1 //===-- llvm/MC/MCInstrDesc.h - Instruction Descriptors -*- C++ -*-===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file defines the MCOperandInfo and MCInstrDesc classes, which 10 // are used to describe target instructions and their operands. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #ifndef LLVM_MC_MCINSTRDESC_H 15 #define LLVM_MC_MCINSTRDESC_H 16 17 #include "llvm/MC/MCRegisterInfo.h" 18 #include "llvm/Support/DataTypes.h" 19 #include <string> 20 21 namespace llvm { 22 class MCInst; 23 class MCSubtargetInfo; 24 class FeatureBitset; 25 26 //===----------------------------------------------------------------------===// 27 // Machine Operand Flags and Description 28 //===----------------------------------------------------------------------===// 29 30 namespace MCOI { 31 // Operand constraints 32 enum OperandConstraint { 33 TIED_TO = 0, // Must be allocated the same register as. 34 EARLY_CLOBBER // Operand is an early clobber register operand 35 }; 36 37 /// These are flags set on operands, but should be considered 38 /// private, all access should go through the MCOperandInfo accessors. 39 /// See the accessors for a description of what these are. 40 enum OperandFlags { 41 LookupPtrRegClass = 0, 42 Predicate, 43 OptionalDef, 44 BranchTarget 45 }; 46 47 /// Operands are tagged with one of the values of this enum. 48 enum OperandType { 49 OPERAND_UNKNOWN = 0, 50 OPERAND_IMMEDIATE = 1, 51 OPERAND_REGISTER = 2, 52 OPERAND_MEMORY = 3, 53 OPERAND_PCREL = 4, 54 55 OPERAND_FIRST_GENERIC = 6, 56 OPERAND_GENERIC_0 = 6, 57 OPERAND_GENERIC_1 = 7, 58 OPERAND_GENERIC_2 = 8, 59 OPERAND_GENERIC_3 = 9, 60 OPERAND_GENERIC_4 = 10, 61 OPERAND_GENERIC_5 = 11, 62 OPERAND_LAST_GENERIC = 11, 63 64 OPERAND_FIRST_GENERIC_IMM = 12, 65 OPERAND_GENERIC_IMM_0 = 12, 66 OPERAND_LAST_GENERIC_IMM = 12, 67 68 OPERAND_FIRST_TARGET = 13, 69 }; 70 71 } 72 73 /// This holds information about one operand of a machine instruction, 74 /// indicating the register class for register operands, etc. 75 class MCOperandInfo { 76 public: 77 /// This specifies the register class enumeration of the operand 78 /// if the operand is a register. If isLookupPtrRegClass is set, then this is 79 /// an index that is passed to TargetRegisterInfo::getPointerRegClass(x) to 80 /// get a dynamic register class. 81 int16_t RegClass; 82 83 /// These are flags from the MCOI::OperandFlags enum. 84 uint8_t Flags; 85 86 /// Information about the type of the operand. 87 uint8_t OperandType; 88 /// The lower 16 bits are used to specify which constraints are set. 89 /// The higher 16 bits are used to specify the value of constraints (4 bits 90 /// each). 91 uint32_t Constraints; 92 93 /// Set if this operand is a pointer value and it requires a callback 94 /// to look up its register class. isLookupPtrRegClass()95 bool isLookupPtrRegClass() const { 96 return Flags & (1 << MCOI::LookupPtrRegClass); 97 } 98 99 /// Set if this is one of the operands that made up of the predicate 100 /// operand that controls an isPredicable() instruction. isPredicate()101 bool isPredicate() const { return Flags & (1 << MCOI::Predicate); } 102 103 /// Set if this operand is a optional def. isOptionalDef()104 bool isOptionalDef() const { return Flags & (1 << MCOI::OptionalDef); } 105 106 /// Set if this operand is a branch target. isBranchTarget()107 bool isBranchTarget() const { return Flags & (1 << MCOI::BranchTarget); } 108 isGenericType()109 bool isGenericType() const { 110 return OperandType >= MCOI::OPERAND_FIRST_GENERIC && 111 OperandType <= MCOI::OPERAND_LAST_GENERIC; 112 } 113 getGenericTypeIndex()114 unsigned getGenericTypeIndex() const { 115 assert(isGenericType() && "non-generic types don't have an index"); 116 return OperandType - MCOI::OPERAND_FIRST_GENERIC; 117 } 118 isGenericImm()119 bool isGenericImm() const { 120 return OperandType >= MCOI::OPERAND_FIRST_GENERIC_IMM && 121 OperandType <= MCOI::OPERAND_LAST_GENERIC_IMM; 122 } 123 getGenericImmIndex()124 unsigned getGenericImmIndex() const { 125 assert(isGenericImm() && "non-generic immediates don't have an index"); 126 return OperandType - MCOI::OPERAND_FIRST_GENERIC_IMM; 127 } 128 }; 129 130 //===----------------------------------------------------------------------===// 131 // Machine Instruction Flags and Description 132 //===----------------------------------------------------------------------===// 133 134 namespace MCID { 135 /// These should be considered private to the implementation of the 136 /// MCInstrDesc class. Clients should use the predicate methods on MCInstrDesc, 137 /// not use these directly. These all correspond to bitfields in the 138 /// MCInstrDesc::Flags field. 139 enum Flag { 140 PreISelOpcode = 0, 141 Variadic, 142 HasOptionalDef, 143 Pseudo, 144 Return, 145 EHScopeReturn, 146 Call, 147 Barrier, 148 Terminator, 149 Branch, 150 IndirectBranch, 151 Compare, 152 MoveImm, 153 MoveReg, 154 Bitcast, 155 Select, 156 DelaySlot, 157 FoldableAsLoad, 158 MayLoad, 159 MayStore, 160 MayRaiseFPException, 161 Predicable, 162 NotDuplicable, 163 UnmodeledSideEffects, 164 Commutable, 165 ConvertibleTo3Addr, 166 UsesCustomInserter, 167 HasPostISelHook, 168 Rematerializable, 169 CheapAsAMove, 170 ExtraSrcRegAllocReq, 171 ExtraDefRegAllocReq, 172 RegSequence, 173 ExtractSubreg, 174 InsertSubreg, 175 Convergent, 176 Add, 177 Trap, 178 VariadicOpsAreDefs, 179 Authenticated, 180 }; 181 } 182 183 /// Describe properties that are true of each instruction in the target 184 /// description file. This captures information about side effects, register 185 /// use and many other things. There is one instance of this struct for each 186 /// target instruction class, and the MachineInstr class points to this struct 187 /// directly to describe itself. 188 class MCInstrDesc { 189 public: 190 unsigned short Opcode; // The opcode number 191 unsigned short NumOperands; // Num of args (may be more if variable_ops) 192 unsigned char NumDefs; // Num of args that are definitions 193 unsigned char Size; // Number of bytes in encoding. 194 unsigned short SchedClass; // enum identifying instr sched class 195 uint64_t Flags; // Flags identifying machine instr class 196 uint64_t TSFlags; // Target Specific Flag values 197 const MCPhysReg *ImplicitUses; // Registers implicitly read by this instr 198 const MCPhysReg *ImplicitDefs; // Registers implicitly defined by this instr 199 const MCOperandInfo *OpInfo; // 'NumOperands' entries about operands 200 // Subtarget feature that this is deprecated on, if any 201 // -1 implies this is not deprecated by any single feature. It may still be 202 // deprecated due to a "complex" reason, below. 203 int64_t DeprecatedFeature; 204 205 // A complex method to determine if a certain instruction is deprecated or 206 // not, and return the reason for deprecation. 207 bool (*ComplexDeprecationInfo)(MCInst &, const MCSubtargetInfo &, 208 std::string &); 209 210 /// Returns the value of the specific constraint if 211 /// it is set. Returns -1 if it is not set. getOperandConstraint(unsigned OpNum,MCOI::OperandConstraint Constraint)212 int getOperandConstraint(unsigned OpNum, 213 MCOI::OperandConstraint Constraint) const { 214 if (OpNum < NumOperands && 215 (OpInfo[OpNum].Constraints & (1 << Constraint))) { 216 unsigned Pos = 16 + Constraint * 4; 217 return (int)(OpInfo[OpNum].Constraints >> Pos) & 0xf; 218 } 219 return -1; 220 } 221 222 /// Returns true if a certain instruction is deprecated and if so 223 /// returns the reason in \p Info. 224 bool getDeprecatedInfo(MCInst &MI, const MCSubtargetInfo &STI, 225 std::string &Info) const; 226 227 /// Return the opcode number for this descriptor. getOpcode()228 unsigned getOpcode() const { return Opcode; } 229 230 /// Return the number of declared MachineOperands for this 231 /// MachineInstruction. Note that variadic (isVariadic() returns true) 232 /// instructions may have additional operands at the end of the list, and note 233 /// that the machine instruction may include implicit register def/uses as 234 /// well. getNumOperands()235 unsigned getNumOperands() const { return NumOperands; } 236 237 using const_opInfo_iterator = const MCOperandInfo *; 238 opInfo_begin()239 const_opInfo_iterator opInfo_begin() const { return OpInfo; } opInfo_end()240 const_opInfo_iterator opInfo_end() const { return OpInfo + NumOperands; } 241 operands()242 iterator_range<const_opInfo_iterator> operands() const { 243 return make_range(opInfo_begin(), opInfo_end()); 244 } 245 246 /// Return the number of MachineOperands that are register 247 /// definitions. Register definitions always occur at the start of the 248 /// machine operand list. This is the number of "outs" in the .td file, 249 /// and does not include implicit defs. getNumDefs()250 unsigned getNumDefs() const { return NumDefs; } 251 252 /// Return flags of this instruction. getFlags()253 uint64_t getFlags() const { return Flags; } 254 255 /// \returns true if this instruction is emitted before instruction selection 256 /// and should be legalized/regbankselected/selected. isPreISelOpcode()257 bool isPreISelOpcode() const { return Flags & (1ULL << MCID::PreISelOpcode); } 258 259 /// Return true if this instruction can have a variable number of 260 /// operands. In this case, the variable operands will be after the normal 261 /// operands but before the implicit definitions and uses (if any are 262 /// present). isVariadic()263 bool isVariadic() const { return Flags & (1ULL << MCID::Variadic); } 264 265 /// Set if this instruction has an optional definition, e.g. 266 /// ARM instructions which can set condition code if 's' bit is set. hasOptionalDef()267 bool hasOptionalDef() const { return Flags & (1ULL << MCID::HasOptionalDef); } 268 269 /// Return true if this is a pseudo instruction that doesn't 270 /// correspond to a real machine instruction. isPseudo()271 bool isPseudo() const { return Flags & (1ULL << MCID::Pseudo); } 272 273 /// Return true if the instruction is a return. isReturn()274 bool isReturn() const { return Flags & (1ULL << MCID::Return); } 275 276 /// Return true if the instruction is an add instruction. isAdd()277 bool isAdd() const { return Flags & (1ULL << MCID::Add); } 278 279 /// Return true if this instruction is a trap. isTrap()280 bool isTrap() const { return Flags & (1ULL << MCID::Trap); } 281 282 /// Return true if the instruction is a register to register move. isMoveReg()283 bool isMoveReg() const { return Flags & (1ULL << MCID::MoveReg); } 284 285 /// Return true if the instruction is a call. isCall()286 bool isCall() const { return Flags & (1ULL << MCID::Call); } 287 288 /// Returns true if the specified instruction stops control flow 289 /// from executing the instruction immediately following it. Examples include 290 /// unconditional branches and return instructions. isBarrier()291 bool isBarrier() const { return Flags & (1ULL << MCID::Barrier); } 292 293 /// Returns true if this instruction part of the terminator for 294 /// a basic block. Typically this is things like return and branch 295 /// instructions. 296 /// 297 /// Various passes use this to insert code into the bottom of a basic block, 298 /// but before control flow occurs. isTerminator()299 bool isTerminator() const { return Flags & (1ULL << MCID::Terminator); } 300 301 /// Returns true if this is a conditional, unconditional, or 302 /// indirect branch. Predicates below can be used to discriminate between 303 /// these cases, and the TargetInstrInfo::AnalyzeBranch method can be used to 304 /// get more information. isBranch()305 bool isBranch() const { return Flags & (1ULL << MCID::Branch); } 306 307 /// Return true if this is an indirect branch, such as a 308 /// branch through a register. isIndirectBranch()309 bool isIndirectBranch() const { return Flags & (1ULL << MCID::IndirectBranch); } 310 311 /// Return true if this is a branch which may fall 312 /// through to the next instruction or may transfer control flow to some other 313 /// block. The TargetInstrInfo::AnalyzeBranch method can be used to get more 314 /// information about this branch. isConditionalBranch()315 bool isConditionalBranch() const { 316 return isBranch() && !isBarrier() && !isIndirectBranch(); 317 } 318 319 /// Return true if this is a branch which always 320 /// transfers control flow to some other block. The 321 /// TargetInstrInfo::AnalyzeBranch method can be used to get more information 322 /// about this branch. isUnconditionalBranch()323 bool isUnconditionalBranch() const { 324 return isBranch() && isBarrier() && !isIndirectBranch(); 325 } 326 327 /// Return true if this is a branch or an instruction which directly 328 /// writes to the program counter. Considered 'may' affect rather than 329 /// 'does' affect as things like predication are not taken into account. 330 bool mayAffectControlFlow(const MCInst &MI, const MCRegisterInfo &RI) const; 331 332 /// Return true if this instruction has a predicate operand 333 /// that controls execution. It may be set to 'always', or may be set to other 334 /// values. There are various methods in TargetInstrInfo that can be used to 335 /// control and modify the predicate in this instruction. isPredicable()336 bool isPredicable() const { return Flags & (1ULL << MCID::Predicable); } 337 338 /// Return true if this instruction is a comparison. isCompare()339 bool isCompare() const { return Flags & (1ULL << MCID::Compare); } 340 341 /// Return true if this instruction is a move immediate 342 /// (including conditional moves) instruction. isMoveImmediate()343 bool isMoveImmediate() const { return Flags & (1ULL << MCID::MoveImm); } 344 345 /// Return true if this instruction is a bitcast instruction. isBitcast()346 bool isBitcast() const { return Flags & (1ULL << MCID::Bitcast); } 347 348 /// Return true if this is a select instruction. isSelect()349 bool isSelect() const { return Flags & (1ULL << MCID::Select); } 350 351 /// Return true if this instruction cannot be safely 352 /// duplicated. For example, if the instruction has a unique labels attached 353 /// to it, duplicating it would cause multiple definition errors. isNotDuplicable()354 bool isNotDuplicable() const { return Flags & (1ULL << MCID::NotDuplicable); } 355 356 /// Returns true if the specified instruction has a delay slot which 357 /// must be filled by the code generator. hasDelaySlot()358 bool hasDelaySlot() const { return Flags & (1ULL << MCID::DelaySlot); } 359 360 /// Return true for instructions that can be folded as memory operands 361 /// in other instructions. The most common use for this is instructions that 362 /// are simple loads from memory that don't modify the loaded value in any 363 /// way, but it can also be used for instructions that can be expressed as 364 /// constant-pool loads, such as V_SETALLONES on x86, to allow them to be 365 /// folded when it is beneficial. This should only be set on instructions 366 /// that return a value in their only virtual register definition. canFoldAsLoad()367 bool canFoldAsLoad() const { return Flags & (1ULL << MCID::FoldableAsLoad); } 368 369 /// Return true if this instruction behaves 370 /// the same way as the generic REG_SEQUENCE instructions. 371 /// E.g., on ARM, 372 /// dX VMOVDRR rY, rZ 373 /// is equivalent to 374 /// dX = REG_SEQUENCE rY, ssub_0, rZ, ssub_1. 375 /// 376 /// Note that for the optimizers to be able to take advantage of 377 /// this property, TargetInstrInfo::getRegSequenceLikeInputs has to be 378 /// override accordingly. isRegSequenceLike()379 bool isRegSequenceLike() const { return Flags & (1ULL << MCID::RegSequence); } 380 381 /// Return true if this instruction behaves 382 /// the same way as the generic EXTRACT_SUBREG instructions. 383 /// E.g., on ARM, 384 /// rX, rY VMOVRRD dZ 385 /// is equivalent to two EXTRACT_SUBREG: 386 /// rX = EXTRACT_SUBREG dZ, ssub_0 387 /// rY = EXTRACT_SUBREG dZ, ssub_1 388 /// 389 /// Note that for the optimizers to be able to take advantage of 390 /// this property, TargetInstrInfo::getExtractSubregLikeInputs has to be 391 /// override accordingly. isExtractSubregLike()392 bool isExtractSubregLike() const { 393 return Flags & (1ULL << MCID::ExtractSubreg); 394 } 395 396 /// Return true if this instruction behaves 397 /// the same way as the generic INSERT_SUBREG instructions. 398 /// E.g., on ARM, 399 /// dX = VSETLNi32 dY, rZ, Imm 400 /// is equivalent to a INSERT_SUBREG: 401 /// dX = INSERT_SUBREG dY, rZ, translateImmToSubIdx(Imm) 402 /// 403 /// Note that for the optimizers to be able to take advantage of 404 /// this property, TargetInstrInfo::getInsertSubregLikeInputs has to be 405 /// override accordingly. isInsertSubregLike()406 bool isInsertSubregLike() const { return Flags & (1ULL << MCID::InsertSubreg); } 407 408 409 /// Return true if this instruction is convergent. 410 /// 411 /// Convergent instructions may not be made control-dependent on any 412 /// additional values. isConvergent()413 bool isConvergent() const { return Flags & (1ULL << MCID::Convergent); } 414 415 /// Return true if variadic operands of this instruction are definitions. variadicOpsAreDefs()416 bool variadicOpsAreDefs() const { 417 return Flags & (1ULL << MCID::VariadicOpsAreDefs); 418 } 419 420 /// Return true if this instruction authenticates a pointer (e.g. LDRAx/BRAx 421 /// from ARMv8.3, which perform loads/branches with authentication). 422 /// 423 /// An authenticated instruction may fail in an ABI-defined manner when 424 /// operating on an invalid signed pointer. isAuthenticated()425 bool isAuthenticated() const { 426 return Flags & (1ULL << MCID::Authenticated); 427 } 428 429 //===--------------------------------------------------------------------===// 430 // Side Effect Analysis 431 //===--------------------------------------------------------------------===// 432 433 /// Return true if this instruction could possibly read memory. 434 /// Instructions with this flag set are not necessarily simple load 435 /// instructions, they may load a value and modify it, for example. mayLoad()436 bool mayLoad() const { return Flags & (1ULL << MCID::MayLoad); } 437 438 /// Return true if this instruction could possibly modify memory. 439 /// Instructions with this flag set are not necessarily simple store 440 /// instructions, they may store a modified value based on their operands, or 441 /// may not actually modify anything, for example. mayStore()442 bool mayStore() const { return Flags & (1ULL << MCID::MayStore); } 443 444 /// Return true if this instruction may raise a floating-point exception. mayRaiseFPException()445 bool mayRaiseFPException() const { 446 return Flags & (1ULL << MCID::MayRaiseFPException); 447 } 448 449 /// Return true if this instruction has side 450 /// effects that are not modeled by other flags. This does not return true 451 /// for instructions whose effects are captured by: 452 /// 453 /// 1. Their operand list and implicit definition/use list. Register use/def 454 /// info is explicit for instructions. 455 /// 2. Memory accesses. Use mayLoad/mayStore. 456 /// 3. Calling, branching, returning: use isCall/isReturn/isBranch. 457 /// 458 /// Examples of side effects would be modifying 'invisible' machine state like 459 /// a control register, flushing a cache, modifying a register invisible to 460 /// LLVM, etc. hasUnmodeledSideEffects()461 bool hasUnmodeledSideEffects() const { 462 return Flags & (1ULL << MCID::UnmodeledSideEffects); 463 } 464 465 //===--------------------------------------------------------------------===// 466 // Flags that indicate whether an instruction can be modified by a method. 467 //===--------------------------------------------------------------------===// 468 469 /// Return true if this may be a 2- or 3-address instruction (of the 470 /// form "X = op Y, Z, ..."), which produces the same result if Y and Z are 471 /// exchanged. If this flag is set, then the 472 /// TargetInstrInfo::commuteInstruction method may be used to hack on the 473 /// instruction. 474 /// 475 /// Note that this flag may be set on instructions that are only commutable 476 /// sometimes. In these cases, the call to commuteInstruction will fail. 477 /// Also note that some instructions require non-trivial modification to 478 /// commute them. isCommutable()479 bool isCommutable() const { return Flags & (1ULL << MCID::Commutable); } 480 481 /// Return true if this is a 2-address instruction which can be changed 482 /// into a 3-address instruction if needed. Doing this transformation can be 483 /// profitable in the register allocator, because it means that the 484 /// instruction can use a 2-address form if possible, but degrade into a less 485 /// efficient form if the source and dest register cannot be assigned to the 486 /// same register. For example, this allows the x86 backend to turn a "shl 487 /// reg, 3" instruction into an LEA instruction, which is the same speed as 488 /// the shift but has bigger code size. 489 /// 490 /// If this returns true, then the target must implement the 491 /// TargetInstrInfo::convertToThreeAddress method for this instruction, which 492 /// is allowed to fail if the transformation isn't valid for this specific 493 /// instruction (e.g. shl reg, 4 on x86). 494 /// isConvertibleTo3Addr()495 bool isConvertibleTo3Addr() const { 496 return Flags & (1ULL << MCID::ConvertibleTo3Addr); 497 } 498 499 /// Return true if this instruction requires custom insertion support 500 /// when the DAG scheduler is inserting it into a machine basic block. If 501 /// this is true for the instruction, it basically means that it is a pseudo 502 /// instruction used at SelectionDAG time that is expanded out into magic code 503 /// by the target when MachineInstrs are formed. 504 /// 505 /// If this is true, the TargetLoweringInfo::InsertAtEndOfBasicBlock method 506 /// is used to insert this into the MachineBasicBlock. usesCustomInsertionHook()507 bool usesCustomInsertionHook() const { 508 return Flags & (1ULL << MCID::UsesCustomInserter); 509 } 510 511 /// Return true if this instruction requires *adjustment* after 512 /// instruction selection by calling a target hook. For example, this can be 513 /// used to fill in ARM 's' optional operand depending on whether the 514 /// conditional flag register is used. hasPostISelHook()515 bool hasPostISelHook() const { return Flags & (1ULL << MCID::HasPostISelHook); } 516 517 /// Returns true if this instruction is a candidate for remat. This 518 /// flag is only used in TargetInstrInfo method isTriviallyRematerializable. 519 /// 520 /// If this flag is set, the isReallyTriviallyReMaterializable() 521 /// or isReallyTriviallyReMaterializableGeneric methods are called to verify 522 /// the instruction is really rematable. isRematerializable()523 bool isRematerializable() const { 524 return Flags & (1ULL << MCID::Rematerializable); 525 } 526 527 /// Returns true if this instruction has the same cost (or less) than a 528 /// move instruction. This is useful during certain types of optimizations 529 /// (e.g., remat during two-address conversion or machine licm) where we would 530 /// like to remat or hoist the instruction, but not if it costs more than 531 /// moving the instruction into the appropriate register. Note, we are not 532 /// marking copies from and to the same register class with this flag. 533 /// 534 /// This method could be called by interface TargetInstrInfo::isAsCheapAsAMove 535 /// for different subtargets. isAsCheapAsAMove()536 bool isAsCheapAsAMove() const { return Flags & (1ULL << MCID::CheapAsAMove); } 537 538 /// Returns true if this instruction source operands have special 539 /// register allocation requirements that are not captured by the operand 540 /// register classes. e.g. ARM::STRD's two source registers must be an even / 541 /// odd pair, ARM::STM registers have to be in ascending order. Post-register 542 /// allocation passes should not attempt to change allocations for sources of 543 /// instructions with this flag. hasExtraSrcRegAllocReq()544 bool hasExtraSrcRegAllocReq() const { 545 return Flags & (1ULL << MCID::ExtraSrcRegAllocReq); 546 } 547 548 /// Returns true if this instruction def operands have special register 549 /// allocation requirements that are not captured by the operand register 550 /// classes. e.g. ARM::LDRD's two def registers must be an even / odd pair, 551 /// ARM::LDM registers have to be in ascending order. Post-register 552 /// allocation passes should not attempt to change allocations for definitions 553 /// of instructions with this flag. hasExtraDefRegAllocReq()554 bool hasExtraDefRegAllocReq() const { 555 return Flags & (1ULL << MCID::ExtraDefRegAllocReq); 556 } 557 558 /// Return a list of registers that are potentially read by any 559 /// instance of this machine instruction. For example, on X86, the "adc" 560 /// instruction adds two register operands and adds the carry bit in from the 561 /// flags register. In this case, the instruction is marked as implicitly 562 /// reading the flags. Likewise, the variable shift instruction on X86 is 563 /// marked as implicitly reading the 'CL' register, which it always does. 564 /// 565 /// This method returns null if the instruction has no implicit uses. getImplicitUses()566 const MCPhysReg *getImplicitUses() const { return ImplicitUses; } 567 568 /// Return the number of implicit uses this instruction has. getNumImplicitUses()569 unsigned getNumImplicitUses() const { 570 if (!ImplicitUses) 571 return 0; 572 unsigned i = 0; 573 for (; ImplicitUses[i]; ++i) /*empty*/ 574 ; 575 return i; 576 } 577 578 /// Return a list of registers that are potentially written by any 579 /// instance of this machine instruction. For example, on X86, many 580 /// instructions implicitly set the flags register. In this case, they are 581 /// marked as setting the FLAGS. Likewise, many instructions always deposit 582 /// their result in a physical register. For example, the X86 divide 583 /// instruction always deposits the quotient and remainder in the EAX/EDX 584 /// registers. For that instruction, this will return a list containing the 585 /// EAX/EDX/EFLAGS registers. 586 /// 587 /// This method returns null if the instruction has no implicit defs. getImplicitDefs()588 const MCPhysReg *getImplicitDefs() const { return ImplicitDefs; } 589 590 /// Return the number of implicit defs this instruct has. getNumImplicitDefs()591 unsigned getNumImplicitDefs() const { 592 if (!ImplicitDefs) 593 return 0; 594 unsigned i = 0; 595 for (; ImplicitDefs[i]; ++i) /*empty*/ 596 ; 597 return i; 598 } 599 600 /// Return true if this instruction implicitly 601 /// uses the specified physical register. hasImplicitUseOfPhysReg(unsigned Reg)602 bool hasImplicitUseOfPhysReg(unsigned Reg) const { 603 if (const MCPhysReg *ImpUses = ImplicitUses) 604 for (; *ImpUses; ++ImpUses) 605 if (*ImpUses == Reg) 606 return true; 607 return false; 608 } 609 610 /// Return true if this instruction implicitly 611 /// defines the specified physical register. 612 bool hasImplicitDefOfPhysReg(unsigned Reg, 613 const MCRegisterInfo *MRI = nullptr) const; 614 615 /// Return the scheduling class for this instruction. The 616 /// scheduling class is an index into the InstrItineraryData table. This 617 /// returns zero if there is no known scheduling information for the 618 /// instruction. getSchedClass()619 unsigned getSchedClass() const { return SchedClass; } 620 621 /// Return the number of bytes in the encoding of this instruction, 622 /// or zero if the encoding size cannot be known from the opcode. getSize()623 unsigned getSize() const { return Size; } 624 625 /// Find the index of the first operand in the 626 /// operand list that is used to represent the predicate. It returns -1 if 627 /// none is found. findFirstPredOperandIdx()628 int findFirstPredOperandIdx() const { 629 if (isPredicable()) { 630 for (unsigned i = 0, e = getNumOperands(); i != e; ++i) 631 if (OpInfo[i].isPredicate()) 632 return i; 633 } 634 return -1; 635 } 636 637 /// Return true if this instruction defines the specified physical 638 /// register, either explicitly or implicitly. 639 bool hasDefOfPhysReg(const MCInst &MI, unsigned Reg, 640 const MCRegisterInfo &RI) const; 641 }; 642 643 } // end namespace llvm 644 645 #endif 646