1 // Copyright 2013 the V8 project authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4
5 #include "src/compiler/node.h"
6
7 namespace v8 {
8 namespace internal {
9 namespace compiler {
10
New(Zone * zone,int capacity)11 Node::OutOfLineInputs* Node::OutOfLineInputs::New(Zone* zone, int capacity) {
12 size_t size =
13 sizeof(OutOfLineInputs) + capacity * (sizeof(Node*) + sizeof(Use));
14 intptr_t raw_buffer =
15 reinterpret_cast<intptr_t>(zone->Allocate<Node::OutOfLineInputs>(size));
16 Node::OutOfLineInputs* outline =
17 reinterpret_cast<OutOfLineInputs*>(raw_buffer + capacity * sizeof(Use));
18 outline->capacity_ = capacity;
19 outline->count_ = 0;
20 return outline;
21 }
22
ExtractFrom(Use * old_use_ptr,ZoneNodePtr * old_input_ptr,int count)23 void Node::OutOfLineInputs::ExtractFrom(Use* old_use_ptr,
24 ZoneNodePtr* old_input_ptr, int count) {
25 DCHECK_GE(count, 0);
26 // Extract the inputs from the old use and input pointers and copy them
27 // to this out-of-line-storage.
28 Use* new_use_ptr = reinterpret_cast<Use*>(this) - 1;
29 ZoneNodePtr* new_input_ptr = inputs();
30 CHECK_IMPLIES(count > 0, Use::InputIndexField::is_valid(count - 1));
31 for (int current = 0; current < count; current++) {
32 new_use_ptr->bit_field_ =
33 Use::InputIndexField::encode(current) | Use::InlineField::encode(false);
34 DCHECK_EQ(old_input_ptr, old_use_ptr->input_ptr());
35 DCHECK_EQ(new_input_ptr, new_use_ptr->input_ptr());
36 Node* old_to = *old_input_ptr;
37 if (old_to) {
38 *old_input_ptr = nullptr;
39 old_to->RemoveUse(old_use_ptr);
40 *new_input_ptr = old_to;
41 old_to->AppendUse(new_use_ptr);
42 } else {
43 *new_input_ptr = nullptr;
44 }
45 old_input_ptr++;
46 new_input_ptr++;
47 old_use_ptr--;
48 new_use_ptr--;
49 }
50 this->count_ = count;
51 }
52
53 // These structs are just type tags for Zone::Allocate<T>(size_t) calls.
54 struct NodeWithOutOfLineInputs {};
55 struct NodeWithInLineInputs {};
56
57 template <typename NodePtrT>
NewImpl(Zone * zone,NodeId id,const Operator * op,int input_count,NodePtrT const * inputs,bool has_extensible_inputs)58 Node* Node::NewImpl(Zone* zone, NodeId id, const Operator* op, int input_count,
59 NodePtrT const* inputs, bool has_extensible_inputs) {
60 // Node uses compressed pointers, so zone must support pointer compression.
61 DCHECK_IMPLIES(kCompressGraphZone, zone->supports_compression());
62 DCHECK_GE(input_count, 0);
63
64 ZoneNodePtr* input_ptr;
65 Use* use_ptr;
66 Node* node;
67 bool is_inline;
68
69 // Verify that none of the inputs are {nullptr}.
70 for (int i = 0; i < input_count; i++) {
71 if (inputs[i] == nullptr) {
72 FATAL("Node::New() Error: #%d:%s[%d] is nullptr", static_cast<int>(id),
73 op->mnemonic(), i);
74 }
75 }
76
77 if (input_count > kMaxInlineCapacity) {
78 // Allocate out-of-line inputs.
79 int capacity =
80 has_extensible_inputs ? input_count + kMaxInlineCapacity : input_count;
81 OutOfLineInputs* outline = OutOfLineInputs::New(zone, capacity);
82
83 // Allocate node, with space for OutOfLineInputs pointer.
84 void* node_buffer = zone->Allocate<NodeWithOutOfLineInputs>(
85 sizeof(Node) + sizeof(ZoneOutOfLineInputsPtr));
86 node = new (node_buffer) Node(id, op, kOutlineMarker, 0);
87 node->set_outline_inputs(outline);
88
89 outline->node_ = node;
90 outline->count_ = input_count;
91
92 input_ptr = outline->inputs();
93 use_ptr = reinterpret_cast<Use*>(outline);
94 is_inline = false;
95 } else {
96 // Allocate node with inline inputs. Capacity must be at least 1 so that
97 // an OutOfLineInputs pointer can be stored when inputs are added later.
98 int capacity = std::max(1, input_count);
99 if (has_extensible_inputs) {
100 const int max = kMaxInlineCapacity;
101 capacity = std::min(input_count + 3, max);
102 }
103
104 size_t size = sizeof(Node) + capacity * (sizeof(ZoneNodePtr) + sizeof(Use));
105 intptr_t raw_buffer =
106 reinterpret_cast<intptr_t>(zone->Allocate<NodeWithInLineInputs>(size));
107 void* node_buffer =
108 reinterpret_cast<void*>(raw_buffer + capacity * sizeof(Use));
109
110 node = new (node_buffer) Node(id, op, input_count, capacity);
111 input_ptr = node->inline_inputs();
112 use_ptr = reinterpret_cast<Use*>(node);
113 is_inline = true;
114 }
115
116 // Initialize the input pointers and the uses.
117 CHECK_IMPLIES(input_count > 0,
118 Use::InputIndexField::is_valid(input_count - 1));
119 for (int current = 0; current < input_count; ++current) {
120 Node* to = *inputs++;
121 input_ptr[current] = to;
122 Use* use = use_ptr - 1 - current;
123 use->bit_field_ = Use::InputIndexField::encode(current) |
124 Use::InlineField::encode(is_inline);
125 to->AppendUse(use);
126 }
127 node->Verify();
128 return node;
129 }
130
New(Zone * zone,NodeId id,const Operator * op,int input_count,Node * const * inputs,bool has_extensible_inputs)131 Node* Node::New(Zone* zone, NodeId id, const Operator* op, int input_count,
132 Node* const* inputs, bool has_extensible_inputs) {
133 return NewImpl(zone, id, op, input_count, inputs, has_extensible_inputs);
134 }
135
Clone(Zone * zone,NodeId id,const Node * node)136 Node* Node::Clone(Zone* zone, NodeId id, const Node* node) {
137 int const input_count = node->InputCount();
138 ZoneNodePtr const* const inputs = node->has_inline_inputs()
139 ? node->inline_inputs()
140 : node->outline_inputs()->inputs();
141 Node* const clone = NewImpl(zone, id, node->op(), input_count, inputs, false);
142 clone->set_type(node->type());
143 return clone;
144 }
145
146
Kill()147 void Node::Kill() {
148 DCHECK_NOT_NULL(op());
149 NullAllInputs();
150 DCHECK(uses().empty());
151 }
152
153
AppendInput(Zone * zone,Node * new_to)154 void Node::AppendInput(Zone* zone, Node* new_to) {
155 DCHECK_NOT_NULL(zone);
156 DCHECK_NOT_NULL(new_to);
157
158 int const inline_count = InlineCountField::decode(bit_field_);
159 int const inline_capacity = InlineCapacityField::decode(bit_field_);
160 if (inline_count < inline_capacity) {
161 // Append inline input.
162 bit_field_ = InlineCountField::update(bit_field_, inline_count + 1);
163 *GetInputPtr(inline_count) = new_to;
164 Use* use = GetUsePtr(inline_count);
165 STATIC_ASSERT(InlineCapacityField::kMax <= Use::InputIndexField::kMax);
166 use->bit_field_ = Use::InputIndexField::encode(inline_count) |
167 Use::InlineField::encode(true);
168 new_to->AppendUse(use);
169 } else {
170 // Append out-of-line input.
171 int const input_count = InputCount();
172 OutOfLineInputs* outline = nullptr;
173 if (inline_count != kOutlineMarker) {
174 // switch to out of line inputs.
175 outline = OutOfLineInputs::New(zone, input_count * 2 + 3);
176 outline->node_ = this;
177 outline->ExtractFrom(GetUsePtr(0), GetInputPtr(0), input_count);
178 bit_field_ = InlineCountField::update(bit_field_, kOutlineMarker);
179 set_outline_inputs(outline);
180 } else {
181 // use current out of line inputs.
182 outline = outline_inputs();
183 if (input_count >= outline->capacity_) {
184 // out of space in out-of-line inputs.
185 outline = OutOfLineInputs::New(zone, input_count * 2 + 3);
186 outline->node_ = this;
187 outline->ExtractFrom(GetUsePtr(0), GetInputPtr(0), input_count);
188 set_outline_inputs(outline);
189 }
190 }
191 outline->count_++;
192 *GetInputPtr(input_count) = new_to;
193 Use* use = GetUsePtr(input_count);
194 CHECK(Use::InputIndexField::is_valid(input_count));
195 use->bit_field_ = Use::InputIndexField::encode(input_count) |
196 Use::InlineField::encode(false);
197 new_to->AppendUse(use);
198 }
199 Verify();
200 }
201
202
InsertInput(Zone * zone,int index,Node * new_to)203 void Node::InsertInput(Zone* zone, int index, Node* new_to) {
204 DCHECK_NOT_NULL(zone);
205 DCHECK_LE(0, index);
206 DCHECK_LT(index, InputCount());
207 AppendInput(zone, InputAt(InputCount() - 1));
208 for (int i = InputCount() - 1; i > index; --i) {
209 ReplaceInput(i, InputAt(i - 1));
210 }
211 ReplaceInput(index, new_to);
212 Verify();
213 }
214
InsertInputs(Zone * zone,int index,int count)215 void Node::InsertInputs(Zone* zone, int index, int count) {
216 DCHECK_NOT_NULL(zone);
217 DCHECK_LE(0, index);
218 DCHECK_LT(0, count);
219 DCHECK_LT(index, InputCount());
220 for (int i = 0; i < count; i++) {
221 AppendInput(zone, InputAt(std::max(InputCount() - count, 0)));
222 }
223 for (int i = InputCount() - count - 1; i >= std::max(index, count); --i) {
224 ReplaceInput(i, InputAt(i - count));
225 }
226 for (int i = 0; i < count; i++) {
227 ReplaceInput(index + i, nullptr);
228 }
229 Verify();
230 }
231
RemoveInput(int index)232 Node* Node::RemoveInput(int index) {
233 DCHECK_LE(0, index);
234 DCHECK_LT(index, InputCount());
235 Node* result = InputAt(index);
236 for (; index < InputCount() - 1; ++index) {
237 ReplaceInput(index, InputAt(index + 1));
238 }
239 TrimInputCount(InputCount() - 1);
240 Verify();
241 return result;
242 }
243
ClearInputs(int start,int count)244 void Node::ClearInputs(int start, int count) {
245 ZoneNodePtr* input_ptr = GetInputPtr(start);
246 Use* use_ptr = GetUsePtr(start);
247 while (count-- > 0) {
248 DCHECK_EQ(input_ptr, use_ptr->input_ptr());
249 Node* input = *input_ptr;
250 *input_ptr = nullptr;
251 if (input) input->RemoveUse(use_ptr);
252 input_ptr++;
253 use_ptr--;
254 }
255 Verify();
256 }
257
258
NullAllInputs()259 void Node::NullAllInputs() { ClearInputs(0, InputCount()); }
260
261
TrimInputCount(int new_input_count)262 void Node::TrimInputCount(int new_input_count) {
263 int current_count = InputCount();
264 DCHECK_LE(new_input_count, current_count);
265 if (new_input_count == current_count) return; // Nothing to do.
266 ClearInputs(new_input_count, current_count - new_input_count);
267 if (has_inline_inputs()) {
268 bit_field_ = InlineCountField::update(bit_field_, new_input_count);
269 } else {
270 outline_inputs()->count_ = new_input_count;
271 }
272 }
273
EnsureInputCount(Zone * zone,int new_input_count)274 void Node::EnsureInputCount(Zone* zone, int new_input_count) {
275 int current_count = InputCount();
276 DCHECK_NE(current_count, 0);
277 if (current_count > new_input_count) {
278 TrimInputCount(new_input_count);
279 } else if (current_count < new_input_count) {
280 Node* dummy = InputAt(current_count - 1);
281 do {
282 AppendInput(zone, dummy);
283 current_count++;
284 } while (current_count < new_input_count);
285 }
286 }
287
UseCount() const288 int Node::UseCount() const {
289 int use_count = 0;
290 for (const Use* use = first_use_; use; use = use->next) {
291 ++use_count;
292 }
293 return use_count;
294 }
295
296
ReplaceUses(Node * that)297 void Node::ReplaceUses(Node* that) {
298 DCHECK(this->first_use_ == nullptr || this->first_use_->prev == nullptr);
299 DCHECK(that->first_use_ == nullptr || that->first_use_->prev == nullptr);
300
301 // Update the pointers to {this} to point to {that}.
302 Use* last_use = nullptr;
303 for (Use* use = this->first_use_; use; use = use->next) {
304 *use->input_ptr() = that;
305 last_use = use;
306 }
307 if (last_use) {
308 // Concat the use list of {this} and {that}.
309 last_use->next = that->first_use_;
310 if (that->first_use_) that->first_use_->prev = last_use;
311 that->first_use_ = this->first_use_;
312 }
313 first_use_ = nullptr;
314 }
315
OwnedBy(Node const * owner) const316 bool Node::OwnedBy(Node const* owner) const {
317 for (Use* use = first_use_; use; use = use->next) {
318 if (use->from() != owner) {
319 return false;
320 }
321 }
322 return first_use_ != nullptr;
323 }
324
OwnedBy(Node const * owner1,Node const * owner2) const325 bool Node::OwnedBy(Node const* owner1, Node const* owner2) const {
326 unsigned mask = 0;
327 for (Use* use = first_use_; use; use = use->next) {
328 Node* from = use->from();
329 if (from == owner1) {
330 mask |= 1;
331 } else if (from == owner2) {
332 mask |= 2;
333 } else {
334 return false;
335 }
336 }
337 return mask == 3;
338 }
339
Print(int depth) const340 void Node::Print(int depth) const {
341 StdoutStream os;
342 Print(os, depth);
343 }
344
345 namespace {
PrintNode(const Node * node,std::ostream & os,int depth,int indentation=0)346 void PrintNode(const Node* node, std::ostream& os, int depth,
347 int indentation = 0) {
348 for (int i = 0; i < indentation; ++i) {
349 os << " ";
350 }
351 if (node) {
352 os << *node;
353 } else {
354 os << "(NULL)";
355 }
356 os << std::endl;
357 if (depth <= 0) return;
358 for (Node* input : node->inputs()) {
359 PrintNode(input, os, depth - 1, indentation + 1);
360 }
361 }
362 } // namespace
363
Print(std::ostream & os,int depth) const364 void Node::Print(std::ostream& os, int depth) const {
365 PrintNode(this, os, depth);
366 }
367
operator <<(std::ostream & os,const Node & n)368 std::ostream& operator<<(std::ostream& os, const Node& n) {
369 os << n.id() << ": " << *n.op();
370 if (n.InputCount() > 0) {
371 os << "(";
372 for (int i = 0; i < n.InputCount(); ++i) {
373 if (i != 0) os << ", ";
374 if (n.InputAt(i)) {
375 os << n.InputAt(i)->id();
376 } else {
377 os << "null";
378 }
379 }
380 os << ")";
381 }
382 return os;
383 }
384
Node(NodeId id,const Operator * op,int inline_count,int inline_capacity)385 Node::Node(NodeId id, const Operator* op, int inline_count, int inline_capacity)
386 : op_(op),
387 mark_(0),
388 bit_field_(IdField::encode(id) | InlineCountField::encode(inline_count) |
389 InlineCapacityField::encode(inline_capacity)),
390 first_use_(nullptr) {
391 // Check that the id didn't overflow.
392 STATIC_ASSERT(IdField::kMax < std::numeric_limits<NodeId>::max());
393 CHECK(IdField::is_valid(id));
394
395 // Inputs must either be out of line or within the inline capacity.
396 DCHECK(inline_count == kOutlineMarker || inline_count <= inline_capacity);
397 DCHECK_LE(inline_capacity, kMaxInlineCapacity);
398 }
399
400
AppendUse(Use * use)401 void Node::AppendUse(Use* use) {
402 DCHECK(first_use_ == nullptr || first_use_->prev == nullptr);
403 DCHECK_EQ(this, *use->input_ptr());
404 use->next = first_use_;
405 use->prev = nullptr;
406 if (first_use_) first_use_->prev = use;
407 first_use_ = use;
408 }
409
410
RemoveUse(Use * use)411 void Node::RemoveUse(Use* use) {
412 DCHECK(first_use_ == nullptr || first_use_->prev == nullptr);
413 if (use->prev) {
414 DCHECK_NE(first_use_, use);
415 use->prev->next = use->next;
416 } else {
417 DCHECK_EQ(first_use_, use);
418 first_use_ = use->next;
419 }
420 if (use->next) {
421 use->next->prev = use->prev;
422 }
423 }
424
425
426 #if DEBUG
Verify()427 void Node::Verify() {
428 // Check basic validity of input data structures.
429 fflush(stdout);
430 int count = this->InputCount();
431 // Avoid quadratic explosion for mega nodes; only verify if the input
432 // count is less than 200 or is a round number of 100s.
433 if (count > 200 && count % 100) return;
434
435 for (int i = 0; i < count; i++) {
436 DCHECK_EQ(i, this->GetUsePtr(i)->input_index());
437 DCHECK_EQ(this->GetInputPtr(i), this->GetUsePtr(i)->input_ptr());
438 DCHECK_EQ(count, this->InputCount());
439 }
440 { // Direct input iteration.
441 int index = 0;
442 for (Node* input : this->inputs()) {
443 DCHECK_EQ(this->InputAt(index), input);
444 index++;
445 }
446 DCHECK_EQ(count, index);
447 DCHECK_EQ(this->InputCount(), index);
448 }
449 { // Input edge iteration.
450 int index = 0;
451 for (Edge edge : this->input_edges()) {
452 DCHECK_EQ(edge.from(), this);
453 DCHECK_EQ(index, edge.index());
454 DCHECK_EQ(this->InputAt(index), edge.to());
455 index++;
456 }
457 DCHECK_EQ(count, index);
458 DCHECK_EQ(this->InputCount(), index);
459 }
460 }
461 #endif
462
operator ++(int n)463 Node::InputEdges::iterator Node::InputEdges::iterator::operator++(int n) {
464 iterator result(*this);
465 ++(*this);
466 return result;
467 }
468
469
operator ++(int n)470 Node::Inputs::const_iterator Node::Inputs::const_iterator::operator++(int n) {
471 const_iterator result(*this);
472 ++(*this);
473 return result;
474 }
475
476
operator ++(int n)477 Node::UseEdges::iterator Node::UseEdges::iterator::operator++(int n) {
478 iterator result(*this);
479 ++(*this);
480 return result;
481 }
482
483
empty() const484 bool Node::UseEdges::empty() const { return begin() == end(); }
485
486
operator ++(int n)487 Node::Uses::const_iterator Node::Uses::const_iterator::operator++(int n) {
488 const_iterator result(*this);
489 ++(*this);
490 return result;
491 }
492
493
empty() const494 bool Node::Uses::empty() const { return begin() == end(); }
495
496 } // namespace compiler
497 } // namespace internal
498 } // namespace v8
499
_v8_internal_Node_Print(void * object)500 V8_EXPORT_PRIVATE extern void _v8_internal_Node_Print(void* object) {
501 reinterpret_cast<i::compiler::Node*>(object)->Print();
502 }
503