• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 #ifndef DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_
29 #define DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_
30 
31 #include "utils.h"
32 
33 namespace double_conversion {
34 
35 class DoubleToStringConverter {
36  public:
37   // When calling ToFixed with a double > 10^kMaxFixedDigitsBeforePoint
38   // or a requested_digits parameter > kMaxFixedDigitsAfterPoint then the
39   // function returns false.
40   static const int kMaxFixedDigitsBeforePoint = 60;
41   static const int kMaxFixedDigitsAfterPoint = 100;
42 
43   // When calling ToExponential with a requested_digits
44   // parameter > kMaxExponentialDigits then the function returns false.
45   static const int kMaxExponentialDigits = 120;
46 
47   // When calling ToPrecision with a requested_digits
48   // parameter < kMinPrecisionDigits or requested_digits > kMaxPrecisionDigits
49   // then the function returns false.
50   static const int kMinPrecisionDigits = 1;
51   static const int kMaxPrecisionDigits = 120;
52 
53   // The maximal number of digits that are needed to emit a double in base 10.
54   // A higher precision can be achieved by using more digits, but the shortest
55   // accurate representation of any double will never use more digits than
56   // kBase10MaximalLength.
57   // Note that DoubleToAscii null-terminates its input. So the given buffer
58   // should be at least kBase10MaximalLength + 1 characters long.
59   static const int kBase10MaximalLength = 17;
60 
61   // The maximal number of digits that are needed to emit a single in base 10.
62   // A higher precision can be achieved by using more digits, but the shortest
63   // accurate representation of any single will never use more digits than
64   // kBase10MaximalLengthSingle.
65   static const int kBase10MaximalLengthSingle = 9;
66 
67   // The length of the longest string that 'ToShortest' can produce when the
68   // converter is instantiated with EcmaScript defaults (see
69   // 'EcmaScriptConverter')
70   // This value does not include the trailing '\0' character.
71   // This amount of characters is needed for negative values that hit the
72   // 'decimal_in_shortest_low' limit. For example: "-0.0000033333333333333333"
73   static const int kMaxCharsEcmaScriptShortest = 25;
74 
75   enum Flags {
76     NO_FLAGS = 0,
77     EMIT_POSITIVE_EXPONENT_SIGN = 1,
78     EMIT_TRAILING_DECIMAL_POINT = 2,
79     EMIT_TRAILING_ZERO_AFTER_POINT = 4,
80     UNIQUE_ZERO = 8,
81     NO_TRAILING_ZERO = 16
82   };
83 
84   // Flags should be a bit-or combination of the possible Flags-enum.
85   //  - NO_FLAGS: no special flags.
86   //  - EMIT_POSITIVE_EXPONENT_SIGN: when the number is converted into exponent
87   //    form, emits a '+' for positive exponents. Example: 1.2e+2.
88   //  - EMIT_TRAILING_DECIMAL_POINT: when the input number is an integer and is
89   //    converted into decimal format then a trailing decimal point is appended.
90   //    Example: 2345.0 is converted to "2345.".
91   //  - EMIT_TRAILING_ZERO_AFTER_POINT: in addition to a trailing decimal point
92   //    emits a trailing '0'-character. This flag requires the
93   //    EMIT_TRAILING_DECIMAL_POINT flag.
94   //    Example: 2345.0 is converted to "2345.0".
95   //  - UNIQUE_ZERO: "-0.0" is converted to "0.0".
96   //  - NO_TRAILING_ZERO: Trailing zeros are removed from the fractional portion
97   //    of the result in precision mode. Matches printf's %g.
98   //    When EMIT_TRAILING_ZERO_AFTER_POINT is also given, one trailing zero is
99   //    preserved.
100   //
101   // Infinity symbol and nan_symbol provide the string representation for these
102   // special values. If the string is NULL and the special value is encountered
103   // then the conversion functions return false.
104   //
105   // The exponent_character is used in exponential representations. It is
106   // usually 'e' or 'E'.
107   //
108   // When converting to the shortest representation the converter will
109   // represent input numbers in decimal format if they are in the interval
110   // [10^decimal_in_shortest_low; 10^decimal_in_shortest_high[
111   //    (lower boundary included, greater boundary excluded).
112   // Example: with decimal_in_shortest_low = -6 and
113   //               decimal_in_shortest_high = 21:
114   //   ToShortest(0.000001)  -> "0.000001"
115   //   ToShortest(0.0000001) -> "1e-7"
116   //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
117   //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
118   //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
119   //
120   // When converting to precision mode the converter may add
121   // max_leading_padding_zeroes before returning the number in exponential
122   // format.
123   // Example with max_leading_padding_zeroes_in_precision_mode = 6.
124   //   ToPrecision(0.0000012345, 2) -> "0.0000012"
125   //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
126   // Similarly the converter may add up to
127   // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
128   // returning an exponential representation. A zero added by the
129   // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
130   // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
131   //   ToPrecision(230.0, 2) -> "230"
132   //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
133   //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
134   //
135   // The min_exponent_width is used for exponential representations.
136   // The converter adds leading '0's to the exponent until the exponent
137   // is at least min_exponent_width digits long.
138   // The min_exponent_width is clamped to 5.
139   // As such, the exponent may never have more than 5 digits in total.
140   DoubleToStringConverter(int flags,
141                           const char* infinity_symbol,
142                           const char* nan_symbol,
143                           char exponent_character,
144                           int decimal_in_shortest_low,
145                           int decimal_in_shortest_high,
146                           int max_leading_padding_zeroes_in_precision_mode,
147                           int max_trailing_padding_zeroes_in_precision_mode,
148                           int min_exponent_width = 0)
flags_(flags)149       : flags_(flags),
150         infinity_symbol_(infinity_symbol),
151         nan_symbol_(nan_symbol),
152         exponent_character_(exponent_character),
153         decimal_in_shortest_low_(decimal_in_shortest_low),
154         decimal_in_shortest_high_(decimal_in_shortest_high),
155         max_leading_padding_zeroes_in_precision_mode_(
156             max_leading_padding_zeroes_in_precision_mode),
157         max_trailing_padding_zeroes_in_precision_mode_(
158             max_trailing_padding_zeroes_in_precision_mode),
159         min_exponent_width_(min_exponent_width) {
160     // When 'trailing zero after the point' is set, then 'trailing point'
161     // must be set too.
162     DOUBLE_CONVERSION_ASSERT(((flags & EMIT_TRAILING_DECIMAL_POINT) != 0) ||
163         !((flags & EMIT_TRAILING_ZERO_AFTER_POINT) != 0));
164   }
165 
166   // Returns a converter following the EcmaScript specification.
167   //
168   // Flags: UNIQUE_ZERO and EMIT_POSITIVE_EXPONENT_SIGN.
169   // Special values: "Infinity" and "NaN".
170   // Lower case 'e' for exponential values.
171   // decimal_in_shortest_low: -6
172   // decimal_in_shortest_high: 21
173   // max_leading_padding_zeroes_in_precision_mode: 6
174   // max_trailing_padding_zeroes_in_precision_mode: 0
175   static const DoubleToStringConverter& EcmaScriptConverter();
176 
177   // Computes the shortest string of digits that correctly represent the input
178   // number. Depending on decimal_in_shortest_low and decimal_in_shortest_high
179   // (see constructor) it then either returns a decimal representation, or an
180   // exponential representation.
181   // Example with decimal_in_shortest_low = -6,
182   //              decimal_in_shortest_high = 21,
183   //              EMIT_POSITIVE_EXPONENT_SIGN activated, and
184   //              EMIT_TRAILING_DECIMAL_POINT deactivated:
185   //   ToShortest(0.000001)  -> "0.000001"
186   //   ToShortest(0.0000001) -> "1e-7"
187   //   ToShortest(111111111111111111111.0)  -> "111111111111111110000"
188   //   ToShortest(100000000000000000000.0)  -> "100000000000000000000"
189   //   ToShortest(1111111111111111111111.0) -> "1.1111111111111111e+21"
190   //
191   // Note: the conversion may round the output if the returned string
192   // is accurate enough to uniquely identify the input-number.
193   // For example the most precise representation of the double 9e59 equals
194   // "899999999999999918767229449717619953810131273674690656206848", but
195   // the converter will return the shorter (but still correct) "9e59".
196   //
197   // Returns true if the conversion succeeds. The conversion always succeeds
198   // except when the input value is special and no infinity_symbol or
199   // nan_symbol has been given to the constructor.
200   //
201   // The length of the longest result is the maximum of the length of the
202   // following string representations (each with possible examples):
203   // - NaN and negative infinity: "NaN", "-Infinity", "-inf".
204   // - -10^(decimal_in_shortest_high - 1):
205   //      "-100000000000000000000", "-1000000000000000.0"
206   // - the longest string in range [0; -10^decimal_in_shortest_low]. Generally,
207   //   this string is 3 + kBase10MaximalLength - decimal_in_shortest_low.
208   //   (Sign, '0', decimal point, padding zeroes for decimal_in_shortest_low,
209   //   and the significant digits).
210   //      "-0.0000033333333333333333", "-0.0012345678901234567"
211   // - the longest exponential representation. (A negative number with
212   //   kBase10MaximalLength significant digits).
213   //      "-1.7976931348623157e+308", "-1.7976931348623157E308"
214   // In addition, the buffer must be able to hold the trailing '\0' character.
ToShortest(double value,StringBuilder * result_builder)215   bool ToShortest(double value, StringBuilder* result_builder) const {
216     return ToShortestIeeeNumber(value, result_builder, SHORTEST);
217   }
218 
219   // Same as ToShortest, but for single-precision floats.
ToShortestSingle(float value,StringBuilder * result_builder)220   bool ToShortestSingle(float value, StringBuilder* result_builder) const {
221     return ToShortestIeeeNumber(value, result_builder, SHORTEST_SINGLE);
222   }
223 
224 
225   // Computes a decimal representation with a fixed number of digits after the
226   // decimal point. The last emitted digit is rounded.
227   //
228   // Examples:
229   //   ToFixed(3.12, 1) -> "3.1"
230   //   ToFixed(3.1415, 3) -> "3.142"
231   //   ToFixed(1234.56789, 4) -> "1234.5679"
232   //   ToFixed(1.23, 5) -> "1.23000"
233   //   ToFixed(0.1, 4) -> "0.1000"
234   //   ToFixed(1e30, 2) -> "1000000000000000019884624838656.00"
235   //   ToFixed(0.1, 30) -> "0.100000000000000005551115123126"
236   //   ToFixed(0.1, 17) -> "0.10000000000000001"
237   //
238   // If requested_digits equals 0, then the tail of the result depends on
239   // the EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT.
240   // Examples, for requested_digits == 0,
241   //   let EMIT_TRAILING_DECIMAL_POINT and EMIT_TRAILING_ZERO_AFTER_POINT be
242   //    - false and false: then 123.45 -> 123
243   //                             0.678 -> 1
244   //    - true and false: then 123.45 -> 123.
245   //                            0.678 -> 1.
246   //    - true and true: then 123.45 -> 123.0
247   //                           0.678 -> 1.0
248   //
249   // Returns true if the conversion succeeds. The conversion always succeeds
250   // except for the following cases:
251   //   - the input value is special and no infinity_symbol or nan_symbol has
252   //     been provided to the constructor,
253   //   - 'value' > 10^kMaxFixedDigitsBeforePoint, or
254   //   - 'requested_digits' > kMaxFixedDigitsAfterPoint.
255   // The last two conditions imply that the result for non-special values never
256   // contains more than
257   //  1 + kMaxFixedDigitsBeforePoint + 1 + kMaxFixedDigitsAfterPoint characters
258   // (one additional character for the sign, and one for the decimal point).
259   // In addition, the buffer must be able to hold the trailing '\0' character.
260   bool ToFixed(double value,
261                int requested_digits,
262                StringBuilder* result_builder) const;
263 
264   // Computes a representation in exponential format with requested_digits
265   // after the decimal point. The last emitted digit is rounded.
266   // If requested_digits equals -1, then the shortest exponential representation
267   // is computed.
268   //
269   // Examples with EMIT_POSITIVE_EXPONENT_SIGN deactivated, and
270   //               exponent_character set to 'e'.
271   //   ToExponential(3.12, 1) -> "3.1e0"
272   //   ToExponential(5.0, 3) -> "5.000e0"
273   //   ToExponential(0.001, 2) -> "1.00e-3"
274   //   ToExponential(3.1415, -1) -> "3.1415e0"
275   //   ToExponential(3.1415, 4) -> "3.1415e0"
276   //   ToExponential(3.1415, 3) -> "3.142e0"
277   //   ToExponential(123456789000000, 3) -> "1.235e14"
278   //   ToExponential(1000000000000000019884624838656.0, -1) -> "1e30"
279   //   ToExponential(1000000000000000019884624838656.0, 32) ->
280   //                     "1.00000000000000001988462483865600e30"
281   //   ToExponential(1234, 0) -> "1e3"
282   //
283   // Returns true if the conversion succeeds. The conversion always succeeds
284   // except for the following cases:
285   //   - the input value is special and no infinity_symbol or nan_symbol has
286   //     been provided to the constructor,
287   //   - 'requested_digits' > kMaxExponentialDigits.
288   //
289   // The last condition implies that the result never contains more than
290   // kMaxExponentialDigits + 8 characters (the sign, the digit before the
291   // decimal point, the decimal point, the exponent character, the
292   // exponent's sign, and at most 3 exponent digits).
293   // In addition, the buffer must be able to hold the trailing '\0' character.
294   bool ToExponential(double value,
295                      int requested_digits,
296                      StringBuilder* result_builder) const;
297 
298 
299   // Computes 'precision' leading digits of the given 'value' and returns them
300   // either in exponential or decimal format, depending on
301   // max_{leading|trailing}_padding_zeroes_in_precision_mode (given to the
302   // constructor).
303   // The last computed digit is rounded.
304   //
305   // Example with max_leading_padding_zeroes_in_precision_mode = 6.
306   //   ToPrecision(0.0000012345, 2) -> "0.0000012"
307   //   ToPrecision(0.00000012345, 2) -> "1.2e-7"
308   // Similarly the converter may add up to
309   // max_trailing_padding_zeroes_in_precision_mode in precision mode to avoid
310   // returning an exponential representation. A zero added by the
311   // EMIT_TRAILING_ZERO_AFTER_POINT flag is counted for this limit.
312   // Examples for max_trailing_padding_zeroes_in_precision_mode = 1:
313   //   ToPrecision(230.0, 2) -> "230"
314   //   ToPrecision(230.0, 2) -> "230."  with EMIT_TRAILING_DECIMAL_POINT.
315   //   ToPrecision(230.0, 2) -> "2.3e2" with EMIT_TRAILING_ZERO_AFTER_POINT.
316   // Examples for max_trailing_padding_zeroes_in_precision_mode = 3, and no
317   //    EMIT_TRAILING_ZERO_AFTER_POINT:
318   //   ToPrecision(123450.0, 6) -> "123450"
319   //   ToPrecision(123450.0, 5) -> "123450"
320   //   ToPrecision(123450.0, 4) -> "123500"
321   //   ToPrecision(123450.0, 3) -> "123000"
322   //   ToPrecision(123450.0, 2) -> "1.2e5"
323   //
324   // Returns true if the conversion succeeds. The conversion always succeeds
325   // except for the following cases:
326   //   - the input value is special and no infinity_symbol or nan_symbol has
327   //     been provided to the constructor,
328   //   - precision < kMinPericisionDigits
329   //   - precision > kMaxPrecisionDigits
330   //
331   // The last condition implies that the result never contains more than
332   // kMaxPrecisionDigits + 7 characters (the sign, the decimal point, the
333   // exponent character, the exponent's sign, and at most 3 exponent digits).
334   // In addition, the buffer must be able to hold the trailing '\0' character.
335   bool ToPrecision(double value,
336                    int precision,
337                    StringBuilder* result_builder) const;
338 
339   enum DtoaMode {
340     // Produce the shortest correct representation.
341     // For example the output of 0.299999999999999988897 is (the less accurate
342     // but correct) 0.3.
343     SHORTEST,
344     // Same as SHORTEST, but for single-precision floats.
345     SHORTEST_SINGLE,
346     // Produce a fixed number of digits after the decimal point.
347     // For instance fixed(0.1, 4) becomes 0.1000
348     // If the input number is big, the output will be big.
349     FIXED,
350     // Fixed number of digits (independent of the decimal point).
351     PRECISION
352   };
353 
354   // Converts the given double 'v' to digit characters. 'v' must not be NaN,
355   // +Infinity, or -Infinity. In SHORTEST_SINGLE-mode this restriction also
356   // applies to 'v' after it has been casted to a single-precision float. That
357   // is, in this mode static_cast<float>(v) must not be NaN, +Infinity or
358   // -Infinity.
359   //
360   // The result should be interpreted as buffer * 10^(point-length).
361   //
362   // The digits are written to the buffer in the platform's charset, which is
363   // often UTF-8 (with ASCII-range digits) but may be another charset, such
364   // as EBCDIC.
365   //
366   // The output depends on the given mode:
367   //  - SHORTEST: produce the least amount of digits for which the internal
368   //   identity requirement is still satisfied. If the digits are printed
369   //   (together with the correct exponent) then reading this number will give
370   //   'v' again. The buffer will choose the representation that is closest to
371   //   'v'. If there are two at the same distance, than the one farther away
372   //   from 0 is chosen (halfway cases - ending with 5 - are rounded up).
373   //   In this mode the 'requested_digits' parameter is ignored.
374   //  - SHORTEST_SINGLE: same as SHORTEST but with single-precision.
375   //  - FIXED: produces digits necessary to print a given number with
376   //   'requested_digits' digits after the decimal point. The produced digits
377   //   might be too short in which case the caller has to fill the remainder
378   //   with '0's.
379   //   Example: toFixed(0.001, 5) is allowed to return buffer="1", point=-2.
380   //   Halfway cases are rounded towards +/-Infinity (away from 0). The call
381   //   toFixed(0.15, 2) thus returns buffer="2", point=0.
382   //   The returned buffer may contain digits that would be truncated from the
383   //   shortest representation of the input.
384   //  - PRECISION: produces 'requested_digits' where the first digit is not '0'.
385   //   Even though the length of produced digits usually equals
386   //   'requested_digits', the function is allowed to return fewer digits, in
387   //   which case the caller has to fill the missing digits with '0's.
388   //   Halfway cases are again rounded away from 0.
389   // DoubleToAscii expects the given buffer to be big enough to hold all
390   // digits and a terminating null-character. In SHORTEST-mode it expects a
391   // buffer of at least kBase10MaximalLength + 1. In all other modes the
392   // requested_digits parameter and the padding-zeroes limit the size of the
393   // output. Don't forget the decimal point, the exponent character and the
394   // terminating null-character when computing the maximal output size.
395   // The given length is only used in debug mode to ensure the buffer is big
396   // enough.
397   static void DoubleToAscii(double v,
398                             DtoaMode mode,
399                             int requested_digits,
400                             char* buffer,
401                             int buffer_length,
402                             bool* sign,
403                             int* length,
404                             int* point);
405 
406  private:
407   // Implementation for ToShortest and ToShortestSingle.
408   bool ToShortestIeeeNumber(double value,
409                             StringBuilder* result_builder,
410                             DtoaMode mode) const;
411 
412   // If the value is a special value (NaN or Infinity) constructs the
413   // corresponding string using the configured infinity/nan-symbol.
414   // If either of them is NULL or the value is not special then the
415   // function returns false.
416   bool HandleSpecialValues(double value, StringBuilder* result_builder) const;
417   // Constructs an exponential representation (i.e. 1.234e56).
418   // The given exponent assumes a decimal point after the first decimal digit.
419   void CreateExponentialRepresentation(const char* decimal_digits,
420                                        int length,
421                                        int exponent,
422                                        StringBuilder* result_builder) const;
423   // Creates a decimal representation (i.e 1234.5678).
424   void CreateDecimalRepresentation(const char* decimal_digits,
425                                    int length,
426                                    int decimal_point,
427                                    int digits_after_point,
428                                    StringBuilder* result_builder) const;
429 
430   const int flags_;
431   const char* const infinity_symbol_;
432   const char* const nan_symbol_;
433   const char exponent_character_;
434   const int decimal_in_shortest_low_;
435   const int decimal_in_shortest_high_;
436   const int max_leading_padding_zeroes_in_precision_mode_;
437   const int max_trailing_padding_zeroes_in_precision_mode_;
438   const int min_exponent_width_;
439 
440   DOUBLE_CONVERSION_DISALLOW_IMPLICIT_CONSTRUCTORS(DoubleToStringConverter);
441 };
442 
443 }  // namespace double_conversion
444 
445 #endif  // DOUBLE_CONVERSION_DOUBLE_TO_STRING_H_
446