• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * The simplest mpeg audio layer 2 encoder
3  * Copyright (c) 2000, 2001 Fabrice Bellard
4  *
5  * This file is part of FFmpeg.
6  *
7  * FFmpeg is free software; you can redistribute it and/or
8  * modify it under the terms of the GNU Lesser General Public
9  * License as published by the Free Software Foundation; either
10  * version 2.1 of the License, or (at your option) any later version.
11  *
12  * FFmpeg is distributed in the hope that it will be useful,
13  * but WITHOUT ANY WARRANTY; without even the implied warranty of
14  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15  * Lesser General Public License for more details.
16  *
17  * You should have received a copy of the GNU Lesser General Public
18  * License along with FFmpeg; if not, write to the Free Software
19  * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20  */
21 
22 /**
23  * @file
24  * The simplest mpeg audio layer 2 encoder.
25  */
26 
27 #include "libavutil/channel_layout.h"
28 
29 #include "avcodec.h"
30 #include "encode.h"
31 #include "internal.h"
32 #include "put_bits.h"
33 
34 #define FRAC_BITS   15   /* fractional bits for sb_samples and dct */
35 #define WFRAC_BITS  14   /* fractional bits for window */
36 
37 #include "mpegaudio.h"
38 #include "mpegaudiodsp.h"
39 #include "mpegaudiodata.h"
40 #include "mpegaudiotab.h"
41 
42 /* currently, cannot change these constants (need to modify
43    quantization stage) */
44 #define MUL(a,b) (((int64_t)(a) * (int64_t)(b)) >> FRAC_BITS)
45 
46 #define SAMPLES_BUF_SIZE 4096
47 
48 typedef struct MpegAudioContext {
49     PutBitContext pb;
50     int nb_channels;
51     int lsf;           /* 1 if mpeg2 low bitrate selected */
52     int bitrate_index; /* bit rate */
53     int freq_index;
54     int frame_size; /* frame size, in bits, without padding */
55     /* padding computation */
56     int frame_frac, frame_frac_incr, do_padding;
57     short samples_buf[MPA_MAX_CHANNELS][SAMPLES_BUF_SIZE]; /* buffer for filter */
58     int samples_offset[MPA_MAX_CHANNELS];       /* offset in samples_buf */
59     int sb_samples[MPA_MAX_CHANNELS][3][12][SBLIMIT];
60     unsigned char scale_factors[MPA_MAX_CHANNELS][SBLIMIT][3]; /* scale factors */
61     /* code to group 3 scale factors */
62     unsigned char scale_code[MPA_MAX_CHANNELS][SBLIMIT];
63     int sblimit; /* number of used subbands */
64     const unsigned char *alloc_table;
65     int16_t filter_bank[512];
66     int scale_factor_table[64];
67     unsigned char scale_diff_table[128];
68 #if USE_FLOATS
69     float scale_factor_inv_table[64];
70 #else
71     int8_t scale_factor_shift[64];
72     unsigned short scale_factor_mult[64];
73 #endif
74     unsigned short total_quant_bits[17]; /* total number of bits per allocation group */
75 } MpegAudioContext;
76 
MPA_encode_init(AVCodecContext * avctx)77 static av_cold int MPA_encode_init(AVCodecContext *avctx)
78 {
79     MpegAudioContext *s = avctx->priv_data;
80     int freq = avctx->sample_rate;
81     int bitrate = avctx->bit_rate;
82     int channels = avctx->ch_layout.nb_channels;
83     int i, v, table;
84     float a;
85 
86     if (channels <= 0 || channels > 2){
87         av_log(avctx, AV_LOG_ERROR, "encoding %d channel(s) is not allowed in mp2\n", channels);
88         return AVERROR(EINVAL);
89     }
90     bitrate = bitrate / 1000;
91     s->nb_channels = channels;
92     avctx->frame_size = MPA_FRAME_SIZE;
93     avctx->initial_padding = 512 - 32 + 1;
94 
95     /* encoding freq */
96     s->lsf = 0;
97     for(i=0;i<3;i++) {
98         if (ff_mpa_freq_tab[i] == freq)
99             break;
100         if ((ff_mpa_freq_tab[i] / 2) == freq) {
101             s->lsf = 1;
102             break;
103         }
104     }
105     if (i == 3){
106         av_log(avctx, AV_LOG_ERROR, "Sampling rate %d is not allowed in mp2\n", freq);
107         return AVERROR(EINVAL);
108     }
109     s->freq_index = i;
110 
111     /* encoding bitrate & frequency */
112     for(i=1;i<15;i++) {
113         if (ff_mpa_bitrate_tab[s->lsf][1][i] == bitrate)
114             break;
115     }
116     if (i == 15 && !avctx->bit_rate) {
117         i = 14;
118         bitrate = ff_mpa_bitrate_tab[s->lsf][1][i];
119         avctx->bit_rate = bitrate * 1000;
120     }
121     if (i == 15){
122         av_log(avctx, AV_LOG_ERROR, "bitrate %d is not allowed in mp2\n", bitrate);
123         return AVERROR(EINVAL);
124     }
125     s->bitrate_index = i;
126 
127     /* compute total header size & pad bit */
128 
129     a = (float)(bitrate * 1000 * MPA_FRAME_SIZE) / (freq * 8.0);
130     s->frame_size = ((int)a) * 8;
131 
132     /* frame fractional size to compute padding */
133     s->frame_frac = 0;
134     s->frame_frac_incr = (int)((a - floor(a)) * 65536.0);
135 
136     /* select the right allocation table */
137     table = ff_mpa_l2_select_table(bitrate, s->nb_channels, freq, s->lsf);
138 
139     /* number of used subbands */
140     s->sblimit = ff_mpa_sblimit_table[table];
141     s->alloc_table = ff_mpa_alloc_tables[table];
142 
143     ff_dlog(avctx, "%d kb/s, %d Hz, frame_size=%d bits, table=%d, padincr=%x\n",
144             bitrate, freq, s->frame_size, table, s->frame_frac_incr);
145 
146     for(i=0;i<s->nb_channels;i++)
147         s->samples_offset[i] = 0;
148 
149     for(i=0;i<257;i++) {
150         int v;
151         v = ff_mpa_enwindow[i];
152 #if WFRAC_BITS != 16
153         v = (v + (1 << (16 - WFRAC_BITS - 1))) >> (16 - WFRAC_BITS);
154 #endif
155         s->filter_bank[i] = v;
156         if ((i & 63) != 0)
157             v = -v;
158         if (i != 0)
159             s->filter_bank[512 - i] = v;
160     }
161 
162     for(i=0;i<64;i++) {
163         v = (int)(exp2((3 - i) / 3.0) * (1 << 20));
164         if (v <= 0)
165             v = 1;
166         s->scale_factor_table[i] = v;
167 #if USE_FLOATS
168         s->scale_factor_inv_table[i] = exp2(-(3 - i) / 3.0) / (float)(1 << 20);
169 #else
170 #define P 15
171         s->scale_factor_shift[i] = 21 - P - (i / 3);
172         s->scale_factor_mult[i] = (1 << P) * exp2((i % 3) / 3.0);
173 #endif
174     }
175     for(i=0;i<128;i++) {
176         v = i - 64;
177         if (v <= -3)
178             v = 0;
179         else if (v < 0)
180             v = 1;
181         else if (v == 0)
182             v = 2;
183         else if (v < 3)
184             v = 3;
185         else
186             v = 4;
187         s->scale_diff_table[i] = v;
188     }
189 
190     for(i=0;i<17;i++) {
191         v = ff_mpa_quant_bits[i];
192         if (v < 0)
193             v = -v;
194         else
195             v = v * 3;
196         s->total_quant_bits[i] = 12 * v;
197     }
198 
199     return 0;
200 }
201 
202 /* 32 point floating point IDCT without 1/sqrt(2) coef zero scaling */
idct32(int * out,int * tab)203 static void idct32(int *out, int *tab)
204 {
205     int i, j;
206     int *t, *t1, xr;
207     const int *xp = costab32;
208 
209     for(j=31;j>=3;j-=2) tab[j] += tab[j - 2];
210 
211     t = tab + 30;
212     t1 = tab + 2;
213     do {
214         t[0] += t[-4];
215         t[1] += t[1 - 4];
216         t -= 4;
217     } while (t != t1);
218 
219     t = tab + 28;
220     t1 = tab + 4;
221     do {
222         t[0] += t[-8];
223         t[1] += t[1-8];
224         t[2] += t[2-8];
225         t[3] += t[3-8];
226         t -= 8;
227     } while (t != t1);
228 
229     t = tab;
230     t1 = tab + 32;
231     do {
232         t[ 3] = -t[ 3];
233         t[ 6] = -t[ 6];
234 
235         t[11] = -t[11];
236         t[12] = -t[12];
237         t[13] = -t[13];
238         t[15] = -t[15];
239         t += 16;
240     } while (t != t1);
241 
242 
243     t = tab;
244     t1 = tab + 8;
245     do {
246         int x1, x2, x3, x4;
247 
248         x3 = MUL(t[16], FIX(M_SQRT2*0.5));
249         x4 = t[0] - x3;
250         x3 = t[0] + x3;
251 
252         x2 = MUL(-(t[24] + t[8]), FIX(M_SQRT2*0.5));
253         x1 = MUL((t[8] - x2), xp[0]);
254         x2 = MUL((t[8] + x2), xp[1]);
255 
256         t[ 0] = x3 + x1;
257         t[ 8] = x4 - x2;
258         t[16] = x4 + x2;
259         t[24] = x3 - x1;
260         t++;
261     } while (t != t1);
262 
263     xp += 2;
264     t = tab;
265     t1 = tab + 4;
266     do {
267         xr = MUL(t[28],xp[0]);
268         t[28] = (t[0] - xr);
269         t[0] = (t[0] + xr);
270 
271         xr = MUL(t[4],xp[1]);
272         t[ 4] = (t[24] - xr);
273         t[24] = (t[24] + xr);
274 
275         xr = MUL(t[20],xp[2]);
276         t[20] = (t[8] - xr);
277         t[ 8] = (t[8] + xr);
278 
279         xr = MUL(t[12],xp[3]);
280         t[12] = (t[16] - xr);
281         t[16] = (t[16] + xr);
282         t++;
283     } while (t != t1);
284     xp += 4;
285 
286     for (i = 0; i < 4; i++) {
287         xr = MUL(tab[30-i*4],xp[0]);
288         tab[30-i*4] = (tab[i*4] - xr);
289         tab[   i*4] = (tab[i*4] + xr);
290 
291         xr = MUL(tab[ 2+i*4],xp[1]);
292         tab[ 2+i*4] = (tab[28-i*4] - xr);
293         tab[28-i*4] = (tab[28-i*4] + xr);
294 
295         xr = MUL(tab[31-i*4],xp[0]);
296         tab[31-i*4] = (tab[1+i*4] - xr);
297         tab[ 1+i*4] = (tab[1+i*4] + xr);
298 
299         xr = MUL(tab[ 3+i*4],xp[1]);
300         tab[ 3+i*4] = (tab[29-i*4] - xr);
301         tab[29-i*4] = (tab[29-i*4] + xr);
302 
303         xp += 2;
304     }
305 
306     t = tab + 30;
307     t1 = tab + 1;
308     do {
309         xr = MUL(t1[0], *xp);
310         t1[0] = (t[0] - xr);
311         t[0] = (t[0] + xr);
312         t -= 2;
313         t1 += 2;
314         xp++;
315     } while (t >= tab);
316 
317     for(i=0;i<32;i++) {
318         out[i] = tab[bitinv32[i]];
319     }
320 }
321 
322 #define WSHIFT (WFRAC_BITS + 15 - FRAC_BITS)
323 
filter(MpegAudioContext * s,int ch,const short * samples,int incr)324 static void filter(MpegAudioContext *s, int ch, const short *samples, int incr)
325 {
326     short *p, *q;
327     int sum, offset, i, j;
328     int tmp[64];
329     int tmp1[32];
330     int *out;
331 
332     offset = s->samples_offset[ch];
333     out = &s->sb_samples[ch][0][0][0];
334     for(j=0;j<36;j++) {
335         /* 32 samples at once */
336         for(i=0;i<32;i++) {
337             s->samples_buf[ch][offset + (31 - i)] = samples[0];
338             samples += incr;
339         }
340 
341         /* filter */
342         p = s->samples_buf[ch] + offset;
343         q = s->filter_bank;
344         /* maxsum = 23169 */
345         for(i=0;i<64;i++) {
346             sum = p[0*64] * q[0*64];
347             sum += p[1*64] * q[1*64];
348             sum += p[2*64] * q[2*64];
349             sum += p[3*64] * q[3*64];
350             sum += p[4*64] * q[4*64];
351             sum += p[5*64] * q[5*64];
352             sum += p[6*64] * q[6*64];
353             sum += p[7*64] * q[7*64];
354             tmp[i] = sum;
355             p++;
356             q++;
357         }
358         tmp1[0] = tmp[16] >> WSHIFT;
359         for( i=1; i<=16; i++ ) tmp1[i] = (tmp[i+16]+tmp[16-i]) >> WSHIFT;
360         for( i=17; i<=31; i++ ) tmp1[i] = (tmp[i+16]-tmp[80-i]) >> WSHIFT;
361 
362         idct32(out, tmp1);
363 
364         /* advance of 32 samples */
365         offset -= 32;
366         out += 32;
367         /* handle the wrap around */
368         if (offset < 0) {
369             memmove(s->samples_buf[ch] + SAMPLES_BUF_SIZE - (512 - 32),
370                     s->samples_buf[ch], (512 - 32) * 2);
371             offset = SAMPLES_BUF_SIZE - 512;
372         }
373     }
374     s->samples_offset[ch] = offset;
375 }
376 
compute_scale_factors(MpegAudioContext * s,unsigned char scale_code[SBLIMIT],unsigned char scale_factors[SBLIMIT][3],int sb_samples[3][12][SBLIMIT],int sblimit)377 static void compute_scale_factors(MpegAudioContext *s,
378                                   unsigned char scale_code[SBLIMIT],
379                                   unsigned char scale_factors[SBLIMIT][3],
380                                   int sb_samples[3][12][SBLIMIT],
381                                   int sblimit)
382 {
383     int *p, vmax, v, n, i, j, k, code;
384     int index, d1, d2;
385     unsigned char *sf = &scale_factors[0][0];
386 
387     for(j=0;j<sblimit;j++) {
388         for(i=0;i<3;i++) {
389             /* find the max absolute value */
390             p = &sb_samples[i][0][j];
391             vmax = abs(*p);
392             for(k=1;k<12;k++) {
393                 p += SBLIMIT;
394                 v = abs(*p);
395                 if (v > vmax)
396                     vmax = v;
397             }
398             /* compute the scale factor index using log 2 computations */
399             if (vmax > 1) {
400                 n = av_log2(vmax);
401                 /* n is the position of the MSB of vmax. now
402                    use at most 2 compares to find the index */
403                 index = (21 - n) * 3 - 3;
404                 if (index >= 0) {
405                     while (vmax <= s->scale_factor_table[index+1])
406                         index++;
407                 } else {
408                     index = 0; /* very unlikely case of overflow */
409                 }
410             } else {
411                 index = 62; /* value 63 is not allowed */
412             }
413 
414             ff_dlog(NULL, "%2d:%d in=%x %x %d\n",
415                     j, i, vmax, s->scale_factor_table[index], index);
416             /* store the scale factor */
417             av_assert2(index >=0 && index <= 63);
418             sf[i] = index;
419         }
420 
421         /* compute the transmission factor : look if the scale factors
422            are close enough to each other */
423         d1 = s->scale_diff_table[sf[0] - sf[1] + 64];
424         d2 = s->scale_diff_table[sf[1] - sf[2] + 64];
425 
426         /* handle the 25 cases */
427         switch(d1 * 5 + d2) {
428         case 0*5+0:
429         case 0*5+4:
430         case 3*5+4:
431         case 4*5+0:
432         case 4*5+4:
433             code = 0;
434             break;
435         case 0*5+1:
436         case 0*5+2:
437         case 4*5+1:
438         case 4*5+2:
439             code = 3;
440             sf[2] = sf[1];
441             break;
442         case 0*5+3:
443         case 4*5+3:
444             code = 3;
445             sf[1] = sf[2];
446             break;
447         case 1*5+0:
448         case 1*5+4:
449         case 2*5+4:
450             code = 1;
451             sf[1] = sf[0];
452             break;
453         case 1*5+1:
454         case 1*5+2:
455         case 2*5+0:
456         case 2*5+1:
457         case 2*5+2:
458             code = 2;
459             sf[1] = sf[2] = sf[0];
460             break;
461         case 2*5+3:
462         case 3*5+3:
463             code = 2;
464             sf[0] = sf[1] = sf[2];
465             break;
466         case 3*5+0:
467         case 3*5+1:
468         case 3*5+2:
469             code = 2;
470             sf[0] = sf[2] = sf[1];
471             break;
472         case 1*5+3:
473             code = 2;
474             if (sf[0] > sf[2])
475               sf[0] = sf[2];
476             sf[1] = sf[2] = sf[0];
477             break;
478         default:
479             av_assert2(0); //cannot happen
480             code = 0;           /* kill warning */
481         }
482 
483         ff_dlog(NULL, "%d: %2d %2d %2d %d %d -> %d\n", j,
484                 sf[0], sf[1], sf[2], d1, d2, code);
485         scale_code[j] = code;
486         sf += 3;
487     }
488 }
489 
490 /* The most important function : psycho acoustic module. In this
491    encoder there is basically none, so this is the worst you can do,
492    but also this is the simpler. */
psycho_acoustic_model(MpegAudioContext * s,short smr[SBLIMIT])493 static void psycho_acoustic_model(MpegAudioContext *s, short smr[SBLIMIT])
494 {
495     int i;
496 
497     for(i=0;i<s->sblimit;i++) {
498         smr[i] = (int)(fixed_smr[i] * 10);
499     }
500 }
501 
502 
503 #define SB_NOTALLOCATED  0
504 #define SB_ALLOCATED     1
505 #define SB_NOMORE        2
506 
507 /* Try to maximize the smr while using a number of bits inferior to
508    the frame size. I tried to make the code simpler, faster and
509    smaller than other encoders :-) */
compute_bit_allocation(MpegAudioContext * s,short smr1[MPA_MAX_CHANNELS][SBLIMIT],unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],int * padding)510 static void compute_bit_allocation(MpegAudioContext *s,
511                                    short smr1[MPA_MAX_CHANNELS][SBLIMIT],
512                                    unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
513                                    int *padding)
514 {
515     int i, ch, b, max_smr, max_ch, max_sb, current_frame_size, max_frame_size;
516     int incr;
517     short smr[MPA_MAX_CHANNELS][SBLIMIT];
518     unsigned char subband_status[MPA_MAX_CHANNELS][SBLIMIT];
519     const unsigned char *alloc;
520 
521     memcpy(smr, smr1, s->nb_channels * sizeof(short) * SBLIMIT);
522     memset(subband_status, SB_NOTALLOCATED, s->nb_channels * SBLIMIT);
523     memset(bit_alloc, 0, s->nb_channels * SBLIMIT);
524 
525     /* compute frame size and padding */
526     max_frame_size = s->frame_size;
527     s->frame_frac += s->frame_frac_incr;
528     if (s->frame_frac >= 65536) {
529         s->frame_frac -= 65536;
530         s->do_padding = 1;
531         max_frame_size += 8;
532     } else {
533         s->do_padding = 0;
534     }
535 
536     /* compute the header + bit alloc size */
537     current_frame_size = 32;
538     alloc = s->alloc_table;
539     for(i=0;i<s->sblimit;i++) {
540         incr = alloc[0];
541         current_frame_size += incr * s->nb_channels;
542         alloc += 1 << incr;
543     }
544     for(;;) {
545         /* look for the subband with the largest signal to mask ratio */
546         max_sb = -1;
547         max_ch = -1;
548         max_smr = INT_MIN;
549         for(ch=0;ch<s->nb_channels;ch++) {
550             for(i=0;i<s->sblimit;i++) {
551                 if (smr[ch][i] > max_smr && subband_status[ch][i] != SB_NOMORE) {
552                     max_smr = smr[ch][i];
553                     max_sb = i;
554                     max_ch = ch;
555                 }
556             }
557         }
558         if (max_sb < 0)
559             break;
560         ff_dlog(NULL, "current=%d max=%d max_sb=%d max_ch=%d alloc=%d\n",
561                 current_frame_size, max_frame_size, max_sb, max_ch,
562                 bit_alloc[max_ch][max_sb]);
563 
564         /* find alloc table entry (XXX: not optimal, should use
565            pointer table) */
566         alloc = s->alloc_table;
567         for(i=0;i<max_sb;i++) {
568             alloc += 1 << alloc[0];
569         }
570 
571         if (subband_status[max_ch][max_sb] == SB_NOTALLOCATED) {
572             /* nothing was coded for this band: add the necessary bits */
573             incr = 2 + nb_scale_factors[s->scale_code[max_ch][max_sb]] * 6;
574             incr += s->total_quant_bits[alloc[1]];
575         } else {
576             /* increments bit allocation */
577             b = bit_alloc[max_ch][max_sb];
578             incr = s->total_quant_bits[alloc[b + 1]] -
579                 s->total_quant_bits[alloc[b]];
580         }
581 
582         if (current_frame_size + incr <= max_frame_size) {
583             /* can increase size */
584             b = ++bit_alloc[max_ch][max_sb];
585             current_frame_size += incr;
586             /* decrease smr by the resolution we added */
587             smr[max_ch][max_sb] = smr1[max_ch][max_sb] - quant_snr[alloc[b]];
588             /* max allocation size reached ? */
589             if (b == ((1 << alloc[0]) - 1))
590                 subband_status[max_ch][max_sb] = SB_NOMORE;
591             else
592                 subband_status[max_ch][max_sb] = SB_ALLOCATED;
593         } else {
594             /* cannot increase the size of this subband */
595             subband_status[max_ch][max_sb] = SB_NOMORE;
596         }
597     }
598     *padding = max_frame_size - current_frame_size;
599     av_assert0(*padding >= 0);
600 }
601 
602 /*
603  * Output the MPEG audio layer 2 frame. Note how the code is small
604  * compared to other encoders :-)
605  */
encode_frame(MpegAudioContext * s,unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],int padding)606 static void encode_frame(MpegAudioContext *s,
607                          unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT],
608                          int padding)
609 {
610     int i, j, k, l, bit_alloc_bits, b, ch;
611     unsigned char *sf;
612     int q[3];
613     PutBitContext *p = &s->pb;
614 
615     /* header */
616 
617     put_bits(p, 12, 0xfff);
618     put_bits(p, 1, 1 - s->lsf); /* 1 = MPEG-1 ID, 0 = MPEG-2 lsf ID */
619     put_bits(p, 2, 4-2);  /* layer 2 */
620     put_bits(p, 1, 1); /* no error protection */
621     put_bits(p, 4, s->bitrate_index);
622     put_bits(p, 2, s->freq_index);
623     put_bits(p, 1, s->do_padding); /* use padding */
624     put_bits(p, 1, 0);             /* private_bit */
625     put_bits(p, 2, s->nb_channels == 2 ? MPA_STEREO : MPA_MONO);
626     put_bits(p, 2, 0); /* mode_ext */
627     put_bits(p, 1, 0); /* no copyright */
628     put_bits(p, 1, 1); /* original */
629     put_bits(p, 2, 0); /* no emphasis */
630 
631     /* bit allocation */
632     j = 0;
633     for(i=0;i<s->sblimit;i++) {
634         bit_alloc_bits = s->alloc_table[j];
635         for(ch=0;ch<s->nb_channels;ch++) {
636             put_bits(p, bit_alloc_bits, bit_alloc[ch][i]);
637         }
638         j += 1 << bit_alloc_bits;
639     }
640 
641     /* scale codes */
642     for(i=0;i<s->sblimit;i++) {
643         for(ch=0;ch<s->nb_channels;ch++) {
644             if (bit_alloc[ch][i])
645                 put_bits(p, 2, s->scale_code[ch][i]);
646         }
647     }
648 
649     /* scale factors */
650     for(i=0;i<s->sblimit;i++) {
651         for(ch=0;ch<s->nb_channels;ch++) {
652             if (bit_alloc[ch][i]) {
653                 sf = &s->scale_factors[ch][i][0];
654                 switch(s->scale_code[ch][i]) {
655                 case 0:
656                     put_bits(p, 6, sf[0]);
657                     put_bits(p, 6, sf[1]);
658                     put_bits(p, 6, sf[2]);
659                     break;
660                 case 3:
661                 case 1:
662                     put_bits(p, 6, sf[0]);
663                     put_bits(p, 6, sf[2]);
664                     break;
665                 case 2:
666                     put_bits(p, 6, sf[0]);
667                     break;
668                 }
669             }
670         }
671     }
672 
673     /* quantization & write sub band samples */
674 
675     for(k=0;k<3;k++) {
676         for(l=0;l<12;l+=3) {
677             j = 0;
678             for(i=0;i<s->sblimit;i++) {
679                 bit_alloc_bits = s->alloc_table[j];
680                 for(ch=0;ch<s->nb_channels;ch++) {
681                     b = bit_alloc[ch][i];
682                     if (b) {
683                         int qindex, steps, m, sample, bits;
684                         /* we encode 3 sub band samples of the same sub band at a time */
685                         qindex = s->alloc_table[j+b];
686                         steps = ff_mpa_quant_steps[qindex];
687                         for(m=0;m<3;m++) {
688                             sample = s->sb_samples[ch][k][l + m][i];
689                             /* divide by scale factor */
690 #if USE_FLOATS
691                             {
692                                 float a;
693                                 a = (float)sample * s->scale_factor_inv_table[s->scale_factors[ch][i][k]];
694                                 q[m] = (int)((a + 1.0) * steps * 0.5);
695                             }
696 #else
697                             {
698                                 int q1, e, shift, mult;
699                                 e = s->scale_factors[ch][i][k];
700                                 shift = s->scale_factor_shift[e];
701                                 mult = s->scale_factor_mult[e];
702 
703                                 /* normalize to P bits */
704                                 if (shift < 0)
705                                     q1 = sample * (1 << -shift);
706                                 else
707                                     q1 = sample >> shift;
708                                 q1 = (q1 * mult) >> P;
709                                 q1 += 1 << P;
710                                 if (q1 < 0)
711                                     q1 = 0;
712                                 q[m] = (q1 * (unsigned)steps) >> (P + 1);
713                             }
714 #endif
715                             if (q[m] >= steps)
716                                 q[m] = steps - 1;
717                             av_assert2(q[m] >= 0 && q[m] < steps);
718                         }
719                         bits = ff_mpa_quant_bits[qindex];
720                         if (bits < 0) {
721                             /* group the 3 values to save bits */
722                             put_bits(p, -bits,
723                                      q[0] + steps * (q[1] + steps * q[2]));
724                         } else {
725                             put_bits(p, bits, q[0]);
726                             put_bits(p, bits, q[1]);
727                             put_bits(p, bits, q[2]);
728                         }
729                     }
730                 }
731                 /* next subband in alloc table */
732                 j += 1 << bit_alloc_bits;
733             }
734         }
735     }
736 
737     /* padding */
738     for(i=0;i<padding;i++)
739         put_bits(p, 1, 0);
740 }
741 
MPA_encode_frame(AVCodecContext * avctx,AVPacket * avpkt,const AVFrame * frame,int * got_packet_ptr)742 static int MPA_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
743                             const AVFrame *frame, int *got_packet_ptr)
744 {
745     MpegAudioContext *s = avctx->priv_data;
746     const int16_t *samples = (const int16_t *)frame->data[0];
747     short smr[MPA_MAX_CHANNELS][SBLIMIT];
748     unsigned char bit_alloc[MPA_MAX_CHANNELS][SBLIMIT];
749     int padding, i, ret;
750 
751     for(i=0;i<s->nb_channels;i++) {
752         filter(s, i, samples + i, s->nb_channels);
753     }
754 
755     for(i=0;i<s->nb_channels;i++) {
756         compute_scale_factors(s, s->scale_code[i], s->scale_factors[i],
757                               s->sb_samples[i], s->sblimit);
758     }
759     for(i=0;i<s->nb_channels;i++) {
760         psycho_acoustic_model(s, smr[i]);
761     }
762     compute_bit_allocation(s, smr, bit_alloc, &padding);
763 
764     if ((ret = ff_alloc_packet(avctx, avpkt, MPA_MAX_CODED_FRAME_SIZE)) < 0)
765         return ret;
766 
767     init_put_bits(&s->pb, avpkt->data, avpkt->size);
768 
769     encode_frame(s, bit_alloc, padding);
770 
771     /* flush */
772     flush_put_bits(&s->pb);
773     avpkt->size = put_bytes_output(&s->pb);
774 
775     if (frame->pts != AV_NOPTS_VALUE)
776         avpkt->pts = frame->pts - ff_samples_to_time_base(avctx, avctx->initial_padding);
777 
778     *got_packet_ptr = 1;
779     return 0;
780 }
781 
782 static const FFCodecDefault mp2_defaults[] = {
783     { "b", "0" },
784     { NULL },
785 };
786 
787