandle(&import_assertions_array)) {
4686     Handle<Object> exception(pending_exception(), this);
4687     clear_pending_exception();
4688     return NewRejectedPromise(this, api_context, exception);
4689   }
4690   if (host_import_module_dynamically_callback_) {
4691     ASSIGN_RETURN_ON_SCHEDULED_EXCEPTION_VALUE(
4692         this, promise,
4693         host_import_module_dynamically_callback_(
4694             api_context,
4695             v8::Utils::ToLocal(handle(referrer->host_defined_options(), this)),
4696             v8::Utils::ToLocal(handle(referrer->name(), this)),
4697             v8::Utils::ToLocal(specifier_str),
4698             ToApiHandle<v8::FixedArray>(import_assertions_array)),
4699         MaybeHandle<JSPromise>());
4700   } else {
4701     // TODO(cbruni, v8:12302): Avoid creating tempory ScriptOrModule objects.
4702     auto script_or_module = i::Handle<i::ScriptOrModule>::cast(
4703         this->factory()->NewStruct(i::SCRIPT_OR_MODULE_TYPE));
4704     script_or_module->set_resource_name(referrer->name());
4705     script_or_module->set_host_defined_options(
4706         referrer->host_defined_options());
4707     ASSIGN_RETURN_ON_SCHEDULED_EXCEPTION_VALUE(
4708         this, promise,
4709         host_import_module_dynamically_with_import_assertions_callback_(
4710             api_context, v8::Utils::ToLocal(script_or_module),
4711             v8::Utils::ToLocal(specifier_str),
4712             ToApiHandle<v8::FixedArray>(import_assertions_array)),
4713         MaybeHandle<JSPromise>());
4714   }
4715   return v8::Utils::OpenHandle(*promise);
4716 }
4717 
4718 MaybeHandle<FixedArray> Isolate::GetImportAssertionsFromArgument(
4719     MaybeHandle<Object> maybe_import_assertions_argument) {
4720   Handle<FixedArray> import_assertions_array = factory()->empty_fixed_array();
4721   Handle<Object> import_assertions_argument;
4722   if (!maybe_import_assertions_argument.ToHandle(&import_assertions_argument) ||
4723       import_assertions_argument->IsUndefined()) {
4724     return import_assertions_array;
4725   }
4726 
4727   // The parser shouldn't have allowed the second argument to import() if
4728   // the flag wasn't enabled.
4729   DCHECK(FLAG_harmony_import_assertions || FLAG_harmony_import_attributes);
4730 
4731   if (!import_assertions_argument->IsJSReceiver()) {
4732     this->Throw(
4733         *factory()->NewTypeError(MessageTemplate::kNonObjectImportArgument));
4734     return MaybeHandle<FixedArray>();
4735   }
4736 
4737   Handle<JSReceiver> import_assertions_argument_receiver =
4738       Handle<JSReceiver>::cast(import_assertions_argument);
4739 
4740   Handle<Object> import_assertions_object;
4741 
4742   if (FLAG_harmony_import_attributes) {
4743     Handle<Name> with_key = factory()->with_string();
4744     if (!JSReceiver::GetProperty(this, import_assertions_argument_receiver,
4745                                  with_key)
4746              .ToHandle(&import_assertions_object)) {
4747       // This can happen if the property has a getter function that throws
4748       // an error.
4749       return MaybeHandle<FixedArray>();
4750     }
4751   }
4752 
4753   if (FLAG_harmony_import_assertions &&
4754       (!FLAG_harmony_import_attributes ||
4755        import_assertions_object->IsUndefined())) {
4756     Handle<Name> assert_key = factory()->assert_string();
4757     if (!JSReceiver::GetProperty(this, import_assertions_argument_receiver,
4758                                  assert_key)
4759              .ToHandle(&import_assertions_object)) {
4760       // This can happen if the property has a getter function that throws
4761       // an error.
4762       return MaybeHandle<FixedArray>();
4763     }
4764   }
4765 
4766   // If there is no 'with' or 'assert' option in the options bag, it's not an
4767   // error. Just do the import() as if no assertions were provided.
4768   if (import_assertions_object->IsUndefined()) return import_assertions_array;
4769 
4770   if (!import_assertions_object->IsJSReceiver()) {
4771     this->Throw(
4772         *factory()->NewTypeError(MessageTemplate::kNonObjectAssertOption));
4773     return MaybeHandle<FixedArray>();
4774   }
4775 
4776   Handle<JSReceiver> import_assertions_object_receiver =
4777       Handle<JSReceiver>::cast(import_assertions_object);
4778 
4779   Handle<FixedArray> assertion_keys;
4780   if (!KeyAccumulator::GetKeys(import_assertions_object_receiver,
4781                                KeyCollectionMode::kOwnOnly, ENUMERABLE_STRINGS,
4782                                GetKeysConversion::kConvertToString)
4783            .ToHandle(&assertion_keys)) {
4784     // This happens if the assertions object is a Proxy whose ownKeys() or
4785     // getOwnPropertyDescriptor() trap throws.
4786     return MaybeHandle<FixedArray>();
4787   }
4788 
4789   bool has_non_string_attribute = false;
4790 
4791   // The assertions will be passed to the host in the form: [key1,
4792   // value1, key2, value2, ...].
4793   constexpr size_t kAssertionEntrySizeForDynamicImport = 2;
4794   import_assertions_array = factory()->NewFixedArray(static_cast<int>(
4795       assertion_keys->length() * kAssertionEntrySizeForDynamicImport));
4796   for (int i = 0; i < assertion_keys->length(); i++) {
4797     Handle<String> assertion_key(String::cast(assertion_keys->get(i)), this);
4798     Handle<Object> assertion_value;
4799     if (!Object::GetPropertyOrElement(this, import_assertions_object_receiver,
4800                                       assertion_key)
4801              .ToHandle(&assertion_value)) {
4802       // This can happen if the property has a getter function that throws
4803       // an error.
4804       return MaybeHandle<FixedArray>();
4805     }
4806 
4807     if (!assertion_value->IsString()) {
4808       has_non_string_attribute = true;
4809     }
4810 
4811     import_assertions_array->set((i * kAssertionEntrySizeForDynamicImport),
4812                                  *assertion_key);
4813     import_assertions_array->set((i * kAssertionEntrySizeForDynamicImport) + 1,
4814                                  *assertion_value);
4815   }
4816 
4817   if (has_non_string_attribute) {
4818     this->Throw(*factory()->NewTypeError(
4819         MessageTemplate::kNonStringImportAssertionValue));
4820     return MaybeHandle<FixedArray>();
4821   }
4822 
4823   return import_assertions_array;
4824 }
4825 
4826 void Isolate::ClearKeptObjects() { heap()->ClearKeptObjects(); }
4827 
4828 void Isolate::SetHostImportModuleDynamicallyCallback(
4829     HostImportModuleDynamicallyCallback callback) {
4830   DCHECK_NULL(host_import_module_dynamically_with_import_assertions_callback_);
4831   host_import_module_dynamically_callback_ = callback;
4832 }
4833 
4834 void Isolate::SetHostImportModuleDynamicallyCallback(
4835     HostImportModuleDynamicallyWithImportAssertionsCallback callback) {
4836   DCHECK_NULL(host_import_module_dynamically_callback_);
4837   host_import_module_dynamically_with_import_assertions_callback_ = callback;
4838 }
4839 
4840 MaybeHandle<JSObject> Isolate::RunHostInitializeImportMetaObjectCallback(
4841     Handle<SourceTextModule> module) {
4842   CHECK(module->import_meta(kAcquireLoad).IsTheHole(this));
4843   Handle<JSObject> import_meta = factory()->NewJSObjectWithNullProto();
4844   if (host_initialize_import_meta_object_callback_ != nullptr) {
4845     v8::Local<v8::Context> api_context =
4846         v8::Utils::ToLocal(Handle<Context>(native_context()));
4847     host_initialize_import_meta_object_callback_(
4848         api_context, Utils::ToLocal(Handle<Module>::cast(module)),
4849         v8::Local<v8::Object>::Cast(v8::Utils::ToLocal(import_meta)));
4850     if (has_scheduled_exception()) {
4851       PromoteScheduledException();
4852       return {};
4853     }
4854   }
4855   return import_meta;
4856 }
4857 
4858 void Isolate::SetHostInitializeImportMetaObjectCallback(
4859     HostInitializeImportMetaObjectCallback callback) {
4860   host_initialize_import_meta_object_callback_ = callback;
4861 }
4862 
4863 void Isolate::SetHostCreateShadowRealmContextCallback(
4864     HostCreateShadowRealmContextCallback callback) {
4865   host_create_shadow_realm_context_callback_ = callback;
4866 }
4867 
4868 MaybeHandle<NativeContext> Isolate::RunHostCreateShadowRealmContextCallback() {
4869   if (host_create_shadow_realm_context_callback_ == nullptr) {
4870     Handle<Object> exception =
4871         factory()->NewError(error_function(), MessageTemplate::kUnsupported);
4872     Throw(*exception);
4873     return kNullMaybeHandle;
4874   }
4875 
4876   v8::Local<v8::Context> api_context =
4877       v8::Utils::ToLocal(Handle<Context>(native_context()));
4878   v8::Local<v8::Context> shadow_realm_context;
4879   ASSIGN_RETURN_ON_SCHEDULED_EXCEPTION_VALUE(
4880       this, shadow_realm_context,
4881       host_create_shadow_realm_context_callback_(api_context),
4882       MaybeHandle<NativeContext>());
4883   Handle<Context> shadow_realm_context_handle =
4884       v8::Utils::OpenHandle(*shadow_realm_context);
4885   DCHECK(shadow_realm_context_handle->IsNativeContext());
4886   return Handle<NativeContext>::cast(shadow_realm_context_handle);
4887 }
4888 
4889 MaybeHandle<Object> Isolate::RunPrepareStackTraceCallback(
4890     Handle<Context> context, Handle<JSObject> error, Handle<JSArray> sites) {
4891   v8::Local<v8::Context> api_context = Utils::ToLocal(context);
4892 
4893   v8::Local<v8::Value> stack;
4894   ASSIGN_RETURN_ON_SCHEDULED_EXCEPTION_VALUE(
4895       this, stack,
4896       prepare_stack_trace_callback_(api_context, Utils::ToLocal(error),
4897                                     Utils::ToLocal(sites)),
4898       MaybeHandle<Object>());
4899   return Utils::OpenHandle(*stack);
4900 }
4901 
4902 int Isolate::LookupOrAddExternallyCompiledFilename(const char* filename) {
4903   if (embedded_file_writer_ != nullptr) {
4904     return embedded_file_writer_->LookupOrAddExternallyCompiledFilename(
4905         filename);
4906   }
4907   return 0;
4908 }
4909 
4910 const char* Isolate::GetExternallyCompiledFilename(int index) const {
4911   if (embedded_file_writer_ != nullptr) {
4912     return embedded_file_writer_->GetExternallyCompiledFilename(index);
4913   }
4914   return "";
4915 }
4916 
4917 int Isolate::GetExternallyCompiledFilenameCount() const {
4918   if (embedded_file_writer_ != nullptr) {
4919     return embedded_file_writer_->GetExternallyCompiledFilenameCount();
4920   }
4921   return 0;
4922 }
4923 
4924 void Isolate::PrepareBuiltinSourcePositionMap() {
4925   if (embedded_file_writer_ != nullptr) {
4926     return embedded_file_writer_->PrepareBuiltinSourcePositionMap(
4927         this->builtins());
4928   }
4929 }
4930 
4931 void Isolate::PrepareBuiltinLabelInfoMap() {
4932   if (embedded_file_writer_ != nullptr) {
4933     embedded_file_writer_->PrepareBuiltinLabelInfoMap(
4934         heap()->construct_stub_create_deopt_pc_offset().value(),
4935         heap()->construct_stub_invoke_deopt_pc_offset().value());
4936   }
4937 }
4938 
4939 #if defined(V8_OS_WIN64)
4940 void Isolate::SetBuiltinUnwindData(
4941     Builtin builtin,
4942     const win64_unwindinfo::BuiltinUnwindInfo& unwinding_info) {
4943   if (embedded_file_writer_ != nullptr) {
4944     embedded_file_writer_->SetBuiltinUnwindData(builtin, unwinding_info);
4945   }
4946 }
4947 #endif  // V8_OS_WIN64
4948 
4949 void Isolate::SetPrepareStackTraceCallback(PrepareStackTraceCallback callback) {
4950   prepare_stack_trace_callback_ = callback;
4951 }
4952 
4953 bool Isolate::HasPrepareStackTraceCallback() const {
4954   return prepare_stack_trace_callback_ != nullptr;
4955 }
4956 
4957 void Isolate::SetAddCrashKeyCallback(AddCrashKeyCallback callback) {
4958   add_crash_key_callback_ = callback;
4959 
4960   // Log the initial set of data.
4961   AddCrashKeysForIsolateAndHeapPointers();
4962 }
4963 
4964 void Isolate::SetAtomicsWaitCallback(v8::Isolate::AtomicsWaitCallback callback,
4965                                      void* data) {
4966   atomics_wait_callback_ = callback;
4967   atomics_wait_callback_data_ = data;
4968 }
4969 
4970 void Isolate::RunAtomicsWaitCallback(v8::Isolate::AtomicsWaitEvent event,
4971                                      Handle<JSArrayBuffer> array_buffer,
4972                                      size_t offset_in_bytes, int64_t value,
4973                                      double timeout_in_ms,
4974                                      AtomicsWaitWakeHandle* stop_handle) {
4975   DCHECK(array_buffer->is_shared());
4976   if (atomics_wait_callback_ == nullptr) return;
4977   HandleScope handle_scope(this);
4978   atomics_wait_callback_(
4979       event, v8::Utils::ToLocalShared(array_buffer), offset_in_bytes, value,
4980       timeout_in_ms,
4981       reinterpret_cast<v8::Isolate::AtomicsWaitWakeHandle*>(stop_handle),
4982       atomics_wait_callback_data_);
4983 }
4984 
4985 void Isolate::SetPromiseHook(PromiseHook hook) {
4986   promise_hook_ = hook;
4987   PromiseHookStateUpdated();
4988 }
4989 
4990 void Isolate::RunAllPromiseHooks(PromiseHookType type,
4991                                  Handle<JSPromise> promise,
4992                                  Handle<Object> parent) {
4993 #ifdef V8_ENABLE_JAVASCRIPT_PROMISE_HOOKS
4994   if (HasContextPromiseHooks()) {
4995     native_context()->RunPromiseHook(type, promise, parent);
4996   }
4997 #endif
4998   if (HasIsolatePromiseHooks() || HasAsyncEventDelegate()) {
4999     RunPromiseHook(type, promise, parent);
5000   }
5001 }
5002 
5003 void Isolate::RunPromiseHook(PromiseHookType type, Handle<JSPromise> promise,
5004                              Handle<Object> parent) {
5005   if (!HasIsolatePromiseHooks()) return;
5006   DCHECK(promise_hook_ != nullptr);
5007   promise_hook_(type, v8::Utils::PromiseToLocal(promise),
5008                 v8::Utils::ToLocal(parent));
5009 }
5010 
5011 void Isolate::OnAsyncFunctionSuspended(Handle<JSPromise> promise,
5012                                        Handle<JSPromise> parent) {
5013   DCHECK_EQ(0, promise->async_task_id());
5014   RunAllPromiseHooks(PromiseHookType::kInit, promise, parent);
5015   if (HasAsyncEventDelegate()) {
5016     DCHECK_NE(nullptr, async_event_delegate_);
5017     promise->set_async_task_id(++async_task_count_);
5018     async_event_delegate_->AsyncEventOccurred(debug::kDebugAwait,
5019                                               promise->async_task_id(), false);
5020   }
5021   if (debug()->is_active()) {
5022     // We are about to suspend execution of the current async function,
5023     // so pop the outer promise from the isolate's promise stack.
5024     PopPromise();
5025   }
5026 }
5027 
5028 void Isolate::OnPromiseThen(Handle<JSPromise> promise) {
5029   if (!HasAsyncEventDelegate()) return;
5030   Maybe<debug::DebugAsyncActionType> action_type =
5031       Nothing<debug::DebugAsyncActionType>();
5032   for (JavaScriptFrameIterator it(this); !it.done(); it.Advance()) {
5033     std::vector<Handle<SharedFunctionInfo>> infos;
5034     it.frame()->GetFunctions(&infos);
5035     for (auto it = infos.rbegin(); it != infos.rend(); ++it) {
5036       Handle<SharedFunctionInfo> info = *it;
5037       if (info->HasBuiltinId()) {
5038         // We should not report PromiseThen and PromiseCatch which is called
5039         // indirectly, e.g. Promise.all calls Promise.then internally.
5040         switch (info->builtin_id()) {
5041           case Builtin::kPromisePrototypeCatch:
5042             action_type = Just(debug::kDebugPromiseCatch);
5043             continue;
5044           case Builtin::kPromisePrototypeFinally:
5045             action_type = Just(debug::kDebugPromiseFinally);
5046             continue;
5047           case Builtin::kPromisePrototypeThen:
5048             action_type = Just(debug::kDebugPromiseThen);
5049             continue;
5050           default:
5051             return;
5052         }
5053       }
5054       if (info->IsUserJavaScript() && action_type.IsJust()) {
5055         DCHECK_EQ(0, promise->async_task_id());
5056         promise->set_async_task_id(++async_task_count_);
5057         async_event_delegate_->AsyncEventOccurred(action_type.FromJust(),
5058                                                   promise->async_task_id(),
5059                                                   debug()->IsBlackboxed(info));
5060       }
5061       return;
5062     }
5063   }
5064 }
5065 
5066 void Isolate::OnPromiseBefore(Handle<JSPromise> promise) {
5067   RunPromiseHook(PromiseHookType::kBefore, promise,
5068                  factory()->undefined_value());
5069   if (HasAsyncEventDelegate()) {
5070     if (promise->async_task_id()) {
5071       async_event_delegate_->AsyncEventOccurred(
5072           debug::kDebugWillHandle, promise->async_task_id(), false);
5073     }
5074   }
5075   if (debug()->is_active()) PushPromise(promise);
5076 }
5077 
5078 void Isolate::OnPromiseAfter(Handle<JSPromise> promise) {
5079   RunPromiseHook(PromiseHookType::kAfter, promise,
5080                  factory()->undefined_value());
5081   if (HasAsyncEventDelegate()) {
5082     if (promise->async_task_id()) {
5083       async_event_delegate_->AsyncEventOccurred(
5084           debug::kDebugDidHandle, promise->async_task_id(), false);
5085     }
5086   }
5087   if (debug()->is_active()) PopPromise();
5088 }
5089 
5090 void Isolate::OnTerminationDuringRunMicrotasks() {
5091   // This performs cleanup for when RunMicrotasks (in
5092   // builtins-microtask-queue-gen.cc) is aborted via a termination exception.
5093   // This has to be kept in sync with the code in said file. Currently this
5094   // includes:
5095   //
5096   //  (1) Resetting the |current_microtask| slot on the Isolate to avoid leaking
5097   //      memory (and also to keep |current_microtask| not being undefined as an
5098   //      indicator that we're currently pumping the microtask queue).
5099   //  (2) Empty the promise stack to avoid leaking memory.
5100   //  (3) If the |current_microtask| is a promise reaction or resolve thenable
5101   //      job task, then signal the async event delegate and debugger that the
5102   //      microtask finished running.
5103   //
5104 
5105   // Reset the |current_microtask| global slot.
5106   Handle<Microtask> current_microtask(
5107       Microtask::cast(heap()->current_microtask()), this);
5108   heap()->set_current_microtask(ReadOnlyRoots(this).undefined_value());
5109 
5110   // Empty the promise stack.
5111   debug()->thread_local_.promise_stack_ = Smi::zero();
5112 
5113   if (current_microtask->IsPromiseReactionJobTask()) {
5114     Handle<PromiseReactionJobTask> promise_reaction_job_task =
5115         Handle<PromiseReactionJobTask>::cast(current_microtask);
5116     Handle<HeapObject> promise_or_capability(
5117         promise_reaction_job_task->promise_or_capability(), this);
5118     if (promise_or_capability->IsPromiseCapability()) {
5119       promise_or_capability = handle(
5120           Handle<PromiseCapability>::cast(promise_or_capability)->promise(),
5121           this);
5122     }
5123     if (promise_or_capability->IsJSPromise()) {
5124       OnPromiseAfter(Handle<JSPromise>::cast(promise_or_capability));
5125     }
5126   } else if (current_microtask->IsPromiseResolveThenableJobTask()) {
5127     Handle<PromiseResolveThenableJobTask> promise_resolve_thenable_job_task =
5128         Handle<PromiseResolveThenableJobTask>::cast(current_microtask);
5129     Handle<JSPromise> promise_to_resolve(
5130         promise_resolve_thenable_job_task->promise_to_resolve(), this);
5131     OnPromiseAfter(promise_to_resolve);
5132   }
5133 
5134   SetTerminationOnExternalTryCatch();
5135 }
5136 
5137 void Isolate::SetPromiseRejectCallback(PromiseRejectCallback callback) {
5138   promise_reject_callback_ = callback;
5139 }
5140 
5141 void Isolate::ReportPromiseReject(Handle<JSPromise> promise,
5142                                   Handle<Object> value,
5143                                   v8::PromiseRejectEvent event) {
5144   if (promise_reject_callback_ == nullptr) return;
5145   promise_reject_callback_(v8::PromiseRejectMessage(
5146       v8::Utils::PromiseToLocal(promise), event, v8::Utils::ToLocal(value)));
5147 }
5148 
5149 void Isolate::SetUseCounterCallback(v8::Isolate::UseCounterCallback callback) {
5150   DCHECK(!use_counter_callback_);
5151   use_counter_callback_ = callback;
5152 }
5153 
5154 void Isolate::CountUsage(v8::Isolate::UseCounterFeature feature) {
5155   // The counter callback
5156   // - may cause the embedder to call into V8, which is not generally possible
5157   //   during GC.
5158   // - requires a current native context, which may not always exist.
5159   // TODO(jgruber): Consider either removing the native context requirement in
5160   // blink, or passing it to the callback explicitly.
5161   if (heap_.gc_state() == Heap::NOT_IN_GC && !context().is_null()) {
5162     DCHECK(context().IsContext());
5163     DCHECK(context().native_context().IsNativeContext());
5164     if (use_counter_callback_) {
5165       HandleScope handle_scope(this);
5166       use_counter_callback_(reinterpret_cast<v8::Isolate*>(this), feature);
5167     }
5168   } else {
5169     heap_.IncrementDeferredCount(feature);
5170   }
5171 }
5172 
5173 void Isolate::CountUsage(v8::Isolate::UseCounterFeature feature, int count) {
5174   for (int i = 0; i < count; ++i) {
5175     CountUsage(feature);
5176   }
5177 }
5178 
5179 int Isolate::GetNextScriptId() { return heap()->NextScriptId(); }
5180 
5181 // static
5182 std::string Isolate::GetTurboCfgFileName(Isolate* isolate) {
5183   if (FLAG_trace_turbo_cfg_file == nullptr) {
5184     std::ostringstream os;
5185     os << "turbo-" << base::OS::GetCurrentProcessId() << "-";
5186     if (isolate != nullptr) {
5187       os << isolate->id();
5188     } else {
5189       os << "any";
5190     }
5191     os << ".cfg";
5192     return os.str();
5193   } else {
5194     return FLAG_trace_turbo_cfg_file;
5195   }
5196 }
5197 
5198 // Heap::detached_contexts tracks detached contexts as pairs
5199 // (number of GC since the context was detached, the context).
5200 void Isolate::AddDetachedContext(Handle<Context> context) {
5201   HandleScope scope(this);
5202   Handle<WeakArrayList> detached_contexts = factory()->detached_contexts();
5203   detached_contexts = WeakArrayList::AddToEnd(
5204       this, detached_contexts, MaybeObjectHandle(Smi::zero(), this),
5205       MaybeObjectHandle::Weak(context));
5206   heap()->set_detached_contexts(*detached_contexts);
5207 }
5208 
5209 void Isolate::CheckDetachedContextsAfterGC() {
5210   HandleScope scope(this);
5211   Handle<WeakArrayList> detached_contexts = factory()->detached_contexts();
5212   int length = detached_contexts->length();
5213   if (length == 0) return;
5214   int new_length = 0;
5215   for (int i = 0; i < length; i += 2) {
5216     int mark_sweeps = detached_contexts->Get(i).ToSmi().value();
5217     MaybeObject context = detached_contexts->Get(i + 1);
5218     DCHECK(context->IsWeakOrCleared());
5219     if (!context->IsCleared()) {
5220       detached_contexts->Set(
5221           new_length, MaybeObject::FromSmi(Smi::FromInt(mark_sweeps + 1)));
5222       detached_contexts->Set(new_length + 1, context);
5223       new_length += 2;
5224     }
5225   }
5226   detached_contexts->set_length(new_length);
5227   while (new_length < length) {
5228     detached_contexts->Set(new_length, MaybeObject::FromSmi(Smi::zero()));
5229     ++new_length;
5230   }
5231 
5232   if (FLAG_trace_detached_contexts) {
5233     PrintF("%d detached contexts are collected out of %d\n",
5234            length - new_length, length);
5235     for (int i = 0; i < new_length; i += 2) {
5236       int mark_sweeps = detached_contexts->Get(i).ToSmi().value();
5237       MaybeObject context = detached_contexts->Get(i + 1);
5238       DCHECK(context->IsWeakOrCleared());
5239       if (mark_sweeps > 3) {
5240         PrintF("detached context %p\n survived %d GCs (leak?)\n",
5241                reinterpret_cast<void*>(context.ptr()), mark_sweeps);
5242       }
5243     }
5244   }
5245 }
5246 
5247 void Isolate::DetachGlobal(Handle<Context> env) {
5248   counters()->errors_thrown_per_context()->AddSample(
5249       env->native_context().GetErrorsThrown());
5250 
5251   ReadOnlyRoots roots(this);
5252   Handle<JSGlobalProxy> global_proxy(env->global_proxy(), this);
5253   global_proxy->set_native_context(roots.null_value());
5254   // NOTE: Turbofan's JSNativeContextSpecialization depends on DetachGlobal
5255   // causing a map change.
5256   JSObject::ForceSetPrototype(this, global_proxy, factory()->null_value());
5257   global_proxy->map().set_constructor_or_back_pointer(roots.null_value(),
5258                                                       kRelaxedStore);
5259   if (FLAG_track_detached_contexts) AddDetachedContext(env);
5260   DCHECK(global_proxy->IsDetached());
5261 
5262   env->native_context().set_microtask_queue(this, nullptr);
5263 }
5264 
5265 double Isolate::LoadStartTimeMs() {
5266   base::MutexGuard guard(&rail_mutex_);
5267   return load_start_time_ms_;
5268 }
5269 
5270 void Isolate::UpdateLoadStartTime() {
5271   base::MutexGuard guard(&rail_mutex_);
5272   load_start_time_ms_ = heap()->MonotonicallyIncreasingTimeInMs();
5273 }
5274 
5275 void Isolate::SetRAILMode(RAILMode rail_mode) {
5276   RAILMode old_rail_mode = rail_mode_.load();
5277   if (old_rail_mode != PERFORMANCE_LOAD && rail_mode == PERFORMANCE_LOAD) {
5278     base::MutexGuard guard(&rail_mutex_);
5279     load_start_time_ms_ = heap()->MonotonicallyIncreasingTimeInMs();
5280   }
5281   rail_mode_.store(rail_mode);
5282   if (old_rail_mode == PERFORMANCE_LOAD && rail_mode != PERFORMANCE_LOAD) {
5283     heap()->incremental_marking()->incremental_marking_job()->ScheduleTask(
5284         heap());
5285   }
5286   if (FLAG_trace_rail) {
5287     PrintIsolate(this, "RAIL mode: %s\n", RAILModeName(rail_mode));
5288   }
5289 }
5290 
5291 void Isolate::IsolateInBackgroundNotification() {
5292   is_isolate_in_background_ = true;
5293   heap()->ActivateMemoryReducerIfNeeded();
5294 }
5295 
5296 void Isolate::IsolateInForegroundNotification() {
5297   is_isolate_in_background_ = false;
5298 }
5299 
5300 void Isolate::PrintWithTimestamp(const char* format, ...) {
5301   base::OS::Print("[%d:%p] %8.0f ms: ", base::OS::GetCurrentProcessId(),
5302                   static_cast<void*>(this), time_millis_since_init());
5303   va_list arguments;
5304   va_start(arguments, format);
5305   base::OS::VPrint(format, arguments);
5306   va_end(arguments);
5307 }
5308 
5309 void Isolate::SetIdle(bool is_idle) {
5310   StateTag state = current_vm_state();
5311   if (js_entry_sp() != kNullAddress) return;
5312   DCHECK(state == EXTERNAL || state == IDLE);
5313   if (is_idle) {
5314     set_current_vm_state(IDLE);
5315   } else if (state == IDLE) {
5316     set_current_vm_state(EXTERNAL);
5317   }
5318 }
5319 
5320 void Isolate::CollectSourcePositionsForAllBytecodeArrays() {
5321   if (!initialized_) return;
5322 
5323   HandleScope scope(this);
5324   std::vector<Handle<SharedFunctionInfo>> sfis;
5325   {
5326     HeapObjectIterator iterator(heap());
5327     for (HeapObject obj = iterator.Next(); !obj.is_null();
5328          obj = iterator.Next()) {
5329       if (!obj.IsSharedFunctionInfo()) continue;
5330       SharedFunctionInfo sfi = SharedFunctionInfo::cast(obj);
5331       if (!sfi.CanCollectSourcePosition(this)) continue;
5332       sfis.push_back(Handle<SharedFunctionInfo>(sfi, this));
5333     }
5334   }
5335   for (auto sfi : sfis) {
5336     SharedFunctionInfo::EnsureSourcePositionsAvailable(this, sfi);
5337   }
5338 }
5339 
5340 #ifdef V8_INTL_SUPPORT
5341 
5342 namespace {
5343 
5344 std::string GetStringFromLocales(Isolate* isolate, Handle<Object> locales) {
5345   if (locales->IsUndefined(isolate)) return "";
5346   return std::string(String::cast(*locales).ToCString().get());
5347 }
5348 
5349 bool StringEqualsLocales(Isolate* isolate, const std::string& str,
5350                          Handle<Object> locales) {
5351   if (locales->IsUndefined(isolate)) return str == "";
5352   return Handle<String>::cast(locales)->IsEqualTo(
5353       base::VectorOf(str.c_str(), str.length()));
5354 }
5355 
5356 }  // namespace
5357 
5358 const std::string& Isolate::DefaultLocale() {
5359   if (default_locale_.empty()) {
5360     icu::Locale default_locale;
5361     // Translate ICU's fallback locale to a well-known locale.
5362     if (strcmp(default_locale.getName(), "en_US_POSIX") == 0 ||
5363         strcmp(default_locale.getName(), "c") == 0) {
5364       set_default_locale("en-US");
5365     } else {
5366       // Set the locale
5367       set_default_locale(default_locale.isBogus()
5368                              ? "und"
5369                              : Intl::ToLanguageTag(default_locale).FromJust());
5370     }
5371     DCHECK(!default_locale_.empty());
5372   }
5373   return default_locale_;
5374 }
5375 
5376 void Isolate::ResetDefaultLocale() {
5377   default_locale_.clear();
5378   clear_cached_icu_objects();
5379   // We inline fast paths assuming certain locales. Since this path is rarely
5380   // taken, we deoptimize everything to keep things simple.
5381   Deoptimizer::DeoptimizeAll(this);
5382 }
5383 
5384 icu::UMemory* Isolate::get_cached_icu_object(ICUObjectCacheType cache_type,
5385                                              Handle<Object> locales) {
5386   const ICUObjectCacheEntry& entry =
5387       icu_object_cache_[static_cast<int>(cache_type)];
5388   return StringEqualsLocales(this, entry.locales, locales) ? entry.obj.get()
5389                                                            : nullptr;
5390 }
5391 
5392 void Isolate::set_icu_object_in_cache(ICUObjectCacheType cache_type,
5393                                       Handle<Object> locales,
5394                                       std::shared_ptr<icu::UMemory> obj) {
5395   icu_object_cache_[static_cast<int>(cache_type)] = {
5396       GetStringFromLocales(this, locales), std::move(obj)};
5397 }
5398 
5399 void Isolate::clear_cached_icu_object(ICUObjectCacheType cache_type) {
5400   icu_object_cache_[static_cast<int>(cache_type)] = ICUObjectCacheEntry{};
5401 }
5402 
5403 void Isolate::clear_cached_icu_objects() {
5404   for (int i = 0; i < kICUObjectCacheTypeCount; i++) {
5405     clear_cached_icu_object(static_cast<ICUObjectCacheType>(i));
5406   }
5407 }
5408 
5409 #endif  // V8_INTL_SUPPORT
5410 
5411 bool StackLimitCheck::JsHasOverflowed(uintptr_t gap) const {
5412   StackGuard* stack_guard = isolate_->stack_guard();
5413 #ifdef USE_SIMULATOR
5414   // The simulator uses a separate JS stack.
5415   Address jssp_address = Simulator::current(isolate_)->get_sp();
5416   uintptr_t jssp = static_cast<uintptr_t>(jssp_address);
5417   if (jssp - gap < stack_guard->real_jslimit()) return true;
5418 #endif  // USE_SIMULATOR
5419   return GetCurrentStackPosition() - gap < stack_guard->real_climit();
5420 }
5421 
5422 SaveContext::SaveContext(Isolate* isolate) : isolate_(isolate) {
5423   if (!isolate->context().is_null()) {
5424     context_ = Handle<Context>(isolate->context(), isolate);
5425   }
5426 
5427   c_entry_fp_ = isolate->c_entry_fp(isolate->thread_local_top());
5428 }
5429 
5430 SaveContext::~SaveContext() {
5431   isolate_->set_context(context_.is_null() ? Context() : *context_);
5432 }
5433 
5434 bool SaveContext::IsBelowFrame(CommonFrame* frame) {
5435   return (c_entry_fp_ == 0) || (c_entry_fp_ > frame->sp());
5436 }
5437 
5438 SaveAndSwitchContext::SaveAndSwitchContext(Isolate* isolate,
5439                                            Context new_context)
5440     : SaveContext(isolate) {
5441   isolate->set_context(new_context);
5442 }
5443 
5444 #ifdef DEBUG
5445 AssertNoContextChange::AssertNoContextChange(Isolate* isolate)
5446     : isolate_(isolate), context_(isolate->context(), isolate) {}
5447 
5448 namespace {
5449 
5450 bool Overlapping(const MemoryRange& a, const MemoryRange& b) {
5451   uintptr_t a1 = reinterpret_cast<uintptr_t>(a.start);
5452   uintptr_t a2 = a1 + a.length_in_bytes;
5453   uintptr_t b1 = reinterpret_cast<uintptr_t>(b.start);
5454   uintptr_t b2 = b1 + b.length_in_bytes;
5455   // Either b1 or b2 are in the [a1, a2) range.
5456   return (a1 <= b1 && b1 < a2) || (a1 <= b2 && b2 < a2);
5457 }
5458 
5459 }  // anonymous namespace
5460 
5461 #endif  // DEBUG
5462 
5463 void Isolate::AddCodeMemoryRange(MemoryRange range) {
5464   base::MutexGuard guard(&code_pages_mutex_);
5465   std::vector<MemoryRange>* old_code_pages = GetCodePages();
5466   DCHECK_NOT_NULL(old_code_pages);
5467 #ifdef DEBUG
5468   auto overlapping = [range](const MemoryRange& a) {
5469     return Overlapping(range, a);
5470   };
5471   DCHECK_EQ(old_code_pages->end(),
5472             std::find_if(old_code_pages->begin(), old_code_pages->end(),
5473                          overlapping));
5474 #endif
5475 
5476   std::vector<MemoryRange>* new_code_pages;
5477   if (old_code_pages == &code_pages_buffer1_) {
5478     new_code_pages = &code_pages_buffer2_;
5479   } else {
5480     new_code_pages = &code_pages_buffer1_;
5481   }
5482 
5483   // Copy all existing data from the old vector to the new vector and insert the
5484   // new page.
5485   new_code_pages->clear();
5486   new_code_pages->reserve(old_code_pages->size() + 1);
5487   std::merge(old_code_pages->begin(), old_code_pages->end(), &range, &range + 1,
5488              std::back_inserter(*new_code_pages),
5489              [](const MemoryRange& a, const MemoryRange& b) {
5490                return a.start < b.start;
5491              });
5492 
5493   // Atomically switch out the pointer
5494   SetCodePages(new_code_pages);
5495 }
5496 
5497 // |chunk| is either a Page or an executable LargePage.
5498 void Isolate::AddCodeMemoryChunk(MemoryChunk* chunk) {
5499   // We only keep track of individual code pages/allocations if we are on arm32,
5500   // because on x64 and arm64 we have a code range which makes this unnecessary.
5501 #if !defined(V8_TARGET_ARCH_ARM)
5502   return;
5503 #else
5504   void* new_page_start = reinterpret_cast<void*>(chunk->area_start());
5505   size_t new_page_size = chunk->area_size();
5506 
5507   MemoryRange new_range{new_page_start, new_page_size};
5508 
5509   AddCodeMemoryRange(new_range);
5510 #endif  // !defined(V8_TARGET_ARCH_ARM)
5511 }
5512 
5513 void Isolate::AddCodeRange(Address begin, size_t length_in_bytes) {
5514   AddCodeMemoryRange(
5515       MemoryRange{reinterpret_cast<void*>(begin), length_in_bytes});
5516 }
5517 
5518 bool Isolate::RequiresCodeRange() const {
5519   return kPlatformRequiresCodeRange && !jitless_;
5520 }
5521 
5522 v8::metrics::Recorder::ContextId Isolate::GetOrRegisterRecorderContextId(
5523     Handle<NativeContext> context) {
5524   if (serializer_enabled_) return v8::metrics::Recorder::ContextId::Empty();
5525   i::Object id = context->recorder_context_id();
5526   if (id.IsNullOrUndefined()) {
5527     CHECK_LT(last_recorder_context_id_, i::Smi::kMaxValue);
5528     context->set_recorder_context_id(
5529         i::Smi::FromIntptr(++last_recorder_context_id_));
5530     v8::HandleScope handle_scope(reinterpret_cast<v8::Isolate*>(this));
5531     auto result = recorder_context_id_map_.emplace(
5532         std::piecewise_construct,
5533         std::forward_as_tuple(last_recorder_context_id_),
5534         std::forward_as_tuple(reinterpret_cast<v8::Isolate*>(this),
5535                               ToApiHandle<v8::Context>(context)));
5536     result.first->second.SetWeak(
5537         reinterpret_cast<void*>(last_recorder_context_id_),
5538         RemoveContextIdCallback, v8::WeakCallbackType::kParameter);
5539     return v8::metrics::Recorder::ContextId(last_recorder_context_id_);
5540   } else {
5541     DCHECK(id.IsSmi());
5542     return v8::metrics::Recorder::ContextId(
5543         static_cast<uintptr_t>(i::Smi::ToInt(id)));
5544   }
5545 }
5546 
5547 MaybeLocal<v8::Context> Isolate::GetContextFromRecorderContextId(
5548     v8::metrics::Recorder::ContextId id) {
5549   auto result = recorder_context_id_map_.find(id.id_);
5550   if (result == recorder_context_id_map_.end() || result->second.IsEmpty())
5551     return MaybeLocal<v8::Context>();
5552   return result->second.Get(reinterpret_cast<v8::Isolate*>(this));
5553 }
5554 
5555 void Isolate::UpdateLongTaskStats() {
5556   if (last_long_task_stats_counter_ != isolate_data_.long_task_stats_counter_) {
5557     last_long_task_stats_counter_ = isolate_data_.long_task_stats_counter_;
5558     long_task_stats_ = v8::metrics::LongTaskStats{};
5559   }
5560 }
5561 
5562 v8::metrics::LongTaskStats* Isolate::GetCurrentLongTaskStats() {
5563   UpdateLongTaskStats();
5564   return &long_task_stats_;
5565 }
5566 
5567 void Isolate::RemoveContextIdCallback(const v8::WeakCallbackInfo<void>& data) {
5568   Isolate* isolate = reinterpret_cast<Isolate*>(data.GetIsolate());
5569   uintptr_t context_id = reinterpret_cast<uintptr_t>(data.GetParameter());
5570   isolate->recorder_context_id_map_.erase(context_id);
5571 }
5572 
5573 LocalHeap* Isolate::main_thread_local_heap() {
5574   return main_thread_local_isolate()->heap();
5575 }
5576 
5577 LocalHeap* Isolate::CurrentLocalHeap() {
5578   LocalHeap* local_heap = LocalHeap::Current();
5579   return local_heap ? local_heap : main_thread_local_heap();
5580 }
5581 
5582 // |chunk| is either a Page or an executable LargePage.
5583 void Isolate::RemoveCodeMemoryChunk(MemoryChunk* chunk) {
5584   // We only keep track of individual code pages/allocations if we are on arm32,
5585   // because on x64 and arm64 we have a code range which makes this unnecessary.
5586 #if !defined(V8_TARGET_ARCH_ARM)
5587   return;
5588 #else
5589   void* removed_page_start = reinterpret_cast<void*>(chunk->area_start());
5590   std::vector<MemoryRange>* old_code_pages = GetCodePages();
5591   DCHECK_NOT_NULL(old_code_pages);
5592 
5593   std::vector<MemoryRange>* new_code_pages;
5594   if (old_code_pages == &code_pages_buffer1_) {
5595     new_code_pages = &code_pages_buffer2_;
5596   } else {
5597     new_code_pages = &code_pages_buffer1_;
5598   }
5599 
5600   // Copy all existing data from the old vector to the new vector except the
5601   // removed page.
5602   new_code_pages->clear();
5603   new_code_pages->reserve(old_code_pages->size() - 1);
5604   std::remove_copy_if(old_code_pages->begin(), old_code_pages->end(),
5605                       std::back_inserter(*new_code_pages),
5606                       [removed_page_start](const MemoryRange& range) {
5607                         return range.start == removed_page_start;
5608                       });
5609   DCHECK_EQ(old_code_pages->size(), new_code_pages->size() + 1);
5610   // Atomically switch out the pointer
5611   SetCodePages(new_code_pages);
5612 #endif  // !defined(V8_TARGET_ARCH_ARM)
5613 }
5614 
5615 #undef TRACE_ISOLATE
5616 
5617 // static
5618 Address Isolate::load_from_stack_count_address(const char* function_name) {
5619   DCHECK_NOT_NULL(function_name);
5620   if (!stack_access_count_map) {
5621     stack_access_count_map = new MapOfLoadsAndStoresPerFunction{};
5622   }
5623   auto& map = *stack_access_count_map;
5624   std::string name(function_name);
5625   // It is safe to return the address of std::map values.
5626   // Only iterators and references to the erased elements are invalidated.
5627   return reinterpret_cast<Address>(&map[name].first);
5628 }
5629 
5630 // static
5631 Address Isolate::store_to_stack_count_address(const char* function_name) {
5632   DCHECK_NOT_NULL(function_name);
5633   if (!stack_access_count_map) {
5634     stack_access_count_map = new MapOfLoadsAndStoresPerFunction{};
5635   }
5636   auto& map = *stack_access_count_map;
5637   std::string name(function_name);
5638   // It is safe to return the address of std::map values.
5639   // Only iterators and references to the erased elements are invalidated.
5640   return reinterpret_cast<Address>(&map[name].second);
5641 }
5642 
5643 void Isolate::AttachToSharedIsolate() {
5644   DCHECK(!attached_to_shared_isolate_);
5645 
5646   if (shared_isolate_) {
5647     DCHECK(shared_isolate_->is_shared());
5648     shared_isolate_->global_safepoint()->AppendClient(this);
5649   }
5650 
5651 #if DEBUG
5652   attached_to_shared_isolate_ = true;
5653 #endif  // DEBUG
5654 }
5655 
5656 void Isolate::DetachFromSharedIsolate() {
5657   DCHECK(attached_to_shared_isolate_);
5658 
5659   if (shared_isolate_) {
5660     shared_isolate_->global_safepoint()->RemoveClient(this);
5661     shared_isolate_ = nullptr;
5662   }
5663 
5664 #if DEBUG
5665   attached_to_shared_isolate_ = false;
5666 #endif  // DEBUG
5667 }
5668 
5669 }  // namespace internal
5670 }  // namespace v8
5671