1 /* SPDX-License-Identifier: GPL-2.0-or-later */
2 /*
3 * Linux INET6 implementation
4 *
5 * Authors:
6 * Pedro Roque <roque@di.fc.ul.pt>
7 */
8
9 #ifndef _NET_IPV6_H
10 #define _NET_IPV6_H
11
12 #include <linux/ipv6.h>
13 #include <linux/hardirq.h>
14 #include <linux/jhash.h>
15 #include <linux/refcount.h>
16 #include <linux/jump_label_ratelimit.h>
17 #include <net/if_inet6.h>
18 #include <net/ndisc.h>
19 #include <net/flow.h>
20 #include <net/flow_dissector.h>
21 #include <net/snmp.h>
22 #include <net/netns/hash.h>
23
24 #define SIN6_LEN_RFC2133 24
25
26 #define IPV6_MAXPLEN 65535
27
28 /*
29 * NextHeader field of IPv6 header
30 */
31
32 #define NEXTHDR_HOP 0 /* Hop-by-hop option header. */
33 #define NEXTHDR_TCP 6 /* TCP segment. */
34 #define NEXTHDR_UDP 17 /* UDP message. */
35 #define NEXTHDR_IPV6 41 /* IPv6 in IPv6 */
36 #define NEXTHDR_ROUTING 43 /* Routing header. */
37 #define NEXTHDR_FRAGMENT 44 /* Fragmentation/reassembly header. */
38 #define NEXTHDR_GRE 47 /* GRE header. */
39 #define NEXTHDR_ESP 50 /* Encapsulating security payload. */
40 #define NEXTHDR_AUTH 51 /* Authentication header. */
41 #define NEXTHDR_ICMP 58 /* ICMP for IPv6. */
42 #define NEXTHDR_NONE 59 /* No next header */
43 #define NEXTHDR_DEST 60 /* Destination options header. */
44 #define NEXTHDR_SCTP 132 /* SCTP message. */
45 #define NEXTHDR_MOBILITY 135 /* Mobility header. */
46
47 #define NEXTHDR_MAX 255
48
49 #define IPV6_DEFAULT_HOPLIMIT 64
50 #define IPV6_DEFAULT_MCASTHOPS 1
51
52 /* Limits on Hop-by-Hop and Destination options.
53 *
54 * Per RFC8200 there is no limit on the maximum number or lengths of options in
55 * Hop-by-Hop or Destination options other then the packet must fit in an MTU.
56 * We allow configurable limits in order to mitigate potential denial of
57 * service attacks.
58 *
59 * There are three limits that may be set:
60 * - Limit the number of options in a Hop-by-Hop or Destination options
61 * extension header
62 * - Limit the byte length of a Hop-by-Hop or Destination options extension
63 * header
64 * - Disallow unknown options
65 *
66 * The limits are expressed in corresponding sysctls:
67 *
68 * ipv6.sysctl.max_dst_opts_cnt
69 * ipv6.sysctl.max_hbh_opts_cnt
70 * ipv6.sysctl.max_dst_opts_len
71 * ipv6.sysctl.max_hbh_opts_len
72 *
73 * max_*_opts_cnt is the number of TLVs that are allowed for Destination
74 * options or Hop-by-Hop options. If the number is less than zero then unknown
75 * TLVs are disallowed and the number of known options that are allowed is the
76 * absolute value. Setting the value to INT_MAX indicates no limit.
77 *
78 * max_*_opts_len is the length limit in bytes of a Destination or
79 * Hop-by-Hop options extension header. Setting the value to INT_MAX
80 * indicates no length limit.
81 *
82 * If a limit is exceeded when processing an extension header the packet is
83 * silently discarded.
84 */
85
86 /* Default limits for Hop-by-Hop and Destination options */
87 #define IP6_DEFAULT_MAX_DST_OPTS_CNT 8
88 #define IP6_DEFAULT_MAX_HBH_OPTS_CNT 8
89 #define IP6_DEFAULT_MAX_DST_OPTS_LEN INT_MAX /* No limit */
90 #define IP6_DEFAULT_MAX_HBH_OPTS_LEN INT_MAX /* No limit */
91
92 /*
93 * Addr type
94 *
95 * type - unicast | multicast
96 * scope - local | site | global
97 * v4 - compat
98 * v4mapped
99 * any
100 * loopback
101 */
102
103 #define IPV6_ADDR_ANY 0x0000U
104
105 #define IPV6_ADDR_UNICAST 0x0001U
106 #define IPV6_ADDR_MULTICAST 0x0002U
107
108 #define IPV6_ADDR_LOOPBACK 0x0010U
109 #define IPV6_ADDR_LINKLOCAL 0x0020U
110 #define IPV6_ADDR_SITELOCAL 0x0040U
111
112 #define IPV6_ADDR_COMPATv4 0x0080U
113
114 #define IPV6_ADDR_SCOPE_MASK 0x00f0U
115
116 #define IPV6_ADDR_MAPPED 0x1000U
117
118 /*
119 * Addr scopes
120 */
121 #define IPV6_ADDR_MC_SCOPE(a) \
122 ((a)->s6_addr[1] & 0x0f) /* nonstandard */
123 #define __IPV6_ADDR_SCOPE_INVALID -1
124 #define IPV6_ADDR_SCOPE_NODELOCAL 0x01
125 #define IPV6_ADDR_SCOPE_LINKLOCAL 0x02
126 #define IPV6_ADDR_SCOPE_SITELOCAL 0x05
127 #define IPV6_ADDR_SCOPE_ORGLOCAL 0x08
128 #define IPV6_ADDR_SCOPE_GLOBAL 0x0e
129
130 /*
131 * Addr flags
132 */
133 #define IPV6_ADDR_MC_FLAG_TRANSIENT(a) \
134 ((a)->s6_addr[1] & 0x10)
135 #define IPV6_ADDR_MC_FLAG_PREFIX(a) \
136 ((a)->s6_addr[1] & 0x20)
137 #define IPV6_ADDR_MC_FLAG_RENDEZVOUS(a) \
138 ((a)->s6_addr[1] & 0x40)
139
140 /*
141 * fragmentation header
142 */
143
144 struct frag_hdr {
145 __u8 nexthdr;
146 __u8 reserved;
147 __be16 frag_off;
148 __be32 identification;
149 };
150
151 #define IP6_MF 0x0001
152 #define IP6_OFFSET 0xFFF8
153
154 struct ip6_fraglist_iter {
155 struct ipv6hdr *tmp_hdr;
156 struct sk_buff *frag;
157 int offset;
158 unsigned int hlen;
159 __be32 frag_id;
160 u8 nexthdr;
161 };
162
163 int ip6_fraglist_init(struct sk_buff *skb, unsigned int hlen, u8 *prevhdr,
164 u8 nexthdr, __be32 frag_id,
165 struct ip6_fraglist_iter *iter);
166 void ip6_fraglist_prepare(struct sk_buff *skb, struct ip6_fraglist_iter *iter);
167
ip6_fraglist_next(struct ip6_fraglist_iter * iter)168 static inline struct sk_buff *ip6_fraglist_next(struct ip6_fraglist_iter *iter)
169 {
170 struct sk_buff *skb = iter->frag;
171
172 iter->frag = skb->next;
173 skb_mark_not_on_list(skb);
174
175 return skb;
176 }
177
178 struct ip6_frag_state {
179 u8 *prevhdr;
180 unsigned int hlen;
181 unsigned int mtu;
182 unsigned int left;
183 int offset;
184 int ptr;
185 int hroom;
186 int troom;
187 __be32 frag_id;
188 u8 nexthdr;
189 };
190
191 void ip6_frag_init(struct sk_buff *skb, unsigned int hlen, unsigned int mtu,
192 unsigned short needed_tailroom, int hdr_room, u8 *prevhdr,
193 u8 nexthdr, __be32 frag_id, struct ip6_frag_state *state);
194 struct sk_buff *ip6_frag_next(struct sk_buff *skb,
195 struct ip6_frag_state *state);
196
197 #define IP6_REPLY_MARK(net, mark) \
198 ((net)->ipv6.sysctl.fwmark_reflect ? (mark) : 0)
199
200 #include <net/sock.h>
201
202 /* sysctls */
203 extern int sysctl_mld_max_msf;
204 extern int sysctl_mld_qrv;
205
206 #define _DEVINC(net, statname, mod, idev, field) \
207 ({ \
208 struct inet6_dev *_idev = (idev); \
209 if (likely(_idev != NULL)) \
210 mod##SNMP_INC_STATS64((_idev)->stats.statname, (field));\
211 mod##SNMP_INC_STATS64((net)->mib.statname##_statistics, (field));\
212 })
213
214 /* per device counters are atomic_long_t */
215 #define _DEVINCATOMIC(net, statname, mod, idev, field) \
216 ({ \
217 struct inet6_dev *_idev = (idev); \
218 if (likely(_idev != NULL)) \
219 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
220 mod##SNMP_INC_STATS((net)->mib.statname##_statistics, (field));\
221 })
222
223 /* per device and per net counters are atomic_long_t */
224 #define _DEVINC_ATOMIC_ATOMIC(net, statname, idev, field) \
225 ({ \
226 struct inet6_dev *_idev = (idev); \
227 if (likely(_idev != NULL)) \
228 SNMP_INC_STATS_ATOMIC_LONG((_idev)->stats.statname##dev, (field)); \
229 SNMP_INC_STATS_ATOMIC_LONG((net)->mib.statname##_statistics, (field));\
230 })
231
232 #define _DEVADD(net, statname, mod, idev, field, val) \
233 ({ \
234 struct inet6_dev *_idev = (idev); \
235 if (likely(_idev != NULL)) \
236 mod##SNMP_ADD_STATS((_idev)->stats.statname, (field), (val)); \
237 mod##SNMP_ADD_STATS((net)->mib.statname##_statistics, (field), (val));\
238 })
239
240 #define _DEVUPD(net, statname, mod, idev, field, val) \
241 ({ \
242 struct inet6_dev *_idev = (idev); \
243 if (likely(_idev != NULL)) \
244 mod##SNMP_UPD_PO_STATS((_idev)->stats.statname, field, (val)); \
245 mod##SNMP_UPD_PO_STATS((net)->mib.statname##_statistics, field, (val));\
246 })
247
248 /* MIBs */
249
250 #define IP6_INC_STATS(net, idev,field) \
251 _DEVINC(net, ipv6, , idev, field)
252 #define __IP6_INC_STATS(net, idev,field) \
253 _DEVINC(net, ipv6, __, idev, field)
254 #define IP6_ADD_STATS(net, idev,field,val) \
255 _DEVADD(net, ipv6, , idev, field, val)
256 #define __IP6_ADD_STATS(net, idev,field,val) \
257 _DEVADD(net, ipv6, __, idev, field, val)
258 #define IP6_UPD_PO_STATS(net, idev,field,val) \
259 _DEVUPD(net, ipv6, , idev, field, val)
260 #define __IP6_UPD_PO_STATS(net, idev,field,val) \
261 _DEVUPD(net, ipv6, __, idev, field, val)
262 #define ICMP6_INC_STATS(net, idev, field) \
263 _DEVINCATOMIC(net, icmpv6, , idev, field)
264 #define __ICMP6_INC_STATS(net, idev, field) \
265 _DEVINCATOMIC(net, icmpv6, __, idev, field)
266
267 #define ICMP6MSGOUT_INC_STATS(net, idev, field) \
268 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field +256)
269 #define ICMP6MSGIN_INC_STATS(net, idev, field) \
270 _DEVINC_ATOMIC_ATOMIC(net, icmpv6msg, idev, field)
271
272 struct ip6_ra_chain {
273 struct ip6_ra_chain *next;
274 struct sock *sk;
275 int sel;
276 void (*destructor)(struct sock *);
277 };
278
279 extern struct ip6_ra_chain *ip6_ra_chain;
280 extern rwlock_t ip6_ra_lock;
281
282 /*
283 This structure is prepared by protocol, when parsing
284 ancillary data and passed to IPv6.
285 */
286
287 struct ipv6_txoptions {
288 refcount_t refcnt;
289 /* Length of this structure */
290 int tot_len;
291
292 /* length of extension headers */
293
294 __u16 opt_flen; /* after fragment hdr */
295 __u16 opt_nflen; /* before fragment hdr */
296
297 struct ipv6_opt_hdr *hopopt;
298 struct ipv6_opt_hdr *dst0opt;
299 struct ipv6_rt_hdr *srcrt; /* Routing Header */
300 struct ipv6_opt_hdr *dst1opt;
301 struct rcu_head rcu;
302 /* Option buffer, as read by IPV6_PKTOPTIONS, starts here. */
303 };
304
305 /* flowlabel_reflect sysctl values */
306 enum flowlabel_reflect {
307 FLOWLABEL_REFLECT_ESTABLISHED = 1,
308 FLOWLABEL_REFLECT_TCP_RESET = 2,
309 FLOWLABEL_REFLECT_ICMPV6_ECHO_REPLIES = 4,
310 };
311
312 struct ip6_flowlabel {
313 struct ip6_flowlabel __rcu *next;
314 __be32 label;
315 atomic_t users;
316 struct in6_addr dst;
317 struct ipv6_txoptions *opt;
318 unsigned long linger;
319 struct rcu_head rcu;
320 u8 share;
321 union {
322 struct pid *pid;
323 kuid_t uid;
324 } owner;
325 unsigned long lastuse;
326 unsigned long expires;
327 struct net *fl_net;
328 };
329
330 #define IPV6_FLOWINFO_MASK cpu_to_be32(0x0FFFFFFF)
331 #define IPV6_FLOWLABEL_MASK cpu_to_be32(0x000FFFFF)
332 #define IPV6_FLOWLABEL_STATELESS_FLAG cpu_to_be32(0x00080000)
333
334 #define IPV6_TCLASS_MASK (IPV6_FLOWINFO_MASK & ~IPV6_FLOWLABEL_MASK)
335 #define IPV6_TCLASS_SHIFT 20
336
337 struct ipv6_fl_socklist {
338 struct ipv6_fl_socklist __rcu *next;
339 struct ip6_flowlabel *fl;
340 struct rcu_head rcu;
341 };
342
343 struct ipcm6_cookie {
344 struct sockcm_cookie sockc;
345 __s16 hlimit;
346 __s16 tclass;
347 __s8 dontfrag;
348 struct ipv6_txoptions *opt;
349 __u16 gso_size;
350 };
351
ipcm6_init(struct ipcm6_cookie * ipc6)352 static inline void ipcm6_init(struct ipcm6_cookie *ipc6)
353 {
354 *ipc6 = (struct ipcm6_cookie) {
355 .hlimit = -1,
356 .tclass = -1,
357 .dontfrag = -1,
358 };
359 }
360
ipcm6_init_sk(struct ipcm6_cookie * ipc6,const struct ipv6_pinfo * np)361 static inline void ipcm6_init_sk(struct ipcm6_cookie *ipc6,
362 const struct ipv6_pinfo *np)
363 {
364 *ipc6 = (struct ipcm6_cookie) {
365 .hlimit = -1,
366 .tclass = np->tclass,
367 .dontfrag = np->dontfrag,
368 };
369 }
370
txopt_get(const struct ipv6_pinfo * np)371 static inline struct ipv6_txoptions *txopt_get(const struct ipv6_pinfo *np)
372 {
373 struct ipv6_txoptions *opt;
374
375 rcu_read_lock();
376 opt = rcu_dereference(np->opt);
377 if (opt) {
378 if (!refcount_inc_not_zero(&opt->refcnt))
379 opt = NULL;
380 else
381 opt = rcu_pointer_handoff(opt);
382 }
383 rcu_read_unlock();
384 return opt;
385 }
386
txopt_put(struct ipv6_txoptions * opt)387 static inline void txopt_put(struct ipv6_txoptions *opt)
388 {
389 if (opt && refcount_dec_and_test(&opt->refcnt))
390 kfree_rcu(opt, rcu);
391 }
392
393 #if IS_ENABLED(CONFIG_IPV6)
394 struct ip6_flowlabel *__fl6_sock_lookup(struct sock *sk, __be32 label);
395
396 extern struct static_key_false_deferred ipv6_flowlabel_exclusive;
fl6_sock_lookup(struct sock * sk,__be32 label)397 static inline struct ip6_flowlabel *fl6_sock_lookup(struct sock *sk,
398 __be32 label)
399 {
400 if (static_branch_unlikely(&ipv6_flowlabel_exclusive.key) &&
401 READ_ONCE(sock_net(sk)->ipv6.flowlabel_has_excl))
402 return __fl6_sock_lookup(sk, label) ? : ERR_PTR(-ENOENT);
403
404 return NULL;
405 }
406 #endif
407
408 struct ipv6_txoptions *fl6_merge_options(struct ipv6_txoptions *opt_space,
409 struct ip6_flowlabel *fl,
410 struct ipv6_txoptions *fopt);
411 void fl6_free_socklist(struct sock *sk);
412 int ipv6_flowlabel_opt(struct sock *sk, sockptr_t optval, int optlen);
413 int ipv6_flowlabel_opt_get(struct sock *sk, struct in6_flowlabel_req *freq,
414 int flags);
415 int ip6_flowlabel_init(void);
416 void ip6_flowlabel_cleanup(void);
417 bool ip6_autoflowlabel(struct net *net, const struct ipv6_pinfo *np);
418
fl6_sock_release(struct ip6_flowlabel * fl)419 static inline void fl6_sock_release(struct ip6_flowlabel *fl)
420 {
421 if (fl)
422 atomic_dec(&fl->users);
423 }
424
425 void icmpv6_notify(struct sk_buff *skb, u8 type, u8 code, __be32 info);
426
427 void icmpv6_push_pending_frames(struct sock *sk, struct flowi6 *fl6,
428 struct icmp6hdr *thdr, int len);
429
430 int ip6_ra_control(struct sock *sk, int sel);
431
432 int ipv6_parse_hopopts(struct sk_buff *skb);
433
434 struct ipv6_txoptions *ipv6_dup_options(struct sock *sk,
435 struct ipv6_txoptions *opt);
436 struct ipv6_txoptions *ipv6_renew_options(struct sock *sk,
437 struct ipv6_txoptions *opt,
438 int newtype,
439 struct ipv6_opt_hdr *newopt);
440 struct ipv6_txoptions *ipv6_fixup_options(struct ipv6_txoptions *opt_space,
441 struct ipv6_txoptions *opt);
442
443 bool ipv6_opt_accepted(const struct sock *sk, const struct sk_buff *skb,
444 const struct inet6_skb_parm *opt);
445 struct ipv6_txoptions *ipv6_update_options(struct sock *sk,
446 struct ipv6_txoptions *opt);
447
ipv6_accept_ra(struct inet6_dev * idev)448 static inline bool ipv6_accept_ra(struct inet6_dev *idev)
449 {
450 /* If forwarding is enabled, RA are not accepted unless the special
451 * hybrid mode (accept_ra=2) is enabled.
452 */
453 return idev->cnf.forwarding ? idev->cnf.accept_ra == 2 :
454 idev->cnf.accept_ra;
455 }
456
457 #define IPV6_FRAG_HIGH_THRESH (4 * 1024*1024) /* 4194304 */
458 #define IPV6_FRAG_LOW_THRESH (3 * 1024*1024) /* 3145728 */
459 #define IPV6_FRAG_TIMEOUT (60 * HZ) /* 60 seconds */
460
461 int __ipv6_addr_type(const struct in6_addr *addr);
ipv6_addr_type(const struct in6_addr * addr)462 static inline int ipv6_addr_type(const struct in6_addr *addr)
463 {
464 return __ipv6_addr_type(addr) & 0xffff;
465 }
466
ipv6_addr_scope(const struct in6_addr * addr)467 static inline int ipv6_addr_scope(const struct in6_addr *addr)
468 {
469 return __ipv6_addr_type(addr) & IPV6_ADDR_SCOPE_MASK;
470 }
471
__ipv6_addr_src_scope(int type)472 static inline int __ipv6_addr_src_scope(int type)
473 {
474 return (type == IPV6_ADDR_ANY) ? __IPV6_ADDR_SCOPE_INVALID : (type >> 16);
475 }
476
ipv6_addr_src_scope(const struct in6_addr * addr)477 static inline int ipv6_addr_src_scope(const struct in6_addr *addr)
478 {
479 return __ipv6_addr_src_scope(__ipv6_addr_type(addr));
480 }
481
__ipv6_addr_needs_scope_id(int type)482 static inline bool __ipv6_addr_needs_scope_id(int type)
483 {
484 return type & IPV6_ADDR_LINKLOCAL ||
485 (type & IPV6_ADDR_MULTICAST &&
486 (type & (IPV6_ADDR_LOOPBACK|IPV6_ADDR_LINKLOCAL)));
487 }
488
ipv6_iface_scope_id(const struct in6_addr * addr,int iface)489 static inline __u32 ipv6_iface_scope_id(const struct in6_addr *addr, int iface)
490 {
491 return __ipv6_addr_needs_scope_id(__ipv6_addr_type(addr)) ? iface : 0;
492 }
493
ipv6_addr_cmp(const struct in6_addr * a1,const struct in6_addr * a2)494 static inline int ipv6_addr_cmp(const struct in6_addr *a1, const struct in6_addr *a2)
495 {
496 return memcmp(a1, a2, sizeof(struct in6_addr));
497 }
498
499 static inline bool
ipv6_masked_addr_cmp(const struct in6_addr * a1,const struct in6_addr * m,const struct in6_addr * a2)500 ipv6_masked_addr_cmp(const struct in6_addr *a1, const struct in6_addr *m,
501 const struct in6_addr *a2)
502 {
503 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
504 const unsigned long *ul1 = (const unsigned long *)a1;
505 const unsigned long *ulm = (const unsigned long *)m;
506 const unsigned long *ul2 = (const unsigned long *)a2;
507
508 return !!(((ul1[0] ^ ul2[0]) & ulm[0]) |
509 ((ul1[1] ^ ul2[1]) & ulm[1]));
510 #else
511 return !!(((a1->s6_addr32[0] ^ a2->s6_addr32[0]) & m->s6_addr32[0]) |
512 ((a1->s6_addr32[1] ^ a2->s6_addr32[1]) & m->s6_addr32[1]) |
513 ((a1->s6_addr32[2] ^ a2->s6_addr32[2]) & m->s6_addr32[2]) |
514 ((a1->s6_addr32[3] ^ a2->s6_addr32[3]) & m->s6_addr32[3]));
515 #endif
516 }
517
ipv6_addr_prefix(struct in6_addr * pfx,const struct in6_addr * addr,int plen)518 static inline void ipv6_addr_prefix(struct in6_addr *pfx,
519 const struct in6_addr *addr,
520 int plen)
521 {
522 /* caller must guarantee 0 <= plen <= 128 */
523 int o = plen >> 3,
524 b = plen & 0x7;
525
526 memset(pfx->s6_addr, 0, sizeof(pfx->s6_addr));
527 memcpy(pfx->s6_addr, addr, o);
528 if (b != 0)
529 pfx->s6_addr[o] = addr->s6_addr[o] & (0xff00 >> b);
530 }
531
ipv6_addr_prefix_copy(struct in6_addr * addr,const struct in6_addr * pfx,int plen)532 static inline void ipv6_addr_prefix_copy(struct in6_addr *addr,
533 const struct in6_addr *pfx,
534 int plen)
535 {
536 /* caller must guarantee 0 <= plen <= 128 */
537 int o = plen >> 3,
538 b = plen & 0x7;
539
540 memcpy(addr->s6_addr, pfx, o);
541 if (b != 0) {
542 addr->s6_addr[o] &= ~(0xff00 >> b);
543 addr->s6_addr[o] |= (pfx->s6_addr[o] & (0xff00 >> b));
544 }
545 }
546
__ipv6_addr_set_half(__be32 * addr,__be32 wh,__be32 wl)547 static inline void __ipv6_addr_set_half(__be32 *addr,
548 __be32 wh, __be32 wl)
549 {
550 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
551 #if defined(__BIG_ENDIAN)
552 if (__builtin_constant_p(wh) && __builtin_constant_p(wl)) {
553 *(__force u64 *)addr = ((__force u64)(wh) << 32 | (__force u64)(wl));
554 return;
555 }
556 #elif defined(__LITTLE_ENDIAN)
557 if (__builtin_constant_p(wl) && __builtin_constant_p(wh)) {
558 *(__force u64 *)addr = ((__force u64)(wl) << 32 | (__force u64)(wh));
559 return;
560 }
561 #endif
562 #endif
563 addr[0] = wh;
564 addr[1] = wl;
565 }
566
ipv6_addr_set(struct in6_addr * addr,__be32 w1,__be32 w2,__be32 w3,__be32 w4)567 static inline void ipv6_addr_set(struct in6_addr *addr,
568 __be32 w1, __be32 w2,
569 __be32 w3, __be32 w4)
570 {
571 __ipv6_addr_set_half(&addr->s6_addr32[0], w1, w2);
572 __ipv6_addr_set_half(&addr->s6_addr32[2], w3, w4);
573 }
574
ipv6_addr_equal(const struct in6_addr * a1,const struct in6_addr * a2)575 static inline bool ipv6_addr_equal(const struct in6_addr *a1,
576 const struct in6_addr *a2)
577 {
578 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
579 const unsigned long *ul1 = (const unsigned long *)a1;
580 const unsigned long *ul2 = (const unsigned long *)a2;
581
582 return ((ul1[0] ^ ul2[0]) | (ul1[1] ^ ul2[1])) == 0UL;
583 #else
584 return ((a1->s6_addr32[0] ^ a2->s6_addr32[0]) |
585 (a1->s6_addr32[1] ^ a2->s6_addr32[1]) |
586 (a1->s6_addr32[2] ^ a2->s6_addr32[2]) |
587 (a1->s6_addr32[3] ^ a2->s6_addr32[3])) == 0;
588 #endif
589 }
590
591 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
__ipv6_prefix_equal64_half(const __be64 * a1,const __be64 * a2,unsigned int len)592 static inline bool __ipv6_prefix_equal64_half(const __be64 *a1,
593 const __be64 *a2,
594 unsigned int len)
595 {
596 if (len && ((*a1 ^ *a2) & cpu_to_be64((~0UL) << (64 - len))))
597 return false;
598 return true;
599 }
600
ipv6_prefix_equal(const struct in6_addr * addr1,const struct in6_addr * addr2,unsigned int prefixlen)601 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
602 const struct in6_addr *addr2,
603 unsigned int prefixlen)
604 {
605 const __be64 *a1 = (const __be64 *)addr1;
606 const __be64 *a2 = (const __be64 *)addr2;
607
608 if (prefixlen >= 64) {
609 if (a1[0] ^ a2[0])
610 return false;
611 return __ipv6_prefix_equal64_half(a1 + 1, a2 + 1, prefixlen - 64);
612 }
613 return __ipv6_prefix_equal64_half(a1, a2, prefixlen);
614 }
615 #else
ipv6_prefix_equal(const struct in6_addr * addr1,const struct in6_addr * addr2,unsigned int prefixlen)616 static inline bool ipv6_prefix_equal(const struct in6_addr *addr1,
617 const struct in6_addr *addr2,
618 unsigned int prefixlen)
619 {
620 const __be32 *a1 = addr1->s6_addr32;
621 const __be32 *a2 = addr2->s6_addr32;
622 unsigned int pdw, pbi;
623
624 /* check complete u32 in prefix */
625 pdw = prefixlen >> 5;
626 if (pdw && memcmp(a1, a2, pdw << 2))
627 return false;
628
629 /* check incomplete u32 in prefix */
630 pbi = prefixlen & 0x1f;
631 if (pbi && ((a1[pdw] ^ a2[pdw]) & htonl((0xffffffff) << (32 - pbi))))
632 return false;
633
634 return true;
635 }
636 #endif
637
ipv6_addr_any(const struct in6_addr * a)638 static inline bool ipv6_addr_any(const struct in6_addr *a)
639 {
640 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
641 const unsigned long *ul = (const unsigned long *)a;
642
643 return (ul[0] | ul[1]) == 0UL;
644 #else
645 return (a->s6_addr32[0] | a->s6_addr32[1] |
646 a->s6_addr32[2] | a->s6_addr32[3]) == 0;
647 #endif
648 }
649
ipv6_addr_hash(const struct in6_addr * a)650 static inline u32 ipv6_addr_hash(const struct in6_addr *a)
651 {
652 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
653 const unsigned long *ul = (const unsigned long *)a;
654 unsigned long x = ul[0] ^ ul[1];
655
656 return (u32)(x ^ (x >> 32));
657 #else
658 return (__force u32)(a->s6_addr32[0] ^ a->s6_addr32[1] ^
659 a->s6_addr32[2] ^ a->s6_addr32[3]);
660 #endif
661 }
662
663 /* more secured version of ipv6_addr_hash() */
__ipv6_addr_jhash(const struct in6_addr * a,const u32 initval)664 static inline u32 __ipv6_addr_jhash(const struct in6_addr *a, const u32 initval)
665 {
666 return jhash2((__force const u32 *)a->s6_addr32,
667 ARRAY_SIZE(a->s6_addr32), initval);
668 }
669
ipv6_addr_loopback(const struct in6_addr * a)670 static inline bool ipv6_addr_loopback(const struct in6_addr *a)
671 {
672 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
673 const __be64 *be = (const __be64 *)a;
674
675 return (be[0] | (be[1] ^ cpu_to_be64(1))) == 0UL;
676 #else
677 return (a->s6_addr32[0] | a->s6_addr32[1] |
678 a->s6_addr32[2] | (a->s6_addr32[3] ^ cpu_to_be32(1))) == 0;
679 #endif
680 }
681
682 /*
683 * Note that we must __force cast these to unsigned long to make sparse happy,
684 * since all of the endian-annotated types are fixed size regardless of arch.
685 */
ipv6_addr_v4mapped(const struct in6_addr * a)686 static inline bool ipv6_addr_v4mapped(const struct in6_addr *a)
687 {
688 return (
689 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
690 *(unsigned long *)a |
691 #else
692 (__force unsigned long)(a->s6_addr32[0] | a->s6_addr32[1]) |
693 #endif
694 (__force unsigned long)(a->s6_addr32[2] ^
695 cpu_to_be32(0x0000ffff))) == 0UL;
696 }
697
ipv6_addr_v4mapped_loopback(const struct in6_addr * a)698 static inline bool ipv6_addr_v4mapped_loopback(const struct in6_addr *a)
699 {
700 return ipv6_addr_v4mapped(a) && ipv4_is_loopback(a->s6_addr32[3]);
701 }
702
ipv6_portaddr_hash(const struct net * net,const struct in6_addr * addr6,unsigned int port)703 static inline u32 ipv6_portaddr_hash(const struct net *net,
704 const struct in6_addr *addr6,
705 unsigned int port)
706 {
707 unsigned int hash, mix = net_hash_mix(net);
708
709 if (ipv6_addr_any(addr6))
710 hash = jhash_1word(0, mix);
711 else if (ipv6_addr_v4mapped(addr6))
712 hash = jhash_1word((__force u32)addr6->s6_addr32[3], mix);
713 else
714 hash = jhash2((__force u32 *)addr6->s6_addr32, 4, mix);
715
716 return hash ^ port;
717 }
718
719 /*
720 * Check for a RFC 4843 ORCHID address
721 * (Overlay Routable Cryptographic Hash Identifiers)
722 */
ipv6_addr_orchid(const struct in6_addr * a)723 static inline bool ipv6_addr_orchid(const struct in6_addr *a)
724 {
725 return (a->s6_addr32[0] & htonl(0xfffffff0)) == htonl(0x20010010);
726 }
727
ipv6_addr_is_multicast(const struct in6_addr * addr)728 static inline bool ipv6_addr_is_multicast(const struct in6_addr *addr)
729 {
730 return (addr->s6_addr32[0] & htonl(0xFF000000)) == htonl(0xFF000000);
731 }
732
ipv6_addr_set_v4mapped(const __be32 addr,struct in6_addr * v4mapped)733 static inline void ipv6_addr_set_v4mapped(const __be32 addr,
734 struct in6_addr *v4mapped)
735 {
736 ipv6_addr_set(v4mapped,
737 0, 0,
738 htonl(0x0000FFFF),
739 addr);
740 }
741
742 /*
743 * find the first different bit between two addresses
744 * length of address must be a multiple of 32bits
745 */
__ipv6_addr_diff32(const void * token1,const void * token2,int addrlen)746 static inline int __ipv6_addr_diff32(const void *token1, const void *token2, int addrlen)
747 {
748 const __be32 *a1 = token1, *a2 = token2;
749 int i;
750
751 addrlen >>= 2;
752
753 for (i = 0; i < addrlen; i++) {
754 __be32 xb = a1[i] ^ a2[i];
755 if (xb)
756 return i * 32 + 31 - __fls(ntohl(xb));
757 }
758
759 /*
760 * we should *never* get to this point since that
761 * would mean the addrs are equal
762 *
763 * However, we do get to it 8) And exacly, when
764 * addresses are equal 8)
765 *
766 * ip route add 1111::/128 via ...
767 * ip route add 1111::/64 via ...
768 * and we are here.
769 *
770 * Ideally, this function should stop comparison
771 * at prefix length. It does not, but it is still OK,
772 * if returned value is greater than prefix length.
773 * --ANK (980803)
774 */
775 return addrlen << 5;
776 }
777
778 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
__ipv6_addr_diff64(const void * token1,const void * token2,int addrlen)779 static inline int __ipv6_addr_diff64(const void *token1, const void *token2, int addrlen)
780 {
781 const __be64 *a1 = token1, *a2 = token2;
782 int i;
783
784 addrlen >>= 3;
785
786 for (i = 0; i < addrlen; i++) {
787 __be64 xb = a1[i] ^ a2[i];
788 if (xb)
789 return i * 64 + 63 - __fls(be64_to_cpu(xb));
790 }
791
792 return addrlen << 6;
793 }
794 #endif
795
__ipv6_addr_diff(const void * token1,const void * token2,int addrlen)796 static inline int __ipv6_addr_diff(const void *token1, const void *token2, int addrlen)
797 {
798 #if defined(CONFIG_HAVE_EFFICIENT_UNALIGNED_ACCESS) && BITS_PER_LONG == 64
799 if (__builtin_constant_p(addrlen) && !(addrlen & 7))
800 return __ipv6_addr_diff64(token1, token2, addrlen);
801 #endif
802 return __ipv6_addr_diff32(token1, token2, addrlen);
803 }
804
ipv6_addr_diff(const struct in6_addr * a1,const struct in6_addr * a2)805 static inline int ipv6_addr_diff(const struct in6_addr *a1, const struct in6_addr *a2)
806 {
807 return __ipv6_addr_diff(a1, a2, sizeof(struct in6_addr));
808 }
809
810 __be32 ipv6_select_ident(struct net *net,
811 const struct in6_addr *daddr,
812 const struct in6_addr *saddr);
813 __be32 ipv6_proxy_select_ident(struct net *net, struct sk_buff *skb);
814
815 int ip6_dst_hoplimit(struct dst_entry *dst);
816
ip6_sk_dst_hoplimit(struct ipv6_pinfo * np,struct flowi6 * fl6,struct dst_entry * dst)817 static inline int ip6_sk_dst_hoplimit(struct ipv6_pinfo *np, struct flowi6 *fl6,
818 struct dst_entry *dst)
819 {
820 int hlimit;
821
822 if (ipv6_addr_is_multicast(&fl6->daddr))
823 hlimit = np->mcast_hops;
824 else
825 hlimit = np->hop_limit;
826 if (hlimit < 0)
827 hlimit = ip6_dst_hoplimit(dst);
828 return hlimit;
829 }
830
831 /* copy IPv6 saddr & daddr to flow_keys, possibly using 64bit load/store
832 * Equivalent to : flow->v6addrs.src = iph->saddr;
833 * flow->v6addrs.dst = iph->daddr;
834 */
iph_to_flow_copy_v6addrs(struct flow_keys * flow,const struct ipv6hdr * iph)835 static inline void iph_to_flow_copy_v6addrs(struct flow_keys *flow,
836 const struct ipv6hdr *iph)
837 {
838 BUILD_BUG_ON(offsetof(typeof(flow->addrs), v6addrs.dst) !=
839 offsetof(typeof(flow->addrs), v6addrs.src) +
840 sizeof(flow->addrs.v6addrs.src));
841 memcpy(&flow->addrs.v6addrs, &iph->addrs, sizeof(flow->addrs.v6addrs));
842 flow->control.addr_type = FLOW_DISSECTOR_KEY_IPV6_ADDRS;
843 }
844
845 #if IS_ENABLED(CONFIG_IPV6)
846
ipv6_can_nonlocal_bind(struct net * net,struct inet_sock * inet)847 static inline bool ipv6_can_nonlocal_bind(struct net *net,
848 struct inet_sock *inet)
849 {
850 return net->ipv6.sysctl.ip_nonlocal_bind ||
851 inet->freebind || inet->transparent;
852 }
853
854 /* Sysctl settings for net ipv6.auto_flowlabels */
855 #define IP6_AUTO_FLOW_LABEL_OFF 0
856 #define IP6_AUTO_FLOW_LABEL_OPTOUT 1
857 #define IP6_AUTO_FLOW_LABEL_OPTIN 2
858 #define IP6_AUTO_FLOW_LABEL_FORCED 3
859
860 #define IP6_AUTO_FLOW_LABEL_MAX IP6_AUTO_FLOW_LABEL_FORCED
861
862 #define IP6_DEFAULT_AUTO_FLOW_LABELS IP6_AUTO_FLOW_LABEL_OPTOUT
863
ip6_make_flowlabel(struct net * net,struct sk_buff * skb,__be32 flowlabel,bool autolabel,struct flowi6 * fl6)864 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
865 __be32 flowlabel, bool autolabel,
866 struct flowi6 *fl6)
867 {
868 u32 hash;
869
870 /* @flowlabel may include more than a flow label, eg, the traffic class.
871 * Here we want only the flow label value.
872 */
873 flowlabel &= IPV6_FLOWLABEL_MASK;
874
875 if (flowlabel ||
876 net->ipv6.sysctl.auto_flowlabels == IP6_AUTO_FLOW_LABEL_OFF ||
877 (!autolabel &&
878 net->ipv6.sysctl.auto_flowlabels != IP6_AUTO_FLOW_LABEL_FORCED))
879 return flowlabel;
880
881 hash = skb_get_hash_flowi6(skb, fl6);
882
883 /* Since this is being sent on the wire obfuscate hash a bit
884 * to minimize possbility that any useful information to an
885 * attacker is leaked. Only lower 20 bits are relevant.
886 */
887 hash = rol32(hash, 16);
888
889 flowlabel = (__force __be32)hash & IPV6_FLOWLABEL_MASK;
890
891 if (net->ipv6.sysctl.flowlabel_state_ranges)
892 flowlabel |= IPV6_FLOWLABEL_STATELESS_FLAG;
893
894 return flowlabel;
895 }
896
ip6_default_np_autolabel(struct net * net)897 static inline int ip6_default_np_autolabel(struct net *net)
898 {
899 switch (net->ipv6.sysctl.auto_flowlabels) {
900 case IP6_AUTO_FLOW_LABEL_OFF:
901 case IP6_AUTO_FLOW_LABEL_OPTIN:
902 default:
903 return 0;
904 case IP6_AUTO_FLOW_LABEL_OPTOUT:
905 case IP6_AUTO_FLOW_LABEL_FORCED:
906 return 1;
907 }
908 }
909 #else
ip6_make_flowlabel(struct net * net,struct sk_buff * skb,__be32 flowlabel,bool autolabel,struct flowi6 * fl6)910 static inline __be32 ip6_make_flowlabel(struct net *net, struct sk_buff *skb,
911 __be32 flowlabel, bool autolabel,
912 struct flowi6 *fl6)
913 {
914 return flowlabel;
915 }
ip6_default_np_autolabel(struct net * net)916 static inline int ip6_default_np_autolabel(struct net *net)
917 {
918 return 0;
919 }
920 #endif
921
922 #if IS_ENABLED(CONFIG_IPV6)
ip6_multipath_hash_policy(const struct net * net)923 static inline int ip6_multipath_hash_policy(const struct net *net)
924 {
925 return net->ipv6.sysctl.multipath_hash_policy;
926 }
927 #else
ip6_multipath_hash_policy(const struct net * net)928 static inline int ip6_multipath_hash_policy(const struct net *net)
929 {
930 return 0;
931 }
932 #endif
933
934 /*
935 * Header manipulation
936 */
ip6_flow_hdr(struct ipv6hdr * hdr,unsigned int tclass,__be32 flowlabel)937 static inline void ip6_flow_hdr(struct ipv6hdr *hdr, unsigned int tclass,
938 __be32 flowlabel)
939 {
940 *(__be32 *)hdr = htonl(0x60000000 | (tclass << 20)) | flowlabel;
941 }
942
ip6_flowinfo(const struct ipv6hdr * hdr)943 static inline __be32 ip6_flowinfo(const struct ipv6hdr *hdr)
944 {
945 return *(__be32 *)hdr & IPV6_FLOWINFO_MASK;
946 }
947
ip6_flowlabel(const struct ipv6hdr * hdr)948 static inline __be32 ip6_flowlabel(const struct ipv6hdr *hdr)
949 {
950 return *(__be32 *)hdr & IPV6_FLOWLABEL_MASK;
951 }
952
ip6_tclass(__be32 flowinfo)953 static inline u8 ip6_tclass(__be32 flowinfo)
954 {
955 return ntohl(flowinfo & IPV6_TCLASS_MASK) >> IPV6_TCLASS_SHIFT;
956 }
957
ip6_make_flowinfo(unsigned int tclass,__be32 flowlabel)958 static inline __be32 ip6_make_flowinfo(unsigned int tclass, __be32 flowlabel)
959 {
960 return htonl(tclass << IPV6_TCLASS_SHIFT) | flowlabel;
961 }
962
flowi6_get_flowlabel(const struct flowi6 * fl6)963 static inline __be32 flowi6_get_flowlabel(const struct flowi6 *fl6)
964 {
965 return fl6->flowlabel & IPV6_FLOWLABEL_MASK;
966 }
967
968 /*
969 * Prototypes exported by ipv6
970 */
971
972 /*
973 * rcv function (called from netdevice level)
974 */
975
976 int ipv6_rcv(struct sk_buff *skb, struct net_device *dev,
977 struct packet_type *pt, struct net_device *orig_dev);
978 void ipv6_list_rcv(struct list_head *head, struct packet_type *pt,
979 struct net_device *orig_dev);
980
981 int ip6_rcv_finish(struct net *net, struct sock *sk, struct sk_buff *skb);
982
983 /*
984 * upper-layer output functions
985 */
986 int ip6_xmit(const struct sock *sk, struct sk_buff *skb, struct flowi6 *fl6,
987 __u32 mark, struct ipv6_txoptions *opt, int tclass, u32 priority);
988
989 int ip6_find_1stfragopt(struct sk_buff *skb, u8 **nexthdr);
990
991 int ip6_append_data(struct sock *sk,
992 int getfrag(void *from, char *to, int offset, int len,
993 int odd, struct sk_buff *skb),
994 void *from, int length, int transhdrlen,
995 struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
996 struct rt6_info *rt, unsigned int flags);
997
998 int ip6_push_pending_frames(struct sock *sk);
999
1000 void ip6_flush_pending_frames(struct sock *sk);
1001
1002 int ip6_send_skb(struct sk_buff *skb);
1003
1004 struct sk_buff *__ip6_make_skb(struct sock *sk, struct sk_buff_head *queue,
1005 struct inet_cork_full *cork,
1006 struct inet6_cork *v6_cork);
1007 struct sk_buff *ip6_make_skb(struct sock *sk,
1008 int getfrag(void *from, char *to, int offset,
1009 int len, int odd, struct sk_buff *skb),
1010 void *from, int length, int transhdrlen,
1011 struct ipcm6_cookie *ipc6, struct flowi6 *fl6,
1012 struct rt6_info *rt, unsigned int flags,
1013 struct inet_cork_full *cork);
1014
ip6_finish_skb(struct sock * sk)1015 static inline struct sk_buff *ip6_finish_skb(struct sock *sk)
1016 {
1017 return __ip6_make_skb(sk, &sk->sk_write_queue, &inet_sk(sk)->cork,
1018 &inet6_sk(sk)->cork);
1019 }
1020
1021 int ip6_dst_lookup(struct net *net, struct sock *sk, struct dst_entry **dst,
1022 struct flowi6 *fl6);
1023 struct dst_entry *ip6_dst_lookup_flow(struct net *net, const struct sock *sk, struct flowi6 *fl6,
1024 const struct in6_addr *final_dst);
1025 struct dst_entry *ip6_sk_dst_lookup_flow(struct sock *sk, struct flowi6 *fl6,
1026 const struct in6_addr *final_dst,
1027 bool connected);
1028 struct dst_entry *ip6_dst_lookup_tunnel(struct sk_buff *skb,
1029 struct net_device *dev,
1030 struct net *net, struct socket *sock,
1031 struct in6_addr *saddr,
1032 const struct ip_tunnel_info *info,
1033 u8 protocol, bool use_cache);
1034 struct dst_entry *ip6_blackhole_route(struct net *net,
1035 struct dst_entry *orig_dst);
1036
1037 /*
1038 * skb processing functions
1039 */
1040
1041 int ip6_output(struct net *net, struct sock *sk, struct sk_buff *skb);
1042 int ip6_forward(struct sk_buff *skb);
1043 int ip6_input(struct sk_buff *skb);
1044 int ip6_mc_input(struct sk_buff *skb);
1045 void ip6_protocol_deliver_rcu(struct net *net, struct sk_buff *skb, int nexthdr,
1046 bool have_final);
1047
1048 int __ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1049 int ip6_local_out(struct net *net, struct sock *sk, struct sk_buff *skb);
1050
1051 /*
1052 * Extension header (options) processing
1053 */
1054
1055 void ipv6_push_nfrag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1056 u8 *proto, struct in6_addr **daddr_p,
1057 struct in6_addr *saddr);
1058 void ipv6_push_frag_opts(struct sk_buff *skb, struct ipv6_txoptions *opt,
1059 u8 *proto);
1060
1061 int ipv6_skip_exthdr(const struct sk_buff *, int start, u8 *nexthdrp,
1062 __be16 *frag_offp);
1063
1064 bool ipv6_ext_hdr(u8 nexthdr);
1065
1066 enum {
1067 IP6_FH_F_FRAG = (1 << 0),
1068 IP6_FH_F_AUTH = (1 << 1),
1069 IP6_FH_F_SKIP_RH = (1 << 2),
1070 };
1071
1072 /* find specified header and get offset to it */
1073 int ipv6_find_hdr(const struct sk_buff *skb, unsigned int *offset, int target,
1074 unsigned short *fragoff, int *fragflg);
1075
1076 int ipv6_find_tlv(const struct sk_buff *skb, int offset, int type);
1077
1078 struct in6_addr *fl6_update_dst(struct flowi6 *fl6,
1079 const struct ipv6_txoptions *opt,
1080 struct in6_addr *orig);
1081
1082 /*
1083 * socket options (ipv6_sockglue.c)
1084 */
1085
1086 int ipv6_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
1087 unsigned int optlen);
1088 int ipv6_getsockopt(struct sock *sk, int level, int optname,
1089 char __user *optval, int __user *optlen);
1090
1091 int __ip6_datagram_connect(struct sock *sk, struct sockaddr *addr,
1092 int addr_len);
1093 int ip6_datagram_connect(struct sock *sk, struct sockaddr *addr, int addr_len);
1094 int ip6_datagram_connect_v6_only(struct sock *sk, struct sockaddr *addr,
1095 int addr_len);
1096 int ip6_datagram_dst_update(struct sock *sk, bool fix_sk_saddr);
1097 void ip6_datagram_release_cb(struct sock *sk);
1098
1099 int ipv6_recv_error(struct sock *sk, struct msghdr *msg, int len,
1100 int *addr_len);
1101 int ipv6_recv_rxpmtu(struct sock *sk, struct msghdr *msg, int len,
1102 int *addr_len);
1103 void ipv6_icmp_error(struct sock *sk, struct sk_buff *skb, int err, __be16 port,
1104 u32 info, u8 *payload);
1105 void ipv6_local_error(struct sock *sk, int err, struct flowi6 *fl6, u32 info);
1106 void ipv6_local_rxpmtu(struct sock *sk, struct flowi6 *fl6, u32 mtu);
1107
1108 void inet6_cleanup_sock(struct sock *sk);
1109 void inet6_sock_destruct(struct sock *sk);
1110 int inet6_release(struct socket *sock);
1111 int inet6_bind(struct socket *sock, struct sockaddr *uaddr, int addr_len);
1112 int inet6_getname(struct socket *sock, struct sockaddr *uaddr,
1113 int peer);
1114 int inet6_ioctl(struct socket *sock, unsigned int cmd, unsigned long arg);
1115 int inet6_compat_ioctl(struct socket *sock, unsigned int cmd,
1116 unsigned long arg);
1117
1118 int inet6_hash_connect(struct inet_timewait_death_row *death_row,
1119 struct sock *sk);
1120 int inet6_sendmsg(struct socket *sock, struct msghdr *msg, size_t size);
1121 int inet6_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1122 int flags);
1123
1124 /*
1125 * reassembly.c
1126 */
1127 extern const struct proto_ops inet6_stream_ops;
1128 extern const struct proto_ops inet6_dgram_ops;
1129 extern const struct proto_ops inet6_sockraw_ops;
1130
1131 struct group_source_req;
1132 struct group_filter;
1133
1134 int ip6_mc_source(int add, int omode, struct sock *sk,
1135 struct group_source_req *pgsr);
1136 int ip6_mc_msfilter(struct sock *sk, struct group_filter *gsf,
1137 struct sockaddr_storage *list);
1138 int ip6_mc_msfget(struct sock *sk, struct group_filter *gsf,
1139 struct sockaddr_storage __user *p);
1140
1141 #ifdef CONFIG_PROC_FS
1142 int ac6_proc_init(struct net *net);
1143 void ac6_proc_exit(struct net *net);
1144 int raw6_proc_init(void);
1145 void raw6_proc_exit(void);
1146 int tcp6_proc_init(struct net *net);
1147 void tcp6_proc_exit(struct net *net);
1148 int udp6_proc_init(struct net *net);
1149 void udp6_proc_exit(struct net *net);
1150 int udplite6_proc_init(void);
1151 void udplite6_proc_exit(void);
1152 int ipv6_misc_proc_init(void);
1153 void ipv6_misc_proc_exit(void);
1154 int snmp6_register_dev(struct inet6_dev *idev);
1155 int snmp6_unregister_dev(struct inet6_dev *idev);
1156
1157 #else
ac6_proc_init(struct net * net)1158 static inline int ac6_proc_init(struct net *net) { return 0; }
ac6_proc_exit(struct net * net)1159 static inline void ac6_proc_exit(struct net *net) { }
snmp6_register_dev(struct inet6_dev * idev)1160 static inline int snmp6_register_dev(struct inet6_dev *idev) { return 0; }
snmp6_unregister_dev(struct inet6_dev * idev)1161 static inline int snmp6_unregister_dev(struct inet6_dev *idev) { return 0; }
1162 #endif
1163
1164 #ifdef CONFIG_SYSCTL
1165 struct ctl_table *ipv6_icmp_sysctl_init(struct net *net);
1166 struct ctl_table *ipv6_route_sysctl_init(struct net *net);
1167 int ipv6_sysctl_register(void);
1168 void ipv6_sysctl_unregister(void);
1169 #endif
1170
1171 int ipv6_sock_mc_join(struct sock *sk, int ifindex,
1172 const struct in6_addr *addr);
1173 int ipv6_sock_mc_join_ssm(struct sock *sk, int ifindex,
1174 const struct in6_addr *addr, unsigned int mode);
1175 int ipv6_sock_mc_drop(struct sock *sk, int ifindex,
1176 const struct in6_addr *addr);
1177
ip6_sock_set_v6only(struct sock * sk)1178 static inline int ip6_sock_set_v6only(struct sock *sk)
1179 {
1180 if (inet_sk(sk)->inet_num)
1181 return -EINVAL;
1182 lock_sock(sk);
1183 sk->sk_ipv6only = true;
1184 release_sock(sk);
1185 return 0;
1186 }
1187
ip6_sock_set_recverr(struct sock * sk)1188 static inline void ip6_sock_set_recverr(struct sock *sk)
1189 {
1190 lock_sock(sk);
1191 inet6_sk(sk)->recverr = true;
1192 release_sock(sk);
1193 }
1194
__ip6_sock_set_addr_preferences(struct sock * sk,int val)1195 static inline int __ip6_sock_set_addr_preferences(struct sock *sk, int val)
1196 {
1197 unsigned int pref = 0;
1198 unsigned int prefmask = ~0;
1199
1200 /* check PUBLIC/TMP/PUBTMP_DEFAULT conflicts */
1201 switch (val & (IPV6_PREFER_SRC_PUBLIC |
1202 IPV6_PREFER_SRC_TMP |
1203 IPV6_PREFER_SRC_PUBTMP_DEFAULT)) {
1204 case IPV6_PREFER_SRC_PUBLIC:
1205 pref |= IPV6_PREFER_SRC_PUBLIC;
1206 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1207 IPV6_PREFER_SRC_TMP);
1208 break;
1209 case IPV6_PREFER_SRC_TMP:
1210 pref |= IPV6_PREFER_SRC_TMP;
1211 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1212 IPV6_PREFER_SRC_TMP);
1213 break;
1214 case IPV6_PREFER_SRC_PUBTMP_DEFAULT:
1215 prefmask &= ~(IPV6_PREFER_SRC_PUBLIC |
1216 IPV6_PREFER_SRC_TMP);
1217 break;
1218 case 0:
1219 break;
1220 default:
1221 return -EINVAL;
1222 }
1223
1224 /* check HOME/COA conflicts */
1225 switch (val & (IPV6_PREFER_SRC_HOME | IPV6_PREFER_SRC_COA)) {
1226 case IPV6_PREFER_SRC_HOME:
1227 prefmask &= ~IPV6_PREFER_SRC_COA;
1228 break;
1229 case IPV6_PREFER_SRC_COA:
1230 pref |= IPV6_PREFER_SRC_COA;
1231 break;
1232 case 0:
1233 break;
1234 default:
1235 return -EINVAL;
1236 }
1237
1238 /* check CGA/NONCGA conflicts */
1239 switch (val & (IPV6_PREFER_SRC_CGA|IPV6_PREFER_SRC_NONCGA)) {
1240 case IPV6_PREFER_SRC_CGA:
1241 case IPV6_PREFER_SRC_NONCGA:
1242 case 0:
1243 break;
1244 default:
1245 return -EINVAL;
1246 }
1247
1248 inet6_sk(sk)->srcprefs = (inet6_sk(sk)->srcprefs & prefmask) | pref;
1249 return 0;
1250 }
1251
ip6_sock_set_addr_preferences(struct sock * sk,bool val)1252 static inline int ip6_sock_set_addr_preferences(struct sock *sk, bool val)
1253 {
1254 int ret;
1255
1256 lock_sock(sk);
1257 ret = __ip6_sock_set_addr_preferences(sk, val);
1258 release_sock(sk);
1259 return ret;
1260 }
1261
ip6_sock_set_recvpktinfo(struct sock * sk)1262 static inline void ip6_sock_set_recvpktinfo(struct sock *sk)
1263 {
1264 lock_sock(sk);
1265 inet6_sk(sk)->rxopt.bits.rxinfo = true;
1266 release_sock(sk);
1267 }
1268
1269 #endif /* _NET_IPV6_H */
1270