1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/ast/scopes.h"
6
7 #include <set>
8
9 #include "src/ast/ast.h"
10 #include "src/base/logging.h"
11 #include "src/base/optional.h"
12 #include "src/builtins/accessors.h"
13 #include "src/common/message-template.h"
14 #include "src/heap/local-factory-inl.h"
15 #include "src/init/bootstrapper.h"
16 #include "src/logging/runtime-call-stats-scope.h"
17 #include "src/objects/module-inl.h"
18 #include "src/objects/objects-inl.h"
19 #include "src/objects/scope-info.h"
20 #include "src/objects/string-set-inl.h"
21 #include "src/parsing/parse-info.h"
22 #include "src/parsing/parser.h"
23 #include "src/parsing/preparse-data.h"
24 #include "src/zone/zone-list-inl.h"
25 #include "src/zone/zone.h"
26
27 namespace v8 {
28 namespace internal {
29
30 // ----------------------------------------------------------------------------
31 // Implementation of LocalsMap
32 //
33 // Note: We are storing the handle locations as key values in the hash map.
34 // When inserting a new variable via Declare(), we rely on the fact that
35 // the handle location remains alive for the duration of that variable
36 // use. Because a Variable holding a handle with the same location exists
37 // this is ensured.
38
39 static_assert(sizeof(VariableMap) == (sizeof(void*) + 2 * sizeof(uint32_t) +
40 sizeof(ZoneAllocationPolicy)),
41 "Empty base optimization didn't kick in for VariableMap");
42
VariableMap(Zone * zone)43 VariableMap::VariableMap(Zone* zone)
44 : ZoneHashMap(8, ZoneAllocationPolicy(zone)) {}
45
VariableMap(const VariableMap & other,Zone * zone)46 VariableMap::VariableMap(const VariableMap& other, Zone* zone)
47 : ZoneHashMap(other, ZoneAllocationPolicy(zone)) {}
48
Declare(Zone * zone,Scope * scope,const AstRawString * name,VariableMode mode,VariableKind kind,InitializationFlag initialization_flag,MaybeAssignedFlag maybe_assigned_flag,IsStaticFlag is_static_flag,bool * was_added)49 Variable* VariableMap::Declare(Zone* zone, Scope* scope,
50 const AstRawString* name, VariableMode mode,
51 VariableKind kind,
52 InitializationFlag initialization_flag,
53 MaybeAssignedFlag maybe_assigned_flag,
54 IsStaticFlag is_static_flag, bool* was_added) {
55 DCHECK_EQ(zone, allocator().zone());
56 // AstRawStrings are unambiguous, i.e., the same string is always represented
57 // by the same AstRawString*.
58 // FIXME(marja): fix the type of Lookup.
59 Entry* p = ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name),
60 name->Hash());
61 *was_added = p->value == nullptr;
62 if (*was_added) {
63 // The variable has not been declared yet -> insert it.
64 DCHECK_EQ(name, p->key);
65 Variable* variable =
66 zone->New<Variable>(scope, name, mode, kind, initialization_flag,
67 maybe_assigned_flag, is_static_flag);
68 p->value = variable;
69 }
70 return reinterpret_cast<Variable*>(p->value);
71 }
72
Remove(Variable * var)73 void VariableMap::Remove(Variable* var) {
74 const AstRawString* name = var->raw_name();
75 ZoneHashMap::Remove(const_cast<AstRawString*>(name), name->Hash());
76 }
77
Add(Variable * var)78 void VariableMap::Add(Variable* var) {
79 const AstRawString* name = var->raw_name();
80 Entry* p = ZoneHashMap::LookupOrInsert(const_cast<AstRawString*>(name),
81 name->Hash());
82 DCHECK_NULL(p->value);
83 DCHECK_EQ(name, p->key);
84 p->value = var;
85 }
86
Lookup(const AstRawString * name)87 Variable* VariableMap::Lookup(const AstRawString* name) {
88 Entry* p = ZoneHashMap::Lookup(const_cast<AstRawString*>(name), name->Hash());
89 if (p != nullptr) {
90 DCHECK(reinterpret_cast<const AstRawString*>(p->key) == name);
91 DCHECK_NOT_NULL(p->value);
92 return reinterpret_cast<Variable*>(p->value);
93 }
94 return nullptr;
95 }
96
97 // ----------------------------------------------------------------------------
98 // Implementation of Scope
99
Scope(Zone * zone)100 Scope::Scope(Zone* zone)
101 : outer_scope_(nullptr), variables_(zone), scope_type_(SCRIPT_SCOPE) {
102 SetDefaults();
103 }
104
Scope(Zone * zone,Scope * outer_scope,ScopeType scope_type)105 Scope::Scope(Zone* zone, Scope* outer_scope, ScopeType scope_type)
106 : outer_scope_(outer_scope), variables_(zone), scope_type_(scope_type) {
107 DCHECK_NE(SCRIPT_SCOPE, scope_type);
108 SetDefaults();
109 set_language_mode(outer_scope->language_mode());
110 private_name_lookup_skips_outer_class_ =
111 outer_scope->is_class_scope() &&
112 outer_scope->AsClassScope()->IsParsingHeritage();
113 outer_scope_->AddInnerScope(this);
114 }
115
DeclareHomeObjectVariable(AstValueFactory * ast_value_factory)116 Variable* Scope::DeclareHomeObjectVariable(AstValueFactory* ast_value_factory) {
117 bool was_added;
118 Variable* home_object_variable = Declare(
119 zone(), ast_value_factory->dot_home_object_string(), VariableMode::kConst,
120 NORMAL_VARIABLE, InitializationFlag::kCreatedInitialized,
121 MaybeAssignedFlag::kNotAssigned, &was_added);
122 DCHECK(was_added);
123 home_object_variable->set_is_used();
124 home_object_variable->ForceContextAllocation();
125 return home_object_variable;
126 }
127
DeclareStaticHomeObjectVariable(AstValueFactory * ast_value_factory)128 Variable* Scope::DeclareStaticHomeObjectVariable(
129 AstValueFactory* ast_value_factory) {
130 bool was_added;
131 Variable* static_home_object_variable =
132 Declare(zone(), ast_value_factory->dot_static_home_object_string(),
133 VariableMode::kConst, NORMAL_VARIABLE,
134 InitializationFlag::kCreatedInitialized,
135 MaybeAssignedFlag::kNotAssigned, &was_added);
136 DCHECK(was_added);
137 static_home_object_variable->set_is_used();
138 static_home_object_variable->ForceContextAllocation();
139 return static_home_object_variable;
140 }
141
DeclarationScope(Zone * zone,AstValueFactory * ast_value_factory,REPLMode repl_mode)142 DeclarationScope::DeclarationScope(Zone* zone,
143 AstValueFactory* ast_value_factory,
144 REPLMode repl_mode)
145 : Scope(zone),
146 function_kind_(repl_mode == REPLMode::kYes
147 ? FunctionKind::kAsyncFunction
148 : FunctionKind::kNormalFunction),
149 params_(4, zone) {
150 DCHECK_EQ(scope_type_, SCRIPT_SCOPE);
151 SetDefaults();
152 is_repl_mode_scope_ = repl_mode == REPLMode::kYes;
153 receiver_ = DeclareDynamicGlobal(ast_value_factory->this_string(),
154 THIS_VARIABLE, this);
155 }
156
DeclarationScope(Zone * zone,Scope * outer_scope,ScopeType scope_type,FunctionKind function_kind)157 DeclarationScope::DeclarationScope(Zone* zone, Scope* outer_scope,
158 ScopeType scope_type,
159 FunctionKind function_kind)
160 : Scope(zone, outer_scope, scope_type),
161 function_kind_(function_kind),
162 params_(4, zone) {
163 DCHECK_NE(scope_type, SCRIPT_SCOPE);
164 SetDefaults();
165 }
166
ModuleScope(DeclarationScope * script_scope,AstValueFactory * avfactory)167 ModuleScope::ModuleScope(DeclarationScope* script_scope,
168 AstValueFactory* avfactory)
169 : DeclarationScope(avfactory->single_parse_zone(), script_scope,
170 MODULE_SCOPE, FunctionKind::kModule),
171 module_descriptor_(
172 avfactory->single_parse_zone()->New<SourceTextModuleDescriptor>(
173 avfactory->single_parse_zone())) {
174 set_language_mode(LanguageMode::kStrict);
175 DeclareThis(avfactory);
176 }
177
ModuleScope(Handle<ScopeInfo> scope_info,AstValueFactory * avfactory)178 ModuleScope::ModuleScope(Handle<ScopeInfo> scope_info,
179 AstValueFactory* avfactory)
180 : DeclarationScope(avfactory->single_parse_zone(), MODULE_SCOPE, avfactory,
181 scope_info),
182 module_descriptor_(nullptr) {
183 set_language_mode(LanguageMode::kStrict);
184 }
185
ClassScope(Zone * zone,Scope * outer_scope,bool is_anonymous)186 ClassScope::ClassScope(Zone* zone, Scope* outer_scope, bool is_anonymous)
187 : Scope(zone, outer_scope, CLASS_SCOPE),
188 rare_data_and_is_parsing_heritage_(nullptr),
189 is_anonymous_class_(is_anonymous) {
190 set_language_mode(LanguageMode::kStrict);
191 }
192
193 template <typename IsolateT>
ClassScope(IsolateT * isolate,Zone * zone,AstValueFactory * ast_value_factory,Handle<ScopeInfo> scope_info)194 ClassScope::ClassScope(IsolateT* isolate, Zone* zone,
195 AstValueFactory* ast_value_factory,
196 Handle<ScopeInfo> scope_info)
197 : Scope(zone, CLASS_SCOPE, ast_value_factory, scope_info),
198 rare_data_and_is_parsing_heritage_(nullptr) {
199 set_language_mode(LanguageMode::kStrict);
200 if (scope_info->ClassScopeHasPrivateBrand()) {
201 Variable* brand =
202 LookupInScopeInfo(ast_value_factory->dot_brand_string(), this);
203 DCHECK_NOT_NULL(brand);
204 EnsureRareData()->brand = brand;
205 }
206
207 // If the class variable is context-allocated and its index is
208 // saved for deserialization, deserialize it.
209 if (scope_info->HasSavedClassVariable()) {
210 String name;
211 int index;
212 std::tie(name, index) = scope_info->SavedClassVariable();
213 DCHECK_EQ(scope_info->ContextLocalMode(index), VariableMode::kConst);
214 DCHECK_EQ(scope_info->ContextLocalInitFlag(index),
215 InitializationFlag::kNeedsInitialization);
216 DCHECK_EQ(scope_info->ContextLocalMaybeAssignedFlag(index),
217 MaybeAssignedFlag::kMaybeAssigned);
218 Variable* var = DeclareClassVariable(
219 ast_value_factory,
220 ast_value_factory->GetString(name,
221 SharedStringAccessGuardIfNeeded(isolate)),
222 kNoSourcePosition);
223 var->AllocateTo(VariableLocation::CONTEXT,
224 Context::MIN_CONTEXT_SLOTS + index);
225 }
226
227 DCHECK(scope_info->HasPositionInfo());
228 set_start_position(scope_info->StartPosition());
229 set_end_position(scope_info->EndPosition());
230 }
231 template ClassScope::ClassScope(Isolate* isolate, Zone* zone,
232 AstValueFactory* ast_value_factory,
233 Handle<ScopeInfo> scope_info);
234 template ClassScope::ClassScope(LocalIsolate* isolate, Zone* zone,
235 AstValueFactory* ast_value_factory,
236 Handle<ScopeInfo> scope_info);
237
Scope(Zone * zone,ScopeType scope_type,AstValueFactory * ast_value_factory,Handle<ScopeInfo> scope_info)238 Scope::Scope(Zone* zone, ScopeType scope_type,
239 AstValueFactory* ast_value_factory, Handle<ScopeInfo> scope_info)
240 : outer_scope_(nullptr),
241 variables_(zone),
242 scope_info_(scope_info),
243 scope_type_(scope_type) {
244 DCHECK(!scope_info.is_null());
245 SetDefaults();
246 #ifdef DEBUG
247 already_resolved_ = true;
248 #endif
249 set_language_mode(scope_info->language_mode());
250 DCHECK_EQ(ContextHeaderLength(), num_heap_slots_);
251 private_name_lookup_skips_outer_class_ =
252 scope_info->PrivateNameLookupSkipsOuterClass();
253 // We don't really need to use the preparsed scope data; this is just to
254 // shorten the recursion in SetMustUsePreparseData.
255 must_use_preparsed_scope_data_ = true;
256
257 if (scope_type == BLOCK_SCOPE) {
258 // Set is_block_scope_for_object_literal_ based on the existince of the home
259 // object variable (we don't store it explicitly).
260 DCHECK_NOT_NULL(ast_value_factory);
261 int home_object_index = scope_info->ContextSlotIndex(
262 ast_value_factory->dot_home_object_string()->string());
263 DCHECK_IMPLIES(home_object_index >= 0,
264 scope_type == CLASS_SCOPE || scope_type == BLOCK_SCOPE);
265 if (home_object_index >= 0) {
266 is_block_scope_for_object_literal_ = true;
267 }
268 }
269 }
270
DeclarationScope(Zone * zone,ScopeType scope_type,AstValueFactory * ast_value_factory,Handle<ScopeInfo> scope_info)271 DeclarationScope::DeclarationScope(Zone* zone, ScopeType scope_type,
272 AstValueFactory* ast_value_factory,
273 Handle<ScopeInfo> scope_info)
274 : Scope(zone, scope_type, ast_value_factory, scope_info),
275 function_kind_(scope_info->function_kind()),
276 params_(0, zone) {
277 DCHECK_NE(scope_type, SCRIPT_SCOPE);
278 SetDefaults();
279 if (scope_info->SloppyEvalCanExtendVars()) {
280 DCHECK(!is_eval_scope());
281 sloppy_eval_can_extend_vars_ = true;
282 }
283 if (scope_info->ClassScopeHasPrivateBrand()) {
284 DCHECK(IsClassConstructor(function_kind()));
285 class_scope_has_private_brand_ = true;
286 }
287 }
288
Scope(Zone * zone,const AstRawString * catch_variable_name,MaybeAssignedFlag maybe_assigned,Handle<ScopeInfo> scope_info)289 Scope::Scope(Zone* zone, const AstRawString* catch_variable_name,
290 MaybeAssignedFlag maybe_assigned, Handle<ScopeInfo> scope_info)
291 : outer_scope_(nullptr),
292 variables_(zone),
293 scope_info_(scope_info),
294 scope_type_(CATCH_SCOPE) {
295 SetDefaults();
296 #ifdef DEBUG
297 already_resolved_ = true;
298 #endif
299 // Cache the catch variable, even though it's also available via the
300 // scope_info, as the parser expects that a catch scope always has the catch
301 // variable as first and only variable.
302 bool was_added;
303 Variable* variable =
304 Declare(zone, catch_variable_name, VariableMode::kVar, NORMAL_VARIABLE,
305 kCreatedInitialized, maybe_assigned, &was_added);
306 DCHECK(was_added);
307 AllocateHeapSlot(variable);
308 }
309
SetDefaults()310 void DeclarationScope::SetDefaults() {
311 is_declaration_scope_ = true;
312 has_simple_parameters_ = true;
313 #if V8_ENABLE_WEBASSEMBLY
314 is_asm_module_ = false;
315 #endif // V8_ENABLE_WEBASSEMBLY
316 force_eager_compilation_ = false;
317 has_arguments_parameter_ = false;
318 uses_super_property_ = false;
319 has_checked_syntax_ = false;
320 has_this_reference_ = false;
321 has_this_declaration_ =
322 (is_function_scope() && !is_arrow_scope()) || is_module_scope();
323 needs_private_name_context_chain_recalc_ = false;
324 has_rest_ = false;
325 receiver_ = nullptr;
326 new_target_ = nullptr;
327 function_ = nullptr;
328 arguments_ = nullptr;
329 rare_data_ = nullptr;
330 should_eager_compile_ = false;
331 was_lazily_parsed_ = false;
332 is_skipped_function_ = false;
333 preparse_data_builder_ = nullptr;
334 class_scope_has_private_brand_ = false;
335 #ifdef DEBUG
336 DeclarationScope* outer_declaration_scope =
337 outer_scope_ ? outer_scope_->GetDeclarationScope() : nullptr;
338 is_being_lazily_parsed_ =
339 outer_declaration_scope ? outer_declaration_scope->is_being_lazily_parsed_
340 : false;
341 #endif
342 }
343
SetDefaults()344 void Scope::SetDefaults() {
345 #ifdef DEBUG
346 scope_name_ = nullptr;
347 already_resolved_ = false;
348 needs_migration_ = false;
349 #endif
350 inner_scope_ = nullptr;
351 sibling_ = nullptr;
352 unresolved_list_.Clear();
353
354 start_position_ = kNoSourcePosition;
355 end_position_ = kNoSourcePosition;
356
357 calls_eval_ = false;
358 sloppy_eval_can_extend_vars_ = false;
359 scope_nonlinear_ = false;
360 is_hidden_ = false;
361 is_debug_evaluate_scope_ = false;
362
363 inner_scope_calls_eval_ = false;
364 force_context_allocation_for_parameters_ = false;
365
366 is_declaration_scope_ = false;
367
368 private_name_lookup_skips_outer_class_ = false;
369
370 must_use_preparsed_scope_data_ = false;
371 is_repl_mode_scope_ = false;
372
373 deserialized_scope_uses_external_cache_ = false;
374
375 needs_home_object_ = false;
376 is_block_scope_for_object_literal_ = false;
377
378 num_stack_slots_ = 0;
379 num_heap_slots_ = ContextHeaderLength();
380
381 set_language_mode(LanguageMode::kSloppy);
382 }
383
HasSimpleParameters()384 bool Scope::HasSimpleParameters() {
385 DeclarationScope* scope = GetClosureScope();
386 return !scope->is_function_scope() || scope->has_simple_parameters();
387 }
388
set_should_eager_compile()389 void DeclarationScope::set_should_eager_compile() {
390 should_eager_compile_ = !was_lazily_parsed_;
391 }
392
393 #if V8_ENABLE_WEBASSEMBLY
set_is_asm_module()394 void DeclarationScope::set_is_asm_module() { is_asm_module_ = true; }
395
IsAsmModule() const396 bool Scope::IsAsmModule() const {
397 return is_function_scope() && AsDeclarationScope()->is_asm_module();
398 }
399
ContainsAsmModule() const400 bool Scope::ContainsAsmModule() const {
401 if (IsAsmModule()) return true;
402
403 // Check inner scopes recursively
404 for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
405 // Don't check inner functions which won't be eagerly compiled.
406 if (!scope->is_function_scope() ||
407 scope->AsDeclarationScope()->ShouldEagerCompile()) {
408 if (scope->ContainsAsmModule()) return true;
409 }
410 }
411
412 return false;
413 }
414 #endif // V8_ENABLE_WEBASSEMBLY
415
416 template <typename IsolateT>
DeserializeScopeChain(IsolateT * isolate,Zone * zone,ScopeInfo scope_info,DeclarationScope * script_scope,AstValueFactory * ast_value_factory,DeserializationMode deserialization_mode)417 Scope* Scope::DeserializeScopeChain(IsolateT* isolate, Zone* zone,
418 ScopeInfo scope_info,
419 DeclarationScope* script_scope,
420 AstValueFactory* ast_value_factory,
421 DeserializationMode deserialization_mode) {
422 // Reconstruct the outer scope chain from a closure's context chain.
423 Scope* current_scope = nullptr;
424 Scope* innermost_scope = nullptr;
425 Scope* outer_scope = nullptr;
426 bool cache_scope_found = false;
427 while (!scope_info.is_null()) {
428 if (scope_info.scope_type() == WITH_SCOPE) {
429 if (scope_info.IsDebugEvaluateScope()) {
430 outer_scope =
431 zone->New<DeclarationScope>(zone, FUNCTION_SCOPE, ast_value_factory,
432 handle(scope_info, isolate));
433 outer_scope->set_is_debug_evaluate_scope();
434 } else {
435 // For scope analysis, debug-evaluate is equivalent to a with scope.
436 outer_scope = zone->New<Scope>(zone, WITH_SCOPE, ast_value_factory,
437 handle(scope_info, isolate));
438 }
439
440 } else if (scope_info.scope_type() == SCRIPT_SCOPE) {
441 // If we reach a script scope, it's the outermost scope. Install the
442 // scope info of this script context onto the existing script scope to
443 // avoid nesting script scopes.
444 if (deserialization_mode == DeserializationMode::kIncludingVariables) {
445 script_scope->SetScriptScopeInfo(handle(scope_info, isolate));
446 }
447 if (scope_info.IsReplModeScope()) script_scope->set_is_repl_mode_scope();
448 DCHECK(!scope_info.HasOuterScopeInfo());
449 break;
450 } else if (scope_info.scope_type() == FUNCTION_SCOPE) {
451 outer_scope = zone->New<DeclarationScope>(
452 zone, FUNCTION_SCOPE, ast_value_factory, handle(scope_info, isolate));
453 #if V8_ENABLE_WEBASSEMBLY
454 if (scope_info.IsAsmModule()) {
455 outer_scope->AsDeclarationScope()->set_is_asm_module();
456 }
457 #endif // V8_ENABLE_WEBASSEMBLY
458 } else if (scope_info.scope_type() == EVAL_SCOPE) {
459 outer_scope = zone->New<DeclarationScope>(
460 zone, EVAL_SCOPE, ast_value_factory, handle(scope_info, isolate));
461 } else if (scope_info.scope_type() == CLASS_SCOPE) {
462 outer_scope = zone->New<ClassScope>(isolate, zone, ast_value_factory,
463 handle(scope_info, isolate));
464 } else if (scope_info.scope_type() == BLOCK_SCOPE) {
465 if (scope_info.is_declaration_scope()) {
466 outer_scope = zone->New<DeclarationScope>(
467 zone, BLOCK_SCOPE, ast_value_factory, handle(scope_info, isolate));
468 } else {
469 outer_scope = zone->New<Scope>(zone, BLOCK_SCOPE, ast_value_factory,
470 handle(scope_info, isolate));
471 }
472 } else if (scope_info.scope_type() == MODULE_SCOPE) {
473 outer_scope = zone->New<ModuleScope>(handle(scope_info, isolate),
474 ast_value_factory);
475 } else {
476 DCHECK_EQ(scope_info.scope_type(), CATCH_SCOPE);
477 DCHECK_EQ(scope_info.ContextLocalCount(), 1);
478 DCHECK_EQ(scope_info.ContextLocalMode(0), VariableMode::kVar);
479 DCHECK_EQ(scope_info.ContextLocalInitFlag(0), kCreatedInitialized);
480 DCHECK(scope_info.HasInlinedLocalNames());
481 String name = scope_info.ContextInlinedLocalName(0);
482 MaybeAssignedFlag maybe_assigned =
483 scope_info.ContextLocalMaybeAssignedFlag(0);
484 outer_scope =
485 zone->New<Scope>(zone,
486 ast_value_factory->GetString(
487 name, SharedStringAccessGuardIfNeeded(isolate)),
488 maybe_assigned, handle(scope_info, isolate));
489 }
490 if (deserialization_mode == DeserializationMode::kScopesOnly) {
491 outer_scope->scope_info_ = Handle<ScopeInfo>::null();
492 }
493
494 if (cache_scope_found) {
495 outer_scope->set_deserialized_scope_uses_external_cache();
496 } else {
497 DCHECK(!cache_scope_found);
498 cache_scope_found =
499 outer_scope->is_declaration_scope() && !outer_scope->is_eval_scope();
500 }
501
502 if (current_scope != nullptr) {
503 outer_scope->AddInnerScope(current_scope);
504 }
505 current_scope = outer_scope;
506 if (innermost_scope == nullptr) innermost_scope = current_scope;
507 scope_info = scope_info.HasOuterScopeInfo() ? scope_info.OuterScopeInfo()
508 : ScopeInfo();
509 }
510
511 if (deserialization_mode == DeserializationMode::kIncludingVariables) {
512 SetScriptScopeInfo(isolate, script_scope);
513 }
514
515 if (innermost_scope == nullptr) return script_scope;
516 script_scope->AddInnerScope(current_scope);
517 return innermost_scope;
518 }
519
520 template <typename IsolateT>
SetScriptScopeInfo(IsolateT * isolate,DeclarationScope * script_scope)521 void Scope::SetScriptScopeInfo(IsolateT* isolate,
522 DeclarationScope* script_scope) {
523 if (script_scope->scope_info_.is_null()) {
524 script_scope->SetScriptScopeInfo(
525 ReadOnlyRoots(isolate).global_this_binding_scope_info_handle());
526 }
527 }
528
529 template EXPORT_TEMPLATE_DEFINE(
530 V8_EXPORT_PRIVATE) void Scope::SetScriptScopeInfo(Isolate* isolate,
531 DeclarationScope*
532 script_scope);
533 template EXPORT_TEMPLATE_DEFINE(
534 V8_EXPORT_PRIVATE) void Scope::SetScriptScopeInfo(LocalIsolate* isolate,
535 DeclarationScope*
536 script_scope);
537
538 template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
539 Scope* Scope::DeserializeScopeChain(
540 Isolate* isolate, Zone* zone, ScopeInfo scope_info,
541 DeclarationScope* script_scope, AstValueFactory* ast_value_factory,
542 DeserializationMode deserialization_mode);
543 template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE)
544 Scope* Scope::DeserializeScopeChain(
545 LocalIsolate* isolate, Zone* zone, ScopeInfo scope_info,
546 DeclarationScope* script_scope, AstValueFactory* ast_value_factory,
547 DeserializationMode deserialization_mode);
548
549 #ifdef DEBUG
IsReparsedMemberInitializerScope() const550 bool Scope::IsReparsedMemberInitializerScope() const {
551 return is_declaration_scope() &&
552 IsClassMembersInitializerFunction(
553 AsDeclarationScope()->function_kind()) &&
554 outer_scope()->AsClassScope()->is_reparsed_class_scope();
555 }
556 #endif
557
AsDeclarationScope()558 DeclarationScope* Scope::AsDeclarationScope() {
559 DCHECK(is_declaration_scope());
560 return static_cast<DeclarationScope*>(this);
561 }
562
AsDeclarationScope() const563 const DeclarationScope* Scope::AsDeclarationScope() const {
564 DCHECK(is_declaration_scope());
565 return static_cast<const DeclarationScope*>(this);
566 }
567
AsModuleScope()568 ModuleScope* Scope::AsModuleScope() {
569 DCHECK(is_module_scope());
570 return static_cast<ModuleScope*>(this);
571 }
572
AsModuleScope() const573 const ModuleScope* Scope::AsModuleScope() const {
574 DCHECK(is_module_scope());
575 return static_cast<const ModuleScope*>(this);
576 }
577
AsClassScope()578 ClassScope* Scope::AsClassScope() {
579 DCHECK(is_class_scope());
580 return static_cast<ClassScope*>(this);
581 }
582
AsClassScope() const583 const ClassScope* Scope::AsClassScope() const {
584 DCHECK(is_class_scope());
585 return static_cast<const ClassScope*>(this);
586 }
587
DeclareSloppyBlockFunction(SloppyBlockFunctionStatement * sloppy_block_function)588 void DeclarationScope::DeclareSloppyBlockFunction(
589 SloppyBlockFunctionStatement* sloppy_block_function) {
590 sloppy_block_functions_.Add(sloppy_block_function);
591 }
592
HoistSloppyBlockFunctions(AstNodeFactory * factory)593 void DeclarationScope::HoistSloppyBlockFunctions(AstNodeFactory* factory) {
594 DCHECK(is_sloppy(language_mode()));
595 DCHECK(is_function_scope() || is_eval_scope() || is_script_scope() ||
596 (is_block_scope() && outer_scope()->is_function_scope()));
597 DCHECK(HasSimpleParameters() || is_block_scope() || is_being_lazily_parsed_);
598 DCHECK_EQ(factory == nullptr, is_being_lazily_parsed_);
599
600 if (sloppy_block_functions_.is_empty()) return;
601
602 // In case of complex parameters the current scope is the body scope and the
603 // parameters are stored in the outer scope.
604 Scope* parameter_scope = HasSimpleParameters() ? this : outer_scope_;
605 DCHECK(parameter_scope->is_function_scope() || is_eval_scope() ||
606 is_script_scope());
607
608 DeclarationScope* decl_scope = GetNonEvalDeclarationScope();
609 Scope* outer_scope = decl_scope->outer_scope();
610
611 // For each variable which is used as a function declaration in a sloppy
612 // block,
613 for (SloppyBlockFunctionStatement* sloppy_block_function :
614 sloppy_block_functions_) {
615 const AstRawString* name = sloppy_block_function->name();
616
617 // If the variable wouldn't conflict with a lexical declaration
618 // or parameter,
619
620 // Check if there's a conflict with a parameter.
621 Variable* maybe_parameter = parameter_scope->LookupLocal(name);
622 if (maybe_parameter != nullptr && maybe_parameter->is_parameter()) {
623 continue;
624 }
625
626 // Check if there's a conflict with a lexical declaration
627 Scope* query_scope = sloppy_block_function->scope()->outer_scope();
628 bool should_hoist = true;
629
630 // It is not sufficient to just do a Lookup on query_scope: for
631 // example, that does not prevent hoisting of the function in
632 // `{ let e; try {} catch (e) { function e(){} } }`
633 //
634 // Don't use a generic cache scope, as the cache scope would be the outer
635 // scope and we terminate the iteration there anyway.
636 do {
637 Variable* var = query_scope->LookupInScopeOrScopeInfo(name, query_scope);
638 if (var != nullptr && IsLexicalVariableMode(var->mode())) {
639 should_hoist = false;
640 break;
641 }
642 query_scope = query_scope->outer_scope();
643 } while (query_scope != outer_scope);
644
645 if (!should_hoist) continue;
646
647 if (factory) {
648 DCHECK(!is_being_lazily_parsed_);
649 int pos = sloppy_block_function->position();
650 bool ok = true;
651 bool was_added;
652 auto declaration = factory->NewVariableDeclaration(pos);
653 // Based on the preceding checks, it doesn't matter what we pass as
654 // sloppy_mode_block_scope_function_redefinition.
655 Variable* var = DeclareVariable(
656 declaration, name, pos, VariableMode::kVar, NORMAL_VARIABLE,
657 Variable::DefaultInitializationFlag(VariableMode::kVar), &was_added,
658 nullptr, &ok);
659 DCHECK(ok);
660 VariableProxy* source =
661 factory->NewVariableProxy(sloppy_block_function->var());
662 VariableProxy* target = factory->NewVariableProxy(var);
663 Assignment* assignment = factory->NewAssignment(
664 sloppy_block_function->init(), target, source, pos);
665 assignment->set_lookup_hoisting_mode(LookupHoistingMode::kLegacySloppy);
666 Statement* statement = factory->NewExpressionStatement(assignment, pos);
667 sloppy_block_function->set_statement(statement);
668 } else {
669 DCHECK(is_being_lazily_parsed_);
670 bool was_added;
671 Variable* var = DeclareVariableName(name, VariableMode::kVar, &was_added);
672 if (sloppy_block_function->init() == Token::ASSIGN) {
673 var->SetMaybeAssigned();
674 }
675 }
676 }
677 }
678
Analyze(ParseInfo * info)679 bool DeclarationScope::Analyze(ParseInfo* info) {
680 RCS_SCOPE(info->runtime_call_stats(),
681 RuntimeCallCounterId::kCompileScopeAnalysis,
682 RuntimeCallStats::kThreadSpecific);
683 DCHECK_NOT_NULL(info->literal());
684 DeclarationScope* scope = info->literal()->scope();
685
686 base::Optional<AllowHandleDereference> allow_deref;
687 #ifdef DEBUG
688 if (scope->outer_scope() && !scope->outer_scope()->scope_info_.is_null()) {
689 allow_deref.emplace();
690 }
691 #endif
692
693 if (scope->is_eval_scope() && is_sloppy(scope->language_mode())) {
694 AstNodeFactory factory(info->ast_value_factory(), info->zone());
695 scope->HoistSloppyBlockFunctions(&factory);
696 }
697
698 // We are compiling one of four cases:
699 // 1) top-level code,
700 // 2) a function/eval/module on the top-level
701 // 4) a class member initializer function scope
702 // 3) 4 function/eval in a scope that was already resolved.
703 DCHECK(scope->is_script_scope() || scope->outer_scope()->is_script_scope() ||
704 scope->IsReparsedMemberInitializerScope() ||
705 scope->outer_scope()->already_resolved_);
706
707 // The outer scope is never lazy.
708 scope->set_should_eager_compile();
709
710 if (scope->must_use_preparsed_scope_data_) {
711 DCHECK_EQ(scope->scope_type_, ScopeType::FUNCTION_SCOPE);
712 allow_deref.emplace();
713 info->consumed_preparse_data()->RestoreScopeAllocationData(
714 scope, info->ast_value_factory(), info->zone());
715 }
716
717 if (!scope->AllocateVariables(info)) return false;
718 scope->GetScriptScope()->RewriteReplGlobalVariables();
719
720 #ifdef DEBUG
721 if (FLAG_print_scopes) {
722 PrintF("Global scope:\n");
723 scope->Print();
724 }
725 scope->CheckScopePositions();
726 scope->CheckZones();
727 #endif
728
729 return true;
730 }
731
DeclareThis(AstValueFactory * ast_value_factory)732 void DeclarationScope::DeclareThis(AstValueFactory* ast_value_factory) {
733 DCHECK(has_this_declaration());
734
735 bool derived_constructor = IsDerivedConstructor(function_kind_);
736
737 receiver_ = zone()->New<Variable>(
738 this, ast_value_factory->this_string(),
739 derived_constructor ? VariableMode::kConst : VariableMode::kVar,
740 THIS_VARIABLE,
741 derived_constructor ? kNeedsInitialization : kCreatedInitialized,
742 kNotAssigned);
743 locals_.Add(receiver_);
744 }
745
DeclareArguments(AstValueFactory * ast_value_factory)746 void DeclarationScope::DeclareArguments(AstValueFactory* ast_value_factory) {
747 DCHECK(is_function_scope());
748 DCHECK(!is_arrow_scope());
749
750 // Because when arguments_ is not nullptr, we already declared
751 // "arguments exotic object" to add it into parameters before
752 // impl()->InsertShadowingVarBindingInitializers, so here
753 // only declare "arguments exotic object" when arguments_
754 // is nullptr
755 if (arguments_ != nullptr) {
756 return;
757 }
758
759 // Declare 'arguments' variable which exists in all non arrow functions. Note
760 // that it might never be accessed, in which case it won't be allocated during
761 // variable allocation.
762 bool was_added = false;
763
764 arguments_ =
765 Declare(zone(), ast_value_factory->arguments_string(), VariableMode::kVar,
766 NORMAL_VARIABLE, kCreatedInitialized, kNotAssigned, &was_added);
767 // According to ES#sec-functiondeclarationinstantiation step 18
768 // we should set argumentsObjectNeeded to false if has lexical
769 // declared arguments only when hasParameterExpressions is false
770 if (!was_added && IsLexicalVariableMode(arguments_->mode()) &&
771 has_simple_parameters_) {
772 // Check if there's lexically declared variable named arguments to avoid
773 // redeclaration. See ES#sec-functiondeclarationinstantiation, step 20.
774 arguments_ = nullptr;
775 }
776 }
777
DeclareDefaultFunctionVariables(AstValueFactory * ast_value_factory)778 void DeclarationScope::DeclareDefaultFunctionVariables(
779 AstValueFactory* ast_value_factory) {
780 DCHECK(is_function_scope());
781 DCHECK(!is_arrow_scope());
782
783 DeclareThis(ast_value_factory);
784 bool was_added;
785 new_target_ = Declare(zone(), ast_value_factory->new_target_string(),
786 VariableMode::kConst, NORMAL_VARIABLE,
787 kCreatedInitialized, kNotAssigned, &was_added);
788 DCHECK(was_added);
789
790 if (IsConciseMethod(function_kind_) || IsClassConstructor(function_kind_) ||
791 IsAccessorFunction(function_kind_)) {
792 EnsureRareData()->this_function = Declare(
793 zone(), ast_value_factory->this_function_string(), VariableMode::kConst,
794 NORMAL_VARIABLE, kCreatedInitialized, kNotAssigned, &was_added);
795 DCHECK(was_added);
796 }
797 }
798
DeclareFunctionVar(const AstRawString * name,Scope * cache)799 Variable* DeclarationScope::DeclareFunctionVar(const AstRawString* name,
800 Scope* cache) {
801 DCHECK(is_function_scope());
802 DCHECK_NULL(function_);
803 if (cache == nullptr) cache = this;
804 DCHECK(this->IsOuterScopeOf(cache));
805 DCHECK_NULL(cache->variables_.Lookup(name));
806 VariableKind kind = is_sloppy(language_mode()) ? SLOPPY_FUNCTION_NAME_VARIABLE
807 : NORMAL_VARIABLE;
808 function_ = zone()->New<Variable>(this, name, VariableMode::kConst, kind,
809 kCreatedInitialized);
810 if (sloppy_eval_can_extend_vars()) {
811 cache->NonLocal(name, VariableMode::kDynamic);
812 } else {
813 cache->variables_.Add(function_);
814 }
815 return function_;
816 }
817
DeclareGeneratorObjectVar(const AstRawString * name)818 Variable* DeclarationScope::DeclareGeneratorObjectVar(
819 const AstRawString* name) {
820 DCHECK(is_function_scope() || is_module_scope() || is_repl_mode_scope());
821 DCHECK_NULL(generator_object_var());
822
823 Variable* result = EnsureRareData()->generator_object =
824 NewTemporary(name, kNotAssigned);
825 result->set_is_used();
826 return result;
827 }
828
FinalizeBlockScope()829 Scope* Scope::FinalizeBlockScope() {
830 DCHECK(is_block_scope());
831 #ifdef DEBUG
832 DCHECK_NE(sibling_, this);
833 #endif
834
835 if (variables_.occupancy() > 0 ||
836 (is_declaration_scope() &&
837 AsDeclarationScope()->sloppy_eval_can_extend_vars())) {
838 return this;
839 }
840
841 DCHECK(!is_class_scope());
842
843 // Remove this scope from outer scope.
844 outer_scope()->RemoveInnerScope(this);
845
846 // Reparent inner scopes.
847 if (inner_scope_ != nullptr) {
848 Scope* scope = inner_scope_;
849 scope->outer_scope_ = outer_scope();
850 while (scope->sibling_ != nullptr) {
851 scope = scope->sibling_;
852 scope->outer_scope_ = outer_scope();
853 }
854 scope->sibling_ = outer_scope()->inner_scope_;
855 outer_scope()->inner_scope_ = inner_scope_;
856 inner_scope_ = nullptr;
857 }
858
859 // Move unresolved variables
860 if (!unresolved_list_.is_empty()) {
861 outer_scope()->unresolved_list_.Prepend(std::move(unresolved_list_));
862 unresolved_list_.Clear();
863 }
864
865 if (inner_scope_calls_eval_) outer_scope()->inner_scope_calls_eval_ = true;
866
867 // No need to propagate sloppy_eval_can_extend_vars_, since if it was relevant
868 // to this scope we would have had to bail out at the top.
869 DCHECK(!is_declaration_scope() ||
870 !AsDeclarationScope()->sloppy_eval_can_extend_vars());
871
872 // This block does not need a context.
873 num_heap_slots_ = 0;
874
875 // Mark scope as removed by making it its own sibling.
876 #ifdef DEBUG
877 sibling_ = this;
878 #endif
879
880 return nullptr;
881 }
882
AddLocal(Variable * var)883 void DeclarationScope::AddLocal(Variable* var) {
884 DCHECK(!already_resolved_);
885 // Temporaries are only placed in ClosureScopes.
886 DCHECK_EQ(GetClosureScope(), this);
887 locals_.Add(var);
888 }
889
Reparent(DeclarationScope * new_parent)890 void Scope::Snapshot::Reparent(DeclarationScope* new_parent) {
891 DCHECK_EQ(new_parent, outer_scope_->inner_scope_);
892 DCHECK_EQ(new_parent->outer_scope_, outer_scope_);
893 DCHECK_EQ(new_parent, new_parent->GetClosureScope());
894 DCHECK_NULL(new_parent->inner_scope_);
895 DCHECK(new_parent->unresolved_list_.is_empty());
896 Scope* inner_scope = new_parent->sibling_;
897 if (inner_scope != top_inner_scope_) {
898 for (; inner_scope->sibling() != top_inner_scope_;
899 inner_scope = inner_scope->sibling()) {
900 inner_scope->outer_scope_ = new_parent;
901 if (inner_scope->inner_scope_calls_eval_) {
902 new_parent->inner_scope_calls_eval_ = true;
903 }
904 DCHECK_NE(inner_scope, new_parent);
905 }
906 inner_scope->outer_scope_ = new_parent;
907 if (inner_scope->inner_scope_calls_eval_) {
908 new_parent->inner_scope_calls_eval_ = true;
909 }
910 new_parent->inner_scope_ = new_parent->sibling_;
911 inner_scope->sibling_ = nullptr;
912 // Reset the sibling rather than the inner_scope_ since we
913 // want to keep new_parent there.
914 new_parent->sibling_ = top_inner_scope_;
915 }
916
917 new_parent->unresolved_list_.MoveTail(&outer_scope_->unresolved_list_,
918 top_unresolved_);
919
920 // Move temporaries allocated for complex parameter initializers.
921 DeclarationScope* outer_closure = outer_scope_->GetClosureScope();
922 for (auto it = top_local_; it != outer_closure->locals()->end(); ++it) {
923 Variable* local = *it;
924 DCHECK_EQ(VariableMode::kTemporary, local->mode());
925 DCHECK_EQ(local->scope(), local->scope()->GetClosureScope());
926 DCHECK_NE(local->scope(), new_parent);
927 local->set_scope(new_parent);
928 }
929 new_parent->locals_.MoveTail(outer_closure->locals(), top_local_);
930 outer_closure->locals_.Rewind(top_local_);
931
932 // Move eval calls since Snapshot's creation into new_parent.
933 if (outer_scope_->calls_eval_) {
934 new_parent->RecordEvalCall();
935 outer_scope_->calls_eval_ = false;
936 declaration_scope_->sloppy_eval_can_extend_vars_ = false;
937 }
938 }
939
ReplaceOuterScope(Scope * outer)940 void Scope::ReplaceOuterScope(Scope* outer) {
941 DCHECK_NOT_NULL(outer);
942 DCHECK_NOT_NULL(outer_scope_);
943 DCHECK(!already_resolved_);
944 outer_scope_->RemoveInnerScope(this);
945 outer->AddInnerScope(this);
946 outer_scope_ = outer;
947 }
948
LookupInScopeInfo(const AstRawString * name,Scope * cache)949 Variable* Scope::LookupInScopeInfo(const AstRawString* name, Scope* cache) {
950 DCHECK(!scope_info_.is_null());
951 DCHECK(this->IsOuterScopeOf(cache));
952 DCHECK(!cache->deserialized_scope_uses_external_cache());
953 // The case where where the cache can be another scope is when the cache scope
954 // is the last scope that doesn't use an external cache.
955 DCHECK_IMPLIES(
956 cache != this,
957 cache->outer_scope()->deserialized_scope_uses_external_cache());
958 DCHECK_NULL(cache->variables_.Lookup(name));
959 DisallowGarbageCollection no_gc;
960
961 String name_handle = *name->string();
962 ScopeInfo scope_info = *scope_info_;
963 // The Scope is backed up by ScopeInfo. This means it cannot operate in a
964 // heap-independent mode, and all strings must be internalized immediately. So
965 // it's ok to get the Handle<String> here.
966 bool found = false;
967
968 VariableLocation location;
969 int index;
970 VariableLookupResult lookup_result;
971
972 {
973 location = VariableLocation::CONTEXT;
974 index = scope_info.ContextSlotIndex(name->string(), &lookup_result);
975 found = index >= 0;
976 }
977
978 if (!found && is_module_scope()) {
979 location = VariableLocation::MODULE;
980 index = scope_info.ModuleIndex(name_handle, &lookup_result.mode,
981 &lookup_result.init_flag,
982 &lookup_result.maybe_assigned_flag);
983 found = index != 0;
984 }
985
986 if (!found) {
987 index = scope_info.FunctionContextSlotIndex(name_handle);
988 if (index < 0) return nullptr; // Nowhere found.
989 Variable* var = AsDeclarationScope()->DeclareFunctionVar(name, cache);
990 DCHECK_EQ(VariableMode::kConst, var->mode());
991 var->AllocateTo(VariableLocation::CONTEXT, index);
992 return cache->variables_.Lookup(name);
993 }
994
995 if (!is_module_scope()) {
996 DCHECK_NE(index, scope_info.ReceiverContextSlotIndex());
997 }
998
999 bool was_added;
1000 Variable* var = cache->variables_.Declare(
1001 zone(), this, name, lookup_result.mode, NORMAL_VARIABLE,
1002 lookup_result.init_flag, lookup_result.maybe_assigned_flag,
1003 IsStaticFlag::kNotStatic, &was_added);
1004 DCHECK(was_added);
1005 var->AllocateTo(location, index);
1006 return var;
1007 }
1008
DeclareParameter(const AstRawString * name,VariableMode mode,bool is_optional,bool is_rest,AstValueFactory * ast_value_factory,int position)1009 Variable* DeclarationScope::DeclareParameter(const AstRawString* name,
1010 VariableMode mode,
1011 bool is_optional, bool is_rest,
1012 AstValueFactory* ast_value_factory,
1013 int position) {
1014 DCHECK(!already_resolved_);
1015 DCHECK(is_function_scope() || is_module_scope());
1016 DCHECK(!has_rest_);
1017 DCHECK(!is_optional || !is_rest);
1018 DCHECK(!is_being_lazily_parsed_);
1019 DCHECK(!was_lazily_parsed_);
1020 Variable* var;
1021 if (mode == VariableMode::kTemporary) {
1022 var = NewTemporary(name);
1023 } else {
1024 var = LookupLocal(name);
1025 DCHECK_EQ(mode, VariableMode::kVar);
1026 DCHECK(var->is_parameter());
1027 }
1028 has_rest_ = is_rest;
1029 var->set_initializer_position(position);
1030 params_.Add(var, zone());
1031 if (!is_rest) ++num_parameters_;
1032 if (name == ast_value_factory->arguments_string()) {
1033 has_arguments_parameter_ = true;
1034 }
1035 // Params are automatically marked as used to make sure that the debugger and
1036 // function.arguments sees them.
1037 // TODO(verwaest): Reevaluate whether we always need to do this, since
1038 // strict-mode function.arguments does not make the arguments available.
1039 var->set_is_used();
1040 return var;
1041 }
1042
RecordParameter(bool is_rest)1043 void DeclarationScope::RecordParameter(bool is_rest) {
1044 DCHECK(!already_resolved_);
1045 DCHECK(is_function_scope() || is_module_scope());
1046 DCHECK(is_being_lazily_parsed_);
1047 DCHECK(!has_rest_);
1048 has_rest_ = is_rest;
1049 if (!is_rest) ++num_parameters_;
1050 }
1051
DeclareLocal(const AstRawString * name,VariableMode mode,VariableKind kind,bool * was_added,InitializationFlag init_flag)1052 Variable* Scope::DeclareLocal(const AstRawString* name, VariableMode mode,
1053 VariableKind kind, bool* was_added,
1054 InitializationFlag init_flag) {
1055 DCHECK(!already_resolved_);
1056 // Private methods should be declared with ClassScope::DeclarePrivateName()
1057 DCHECK(!IsPrivateMethodOrAccessorVariableMode(mode));
1058 // This function handles VariableMode::kVar, VariableMode::kLet, and
1059 // VariableMode::kConst modes. VariableMode::kDynamic variables are
1060 // introduced during variable allocation, and VariableMode::kTemporary
1061 // variables are allocated via NewTemporary().
1062 DCHECK(IsDeclaredVariableMode(mode));
1063 DCHECK_IMPLIES(GetDeclarationScope()->is_being_lazily_parsed(),
1064 mode == VariableMode::kVar || mode == VariableMode::kLet ||
1065 mode == VariableMode::kConst);
1066 DCHECK(!GetDeclarationScope()->was_lazily_parsed());
1067 Variable* var =
1068 Declare(zone(), name, mode, kind, init_flag, kNotAssigned, was_added);
1069
1070 // Pessimistically assume that top-level variables will be assigned and used.
1071 //
1072 // Top-level variables in a script can be accessed by other scripts or even
1073 // become global properties. While this does not apply to top-level variables
1074 // in a module (assuming they are not exported), we must still mark these as
1075 // assigned because they might be accessed by a lazily parsed top-level
1076 // function, which, for efficiency, we preparse without variable tracking.
1077 if (is_script_scope() || is_module_scope()) {
1078 if (mode != VariableMode::kConst) var->SetMaybeAssigned();
1079 var->set_is_used();
1080 }
1081
1082 return var;
1083 }
1084
DeclareVariable(Declaration * declaration,const AstRawString * name,int pos,VariableMode mode,VariableKind kind,InitializationFlag init,bool * was_added,bool * sloppy_mode_block_scope_function_redefinition,bool * ok)1085 Variable* Scope::DeclareVariable(
1086 Declaration* declaration, const AstRawString* name, int pos,
1087 VariableMode mode, VariableKind kind, InitializationFlag init,
1088 bool* was_added, bool* sloppy_mode_block_scope_function_redefinition,
1089 bool* ok) {
1090 // Private methods should be declared with ClassScope::DeclarePrivateName()
1091 DCHECK(!IsPrivateMethodOrAccessorVariableMode(mode));
1092 DCHECK(IsDeclaredVariableMode(mode));
1093 DCHECK(!already_resolved_);
1094 DCHECK(!GetDeclarationScope()->is_being_lazily_parsed());
1095 DCHECK(!GetDeclarationScope()->was_lazily_parsed());
1096
1097 if (mode == VariableMode::kVar && !is_declaration_scope()) {
1098 return GetDeclarationScope()->DeclareVariable(
1099 declaration, name, pos, mode, kind, init, was_added,
1100 sloppy_mode_block_scope_function_redefinition, ok);
1101 }
1102 DCHECK(!is_catch_scope());
1103 DCHECK(!is_with_scope());
1104 DCHECK(is_declaration_scope() ||
1105 (IsLexicalVariableMode(mode) && is_block_scope()));
1106
1107 DCHECK_NOT_NULL(name);
1108
1109 Variable* var = LookupLocal(name);
1110 // Declare the variable in the declaration scope.
1111 *was_added = var == nullptr;
1112 if (V8_LIKELY(*was_added)) {
1113 if (V8_UNLIKELY(is_eval_scope() && is_sloppy(language_mode()) &&
1114 mode == VariableMode::kVar)) {
1115 // In a var binding in a sloppy direct eval, pollute the enclosing scope
1116 // with this new binding by doing the following:
1117 // The proxy is bound to a lookup variable to force a dynamic declaration
1118 // using the DeclareEvalVar or DeclareEvalFunction runtime functions.
1119 DCHECK_EQ(NORMAL_VARIABLE, kind);
1120 var = NonLocal(name, VariableMode::kDynamic);
1121 // Mark the var as used in case anyone outside the eval wants to use it.
1122 var->set_is_used();
1123 } else {
1124 // Declare the name.
1125 var = DeclareLocal(name, mode, kind, was_added, init);
1126 DCHECK(*was_added);
1127 }
1128 } else {
1129 var->SetMaybeAssigned();
1130 if (V8_UNLIKELY(IsLexicalVariableMode(mode) ||
1131 IsLexicalVariableMode(var->mode()))) {
1132 // The name was declared in this scope before; check for conflicting
1133 // re-declarations. We have a conflict if either of the declarations is
1134 // not a var (in script scope, we also have to ignore legacy const for
1135 // compatibility). There is similar code in runtime.cc in the Declare
1136 // functions. The function CheckConflictingVarDeclarations checks for
1137 // var and let bindings from different scopes whereas this is a check
1138 // for conflicting declarations within the same scope. This check also
1139 // covers the special case
1140 //
1141 // function () { let x; { var x; } }
1142 //
1143 // because the var declaration is hoisted to the function scope where
1144 // 'x' is already bound.
1145 //
1146 // In harmony we treat re-declarations as early errors. See ES5 16 for a
1147 // definition of early errors.
1148 //
1149 // Allow duplicate function decls for web compat, see bug 4693.
1150 *ok = var->is_sloppy_block_function() &&
1151 kind == SLOPPY_BLOCK_FUNCTION_VARIABLE;
1152 *sloppy_mode_block_scope_function_redefinition = *ok;
1153 }
1154 }
1155 DCHECK_NOT_NULL(var);
1156
1157 // We add a declaration node for every declaration. The compiler
1158 // will only generate code if necessary. In particular, declarations
1159 // for inner local variables that do not represent functions won't
1160 // result in any generated code.
1161 //
1162 // This will lead to multiple declaration nodes for the
1163 // same variable if it is declared several times. This is not a
1164 // semantic issue, but it may be a performance issue since it may
1165 // lead to repeated DeclareEvalVar or DeclareEvalFunction calls.
1166 decls_.Add(declaration);
1167 declaration->set_var(var);
1168 return var;
1169 }
1170
DeclareVariableName(const AstRawString * name,VariableMode mode,bool * was_added,VariableKind kind)1171 Variable* Scope::DeclareVariableName(const AstRawString* name,
1172 VariableMode mode, bool* was_added,
1173 VariableKind kind) {
1174 DCHECK(IsDeclaredVariableMode(mode));
1175 DCHECK(!already_resolved_);
1176 DCHECK(GetDeclarationScope()->is_being_lazily_parsed());
1177 // Private methods should be declared with ClassScope::DeclarePrivateName()
1178 DCHECK(!IsPrivateMethodOrAccessorVariableMode(mode));
1179 if (mode == VariableMode::kVar && !is_declaration_scope()) {
1180 return GetDeclarationScope()->DeclareVariableName(name, mode, was_added,
1181 kind);
1182 }
1183 DCHECK(!is_with_scope());
1184 DCHECK(!is_eval_scope());
1185 DCHECK(is_declaration_scope() || IsLexicalVariableMode(mode));
1186 DCHECK(scope_info_.is_null());
1187
1188 // Declare the variable in the declaration scope.
1189 Variable* var = DeclareLocal(name, mode, kind, was_added);
1190 if (!*was_added) {
1191 if (IsLexicalVariableMode(mode) || IsLexicalVariableMode(var->mode())) {
1192 if (!var->is_sloppy_block_function() ||
1193 kind != SLOPPY_BLOCK_FUNCTION_VARIABLE) {
1194 // Duplicate functions are allowed in the sloppy mode, but if this is
1195 // not a function declaration, it's an error. This is an error PreParser
1196 // hasn't previously detected.
1197 return nullptr;
1198 }
1199 // Sloppy block function redefinition.
1200 }
1201 var->SetMaybeAssigned();
1202 }
1203 var->set_is_used();
1204 return var;
1205 }
1206
DeclareCatchVariableName(const AstRawString * name)1207 Variable* Scope::DeclareCatchVariableName(const AstRawString* name) {
1208 DCHECK(!already_resolved_);
1209 DCHECK(is_catch_scope());
1210 DCHECK(scope_info_.is_null());
1211
1212 bool was_added;
1213 Variable* result = Declare(zone(), name, VariableMode::kVar, NORMAL_VARIABLE,
1214 kCreatedInitialized, kNotAssigned, &was_added);
1215 DCHECK(was_added);
1216 return result;
1217 }
1218
AddUnresolved(VariableProxy * proxy)1219 void Scope::AddUnresolved(VariableProxy* proxy) {
1220 DCHECK(!already_resolved_);
1221 DCHECK(!proxy->is_resolved());
1222 unresolved_list_.Add(proxy);
1223 }
1224
DeclareDynamicGlobal(const AstRawString * name,VariableKind kind,Scope * cache)1225 Variable* DeclarationScope::DeclareDynamicGlobal(const AstRawString* name,
1226 VariableKind kind,
1227 Scope* cache) {
1228 DCHECK(is_script_scope());
1229 bool was_added;
1230 return cache->variables_.Declare(
1231 zone(), this, name, VariableMode::kDynamicGlobal, kind,
1232 kCreatedInitialized, kNotAssigned, IsStaticFlag::kNotStatic, &was_added);
1233 // TODO(neis): Mark variable as maybe-assigned?
1234 }
1235
RemoveUnresolved(VariableProxy * var)1236 bool Scope::RemoveUnresolved(VariableProxy* var) {
1237 return unresolved_list_.Remove(var);
1238 }
1239
DeleteUnresolved(VariableProxy * var)1240 void Scope::DeleteUnresolved(VariableProxy* var) {
1241 DCHECK(unresolved_list_.Contains(var));
1242 var->mark_removed_from_unresolved();
1243 }
1244
NewTemporary(const AstRawString * name)1245 Variable* Scope::NewTemporary(const AstRawString* name) {
1246 return NewTemporary(name, kMaybeAssigned);
1247 }
1248
NewTemporary(const AstRawString * name,MaybeAssignedFlag maybe_assigned)1249 Variable* Scope::NewTemporary(const AstRawString* name,
1250 MaybeAssignedFlag maybe_assigned) {
1251 DeclarationScope* scope = GetClosureScope();
1252 Variable* var = zone()->New<Variable>(scope, name, VariableMode::kTemporary,
1253 NORMAL_VARIABLE, kCreatedInitialized);
1254 scope->AddLocal(var);
1255 if (maybe_assigned == kMaybeAssigned) var->SetMaybeAssigned();
1256 return var;
1257 }
1258
CheckConflictingVarDeclarations(bool * allowed_catch_binding_var_redeclaration)1259 Declaration* DeclarationScope::CheckConflictingVarDeclarations(
1260 bool* allowed_catch_binding_var_redeclaration) {
1261 if (has_checked_syntax_) return nullptr;
1262 for (Declaration* decl : decls_) {
1263 // Lexical vs lexical conflicts within the same scope have already been
1264 // captured in Parser::Declare. The only conflicts we still need to check
1265 // are lexical vs nested var.
1266 if (decl->IsVariableDeclaration() &&
1267 decl->AsVariableDeclaration()->AsNested() != nullptr) {
1268 Scope* current = decl->AsVariableDeclaration()->AsNested()->scope();
1269 DCHECK(decl->var()->mode() == VariableMode::kVar ||
1270 decl->var()->mode() == VariableMode::kDynamic);
1271 // Iterate through all scopes until the declaration scope.
1272 do {
1273 // There is a conflict if there exists a non-VAR binding.
1274 Variable* other_var = current->LookupLocal(decl->var()->raw_name());
1275 if (current->is_catch_scope()) {
1276 *allowed_catch_binding_var_redeclaration |= other_var != nullptr;
1277 current = current->outer_scope();
1278 continue;
1279 }
1280 if (other_var != nullptr) {
1281 DCHECK(IsLexicalVariableMode(other_var->mode()));
1282 return decl;
1283 }
1284 current = current->outer_scope();
1285 } while (current != this);
1286 }
1287 }
1288
1289 if (V8_LIKELY(!is_eval_scope())) return nullptr;
1290 if (!is_sloppy(language_mode())) return nullptr;
1291
1292 // Var declarations in sloppy eval are hoisted to the first non-eval
1293 // declaration scope. Check for conflicts between the eval scope that
1294 // declaration scope.
1295 Scope* end = outer_scope()->GetNonEvalDeclarationScope()->outer_scope();
1296
1297 for (Declaration* decl : decls_) {
1298 if (IsLexicalVariableMode(decl->var()->mode())) continue;
1299 Scope* current = outer_scope_;
1300 // Iterate through all scopes until and including the declaration scope.
1301 do {
1302 // There is a conflict if there exists a non-VAR binding up to the
1303 // declaration scope in which this sloppy-eval runs.
1304 //
1305 // Use the current scope as the cache, since the general cache would be
1306 // the end scope.
1307 Variable* other_var =
1308 current->LookupInScopeOrScopeInfo(decl->var()->raw_name(), current);
1309 if (other_var != nullptr && !current->is_catch_scope()) {
1310 // If this is a VAR, then we know that it doesn't conflict with
1311 // anything, so we can't conflict with anything either. The one
1312 // exception is the binding variable in catch scopes, which is handled
1313 // by the if above.
1314 if (!IsLexicalVariableMode(other_var->mode())) break;
1315 return decl;
1316 }
1317 current = current->outer_scope();
1318 } while (current != end);
1319 }
1320 return nullptr;
1321 }
1322
FindVariableDeclaredIn(Scope * scope,VariableMode mode_limit)1323 const AstRawString* Scope::FindVariableDeclaredIn(Scope* scope,
1324 VariableMode mode_limit) {
1325 const VariableMap& variables = scope->variables_;
1326 for (ZoneHashMap::Entry* p = variables.Start(); p != nullptr;
1327 p = variables.Next(p)) {
1328 const AstRawString* name = static_cast<const AstRawString*>(p->key);
1329 Variable* var = LookupLocal(name);
1330 if (var != nullptr && var->mode() <= mode_limit) return name;
1331 }
1332 return nullptr;
1333 }
1334
DeserializeReceiver(AstValueFactory * ast_value_factory)1335 void DeclarationScope::DeserializeReceiver(AstValueFactory* ast_value_factory) {
1336 if (is_script_scope()) {
1337 DCHECK_NOT_NULL(receiver_);
1338 return;
1339 }
1340 DCHECK(has_this_declaration());
1341 DeclareThis(ast_value_factory);
1342 if (is_debug_evaluate_scope()) {
1343 receiver_->AllocateTo(VariableLocation::LOOKUP, -1);
1344 } else {
1345 receiver_->AllocateTo(VariableLocation::CONTEXT,
1346 scope_info_->ReceiverContextSlotIndex());
1347 }
1348 }
1349
AllocateVariables(ParseInfo * info)1350 bool DeclarationScope::AllocateVariables(ParseInfo* info) {
1351 // Module variables must be allocated before variable resolution
1352 // to ensure that UpdateNeedsHoleCheck() can detect import variables.
1353 if (is_module_scope()) AsModuleScope()->AllocateModuleVariables();
1354
1355 PrivateNameScopeIterator private_name_scope_iter(this);
1356 if (!private_name_scope_iter.Done() &&
1357 !private_name_scope_iter.GetScope()->ResolvePrivateNames(info)) {
1358 DCHECK(info->pending_error_handler()->has_pending_error());
1359 return false;
1360 }
1361
1362 if (!ResolveVariablesRecursively(info->scope())) {
1363 DCHECK(info->pending_error_handler()->has_pending_error());
1364 return false;
1365 }
1366
1367 // Don't allocate variables of preparsed scopes.
1368 if (!was_lazily_parsed()) AllocateVariablesRecursively();
1369
1370 return true;
1371 }
1372
HasThisReference() const1373 bool Scope::HasThisReference() const {
1374 if (is_declaration_scope() && AsDeclarationScope()->has_this_reference()) {
1375 return true;
1376 }
1377
1378 for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
1379 if (!scope->is_declaration_scope() ||
1380 !scope->AsDeclarationScope()->has_this_declaration()) {
1381 if (scope->HasThisReference()) return true;
1382 }
1383 }
1384
1385 return false;
1386 }
1387
AllowsLazyParsingWithoutUnresolvedVariables(const Scope * outer) const1388 bool Scope::AllowsLazyParsingWithoutUnresolvedVariables(
1389 const Scope* outer) const {
1390 // If none of the outer scopes need to decide whether to context allocate
1391 // specific variables, we can preparse inner functions without unresolved
1392 // variables. Otherwise we need to find unresolved variables to force context
1393 // allocation of the matching declarations. We can stop at the outer scope for
1394 // the parse, since context allocation of those variables is already
1395 // guaranteed to be correct.
1396 for (const Scope* s = this; s != outer; s = s->outer_scope_) {
1397 // Eval forces context allocation on all outer scopes, so we don't need to
1398 // look at those scopes. Sloppy eval makes top-level non-lexical variables
1399 // dynamic, whereas strict-mode requires context allocation.
1400 if (s->is_eval_scope()) return is_sloppy(s->language_mode());
1401 // Catch scopes force context allocation of all variables.
1402 if (s->is_catch_scope()) continue;
1403 // With scopes do not introduce variables that need allocation.
1404 if (s->is_with_scope()) continue;
1405 DCHECK(s->is_module_scope() || s->is_block_scope() ||
1406 s->is_function_scope());
1407 return false;
1408 }
1409 return true;
1410 }
1411
AllowsLazyCompilation() const1412 bool DeclarationScope::AllowsLazyCompilation() const {
1413 // Functions which force eager compilation and class member initializer
1414 // functions are not lazily compilable.
1415 return !force_eager_compilation_ &&
1416 !IsClassMembersInitializerFunction(function_kind());
1417 }
1418
ContextChainLength(Scope * scope) const1419 int Scope::ContextChainLength(Scope* scope) const {
1420 int n = 0;
1421 for (const Scope* s = this; s != scope; s = s->outer_scope_) {
1422 DCHECK_NOT_NULL(s); // scope must be in the scope chain
1423 if (s->NeedsContext()) n++;
1424 }
1425 return n;
1426 }
1427
ContextChainLengthUntilOutermostSloppyEval() const1428 int Scope::ContextChainLengthUntilOutermostSloppyEval() const {
1429 int result = 0;
1430 int length = 0;
1431
1432 for (const Scope* s = this; s != nullptr; s = s->outer_scope()) {
1433 if (!s->NeedsContext()) continue;
1434 length++;
1435 if (s->is_declaration_scope() &&
1436 s->AsDeclarationScope()->sloppy_eval_can_extend_vars()) {
1437 result = length;
1438 }
1439 }
1440
1441 return result;
1442 }
1443
GetDeclarationScope()1444 DeclarationScope* Scope::GetDeclarationScope() {
1445 Scope* scope = this;
1446 while (!scope->is_declaration_scope()) {
1447 scope = scope->outer_scope();
1448 }
1449 return scope->AsDeclarationScope();
1450 }
1451
GetNonEvalDeclarationScope()1452 DeclarationScope* Scope::GetNonEvalDeclarationScope() {
1453 Scope* scope = this;
1454 while (!scope->is_declaration_scope() || scope->is_eval_scope()) {
1455 scope = scope->outer_scope();
1456 }
1457 return scope->AsDeclarationScope();
1458 }
1459
GetClosureScope() const1460 const DeclarationScope* Scope::GetClosureScope() const {
1461 const Scope* scope = this;
1462 while (!scope->is_declaration_scope() || scope->is_block_scope()) {
1463 scope = scope->outer_scope();
1464 }
1465 return scope->AsDeclarationScope();
1466 }
1467
GetClosureScope()1468 DeclarationScope* Scope::GetClosureScope() {
1469 Scope* scope = this;
1470 while (!scope->is_declaration_scope() || scope->is_block_scope()) {
1471 scope = scope->outer_scope();
1472 }
1473 return scope->AsDeclarationScope();
1474 }
1475
NeedsScopeInfo() const1476 bool Scope::NeedsScopeInfo() const {
1477 DCHECK(!already_resolved_);
1478 DCHECK(GetClosureScope()->ShouldEagerCompile());
1479 // The debugger expects all functions to have scope infos.
1480 // TODO(yangguo): Remove this requirement.
1481 if (is_function_scope()) return true;
1482 return NeedsContext();
1483 }
1484
ShouldBanArguments()1485 bool Scope::ShouldBanArguments() {
1486 return GetReceiverScope()->should_ban_arguments();
1487 }
1488
GetReceiverScope()1489 DeclarationScope* Scope::GetReceiverScope() {
1490 Scope* scope = this;
1491 while (!scope->is_declaration_scope() ||
1492 (!scope->is_script_scope() &&
1493 !scope->AsDeclarationScope()->has_this_declaration())) {
1494 scope = scope->outer_scope();
1495 }
1496 return scope->AsDeclarationScope();
1497 }
1498
GetConstructorScope()1499 DeclarationScope* Scope::GetConstructorScope() {
1500 Scope* scope = this;
1501 while (scope != nullptr && !scope->IsConstructorScope()) {
1502 scope = scope->outer_scope();
1503 }
1504 if (scope == nullptr) {
1505 return nullptr;
1506 }
1507 DCHECK(scope->IsConstructorScope());
1508 return scope->AsDeclarationScope();
1509 }
1510
GetHomeObjectScope()1511 Scope* Scope::GetHomeObjectScope() {
1512 Scope* scope = this;
1513 while (scope != nullptr && !scope->is_home_object_scope()) {
1514 if (scope->is_function_scope()) {
1515 FunctionKind function_kind = scope->AsDeclarationScope()->function_kind();
1516 // "super" in arrow functions binds outside the arrow function. But if we
1517 // find a function which doesn't bind "super" (is not a method etc.) and
1518 // not an arrow function, we know "super" here doesn't bind anywhere and
1519 // we can return nullptr.
1520 if (!IsArrowFunction(function_kind) && !BindsSuper(function_kind)) {
1521 return nullptr;
1522 }
1523 }
1524 if (scope->private_name_lookup_skips_outer_class()) {
1525 DCHECK(scope->outer_scope()->is_class_scope());
1526 scope = scope->outer_scope()->outer_scope();
1527 } else {
1528 scope = scope->outer_scope();
1529 }
1530 }
1531 return scope;
1532 }
1533
GetScriptScope()1534 DeclarationScope* Scope::GetScriptScope() {
1535 Scope* scope = this;
1536 while (!scope->is_script_scope()) {
1537 scope = scope->outer_scope();
1538 }
1539 return scope->AsDeclarationScope();
1540 }
1541
GetOuterScopeWithContext()1542 Scope* Scope::GetOuterScopeWithContext() {
1543 Scope* scope = outer_scope_;
1544 while (scope && !scope->NeedsContext()) {
1545 scope = scope->outer_scope();
1546 }
1547 return scope;
1548 }
1549
1550 namespace {
WasLazilyParsed(Scope * scope)1551 bool WasLazilyParsed(Scope* scope) {
1552 return scope->is_declaration_scope() &&
1553 scope->AsDeclarationScope()->was_lazily_parsed();
1554 }
1555
1556 } // namespace
1557
1558 template <typename FunctionType>
ForEach(FunctionType callback)1559 void Scope::ForEach(FunctionType callback) {
1560 Scope* scope = this;
1561 while (true) {
1562 Iteration iteration = callback(scope);
1563 // Try to descend into inner scopes first.
1564 if ((iteration == Iteration::kDescend) && scope->inner_scope_ != nullptr) {
1565 scope = scope->inner_scope_;
1566 } else {
1567 // Find the next outer scope with a sibling.
1568 while (scope->sibling_ == nullptr) {
1569 if (scope == this) return;
1570 scope = scope->outer_scope_;
1571 }
1572 if (scope == this) return;
1573 scope = scope->sibling_;
1574 }
1575 }
1576 }
1577
IsConstructorScope() const1578 bool Scope::IsConstructorScope() const {
1579 return is_declaration_scope() &&
1580 IsClassConstructor(AsDeclarationScope()->function_kind());
1581 }
1582
IsOuterScopeOf(Scope * other) const1583 bool Scope::IsOuterScopeOf(Scope* other) const {
1584 Scope* scope = other;
1585 while (scope) {
1586 if (scope == this) return true;
1587 scope = scope->outer_scope();
1588 }
1589 return false;
1590 }
1591
CollectNonLocals(DeclarationScope * max_outer_scope,Isolate * isolate,Handle<StringSet> * non_locals)1592 void Scope::CollectNonLocals(DeclarationScope* max_outer_scope,
1593 Isolate* isolate, Handle<StringSet>* non_locals) {
1594 this->ForEach([max_outer_scope, isolate, non_locals](Scope* scope) {
1595 // Module variables must be allocated before variable resolution
1596 // to ensure that UpdateNeedsHoleCheck() can detect import variables.
1597 if (scope->is_module_scope()) {
1598 scope->AsModuleScope()->AllocateModuleVariables();
1599 }
1600
1601 // Lazy parsed declaration scopes are already partially analyzed. If there
1602 // are unresolved references remaining, they just need to be resolved in
1603 // outer scopes.
1604 Scope* lookup = WasLazilyParsed(scope) ? scope->outer_scope() : scope;
1605
1606 for (VariableProxy* proxy : scope->unresolved_list_) {
1607 DCHECK(!proxy->is_resolved());
1608 Variable* var =
1609 Lookup<kParsedScope>(proxy, lookup, max_outer_scope->outer_scope());
1610 if (var == nullptr) {
1611 *non_locals = StringSet::Add(isolate, *non_locals, proxy->name());
1612 } else {
1613 // In this case we need to leave scopes in a way that they can be
1614 // allocated. If we resolved variables from lazy parsed scopes, we need
1615 // to context allocate the var.
1616 scope->ResolveTo(proxy, var);
1617 if (!var->is_dynamic() && lookup != scope)
1618 var->ForceContextAllocation();
1619 }
1620 }
1621
1622 // Clear unresolved_list_ as it's in an inconsistent state.
1623 scope->unresolved_list_.Clear();
1624 return Iteration::kDescend;
1625 });
1626 }
1627
AnalyzePartially(DeclarationScope * max_outer_scope,AstNodeFactory * ast_node_factory,UnresolvedList * new_unresolved_list,bool maybe_in_arrowhead)1628 void Scope::AnalyzePartially(DeclarationScope* max_outer_scope,
1629 AstNodeFactory* ast_node_factory,
1630 UnresolvedList* new_unresolved_list,
1631 bool maybe_in_arrowhead) {
1632 this->ForEach([max_outer_scope, ast_node_factory, new_unresolved_list,
1633 maybe_in_arrowhead](Scope* scope) {
1634 DCHECK_IMPLIES(scope->is_declaration_scope(),
1635 !scope->AsDeclarationScope()->was_lazily_parsed());
1636
1637 for (VariableProxy* proxy = scope->unresolved_list_.first();
1638 proxy != nullptr; proxy = proxy->next_unresolved()) {
1639 if (proxy->is_removed_from_unresolved()) continue;
1640 DCHECK(!proxy->is_resolved());
1641 Variable* var =
1642 Lookup<kParsedScope>(proxy, scope, max_outer_scope->outer_scope());
1643 if (var == nullptr) {
1644 // Don't copy unresolved references to the script scope, unless it's a
1645 // reference to a private name or method. In that case keep it so we
1646 // can fail later.
1647 if (!max_outer_scope->outer_scope()->is_script_scope() ||
1648 maybe_in_arrowhead) {
1649 VariableProxy* copy = ast_node_factory->CopyVariableProxy(proxy);
1650 new_unresolved_list->Add(copy);
1651 }
1652 } else {
1653 var->set_is_used();
1654 if (proxy->is_assigned()) var->SetMaybeAssigned();
1655 }
1656 }
1657
1658 // Clear unresolved_list_ as it's in an inconsistent state.
1659 scope->unresolved_list_.Clear();
1660 return Iteration::kDescend;
1661 });
1662 }
1663
CollectNonLocals(Isolate * isolate,Handle<StringSet> non_locals)1664 Handle<StringSet> DeclarationScope::CollectNonLocals(
1665 Isolate* isolate, Handle<StringSet> non_locals) {
1666 Scope::CollectNonLocals(this, isolate, &non_locals);
1667 return non_locals;
1668 }
1669
ResetAfterPreparsing(AstValueFactory * ast_value_factory,bool aborted)1670 void DeclarationScope::ResetAfterPreparsing(AstValueFactory* ast_value_factory,
1671 bool aborted) {
1672 DCHECK(is_function_scope());
1673
1674 // Reset all non-trivial members.
1675 params_.DropAndClear();
1676 decls_.Clear();
1677 locals_.Clear();
1678 inner_scope_ = nullptr;
1679 unresolved_list_.Clear();
1680 sloppy_block_functions_.Clear();
1681 rare_data_ = nullptr;
1682 has_rest_ = false;
1683 function_ = nullptr;
1684
1685 DCHECK_NE(zone(), ast_value_factory->single_parse_zone());
1686 // Make sure this scope and zone aren't used for allocation anymore.
1687 {
1688 // Get the zone, while variables_ is still valid
1689 Zone* zone = this->zone();
1690 variables_.Invalidate();
1691 zone->Reset();
1692 }
1693
1694 if (aborted) {
1695 // Prepare scope for use in the outer zone.
1696 variables_ = VariableMap(ast_value_factory->single_parse_zone());
1697 if (!IsArrowFunction(function_kind_)) {
1698 has_simple_parameters_ = true;
1699 DeclareDefaultFunctionVariables(ast_value_factory);
1700 }
1701 }
1702
1703 #ifdef DEBUG
1704 needs_migration_ = false;
1705 is_being_lazily_parsed_ = false;
1706 #endif
1707
1708 was_lazily_parsed_ = !aborted;
1709 }
1710
IsSkippableFunctionScope()1711 bool Scope::IsSkippableFunctionScope() {
1712 // Lazy non-arrow function scopes are skippable. Lazy functions are exactly
1713 // those Scopes which have their own PreparseDataBuilder object. This
1714 // logic ensures that the scope allocation data is consistent with the
1715 // skippable function data (both agree on where the lazy function boundaries
1716 // are).
1717 if (!is_function_scope()) return false;
1718 DeclarationScope* declaration_scope = AsDeclarationScope();
1719 return !declaration_scope->is_arrow_scope() &&
1720 declaration_scope->preparse_data_builder() != nullptr;
1721 }
1722
SavePreparseData(Parser * parser)1723 void Scope::SavePreparseData(Parser* parser) {
1724 this->ForEach([parser](Scope* scope) {
1725 if (scope->IsSkippableFunctionScope()) {
1726 scope->AsDeclarationScope()->SavePreparseDataForDeclarationScope(parser);
1727 }
1728 return Iteration::kDescend;
1729 });
1730 }
1731
SavePreparseDataForDeclarationScope(Parser * parser)1732 void DeclarationScope::SavePreparseDataForDeclarationScope(Parser* parser) {
1733 if (preparse_data_builder_ == nullptr) return;
1734 preparse_data_builder_->SaveScopeAllocationData(this, parser);
1735 }
1736
AnalyzePartially(Parser * parser,AstNodeFactory * ast_node_factory,bool maybe_in_arrowhead)1737 void DeclarationScope::AnalyzePartially(Parser* parser,
1738 AstNodeFactory* ast_node_factory,
1739 bool maybe_in_arrowhead) {
1740 DCHECK(!force_eager_compilation_);
1741 UnresolvedList new_unresolved_list;
1742 if (!IsArrowFunction(function_kind_) &&
1743 (!outer_scope_->is_script_scope() || maybe_in_arrowhead ||
1744 (preparse_data_builder_ != nullptr &&
1745 preparse_data_builder_->HasInnerFunctions()))) {
1746 // Try to resolve unresolved variables for this Scope and migrate those
1747 // which cannot be resolved inside. It doesn't make sense to try to resolve
1748 // them in the outer Scopes here, because they are incomplete.
1749 Scope::AnalyzePartially(this, ast_node_factory, &new_unresolved_list,
1750 maybe_in_arrowhead);
1751
1752 // Migrate function_ to the right Zone.
1753 if (function_ != nullptr) {
1754 function_ = ast_node_factory->CopyVariable(function_);
1755 }
1756
1757 SavePreparseData(parser);
1758 }
1759
1760 #ifdef DEBUG
1761 if (FLAG_print_scopes) {
1762 PrintF("Inner function scope:\n");
1763 Print();
1764 }
1765 #endif
1766
1767 ResetAfterPreparsing(ast_node_factory->ast_value_factory(), false);
1768
1769 unresolved_list_ = std::move(new_unresolved_list);
1770 }
1771
RewriteReplGlobalVariables()1772 void DeclarationScope::RewriteReplGlobalVariables() {
1773 DCHECK(is_script_scope());
1774 if (!is_repl_mode_scope()) return;
1775
1776 for (VariableMap::Entry* p = variables_.Start(); p != nullptr;
1777 p = variables_.Next(p)) {
1778 Variable* var = reinterpret_cast<Variable*>(p->value);
1779 var->RewriteLocationForRepl();
1780 }
1781 }
1782
1783 #ifdef DEBUG
1784 namespace {
1785
Header(ScopeType scope_type,FunctionKind function_kind,bool is_declaration_scope)1786 const char* Header(ScopeType scope_type, FunctionKind function_kind,
1787 bool is_declaration_scope) {
1788 switch (scope_type) {
1789 case EVAL_SCOPE: return "eval";
1790 case FUNCTION_SCOPE:
1791 if (IsGeneratorFunction(function_kind)) return "function*";
1792 if (IsAsyncFunction(function_kind)) return "async function";
1793 if (IsArrowFunction(function_kind)) return "arrow";
1794 return "function";
1795 case MODULE_SCOPE: return "module";
1796 case SCRIPT_SCOPE: return "global";
1797 case CATCH_SCOPE: return "catch";
1798 case BLOCK_SCOPE: return is_declaration_scope ? "varblock" : "block";
1799 case CLASS_SCOPE:
1800 return "class";
1801 case WITH_SCOPE: return "with";
1802 }
1803 UNREACHABLE();
1804 }
1805
Indent(int n,const char * str)1806 void Indent(int n, const char* str) { PrintF("%*s%s", n, "", str); }
1807
PrintName(const AstRawString * name)1808 void PrintName(const AstRawString* name) {
1809 PrintF("%.*s", name->length(), name->raw_data());
1810 }
1811
PrintLocation(Variable * var)1812 void PrintLocation(Variable* var) {
1813 switch (var->location()) {
1814 case VariableLocation::UNALLOCATED:
1815 break;
1816 case VariableLocation::PARAMETER:
1817 PrintF("parameter[%d]", var->index());
1818 break;
1819 case VariableLocation::LOCAL:
1820 PrintF("local[%d]", var->index());
1821 break;
1822 case VariableLocation::CONTEXT:
1823 PrintF("context[%d]", var->index());
1824 break;
1825 case VariableLocation::LOOKUP:
1826 PrintF("lookup");
1827 break;
1828 case VariableLocation::MODULE:
1829 PrintF("module");
1830 break;
1831 case VariableLocation::REPL_GLOBAL:
1832 PrintF("repl global[%d]", var->index());
1833 break;
1834 }
1835 }
1836
PrintVar(int indent,Variable * var)1837 void PrintVar(int indent, Variable* var) {
1838 Indent(indent, VariableMode2String(var->mode()));
1839 PrintF(" ");
1840 if (var->raw_name()->IsEmpty())
1841 PrintF(".%p", reinterpret_cast<void*>(var));
1842 else
1843 PrintName(var->raw_name());
1844 PrintF("; // (%p) ", reinterpret_cast<void*>(var));
1845 PrintLocation(var);
1846 bool comma = !var->IsUnallocated();
1847 if (var->has_forced_context_allocation()) {
1848 if (comma) PrintF(", ");
1849 PrintF("forced context allocation");
1850 comma = true;
1851 }
1852 if (var->maybe_assigned() == kNotAssigned) {
1853 if (comma) PrintF(", ");
1854 PrintF("never assigned");
1855 comma = true;
1856 }
1857 if (var->initialization_flag() == kNeedsInitialization &&
1858 !var->binding_needs_init()) {
1859 if (comma) PrintF(", ");
1860 PrintF("hole initialization elided");
1861 }
1862 PrintF("\n");
1863 }
1864
PrintMap(int indent,const char * label,VariableMap * map,bool locals,Variable * function_var)1865 void PrintMap(int indent, const char* label, VariableMap* map, bool locals,
1866 Variable* function_var) {
1867 bool printed_label = false;
1868 for (VariableMap::Entry* p = map->Start(); p != nullptr; p = map->Next(p)) {
1869 Variable* var = reinterpret_cast<Variable*>(p->value);
1870 if (var == function_var) continue;
1871 bool local = !IsDynamicVariableMode(var->mode());
1872 if ((locals ? local : !local) &&
1873 (var->is_used() || !var->IsUnallocated())) {
1874 if (!printed_label) {
1875 Indent(indent, label);
1876 printed_label = true;
1877 }
1878 PrintVar(indent, var);
1879 }
1880 }
1881 }
1882
1883 } // anonymous namespace
1884
PrintParameters()1885 void DeclarationScope::PrintParameters() {
1886 PrintF(" (");
1887 for (int i = 0; i < params_.length(); i++) {
1888 if (i > 0) PrintF(", ");
1889 const AstRawString* name = params_[i]->raw_name();
1890 if (name->IsEmpty()) {
1891 PrintF(".%p", reinterpret_cast<void*>(params_[i]));
1892 } else {
1893 PrintName(name);
1894 }
1895 }
1896 PrintF(")");
1897 }
1898
Print(int n)1899 void Scope::Print(int n) {
1900 int n0 = (n > 0 ? n : 0);
1901 int n1 = n0 + 2; // indentation
1902
1903 // Print header.
1904 FunctionKind function_kind = is_function_scope()
1905 ? AsDeclarationScope()->function_kind()
1906 : FunctionKind::kNormalFunction;
1907 Indent(n0, Header(scope_type_, function_kind, is_declaration_scope()));
1908 if (scope_name_ != nullptr && !scope_name_->IsEmpty()) {
1909 PrintF(" ");
1910 PrintName(scope_name_);
1911 }
1912
1913 // Print parameters, if any.
1914 Variable* function = nullptr;
1915 if (is_function_scope()) {
1916 AsDeclarationScope()->PrintParameters();
1917 function = AsDeclarationScope()->function_var();
1918 }
1919
1920 PrintF(" { // (%p) (%d, %d)\n", reinterpret_cast<void*>(this),
1921 start_position(), end_position());
1922 if (is_hidden()) {
1923 Indent(n1, "// is hidden\n");
1924 }
1925
1926 // Function name, if any (named function literals, only).
1927 if (function != nullptr) {
1928 Indent(n1, "// (local) function name: ");
1929 PrintName(function->raw_name());
1930 PrintF("\n");
1931 }
1932
1933 // Scope info.
1934 if (is_strict(language_mode())) {
1935 Indent(n1, "// strict mode scope\n");
1936 }
1937 #if V8_ENABLE_WEBASSEMBLY
1938 if (IsAsmModule()) Indent(n1, "// scope is an asm module\n");
1939 #endif // V8_ENABLE_WEBASSEMBLY
1940 if (is_declaration_scope() &&
1941 AsDeclarationScope()->sloppy_eval_can_extend_vars()) {
1942 Indent(n1, "// scope calls sloppy 'eval'\n");
1943 }
1944 if (private_name_lookup_skips_outer_class()) {
1945 Indent(n1, "// scope skips outer class for #-names\n");
1946 }
1947 if (inner_scope_calls_eval_) Indent(n1, "// inner scope calls 'eval'\n");
1948 if (is_declaration_scope()) {
1949 DeclarationScope* scope = AsDeclarationScope();
1950 if (scope->was_lazily_parsed()) Indent(n1, "// lazily parsed\n");
1951 if (scope->ShouldEagerCompile()) Indent(n1, "// will be compiled\n");
1952 if (scope->needs_private_name_context_chain_recalc()) {
1953 Indent(n1, "// needs #-name context chain recalc\n");
1954 }
1955 Indent(n1, "// ");
1956 PrintF("%s\n", FunctionKind2String(scope->function_kind()));
1957 if (scope->class_scope_has_private_brand()) {
1958 Indent(n1, "// class scope has private brand\n");
1959 }
1960 }
1961 if (num_stack_slots_ > 0) {
1962 Indent(n1, "// ");
1963 PrintF("%d stack slots\n", num_stack_slots_);
1964 }
1965 if (num_heap_slots_ > 0) {
1966 Indent(n1, "// ");
1967 PrintF("%d heap slots\n", num_heap_slots_);
1968 }
1969
1970 // Print locals.
1971 if (function != nullptr) {
1972 Indent(n1, "// function var:\n");
1973 PrintVar(n1, function);
1974 }
1975
1976 // Print temporaries.
1977 {
1978 bool printed_header = false;
1979 for (Variable* local : locals_) {
1980 if (local->mode() != VariableMode::kTemporary) continue;
1981 if (!printed_header) {
1982 printed_header = true;
1983 Indent(n1, "// temporary vars:\n");
1984 }
1985 PrintVar(n1, local);
1986 }
1987 }
1988
1989 if (variables_.occupancy() > 0) {
1990 PrintMap(n1, "// local vars:\n", &variables_, true, function);
1991 PrintMap(n1, "// dynamic vars:\n", &variables_, false, function);
1992 }
1993
1994 if (is_class_scope()) {
1995 ClassScope* class_scope = AsClassScope();
1996 if (class_scope->GetRareData() != nullptr) {
1997 PrintMap(n1, "// private name vars:\n",
1998 &(class_scope->GetRareData()->private_name_map), true, function);
1999 Variable* brand = class_scope->brand();
2000 if (brand != nullptr) {
2001 Indent(n1, "// brand var:\n");
2002 PrintVar(n1, brand);
2003 }
2004 }
2005 if (class_scope->class_variable() != nullptr) {
2006 Indent(n1, "// class var");
2007 PrintF("%s%s:\n",
2008 class_scope->class_variable()->is_used() ? ", used" : ", unused",
2009 class_scope->should_save_class_variable_index()
2010 ? ", index saved"
2011 : ", index not saved");
2012 PrintVar(n1, class_scope->class_variable());
2013 }
2014 }
2015
2016 // Print inner scopes (disable by providing negative n).
2017 if (n >= 0) {
2018 for (Scope* scope = inner_scope_; scope != nullptr;
2019 scope = scope->sibling_) {
2020 PrintF("\n");
2021 scope->Print(n1);
2022 }
2023 }
2024
2025 Indent(n0, "}\n");
2026 }
2027
CheckScopePositions()2028 void Scope::CheckScopePositions() {
2029 this->ForEach([](Scope* scope) {
2030 // Visible leaf scopes must have real positions.
2031 if (!scope->is_hidden() && scope->inner_scope_ == nullptr) {
2032 DCHECK_NE(kNoSourcePosition, scope->start_position());
2033 DCHECK_NE(kNoSourcePosition, scope->end_position());
2034 }
2035 return Iteration::kDescend;
2036 });
2037 }
2038
CheckZones()2039 void Scope::CheckZones() {
2040 DCHECK(!needs_migration_);
2041 this->ForEach([](Scope* scope) {
2042 if (WasLazilyParsed(scope)) {
2043 DCHECK_NULL(scope->zone());
2044 DCHECK_NULL(scope->inner_scope_);
2045 return Iteration::kContinue;
2046 }
2047 return Iteration::kDescend;
2048 });
2049 }
2050 #endif // DEBUG
2051
NonLocal(const AstRawString * name,VariableMode mode)2052 Variable* Scope::NonLocal(const AstRawString* name, VariableMode mode) {
2053 // Declare a new non-local.
2054 DCHECK(IsDynamicVariableMode(mode));
2055 bool was_added;
2056 Variable* var = variables_.Declare(zone(), this, name, mode, NORMAL_VARIABLE,
2057 kCreatedInitialized, kNotAssigned,
2058 IsStaticFlag::kNotStatic, &was_added);
2059 // Allocate it by giving it a dynamic lookup.
2060 var->AllocateTo(VariableLocation::LOOKUP, -1);
2061 return var;
2062 }
2063
2064 // static
2065 template <Scope::ScopeLookupMode mode>
Lookup(VariableProxy * proxy,Scope * scope,Scope * outer_scope_end,Scope * cache_scope,bool force_context_allocation)2066 Variable* Scope::Lookup(VariableProxy* proxy, Scope* scope,
2067 Scope* outer_scope_end, Scope* cache_scope,
2068 bool force_context_allocation) {
2069 // If we have already passed the cache scope in earlier recursions, we should
2070 // first quickly check if the current scope uses the cache scope before
2071 // continuing.
2072 if (mode == kDeserializedScope &&
2073 scope->deserialized_scope_uses_external_cache()) {
2074 Variable* var = cache_scope->variables_.Lookup(proxy->raw_name());
2075 if (var != nullptr) return var;
2076 }
2077
2078 while (true) {
2079 DCHECK_IMPLIES(mode == kParsedScope, !scope->is_debug_evaluate_scope_);
2080 // Short-cut: whenever we find a debug-evaluate scope, just look everything
2081 // up dynamically. Debug-evaluate doesn't properly create scope info for the
2082 // lookups it does. It may not have a valid 'this' declaration, and anything
2083 // accessed through debug-evaluate might invalidly resolve to
2084 // stack-allocated variables.
2085 // TODO(yangguo): Remove once debug-evaluate creates proper ScopeInfo for
2086 // the scopes in which it's evaluating.
2087 if (mode == kDeserializedScope &&
2088 V8_UNLIKELY(scope->is_debug_evaluate_scope_)) {
2089 DCHECK(scope->deserialized_scope_uses_external_cache() ||
2090 scope == cache_scope);
2091 return cache_scope->NonLocal(proxy->raw_name(), VariableMode::kDynamic);
2092 }
2093
2094 // Try to find the variable in this scope.
2095 Variable* var;
2096 if (mode == kParsedScope) {
2097 var = scope->LookupLocal(proxy->raw_name());
2098 } else {
2099 DCHECK_EQ(mode, kDeserializedScope);
2100 bool external_cache = scope->deserialized_scope_uses_external_cache();
2101 if (!external_cache) {
2102 // Check the cache on each deserialized scope, up to the main cache
2103 // scope when we get to it (we may still have deserialized scopes
2104 // in-between the initial and cache scopes so we can't just check the
2105 // cache before the loop).
2106 var = scope->variables_.Lookup(proxy->raw_name());
2107 if (var != nullptr) return var;
2108 }
2109 var = scope->LookupInScopeInfo(proxy->raw_name(),
2110 external_cache ? cache_scope : scope);
2111 }
2112
2113 // We found a variable and we are done. (Even if there is an 'eval' in this
2114 // scope which introduces the same variable again, the resulting variable
2115 // remains the same.)
2116 //
2117 // For sloppy eval though, we skip dynamic variable to avoid resolving to a
2118 // variable when the variable and proxy are in the same eval execution. The
2119 // variable is not available on subsequent lazy executions of functions in
2120 // the eval, so this avoids inner functions from looking up different
2121 // variables during eager and lazy compilation.
2122 //
2123 // TODO(leszeks): Maybe we want to restrict this to e.g. lookups of a proxy
2124 // living in a different scope to the current one, or some other
2125 // optimisation.
2126 if (var != nullptr &&
2127 !(scope->is_eval_scope() && var->mode() == VariableMode::kDynamic)) {
2128 if (mode == kParsedScope && force_context_allocation &&
2129 !var->is_dynamic()) {
2130 var->ForceContextAllocation();
2131 }
2132 return var;
2133 }
2134
2135 if (scope->outer_scope_ == outer_scope_end) break;
2136
2137 DCHECK(!scope->is_script_scope());
2138 if (V8_UNLIKELY(scope->is_with_scope())) {
2139 return LookupWith(proxy, scope, outer_scope_end, cache_scope,
2140 force_context_allocation);
2141 }
2142 if (V8_UNLIKELY(
2143 scope->is_declaration_scope() &&
2144 scope->AsDeclarationScope()->sloppy_eval_can_extend_vars())) {
2145 return LookupSloppyEval(proxy, scope, outer_scope_end, cache_scope,
2146 force_context_allocation);
2147 }
2148
2149 force_context_allocation |= scope->is_function_scope();
2150 scope = scope->outer_scope_;
2151
2152 // TODO(verwaest): Separate through AnalyzePartially.
2153 if (mode == kParsedScope && !scope->scope_info_.is_null()) {
2154 DCHECK_NULL(cache_scope);
2155 cache_scope = scope->GetNonEvalDeclarationScope();
2156 return Lookup<kDeserializedScope>(proxy, scope, outer_scope_end,
2157 cache_scope);
2158 }
2159 }
2160
2161 // We may just be trying to find all free variables. In that case, don't
2162 // declare them in the outer scope.
2163 // TODO(marja): Separate Lookup for preparsed scopes better.
2164 if (mode == kParsedScope && !scope->is_script_scope()) {
2165 return nullptr;
2166 }
2167
2168 // No binding has been found. Declare a variable on the global object.
2169 return scope->AsDeclarationScope()->DeclareDynamicGlobal(
2170 proxy->raw_name(), NORMAL_VARIABLE,
2171 mode == kDeserializedScope ? cache_scope : scope);
2172 }
2173
2174 template Variable* Scope::Lookup<Scope::kParsedScope>(
2175 VariableProxy* proxy, Scope* scope, Scope* outer_scope_end,
2176 Scope* cache_scope, bool force_context_allocation);
2177 template Variable* Scope::Lookup<Scope::kDeserializedScope>(
2178 VariableProxy* proxy, Scope* scope, Scope* outer_scope_end,
2179 Scope* cache_scope, bool force_context_allocation);
2180
LookupWith(VariableProxy * proxy,Scope * scope,Scope * outer_scope_end,Scope * cache_scope,bool force_context_allocation)2181 Variable* Scope::LookupWith(VariableProxy* proxy, Scope* scope,
2182 Scope* outer_scope_end, Scope* cache_scope,
2183 bool force_context_allocation) {
2184 DCHECK(scope->is_with_scope());
2185
2186 Variable* var =
2187 scope->outer_scope_->scope_info_.is_null()
2188 ? Lookup<kParsedScope>(proxy, scope->outer_scope_, outer_scope_end,
2189 nullptr, force_context_allocation)
2190 : Lookup<kDeserializedScope>(proxy, scope->outer_scope_,
2191 outer_scope_end, cache_scope);
2192
2193 if (var == nullptr) return var;
2194
2195 // The current scope is a with scope, so the variable binding can not be
2196 // statically resolved. However, note that it was necessary to do a lookup
2197 // in the outer scope anyway, because if a binding exists in an outer
2198 // scope, the associated variable has to be marked as potentially being
2199 // accessed from inside of an inner with scope (the property may not be in
2200 // the 'with' object).
2201 if (!var->is_dynamic() && var->IsUnallocated()) {
2202 DCHECK(!scope->already_resolved_);
2203 var->set_is_used();
2204 var->ForceContextAllocation();
2205 if (proxy->is_assigned()) var->SetMaybeAssigned();
2206 }
2207 Scope* target_scope;
2208 if (scope->deserialized_scope_uses_external_cache()) {
2209 DCHECK_NOT_NULL(cache_scope);
2210 cache_scope->variables_.Remove(var);
2211 target_scope = cache_scope;
2212 } else {
2213 target_scope = scope;
2214 }
2215 Variable* dynamic =
2216 target_scope->NonLocal(proxy->raw_name(), VariableMode::kDynamic);
2217 dynamic->set_local_if_not_shadowed(var);
2218 return dynamic;
2219 }
2220
LookupSloppyEval(VariableProxy * proxy,Scope * scope,Scope * outer_scope_end,Scope * cache_scope,bool force_context_allocation)2221 Variable* Scope::LookupSloppyEval(VariableProxy* proxy, Scope* scope,
2222 Scope* outer_scope_end, Scope* cache_scope,
2223 bool force_context_allocation) {
2224 DCHECK(scope->is_declaration_scope() &&
2225 scope->AsDeclarationScope()->sloppy_eval_can_extend_vars());
2226
2227 // If we're compiling eval, it's possible that the outer scope is the first
2228 // ScopeInfo-backed scope. We use the next declaration scope as the cache for
2229 // this case, to avoid complexity around sloppy block function hoisting and
2230 // conflict detection through catch scopes in the eval.
2231 Scope* entry_cache = cache_scope == nullptr
2232 ? scope->outer_scope()->GetNonEvalDeclarationScope()
2233 : cache_scope;
2234 Variable* var =
2235 scope->outer_scope_->scope_info_.is_null()
2236 ? Lookup<kParsedScope>(proxy, scope->outer_scope_, outer_scope_end,
2237 nullptr, force_context_allocation)
2238 : Lookup<kDeserializedScope>(proxy, scope->outer_scope_,
2239 outer_scope_end, entry_cache);
2240 if (var == nullptr) return var;
2241
2242 // We may not want to use the cache scope, change it back to the given scope
2243 // if necessary.
2244 if (!scope->deserialized_scope_uses_external_cache()) {
2245 // For a deserialized scope, we'll be replacing the cache_scope.
2246 DCHECK_IMPLIES(!scope->scope_info_.is_null(), cache_scope != nullptr);
2247 cache_scope = scope;
2248 }
2249
2250 // A variable binding may have been found in an outer scope, but the current
2251 // scope makes a sloppy 'eval' call, so the found variable may not be the
2252 // correct one (the 'eval' may introduce a binding with the same name). In
2253 // that case, change the lookup result to reflect this situation. Only
2254 // scopes that can host var bindings (declaration scopes) need be considered
2255 // here (this excludes block and catch scopes), and variable lookups at
2256 // script scope are always dynamic.
2257 if (var->IsGlobalObjectProperty()) {
2258 Scope* target = cache_scope == nullptr ? scope : cache_scope;
2259 var = target->NonLocal(proxy->raw_name(), VariableMode::kDynamicGlobal);
2260 }
2261
2262 if (var->is_dynamic()) return var;
2263
2264 Variable* invalidated = var;
2265 if (cache_scope != nullptr) cache_scope->variables_.Remove(invalidated);
2266
2267 Scope* target = cache_scope == nullptr ? scope : cache_scope;
2268 var = target->NonLocal(proxy->raw_name(), VariableMode::kDynamicLocal);
2269 var->set_local_if_not_shadowed(invalidated);
2270
2271 return var;
2272 }
2273
ResolveVariable(VariableProxy * proxy)2274 void Scope::ResolveVariable(VariableProxy* proxy) {
2275 DCHECK(!proxy->is_resolved());
2276 Variable* var = Lookup<kParsedScope>(proxy, this, nullptr);
2277 DCHECK_NOT_NULL(var);
2278 ResolveTo(proxy, var);
2279 }
2280
2281 namespace {
2282
SetNeedsHoleCheck(Variable * var,VariableProxy * proxy)2283 void SetNeedsHoleCheck(Variable* var, VariableProxy* proxy) {
2284 proxy->set_needs_hole_check();
2285 var->ForceHoleInitialization();
2286 }
2287
UpdateNeedsHoleCheck(Variable * var,VariableProxy * proxy,Scope * scope)2288 void UpdateNeedsHoleCheck(Variable* var, VariableProxy* proxy, Scope* scope) {
2289 if (var->mode() == VariableMode::kDynamicLocal) {
2290 // Dynamically introduced variables never need a hole check (since they're
2291 // VariableMode::kVar bindings, either from var or function declarations),
2292 // but the variable they shadow might need a hole check, which we want to do
2293 // if we decide that no shadowing variable was dynamically introoduced.
2294 DCHECK_EQ(kCreatedInitialized, var->initialization_flag());
2295 return UpdateNeedsHoleCheck(var->local_if_not_shadowed(), proxy, scope);
2296 }
2297
2298 if (var->initialization_flag() == kCreatedInitialized) return;
2299
2300 // It's impossible to eliminate module import hole checks here, because it's
2301 // unknown at compilation time whether the binding referred to in the
2302 // exporting module itself requires hole checks.
2303 if (var->location() == VariableLocation::MODULE && !var->IsExport()) {
2304 return SetNeedsHoleCheck(var, proxy);
2305 }
2306
2307 // Check if the binding really needs an initialization check. The check
2308 // can be skipped in the following situation: we have a VariableMode::kLet or
2309 // VariableMode::kConst binding, both the Variable and the VariableProxy have
2310 // the same declaration scope (i.e. they are both in global code, in the same
2311 // function or in the same eval code), the VariableProxy is in the source
2312 // physically located after the initializer of the variable, and that the
2313 // initializer cannot be skipped due to a nonlinear scope.
2314 //
2315 // The condition on the closure scopes is a conservative check for
2316 // nested functions that access a binding and are called before the
2317 // binding is initialized:
2318 // function() { f(); let x = 1; function f() { x = 2; } }
2319 //
2320 // The check cannot be skipped on non-linear scopes, namely switch
2321 // scopes, to ensure tests are done in cases like the following:
2322 // switch (1) { case 0: let x = 2; case 1: f(x); }
2323 // The scope of the variable needs to be checked, in case the use is
2324 // in a sub-block which may be linear.
2325 if (var->scope()->GetClosureScope() != scope->GetClosureScope()) {
2326 return SetNeedsHoleCheck(var, proxy);
2327 }
2328
2329 // We should always have valid source positions.
2330 DCHECK_NE(var->initializer_position(), kNoSourcePosition);
2331 DCHECK_NE(proxy->position(), kNoSourcePosition);
2332
2333 if (var->scope()->is_nonlinear() ||
2334 var->initializer_position() >= proxy->position()) {
2335 return SetNeedsHoleCheck(var, proxy);
2336 }
2337 }
2338
2339 } // anonymous namespace
2340
ResolveTo(VariableProxy * proxy,Variable * var)2341 void Scope::ResolveTo(VariableProxy* proxy, Variable* var) {
2342 DCHECK_NOT_NULL(var);
2343 UpdateNeedsHoleCheck(var, proxy, this);
2344 proxy->BindTo(var);
2345 }
2346
ResolvePreparsedVariable(VariableProxy * proxy,Scope * scope,Scope * end)2347 void Scope::ResolvePreparsedVariable(VariableProxy* proxy, Scope* scope,
2348 Scope* end) {
2349 // Resolve the variable in all parsed scopes to force context allocation.
2350 for (; scope != end; scope = scope->outer_scope_) {
2351 Variable* var = scope->LookupLocal(proxy->raw_name());
2352 if (var != nullptr) {
2353 var->set_is_used();
2354 if (!var->is_dynamic()) {
2355 var->ForceContextAllocation();
2356 if (proxy->is_assigned()) var->SetMaybeAssigned();
2357 return;
2358 }
2359 }
2360 }
2361 }
2362
ResolveVariablesRecursively(Scope * end)2363 bool Scope::ResolveVariablesRecursively(Scope* end) {
2364 // Lazy parsed declaration scopes are already partially analyzed. If there are
2365 // unresolved references remaining, they just need to be resolved in outer
2366 // scopes.
2367 if (WasLazilyParsed(this)) {
2368 DCHECK_EQ(variables_.occupancy(), 0);
2369 // Resolve in all parsed scopes except for the script scope.
2370 if (!end->is_script_scope()) end = end->outer_scope();
2371
2372 for (VariableProxy* proxy : unresolved_list_) {
2373 ResolvePreparsedVariable(proxy, outer_scope(), end);
2374 }
2375 } else {
2376 // Resolve unresolved variables for this scope.
2377 for (VariableProxy* proxy : unresolved_list_) {
2378 ResolveVariable(proxy);
2379 }
2380
2381 // Resolve unresolved variables for inner scopes.
2382 for (Scope* scope = inner_scope_; scope != nullptr;
2383 scope = scope->sibling_) {
2384 if (!scope->ResolveVariablesRecursively(end)) return false;
2385 }
2386 }
2387 return true;
2388 }
2389
MustAllocate(Variable * var)2390 bool Scope::MustAllocate(Variable* var) {
2391 DCHECK(var->location() != VariableLocation::MODULE);
2392 // Give var a read/write use if there is a chance it might be accessed
2393 // via an eval() call. This is only possible if the variable has a
2394 // visible name.
2395 if (!var->raw_name()->IsEmpty() &&
2396 (inner_scope_calls_eval_ || is_catch_scope() || is_script_scope())) {
2397 var->set_is_used();
2398 if (inner_scope_calls_eval_ && !var->is_this()) var->SetMaybeAssigned();
2399 }
2400 DCHECK(!var->has_forced_context_allocation() || var->is_used());
2401 // Global variables do not need to be allocated.
2402 return !var->IsGlobalObjectProperty() && var->is_used();
2403 }
2404
2405
MustAllocateInContext(Variable * var)2406 bool Scope::MustAllocateInContext(Variable* var) {
2407 // If var is accessed from an inner scope, or if there is a possibility
2408 // that it might be accessed from the current or an inner scope (through
2409 // an eval() call or a runtime with lookup), it must be allocated in the
2410 // context.
2411 //
2412 // Temporary variables are always stack-allocated. Catch-bound variables are
2413 // always context-allocated.
2414 VariableMode mode = var->mode();
2415 if (mode == VariableMode::kTemporary) return false;
2416 if (is_catch_scope()) return true;
2417 if (is_script_scope() || is_eval_scope()) {
2418 if (IsLexicalVariableMode(mode)) {
2419 return true;
2420 }
2421 }
2422 return var->has_forced_context_allocation() || inner_scope_calls_eval_;
2423 }
2424
AllocateStackSlot(Variable * var)2425 void Scope::AllocateStackSlot(Variable* var) {
2426 if (is_block_scope()) {
2427 outer_scope()->GetDeclarationScope()->AllocateStackSlot(var);
2428 } else {
2429 var->AllocateTo(VariableLocation::LOCAL, num_stack_slots_++);
2430 }
2431 }
2432
2433
AllocateHeapSlot(Variable * var)2434 void Scope::AllocateHeapSlot(Variable* var) {
2435 var->AllocateTo(VariableLocation::CONTEXT, num_heap_slots_++);
2436 }
2437
AllocateParameterLocals()2438 void DeclarationScope::AllocateParameterLocals() {
2439 DCHECK(is_function_scope());
2440
2441 bool has_mapped_arguments = false;
2442 if (arguments_ != nullptr) {
2443 DCHECK(!is_arrow_scope());
2444 if (MustAllocate(arguments_) && !has_arguments_parameter_) {
2445 // 'arguments' is used and does not refer to a function
2446 // parameter of the same name. If the arguments object
2447 // aliases formal parameters, we conservatively allocate
2448 // them specially in the loop below.
2449 has_mapped_arguments =
2450 GetArgumentsType() == CreateArgumentsType::kMappedArguments;
2451 } else {
2452 // 'arguments' is unused. Tell the code generator that it does not need to
2453 // allocate the arguments object by nulling out arguments_.
2454 arguments_ = nullptr;
2455 }
2456 }
2457
2458 // The same parameter may occur multiple times in the parameters_ list.
2459 // If it does, and if it is not copied into the context object, it must
2460 // receive the highest parameter index for that parameter; thus iteration
2461 // order is relevant!
2462 for (int i = num_parameters() - 1; i >= 0; --i) {
2463 Variable* var = params_[i];
2464 DCHECK_NOT_NULL(var);
2465 DCHECK(!has_rest_ || var != rest_parameter());
2466 DCHECK_EQ(this, var->scope());
2467 if (has_mapped_arguments) {
2468 var->set_is_used();
2469 var->SetMaybeAssigned();
2470 var->ForceContextAllocation();
2471 }
2472 AllocateParameter(var, i);
2473 }
2474 }
2475
AllocateParameter(Variable * var,int index)2476 void DeclarationScope::AllocateParameter(Variable* var, int index) {
2477 if (!MustAllocate(var)) return;
2478 if (has_forced_context_allocation_for_parameters() ||
2479 MustAllocateInContext(var)) {
2480 DCHECK(var->IsUnallocated() || var->IsContextSlot());
2481 if (var->IsUnallocated()) AllocateHeapSlot(var);
2482 } else {
2483 DCHECK(var->IsUnallocated() || var->IsParameter());
2484 if (var->IsUnallocated()) {
2485 var->AllocateTo(VariableLocation::PARAMETER, index);
2486 }
2487 }
2488 }
2489
AllocateReceiver()2490 void DeclarationScope::AllocateReceiver() {
2491 if (!has_this_declaration()) return;
2492 DCHECK_NOT_NULL(receiver());
2493 DCHECK_EQ(receiver()->scope(), this);
2494 AllocateParameter(receiver(), -1);
2495 }
2496
AllocateNonParameterLocal(Variable * var)2497 void Scope::AllocateNonParameterLocal(Variable* var) {
2498 DCHECK_EQ(var->scope(), this);
2499 if (var->IsUnallocated() && MustAllocate(var)) {
2500 if (MustAllocateInContext(var)) {
2501 AllocateHeapSlot(var);
2502 DCHECK_IMPLIES(is_catch_scope(),
2503 var->index() == Context::THROWN_OBJECT_INDEX);
2504 } else {
2505 AllocateStackSlot(var);
2506 }
2507 }
2508 }
2509
AllocateNonParameterLocalsAndDeclaredGlobals()2510 void Scope::AllocateNonParameterLocalsAndDeclaredGlobals() {
2511 if (is_declaration_scope() && AsDeclarationScope()->is_arrow_scope()) {
2512 // In arrow functions, allocate non-temporaries first and then all the
2513 // temporaries to make the local variable ordering stable when reparsing to
2514 // collect source positions.
2515 for (Variable* local : locals_) {
2516 if (local->mode() != VariableMode::kTemporary)
2517 AllocateNonParameterLocal(local);
2518 }
2519
2520 for (Variable* local : locals_) {
2521 if (local->mode() == VariableMode::kTemporary)
2522 AllocateNonParameterLocal(local);
2523 }
2524 } else {
2525 for (Variable* local : locals_) {
2526 AllocateNonParameterLocal(local);
2527 }
2528 }
2529
2530 if (is_declaration_scope()) {
2531 AsDeclarationScope()->AllocateLocals();
2532 }
2533 }
2534
AllocateLocals()2535 void DeclarationScope::AllocateLocals() {
2536 // For now, function_ must be allocated at the very end. If it gets
2537 // allocated in the context, it must be the last slot in the context,
2538 // because of the current ScopeInfo implementation (see
2539 // ScopeInfo::ScopeInfo(FunctionScope* scope) constructor).
2540 if (function_ != nullptr && MustAllocate(function_)) {
2541 AllocateNonParameterLocal(function_);
2542 } else {
2543 function_ = nullptr;
2544 }
2545
2546 DCHECK(!has_rest_ || !MustAllocate(rest_parameter()) ||
2547 !rest_parameter()->IsUnallocated());
2548
2549 if (new_target_ != nullptr && !MustAllocate(new_target_)) {
2550 new_target_ = nullptr;
2551 }
2552
2553 NullifyRareVariableIf(RareVariable::kThisFunction,
2554 [=](Variable* var) { return !MustAllocate(var); });
2555 }
2556
AllocateModuleVariables()2557 void ModuleScope::AllocateModuleVariables() {
2558 for (const auto& it : module()->regular_imports()) {
2559 Variable* var = LookupLocal(it.first);
2560 var->AllocateTo(VariableLocation::MODULE, it.second->cell_index);
2561 DCHECK(!var->IsExport());
2562 }
2563
2564 for (const auto& it : module()->regular_exports()) {
2565 Variable* var = LookupLocal(it.first);
2566 var->AllocateTo(VariableLocation::MODULE, it.second->cell_index);
2567 DCHECK(var->IsExport());
2568 }
2569 }
2570
AllocateVariablesRecursively()2571 void Scope::AllocateVariablesRecursively() {
2572 this->ForEach([](Scope* scope) -> Iteration {
2573 DCHECK(!scope->already_resolved_);
2574 if (WasLazilyParsed(scope)) return Iteration::kContinue;
2575 if (scope->sloppy_eval_can_extend_vars_) {
2576 scope->num_heap_slots_ = Context::MIN_CONTEXT_EXTENDED_SLOTS;
2577 }
2578 DCHECK_EQ(scope->ContextHeaderLength(), scope->num_heap_slots_);
2579
2580 // Allocate variables for this scope.
2581 // Parameters must be allocated first, if any.
2582 if (scope->is_declaration_scope()) {
2583 scope->AsDeclarationScope()->AllocateReceiver();
2584 if (scope->is_function_scope()) {
2585 scope->AsDeclarationScope()->AllocateParameterLocals();
2586 }
2587 }
2588 scope->AllocateNonParameterLocalsAndDeclaredGlobals();
2589
2590 // Force allocation of a context for this scope if necessary. For a 'with'
2591 // scope and for a function scope that makes an 'eval' call we need a
2592 // context, even if no local variables were statically allocated in the
2593 // scope. Likewise for modules and function scopes representing asm.js
2594 // modules. Also force a context, if the scope is stricter than the outer
2595 // scope.
2596 bool must_have_context =
2597 scope->is_with_scope() || scope->is_module_scope() ||
2598 #if V8_ENABLE_WEBASSEMBLY
2599 scope->IsAsmModule() ||
2600 #endif // V8_ENABLE_WEBASSEMBLY
2601 scope->ForceContextForLanguageMode() ||
2602 (scope->is_function_scope() &&
2603 scope->AsDeclarationScope()->sloppy_eval_can_extend_vars()) ||
2604 (scope->is_block_scope() && scope->is_declaration_scope() &&
2605 scope->AsDeclarationScope()->sloppy_eval_can_extend_vars());
2606
2607 // If we didn't allocate any locals in the local context, then we only
2608 // need the minimal number of slots if we must have a context.
2609 if (scope->num_heap_slots_ == scope->ContextHeaderLength() &&
2610 !must_have_context) {
2611 scope->num_heap_slots_ = 0;
2612 }
2613
2614 // Allocation done.
2615 DCHECK(scope->num_heap_slots_ == 0 ||
2616 scope->num_heap_slots_ >= scope->ContextHeaderLength());
2617 return Iteration::kDescend;
2618 });
2619 }
2620
2621 template <typename IsolateT>
AllocateScopeInfosRecursively(IsolateT * isolate,MaybeHandle<ScopeInfo> outer_scope)2622 void Scope::AllocateScopeInfosRecursively(IsolateT* isolate,
2623 MaybeHandle<ScopeInfo> outer_scope) {
2624 DCHECK(scope_info_.is_null());
2625 MaybeHandle<ScopeInfo> next_outer_scope = outer_scope;
2626
2627 if (NeedsScopeInfo()) {
2628 scope_info_ = ScopeInfo::Create(isolate, zone(), this, outer_scope);
2629 // The ScopeInfo chain should mirror the context chain, so we only link to
2630 // the next outer scope that needs a context.
2631 if (NeedsContext()) next_outer_scope = scope_info_;
2632 }
2633
2634 // Allocate ScopeInfos for inner scopes.
2635 for (Scope* scope = inner_scope_; scope != nullptr; scope = scope->sibling_) {
2636 if (!scope->is_function_scope() ||
2637 scope->AsDeclarationScope()->ShouldEagerCompile()) {
2638 scope->AllocateScopeInfosRecursively(isolate, next_outer_scope);
2639 }
2640 }
2641 }
2642
2643 template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void Scope::
2644 AllocateScopeInfosRecursively<Isolate>(Isolate* isolate,
2645 MaybeHandle<ScopeInfo> outer_scope);
2646 template EXPORT_TEMPLATE_DEFINE(V8_EXPORT_PRIVATE) void Scope::
2647 AllocateScopeInfosRecursively<LocalIsolate>(
2648 LocalIsolate* isolate, MaybeHandle<ScopeInfo> outer_scope);
2649
RecalcPrivateNameContextChain()2650 void DeclarationScope::RecalcPrivateNameContextChain() {
2651 // The outermost scope in a class heritage expression is marked to skip the
2652 // class scope during private name resolution. It is possible, however, that
2653 // either the class scope won't require a Context and ScopeInfo, or the
2654 // outermost scope in the heritage position won't. Simply copying the bit from
2655 // full parse into the ScopeInfo will break lazy compilation. In the former
2656 // case the scope that is marked to skip its outer scope will incorrectly skip
2657 // a different class scope than the one we intended to skip. In the latter
2658 // case variables resolved through an inner scope will incorrectly check the
2659 // class scope since we lost the skip bit from the outermost heritage scope.
2660 //
2661 // This method fixes both cases by, in outermost to innermost order, copying
2662 // the value of the skip bit from outer scopes that don't require a Context.
2663 DCHECK(needs_private_name_context_chain_recalc_);
2664 this->ForEach([](Scope* scope) {
2665 Scope* outer = scope->outer_scope();
2666 if (!outer) return Iteration::kDescend;
2667 if (!outer->NeedsContext()) {
2668 scope->private_name_lookup_skips_outer_class_ =
2669 outer->private_name_lookup_skips_outer_class();
2670 }
2671 if (!scope->is_function_scope() ||
2672 scope->AsDeclarationScope()->ShouldEagerCompile()) {
2673 return Iteration::kDescend;
2674 }
2675 return Iteration::kContinue;
2676 });
2677 }
2678
RecordNeedsPrivateNameContextChainRecalc()2679 void DeclarationScope::RecordNeedsPrivateNameContextChainRecalc() {
2680 DCHECK_EQ(GetClosureScope(), this);
2681 DeclarationScope* scope;
2682 for (scope = this; scope != nullptr;
2683 scope = scope->outer_scope() != nullptr
2684 ? scope->outer_scope()->GetClosureScope()
2685 : nullptr) {
2686 if (scope->needs_private_name_context_chain_recalc_) return;
2687 scope->needs_private_name_context_chain_recalc_ = true;
2688 }
2689 }
2690
2691 // static
2692 template <typename IsolateT>
AllocateScopeInfos(ParseInfo * info,IsolateT * isolate)2693 void DeclarationScope::AllocateScopeInfos(ParseInfo* info, IsolateT* isolate) {
2694 DeclarationScope* scope = info->literal()->scope();
2695
2696 // No one else should have allocated a scope info for this scope yet.
2697 DCHECK(scope->scope_info_.is_null());
2698
2699 MaybeHandle<ScopeInfo> outer_scope;
2700 if (scope->outer_scope_ != nullptr) {
2701 DCHECK((std::is_same<Isolate, v8::internal::Isolate>::value));
2702 outer_scope = scope->outer_scope_->scope_info_;
2703 }
2704
2705 if (scope->needs_private_name_context_chain_recalc()) {
2706 scope->RecalcPrivateNameContextChain();
2707 }
2708 scope->AllocateScopeInfosRecursively(isolate, outer_scope);
2709
2710 // The debugger expects all shared function infos to contain a scope info.
2711 // Since the top-most scope will end up in a shared function info, make sure
2712 // it has one, even if it doesn't need a scope info.
2713 // TODO(yangguo): Remove this requirement.
2714 if (scope->scope_info_.is_null()) {
2715 scope->scope_info_ =
2716 ScopeInfo::Create(isolate, scope->zone(), scope, outer_scope);
2717 }
2718
2719 // Ensuring that the outer script scope has a scope info avoids having
2720 // special case for native contexts vs other contexts.
2721 if (info->script_scope() && info->script_scope()->scope_info_.is_null()) {
2722 info->script_scope()->scope_info_ = isolate->factory()->empty_scope_info();
2723 }
2724 }
2725
2726 template V8_EXPORT_PRIVATE void DeclarationScope::AllocateScopeInfos(
2727 ParseInfo* info, Isolate* isolate);
2728 template V8_EXPORT_PRIVATE void DeclarationScope::AllocateScopeInfos(
2729 ParseInfo* info, LocalIsolate* isolate);
2730
ContextLocalCount() const2731 int Scope::ContextLocalCount() const {
2732 if (num_heap_slots() == 0) return 0;
2733 Variable* function =
2734 is_function_scope() ? AsDeclarationScope()->function_var() : nullptr;
2735 bool is_function_var_in_context =
2736 function != nullptr && function->IsContextSlot();
2737 return num_heap_slots() - ContextHeaderLength() -
2738 (is_function_var_in_context ? 1 : 0);
2739 }
2740
NewHomeObjectVariableProxy(AstNodeFactory * factory,const AstRawString * name,int start_pos)2741 VariableProxy* Scope::NewHomeObjectVariableProxy(AstNodeFactory* factory,
2742 const AstRawString* name,
2743 int start_pos) {
2744 // VariableProxies of the home object cannot be resolved like a normal
2745 // variable. Consider the case of a super.property usage in heritage position:
2746 //
2747 // class C extends super.foo { m() { super.bar(); } }
2748 //
2749 // The super.foo property access is logically nested under C's class scope,
2750 // which also has a home object due to its own method m's usage of
2751 // super.bar(). However, super.foo must resolve super in C's outer scope.
2752 //
2753 // Because of the above, home object VariableProxies are always made directly
2754 // on the Scope that needs the home object instead of the innermost scope.
2755 DCHECK(needs_home_object());
2756 if (!scope_info_.is_null()) {
2757 // This is a lazy compile, so the home object's context slot is already
2758 // known.
2759 Variable* home_object = variables_.Lookup(name);
2760 if (home_object == nullptr) {
2761 VariableLookupResult lookup_result;
2762 int index = scope_info_->ContextSlotIndex(name->string(), &lookup_result);
2763 DCHECK_GE(index, 0);
2764 bool was_added;
2765 home_object = variables_.Declare(zone(), this, name, lookup_result.mode,
2766 NORMAL_VARIABLE, lookup_result.init_flag,
2767 lookup_result.maybe_assigned_flag,
2768 IsStaticFlag::kNotStatic, &was_added);
2769 DCHECK(was_added);
2770 home_object->AllocateTo(VariableLocation::CONTEXT, index);
2771 }
2772 return factory->NewVariableProxy(home_object, start_pos);
2773 }
2774 // This is not a lazy compile. Add the unresolved home object VariableProxy to
2775 // the unresolved list of the home object scope, which is not necessarily the
2776 // innermost scope.
2777 VariableProxy* proxy =
2778 factory->NewVariableProxy(name, NORMAL_VARIABLE, start_pos);
2779 AddUnresolved(proxy);
2780 return proxy;
2781 }
2782
IsComplementaryAccessorPair(VariableMode a,VariableMode b)2783 bool IsComplementaryAccessorPair(VariableMode a, VariableMode b) {
2784 switch (a) {
2785 case VariableMode::kPrivateGetterOnly:
2786 return b == VariableMode::kPrivateSetterOnly;
2787 case VariableMode::kPrivateSetterOnly:
2788 return b == VariableMode::kPrivateGetterOnly;
2789 default:
2790 return false;
2791 }
2792 }
2793
FinalizeReparsedClassScope(Isolate * isolate,MaybeHandle<ScopeInfo> maybe_scope_info,AstValueFactory * ast_value_factory,bool needs_allocation_fixup)2794 void ClassScope::FinalizeReparsedClassScope(
2795 Isolate* isolate, MaybeHandle<ScopeInfo> maybe_scope_info,
2796 AstValueFactory* ast_value_factory, bool needs_allocation_fixup) {
2797 // Set this bit so that DelcarationScope::Analyze recognizes
2798 // the reparsed instance member initializer scope.
2799 #ifdef DEBUG
2800 is_reparsed_class_scope_ = true;
2801 #endif
2802
2803 if (!needs_allocation_fixup) {
2804 return;
2805 }
2806
2807 // Restore variable allocation results for context-allocated variables in
2808 // the class scope from ScopeInfo, so that we don't need to run
2809 // resolution and allocation on these variables again when generating
2810 // code for the initializer function.
2811 DCHECK(!maybe_scope_info.is_null());
2812 Handle<ScopeInfo> scope_info = maybe_scope_info.ToHandleChecked();
2813 DCHECK_EQ(scope_info->scope_type(), CLASS_SCOPE);
2814 DCHECK_EQ(scope_info->StartPosition(), start_position_);
2815
2816 int context_header_length = scope_info->ContextHeaderLength();
2817 DisallowGarbageCollection no_gc;
2818 for (auto it : ScopeInfo::IterateLocalNames(scope_info)) {
2819 int slot_index = context_header_length + it->index();
2820 DCHECK_LT(slot_index, scope_info->ContextLength());
2821
2822 const AstRawString* string = ast_value_factory->GetString(
2823 it->name(), SharedStringAccessGuardIfNeeded(isolate));
2824 Variable* var = string->IsPrivateName() ? LookupLocalPrivateName(string)
2825 : LookupLocal(string);
2826 DCHECK_NOT_NULL(var);
2827 var->AllocateTo(VariableLocation::CONTEXT, slot_index);
2828 }
2829 scope_info_ = scope_info;
2830 }
2831
DeclarePrivateName(const AstRawString * name,VariableMode mode,IsStaticFlag is_static_flag,bool * was_added)2832 Variable* ClassScope::DeclarePrivateName(const AstRawString* name,
2833 VariableMode mode,
2834 IsStaticFlag is_static_flag,
2835 bool* was_added) {
2836 Variable* result = EnsureRareData()->private_name_map.Declare(
2837 zone(), this, name, mode, NORMAL_VARIABLE,
2838 InitializationFlag::kNeedsInitialization, MaybeAssignedFlag::kNotAssigned,
2839 is_static_flag, was_added);
2840 if (*was_added) {
2841 locals_.Add(result);
2842 has_static_private_methods_ |=
2843 (result->is_static() &&
2844 IsPrivateMethodOrAccessorVariableMode(result->mode()));
2845 } else if (IsComplementaryAccessorPair(result->mode(), mode) &&
2846 result->is_static_flag() == is_static_flag) {
2847 *was_added = true;
2848 result->set_mode(VariableMode::kPrivateGetterAndSetter);
2849 }
2850 result->ForceContextAllocation();
2851 return result;
2852 }
2853
LookupLocalPrivateName(const AstRawString * name)2854 Variable* ClassScope::LookupLocalPrivateName(const AstRawString* name) {
2855 RareData* rare_data = GetRareData();
2856 if (rare_data == nullptr) {
2857 return nullptr;
2858 }
2859 return rare_data->private_name_map.Lookup(name);
2860 }
2861
GetUnresolvedPrivateNameTail()2862 UnresolvedList::Iterator ClassScope::GetUnresolvedPrivateNameTail() {
2863 RareData* rare_data = GetRareData();
2864 if (rare_data == nullptr) {
2865 return UnresolvedList::Iterator();
2866 }
2867 return rare_data->unresolved_private_names.end();
2868 }
2869
ResetUnresolvedPrivateNameTail(UnresolvedList::Iterator tail)2870 void ClassScope::ResetUnresolvedPrivateNameTail(UnresolvedList::Iterator tail) {
2871 RareData* rare_data = GetRareData();
2872 if (rare_data == nullptr ||
2873 rare_data->unresolved_private_names.end() == tail) {
2874 return;
2875 }
2876
2877 bool tail_is_empty = tail == UnresolvedList::Iterator();
2878 if (tail_is_empty) {
2879 // If the saved tail is empty, the list used to be empty, so clear it.
2880 rare_data->unresolved_private_names.Clear();
2881 } else {
2882 rare_data->unresolved_private_names.Rewind(tail);
2883 }
2884 }
2885
MigrateUnresolvedPrivateNameTail(AstNodeFactory * ast_node_factory,UnresolvedList::Iterator tail)2886 void ClassScope::MigrateUnresolvedPrivateNameTail(
2887 AstNodeFactory* ast_node_factory, UnresolvedList::Iterator tail) {
2888 RareData* rare_data = GetRareData();
2889 if (rare_data == nullptr ||
2890 rare_data->unresolved_private_names.end() == tail) {
2891 return;
2892 }
2893 UnresolvedList migrated_names;
2894
2895 // If the saved tail is empty, the list used to be empty, so we should
2896 // migrate everything after the head.
2897 bool tail_is_empty = tail == UnresolvedList::Iterator();
2898 UnresolvedList::Iterator it =
2899 tail_is_empty ? rare_data->unresolved_private_names.begin() : tail;
2900
2901 for (; it != rare_data->unresolved_private_names.end(); ++it) {
2902 VariableProxy* proxy = *it;
2903 VariableProxy* copy = ast_node_factory->CopyVariableProxy(proxy);
2904 migrated_names.Add(copy);
2905 }
2906
2907 // Replace with the migrated copies.
2908 if (tail_is_empty) {
2909 rare_data->unresolved_private_names.Clear();
2910 } else {
2911 rare_data->unresolved_private_names.Rewind(tail);
2912 }
2913 rare_data->unresolved_private_names.Append(std::move(migrated_names));
2914 }
2915
LookupPrivateNameInScopeInfo(const AstRawString * name)2916 Variable* ClassScope::LookupPrivateNameInScopeInfo(const AstRawString* name) {
2917 DCHECK(!scope_info_.is_null());
2918 DCHECK_NULL(LookupLocalPrivateName(name));
2919 DisallowGarbageCollection no_gc;
2920
2921 VariableLookupResult lookup_result;
2922 int index = scope_info_->ContextSlotIndex(name->string(), &lookup_result);
2923 if (index < 0) {
2924 return nullptr;
2925 }
2926
2927 DCHECK(IsConstVariableMode(lookup_result.mode));
2928 DCHECK_EQ(lookup_result.init_flag, InitializationFlag::kNeedsInitialization);
2929 DCHECK_EQ(lookup_result.maybe_assigned_flag, MaybeAssignedFlag::kNotAssigned);
2930
2931 // Add the found private name to the map to speed up subsequent
2932 // lookups for the same name.
2933 bool was_added;
2934 Variable* var = DeclarePrivateName(name, lookup_result.mode,
2935 lookup_result.is_static_flag, &was_added);
2936 DCHECK(was_added);
2937 var->AllocateTo(VariableLocation::CONTEXT, index);
2938 return var;
2939 }
2940
LookupPrivateName(VariableProxy * proxy)2941 Variable* ClassScope::LookupPrivateName(VariableProxy* proxy) {
2942 DCHECK(!proxy->is_resolved());
2943
2944 for (PrivateNameScopeIterator scope_iter(this); !scope_iter.Done();
2945 scope_iter.Next()) {
2946 ClassScope* scope = scope_iter.GetScope();
2947 // Try finding it in the private name map first, if it can't be found,
2948 // try the deseralized scope info.
2949 Variable* var = scope->LookupLocalPrivateName(proxy->raw_name());
2950 if (var == nullptr && !scope->scope_info_.is_null()) {
2951 var = scope->LookupPrivateNameInScopeInfo(proxy->raw_name());
2952 }
2953 if (var != nullptr) {
2954 return var;
2955 }
2956 }
2957 return nullptr;
2958 }
2959
ResolvePrivateNames(ParseInfo * info)2960 bool ClassScope::ResolvePrivateNames(ParseInfo* info) {
2961 RareData* rare_data = GetRareData();
2962 if (rare_data == nullptr || rare_data->unresolved_private_names.is_empty()) {
2963 return true;
2964 }
2965
2966 UnresolvedList& list = rare_data->unresolved_private_names;
2967 for (VariableProxy* proxy : list) {
2968 Variable* var = LookupPrivateName(proxy);
2969 if (var == nullptr) {
2970 // It's only possible to fail to resolve private names here if
2971 // this is at the top level or the private name is accessed through eval.
2972 DCHECK(info->flags().is_eval() || outer_scope_->is_script_scope());
2973 Scanner::Location loc = proxy->location();
2974 info->pending_error_handler()->ReportMessageAt(
2975 loc.beg_pos, loc.end_pos,
2976 MessageTemplate::kInvalidPrivateFieldResolution, proxy->raw_name());
2977 return false;
2978 } else {
2979 proxy->BindTo(var);
2980 }
2981 }
2982
2983 // By now all unresolved private names should be resolved so
2984 // clear the list.
2985 list.Clear();
2986 return true;
2987 }
2988
ResolvePrivateNamesPartially()2989 VariableProxy* ClassScope::ResolvePrivateNamesPartially() {
2990 RareData* rare_data = GetRareData();
2991 if (rare_data == nullptr || rare_data->unresolved_private_names.is_empty()) {
2992 return nullptr;
2993 }
2994
2995 PrivateNameScopeIterator private_name_scope_iter(this);
2996 private_name_scope_iter.Next();
2997 UnresolvedList& unresolved = rare_data->unresolved_private_names;
2998 bool has_private_names = rare_data->private_name_map.capacity() > 0;
2999
3000 // If the class itself does not have private names, nor does it have
3001 // an outer private name scope, then we are certain any private name access
3002 // inside cannot be resolved.
3003 if (!has_private_names && private_name_scope_iter.Done() &&
3004 !unresolved.is_empty()) {
3005 return unresolved.first();
3006 }
3007
3008 for (VariableProxy* proxy = unresolved.first(); proxy != nullptr;) {
3009 DCHECK(proxy->IsPrivateName());
3010 VariableProxy* next = proxy->next_unresolved();
3011 unresolved.Remove(proxy);
3012 Variable* var = nullptr;
3013
3014 // If we can find private name in the current class scope, we can bind
3015 // them immediately because it's going to shadow any outer private names.
3016 if (has_private_names) {
3017 var = LookupLocalPrivateName(proxy->raw_name());
3018 if (var != nullptr) {
3019 var->set_is_used();
3020 proxy->BindTo(var);
3021 // If the variable being accessed is a static private method, we need to
3022 // save the class variable in the context to check that the receiver is
3023 // the class during runtime.
3024 has_explicit_static_private_methods_access_ |=
3025 (var->is_static() &&
3026 IsPrivateMethodOrAccessorVariableMode(var->mode()));
3027 }
3028 }
3029
3030 // If the current scope does not have declared private names,
3031 // try looking from the outer class scope later.
3032 if (var == nullptr) {
3033 // There's no outer private name scope so we are certain that the variable
3034 // cannot be resolved later.
3035 if (private_name_scope_iter.Done()) {
3036 return proxy;
3037 }
3038
3039 // The private name may be found later in the outer private name scope, so
3040 // push it to the outer sopce.
3041 private_name_scope_iter.AddUnresolvedPrivateName(proxy);
3042 }
3043
3044 proxy = next;
3045 }
3046
3047 DCHECK(unresolved.is_empty());
3048 return nullptr;
3049 }
3050
DeclareBrandVariable(AstValueFactory * ast_value_factory,IsStaticFlag is_static_flag,int class_token_pos)3051 Variable* ClassScope::DeclareBrandVariable(AstValueFactory* ast_value_factory,
3052 IsStaticFlag is_static_flag,
3053 int class_token_pos) {
3054 DCHECK_IMPLIES(GetRareData() != nullptr, GetRareData()->brand == nullptr);
3055 bool was_added;
3056 Variable* brand = Declare(zone(), ast_value_factory->dot_brand_string(),
3057 VariableMode::kConst, NORMAL_VARIABLE,
3058 InitializationFlag::kNeedsInitialization,
3059 MaybeAssignedFlag::kNotAssigned, &was_added);
3060 DCHECK(was_added);
3061 brand->set_is_static_flag(is_static_flag);
3062 brand->ForceContextAllocation();
3063 brand->set_is_used();
3064 EnsureRareData()->brand = brand;
3065 brand->set_initializer_position(class_token_pos);
3066 return brand;
3067 }
3068
DeclareClassVariable(AstValueFactory * ast_value_factory,const AstRawString * name,int class_token_pos)3069 Variable* ClassScope::DeclareClassVariable(AstValueFactory* ast_value_factory,
3070 const AstRawString* name,
3071 int class_token_pos) {
3072 DCHECK_NULL(class_variable_);
3073 bool was_added;
3074 class_variable_ =
3075 Declare(zone(), name == nullptr ? ast_value_factory->dot_string() : name,
3076 VariableMode::kConst, NORMAL_VARIABLE,
3077 InitializationFlag::kNeedsInitialization,
3078 MaybeAssignedFlag::kMaybeAssigned, &was_added);
3079 DCHECK(was_added);
3080 class_variable_->set_initializer_position(class_token_pos);
3081 return class_variable_;
3082 }
3083
PrivateNameScopeIterator(Scope * start)3084 PrivateNameScopeIterator::PrivateNameScopeIterator(Scope* start)
3085 : start_scope_(start), current_scope_(start) {
3086 if (!start->is_class_scope() || start->AsClassScope()->IsParsingHeritage()) {
3087 Next();
3088 }
3089 }
3090
Next()3091 void PrivateNameScopeIterator::Next() {
3092 DCHECK(!Done());
3093 Scope* inner = current_scope_;
3094 Scope* scope = inner->outer_scope();
3095 while (scope != nullptr) {
3096 if (scope->is_class_scope()) {
3097 if (!inner->private_name_lookup_skips_outer_class()) {
3098 current_scope_ = scope;
3099 return;
3100 }
3101 skipped_any_scopes_ = true;
3102 }
3103 inner = scope;
3104 scope = scope->outer_scope();
3105 }
3106 current_scope_ = nullptr;
3107 }
3108
AddUnresolvedPrivateName(VariableProxy * proxy)3109 void PrivateNameScopeIterator::AddUnresolvedPrivateName(VariableProxy* proxy) {
3110 // During a reparse, current_scope_->already_resolved_ may be true here,
3111 // because the class scope is deserialized while the function scope inside may
3112 // be new.
3113 DCHECK(!proxy->is_resolved());
3114 DCHECK(proxy->IsPrivateName());
3115 GetScope()->EnsureRareData()->unresolved_private_names.Add(proxy);
3116 // Any closure scope that contain uses of private names that skips over a
3117 // class scope due to heritage expressions need private name context chain
3118 // recalculation, since not all scopes require a Context or ScopeInfo. See
3119 // comment in DeclarationScope::RecalcPrivateNameContextChain.
3120 if (V8_UNLIKELY(skipped_any_scopes_)) {
3121 start_scope_->GetClosureScope()->RecordNeedsPrivateNameContextChainRecalc();
3122 }
3123 }
3124
3125 } // namespace internal
3126 } // namespace v8
3127